中考压轴题动态几何之其他问题
专题47 动态几何之其他问题(解析几何)(压轴题)
《中考压轴题》专题47:动态几何之其他问题(解析几何)一、选择题1. 在平面直角坐标系xOy中,直线经过点A(-3,0),点B(0,3),点P的坐标为(1,0),与y轴相切于点O,若将⊙P沿x轴向左平移,平移后得到(点P的对应点为点P′),当⊙P′与直线相交时,横坐标为整数的点P′共有A. 1个B. 2个C. 3个D. 4个2. 如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点重合,在边AB 从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数ky(k0)x=≠中,k的值的变化情况是A. 一直增大B. 一直减小C. 先增大后减小D. 先减小后增大3.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是A.2 B.3 C.4 D.54 如图,直线1y x2=与双曲线kyx=(k>0,x>0)交于点A,将直线1y x2=向上平移4个单位长度后,与y轴交于点C,与双曲线kyx=(k>0,x>0)交于点B,若OA=3BC,则k的值为A、3B、6C、94D、925. 如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线kyx=(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是A.1 B.2 C.3 D.46. 如图,直线y=2x与双曲线2yx=在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)7. 如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是A.45°B.60°C.90°D.120°8. 如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点在直线3y x4=上一点,则点B与其对应点B′间的距离为A.94B.3 C.4 D.5二、填空题1. 如图,已知点A是双曲线2yx=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线kyx=(k<0)上运动,则k的值是.2. 如图,已知点A是双曲线2yx=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线kyx=(k<0)上运动,则k的值是.3.如图,直线l1⊥x轴于点A(2,0),点B是直线l1上的动点.直线l2:y=x+1交l1于点C,过点B作直线l3垂直于l2,垂足为D,过点O,B的直线l4交l2于点E.当直线l1,l2,l3能围成三角形时,设该三角形面积为S1,当直线l2,l3,l4能围成三角形时,设该三角形面积为S2.(1)若点B在线段AC上,且S1=S2,则B点坐标为;(2)若点B在直线l1上,且S2=3S1,则∠BOA的度数为.3. 如图,已知点A是第一象限内横坐标为23的一个定点,AC⊥x轴于点M,交直线y=-x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是.4. 如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的△是腰长为5的等腰三角形时,点P的坐标为。
中考复习 动态几何型压轴题
1、解决这类问题时,要 、解决这类问题时, 理解图形运动的过程, 理解图形运动的过程, 探索运动的特点和规律, 探索运动的特点和规律, 掌握好动静的切换---“动 掌握好动静的切换 动 中求静” 中求静”。 2、多作出几个符合要求 、多作出几个符合要求 草图。 的草图。
Page 4
例题: 中考回放 例题:09中考回放
(1)当t = 2时,AP = ) 时 ,点Q到AC的距离是 到 的距离是 ; 运动的过程中, 的面积S与 的 (2)在点 从C向A运动的过程中,求△APQ的面积 与t的 )在点P从 向 运动的过程中 的面积 函数关系式;(不必写出t的取值范围 ;(不必写出 的取值范围) 函数关系式;(不必写出 的取值范围) 运动的过程中, (3)在点 从B向C运动的过程中,四边形 )在点E从 向 运动的过程中 四边形QBED能否成为 能否成为 直角梯形?若能, 的值 若不能,请说明理由; 的值. 直角梯形?若能,求t的值.若不能,请说明理由; 经过点C 请直接写出t的值 的值. (4)当DE经过点 时,请直接写出 的值. ) 经过点
解:②如图5,当PQ∥BC时,DE⊥BC, 如图 , ∥ 时 ⊥ , 四边形QBED是直角梯形. 是直角梯形. ∴四边形 是直角梯形 此时∠ 此时∠APQ =90°. ° 由△AQP ∽△ABC,得 AQ = AP , AB AC Q 即 t = 3-t ,解得t= 15 解得 3 5 8 D
A P B
解:(3)能. :( ) ①当DE∥QB时,如图 .∵DE⊥PQ, ∥ 时 如图4. ⊥ , 是直角梯形. ∴PQ⊥QB,四边形 ⊥ ,四边形QBED是直角梯形. 是直角梯形 此时∠ 此时∠AQP=90° ° AQ = AP 由△APQ ∽△ABC,得 AC AB , 9 t 即 3 = 3-t ,解得,t= 8 5
专题32 动态几何之双(多)动点形成的最值问题(压轴题)
《中考压轴题》专题32:动态几何之双(多)动点形成的最值问题一、填空题1.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.2.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.3.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG 于点H.若正方形的边长为2,则线段DH长度的最小值是.二、解答题1.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?2.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?3.如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设△MNC与△OAB重叠部分的面积为S.①试求S关于t的函数关系式;②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.4.在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动.(1)如图①,当点E 自D 向C ,点F 自C 向B 移动时,连接AE 和DF 交于点P ,请你写出AE 与DF 的位置关系,并说明理由;(2)如图②,当E ,F 分别移动到边DC ,CB 的延长线上时,连接AE 和DF ,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E ,F 分别在边CD ,BC 的延长线上移动时,连接AE ,DF ,(1)中的结论还成立吗?请说明理由;(4)如图④,当E ,F 分别在边DC ,CB 上移动时,连接AE 和DF 交于点P ,由于点E ,F 的移动,使得点P 也随之运动,请你画出点P 运动路径的草图.若AD=2,试求出线段CP 的最小值.5.如图,在平面直角坐标系xOy 中,抛物线2y ax bx 4=+-与x 轴交于点A(﹣2,0)和点B ,与y 轴交于点C ,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M ,H 分别从点A ,B 以每秒1个单位长度的速度沿x 轴同时出发相向而行,当点M 到达原点时,点H 立刻掉头并以每秒32个单位长度的速度向点B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动,经过点M 的直线l ⊥x 轴,交AC 或BC 于点P ,设点M 的运动时间为t 秒(t >0).求点M 的运动时间t 与△APH 的面积S 的函数关系式,并求出S 的最大值.6.如图,直线y=﹣3x﹣3与x轴、y轴分别相交于点A、C,经过点C且对称轴为x=1的抛物线y=ax2+bx+c 与x轴相交于A、B两点.(1)试求点A、C的坐标;(2)求抛物线的解析式;(3)若点M在线段AB上以每秒1个单位长度的速度由点B向点A运动,同时,点N在线段OC上以相同的速度由点O向点C运动(当其中一点到达终点时,另一点也随之停止运动),又PN∥x轴,交AC于P,问在运动过程中,线段PM的长度是否存在最小值?若有,试求出最小值;若无,请说明理由.7.如图,直线4y x83=-+与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.8.如图,在平面直角坐标系中,抛物线2y ax bx 3(a 0)=+-≠与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C.(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使CBK PBQ S S 5:2=△△:,求K 点坐标.9.如图,抛物线y=ax 2+bx+c (a≠0)的图象过点C (0,1),顶点为Q (2,3),点D 在x 轴正半轴上,且OD=OC .(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ;(4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.10.如图,直线y x 412=-+与坐标轴分别交于点A 、B ,与直线y=x 交于点C .在线段OA 上,动点Q 以每秒1个单位长度的速度从点O 出发向点A 做匀速运动,同时动点P 从点A 出发向点O 做匀速运动,当点P 、Q 其中一点停止运动时,另一点也停止运动.分别过点P 、Q 作x 轴的垂线,交直线AB 、OC 于点E 、F ,连接EF .若运动时间为t 秒,在运动过程中四边形PEFQ 总为矩形(点P 、Q 重合除外).(1)求点P 运动的速度是多少?(2)当t 为多少秒时,矩形PEFQ 为正方形?(3)当t 为多少秒时,矩形PEFQ 的面积S 最大?并求出最大值.11.如图,在平面直角坐标系中,O 为坐标原点,点A 、B 的坐标分别为(8,0)、(0,6).动点Q 从点O 、动点P 从点A 同时出发,分别沿着OA 方向、AB 方向均以1个单位长度/秒的速度匀速运动,运动时间为t (秒)(0<t≤5).以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为点C 、D ,连结CD 、QC .(1)求当t 为何值时,点Q 与点D 重合?(2)设△QCD 的面积为S ,试求S 与t 之间的函数关系,并求S 的最大值?(3)若⊙P 与线段QC 只有一个交点,请直接写出t 的取值范围.12.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.13.如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y轴相交于点C(0,3),点P 是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N 以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.14.如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=22.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为,直线l的解析式为;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.15.如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P 有几个?并求出点P到线段OD的距离;若不存在,请说明理由.16.已知二次函数y=ax2+bx+c(a≠0)的图象经过点(1,0),(5,0),(3,﹣4).(1)求该二次函数的解析式;(2)当y>﹣3,写出x的取值范围;(3)A、B为直线y=﹣2x﹣6上两动点,且距离为2,点C为二次函数图象上的动点,当点C运动到何处时△ABC的面积最小?求出此时点C的坐标及△ABC面积的最小值.17.如图,正方形AOCB 在平面直角坐标系xOy 中,点O 为原点,点B 在反比例函数k y x =(x >0)图象上,△BOC 的面积为8.(1)求反比例函数k y x=的关系式;(2)若动点E 从A 开始沿AB 向B 以每秒1个单位的速度运动,同时动点F 从B 开始沿BC 向C 以每秒2个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t 表示,△BEF 的面积用S 表示,求出S 关于t 的函数关系式,并求出当运动时间t 取何值时,△BEF 的面积最大?(3)当运动时间为34秒时,在坐标轴上是否存在点P ,使△PEF 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.18.如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C 的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.19.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒53个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?20.如图,甲、乙两人分别从A(1)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.(1)请说明甲、乙两人到达O点前,MN与AB不可能平行.(2)当t为何值时,△OMN∽△OBA?(3)甲、乙两人之间的距离为MN的长,设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.21.如图,在O A B C中,点A在x轴上,∠A O C=60o,O C=4c m.O A=8c m.动点P从点O出发,以1c m/s的速度沿线段O A→A B运动;动点Q同时..从点O出发,以a c m/s的速度沿线段O C→C B运动,其中一点先到达终点B时,另一点也随之停止运动.设运动时间为t秒.(1)填空:点C的坐标是(______,______),对角线OB的长度是_______cm;(2)当a=1时,设△OPQ的面积为S,求S与t的函数关系式,并直接写出当t为何值时,S的值最大?(3)当点P在OA边上,点Q在CB边上时,线段PQ与对角线OB交于点M.若以O、M、P为顶点的三角形与△OAB相似,求a与t的函数关系式,并直接写出t的取值范围.22.如图,抛物线2y x 2=-++与x 轴交于C .A 两点,与y 轴交于点B ,点O 关于直线AB 的对称点为D ,E 为线段AB 的中点.(1)分别求出点A .点B 的坐标;(2)求直线AB 的解析式;(3)若反比例函数k y x=的图象过点D ,求k 值;(4)两动点P 、Q 同时从点A 出发,分别沿AB .AO 方向向B .O 移动,点P 每秒移动1个单位,点Q 每秒移动12个单位,设△POQ 的面积为S ,移动时间为t ,问:S 是否存在最大值?若存在,求出这个最大值,并求出此时的t 值;若不存在,请说明理由.23.如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<103)秒.解答如下问题:(1)当t为何值时,PQ∥BO?(2)设△AQP的面积为S,①求S与t之间的函数关系式,并求出S的最大值;②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.24.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD 上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.。
近几年中考压轴题动态几何问题归类解析
近几年中考压轴题动态几何问题归类解析一、点动带动线动例1如图1-1所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-■x+b交折线O-A-B于点E。
(1)记△ODE的面积为S,求S与b的函数关系式。
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由。
分析:本题是以一条运动直线为载体,以矩形为背景的有关图形面积是否改变的探究题。
问题(1):点D在线段BC上沿CB向点B运动,其实就是直线DE向右平移。
在运动过程中,有三个临界点:直线DE经过点C(b=1),直线DE经过点A(b=■),直线DE经过点B(b=■),故分两种情况①1<b≤■,②■<b<■展开讨论;问题(2):直线DE运动过程中,重叠部分(菱形)的面积是否变化,取决于这个菱形的边长,由勾股定理可知这个菱形的边长始终不变,且为■,从而确定重叠部分的面积不会变化。
解:(1)①当点E在线段OA上时,即1<b≤■,此时E(2b,0)∴S=■OE·CO=■×2b×1=b②当点E在线段AB上时(如图1-2),即■<b<■,此时E(3,b-■),D (2b-2,1)∴S=S矩-(S△OCD+S△OAE +S△DBE )=3-[■(2b-1)×1+■×(5-2b)·(■-b)+■×3(b-■)]=-b2+■b(2)如图1-3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积。
由题意知,DM∥NE,DN∥ME,则四边形DNEM为平行四边形。
由轴对称知,∠MED=∠NED又∵∠MDE=∠NED∴∠MED=∠MDE ∴MD=ME∴平行四边形DNEM为菱形过点D作DH⊥OA于H,则tan∠DEN=■,DH=1 ∴HE=2设菱形DNEM的边长为a,则在Rt△DHN中,由勾股定理知:a2=(2-a)2+12,a=■∴S四边形DNEM=NE·DH=■∴矩形O1A1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为■。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .
,
又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.
2024届中考数学压轴题冲刺满分(含答案)
压轴题【题型精讲】题型一:动态几何1(2021·江苏苏州·一模)如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为()A.833π B.83π C.433π D.43π2(2021·山东威海·中考真题)如图,在菱形ABCD 中,AB =2cm ,∠D =60°,点P ,Q 同时从点A 出发,点P 以1cm/s 的速度沿A -C -D 的方向运动,点Q 以2cm/s 的速度沿A -B -C -D 的方向运动,当其中一点到达D 点时,两点停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),则下列图象中能大致反映y 与x 之间函数关系的是()A. B.C. D.3(2021·山东济南·三模)如图1,在Rt △ABC 中,∠A =90°,BC =10cm ,点P ,点Q 同时从点B 出发,点P 以2cm/s 的速度沿B →A →C 运动,终点为C ,点Q 出发t 秒时,△BPQ 的面积为ycm 2,已知y 与t 的函数关系的图象如图2(曲线OM 和MN 均为抛物线的一部分),给出以下结论:①AC =6cm ;②曲线MN 的解析式为y=-45t2+285t(4≤t≤7);③线段PQ的长度的最大值为6510cm;④若△PQC与△ABC相似,则t=407秒,其中正确的说法是()A.①②④B.②③④C.①③④D.①②③题型二:新定义问题4(2023·重庆·中考真题)在多项式x-y-z-m-n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x-y-|z-m|-n=x-y-z+m-n,x-y-z-m-n=x-y-z-m+n,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.35(2021·广西贺州·中考真题)如M=1,2,x,我们叫集合M,其中1,2,x叫做集合M的元素.集合中的元素具有确定性(如x必然存在),互异性(如x≠1,x≠2),无序性(即改变元素的顺序,集合不变).若集合N=x,1,2,我们说M=N.已知集合A=1,0,a,集合B=1a,a ,ba,若A=B,则b-a的值是()A.-1B.0C.1D.26(2021·湖北荆州·中考真题)定义新运算“※”:对于实数m,n,p,q,有m,p※q,n=mn+pq,其中等式右边是通常的加法和乘法运算,如:2,3※4,5=2×5+3×4=22.若关于x的方程x2+1,x※5-2k,k=0有两个实数根,则k的取值范围是()A.k<54且k≠0 B.k≤54C.k≤54且k≠0 D.k≥54题型三:猜想和证明7(2023·四川巴中·中考真题)综合与实践.(1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.①∠BOC的度数是.②BD:CE=.(2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.①∠AOB的度数是.②AD:BE=.(3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N 为BE的中点.①试说明△MND为等腰三角形.②求∠MND的度数.8(2020·河南驻马店·模拟预测)在△ABC中,∠ACB=90°,AC=BC,点D是直线AB上的一动点(不与点A,B重合),连接CD,在CD的右侧以CD为斜边作等腰直角三角形CDE,点H是BD的中点,连接EH.【问题发现】(1)如图(1),当点D是AB的中点时,线段EH与AD的数量关系是,位置关系是.【猜想证明】(2)如图(2),当点D在边AB上且不是AB的中点时,(1)中的结论是否仍然成立?若成立,请仅就图(2)中的情况给出证明;若不成立,请说明理由.【拓展应用】(3)若AC=BC=22,其他条件不变,连接AE,BE.当△BCE是等边三角形时,直接写出△ADE的面积.题型四:阅读理解9(2023·江西新余·一模)定义:在平面直角坐标系中,抛物线y=ax2+bx+c a≠0与y轴的交点坐标为0,c,那么我们把经过点0,c且平行于x轴的直线称为这条抛物线的极限分割线.【特例感知】(1)抛物线y=x2+2x+1的极限分割线与这条抛物线的交点坐标为.【深入探究】(2)经过点A-2,0和B x,0(x>-2)的抛物线y=-14x2+12mx+n与y轴交于点C,它的极限分割线与该抛物线另一个交点为D,请用含m的代数式表示点D的坐标.【拓展运用】(3)在(2)的条件下,设抛物线y =-14x 2+12mx +n 的顶点为P ,直线EF 垂直平分OC ,垂足为E ,交该抛物线的对称轴于点F .①当∠CDF =45°时,求点P 的坐标.②若直线EF 与直线MN 关于极限分割线对称,是否存在使点P 到直线MN 的距离与点B 到直线EF 的距离相等的m 的值?若存在,直接写出m 的值;若不存在,请说明理由.10(2023·山东青岛·二模)如图1,AD 是△ABC 的高,点E ,F 分别在边AB 和AC 上,且EF ∥BC .由“相似三角形对应高的比等于对应边的比”可以得到以下结论:AG AD=EFBC .(1)如图2,在△ABC 中,BC =6,BC 边上的高为8,在△ABC 内放一个正方形MNGH ,使其一边GH 在BC 上,点M ,N 分别在AB ,AC 上,则正方形MNGH 的边长=;(2)某葡萄酒庄欲在展厅的一面墙上,布置一个腰长为100cm ,底边长为120cm 的等腰三角形展台.现需将展台用平行于底边的隔板,每间隔10cm 分隔出一层,再将每一层尽可能多的分隔成若干个开口为正方形的长方体格子,要求每个格子内放置一瓶葡萄酒,平面设计图如图3所示,将底边BC 的长度看作是第0层隔板的长度;①在分隔的过程中发现,当隔板厚度忽略不计时,每层平行于底边的隔板长度(单位:cm )随着层数(单位:层)的变化而变化.请完成下表:层数/层0123⋯隔板长度/cm120__________________⋯②在①的条件下,请直接写出该展台最多可以摆放多少瓶葡萄酒?题型五:开放探究11(2022·安徽滁州·二模)【证明体验】(1)如图1,AD 为△ABC 的角平分线,∠ADC =60°,点E 在线段AB 上,AE =AC ,求证:DE 平分∠ADB ;【思考探究】(2)如图2,在(1)的条件下,F 为AB 上一点,连接FC 交AD 于点G .若FB =FC ,求证:DE 2=BD ⋅DG ;【拓展延伸】(3)如图3,在四边形ABCD 中,对角线AC 平分∠BAD ,∠BCA =2∠DCA ,点E 在AC 上,∠EDC =∠ABC ,若BC =5,CD =25,AD =2AE ,求AC 的长.12(2022·浙江杭州·二模)如图,在平面直角坐标系中,点A,B的坐标分别是(-4,0),(0,8),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=3,过点F作MN⊥PE,截取FM=3,FN=1,且点M,N分别在第一、四象限,在运动过程中,当点M,N中,有一点落在四边形ADEC的边上时,直接写出所有满足条件的t的值.题型六:综合应用13(2024·河北邢台·三模)如图1至图3,▱ABCD中,AB=20,BC=15,点P在折线BA-AD上,连接PC,将▱ABCD沿PC向右上方折叠,折叠后得到△PCE或四边形PCEF.探究如图1,若∠A=90°,点P在BA上①当射线PE经过点D时,求证:△PDA≌△DCE;②当点E,A的距离最小时,求BP的长.尝试如图2,若∠A=90°,点P在AD上,当点F在CD的延长线上时,求tan∠PCE的值.延伸如图3,若∠A<90°,tan A=43,EF恰好经过点D时,直接写出AP的长.14(2024·福建宁德·二模)蹦床是一项运动员利用蹦床的反弹在空中表现杂技技巧的竞技运动,有“空中芭蕾”之美称.甲、乙两位蹦床运动员在某次训练过程中同时起跳,甲运动员着落蹦床后便停止运动,乙运动员着落蹦床后继续做放松运动,每次蹦床运动间隔停留时间忽略不计.图1是甲、乙两位运动员的运动高度S(m )与运动时间t (s )的二次函数图象,点A 的坐标为(2,0),点B 的坐标为52,0 ,点D 的坐标为(1,5),且所有二次函数图象开口大小相同.(1)求甲运动员在这次训练中运动的最大高度;(2)图2是教练员观测到乙运动员在这次训练中,每次运动的最高点都在同一视线DE 上,教练员的视线与水平线的夹角为α.①若甲、乙运动员在2.4s 时运动高度相同,求直线DE 的表达式;②当α≤33.5°时,求乙在第二次蹦床运动中最大运动高度的取值范围.sin33.5°≈1120,cos33.5°≈2125,tan33.5°≈2315(2024·山东淄博·二模)如图1,抛物线y =ax 2+bx +3a ≠0 与x 轴交于点A -1,0 ,B 3,0 与y 轴交于点C ,连接AC ,BC .(1)求该抛物线及直线BC的函数表达式;(2)如图2,在BC上方的抛物线上有一动点P(不与B,C重合),过点P作PD∥AC,交BC于点D,过点P作PE∥y轴,交BC于点E.在点P运动的过程中,请求出△PDE周长的最大值及此时点P的坐标;(3)如图3,若点P是该抛物线上一动点,问在点P运动的过程中,坐标平面内是否存在点Q使以B,C,P,Q 为顶点BC为对角线的四边形是矩形,若存在,请求出此时点Q的坐标;若不存在,请说明理由.16(2024·江苏淮安·模拟预测)如图1,二次函数y=-14x2+bx+c与x轴交于A、B两点,与y轴交于点C.点B坐标为(6,0),点C坐标为(0,3),点P是第一象限内抛物线上的一个动点,过点P作PD⊥x轴,垂足为D,PD交直线BC于点E,设点P的横坐标为m.(1)求该二次函数的表达式;(2)如图2,过点P作PF⊥BC,垂足为F,当m为何值时,PF最大?最大值是多少?(3)如图3,连接CP,当四边形OCPD是矩形时,在抛物线的对称轴上存在点Q,使原点O关于直线CQ的对称点O 恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q的坐标.【专题精练】一、单选题1(2023·四川宜宾·三模)如图,在Rt△ABC中,∠BAC=90°,AB=AC=6,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为3+33;③BP存在最小值为33-3;④点P运动的路径长为22π.其中,正确的是()A.①③④B.①②④C.①②③D.②③④2(2023·湖北十堰·三模)若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点,若在二次函数y=x2 +2mx-m(m为常数)的图象上存在两个二倍点M x1,y1,N x2,y2,且x1<1<x2,则m的取值范围是()A.m<2B.m<1C.m<0D.m>03(2023·黑龙江大庆·一模)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x-3与x轴、y轴分别交于点D、E,则点C到直线DE的最小距离为()A.1B.35C.45D.344(2022·浙江宁波·二模)如图,正六边形ABCDEF中,点P是边AF上的点,记图中各三角形的面积依次为S1,S2,S3,S4,S5,则下列判断正确的是()A.S1+S2=2S3B.S1+S4=S3C.S2+S4=2S3D.S1+S5=S35(2022·山东东营·中考真题)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是()①△AMN是等边三角形;②MN的最小值是3;③当MN最小时S△CMN=18S菱形ABCD;④当OM⊥BC时,OA2=DN⋅AB.A.①②③B.①②④C.①③④D.①②③④6(2022·辽宁抚顺·模拟预测)如图,点E、F分别在正方形ABCD的边CD、AD上,且AB=2CE=3AF,过F作FG⊥BE于P交BC于G,连接DP交BC于H,连BF、EF.下列结论:①△PBF为等腰直角三角形;②H为BC的中点;③∠DEF=2∠PFE;④SΔPHGSΔPDE=23.其中正确的结论()A.只有①②③B.只有①②④C.只有③④D.①②③④7(2020·浙江金华·一模)如图,在等边三角形ABC中,点P,Q分别是AC,BC边上的动点(都不与线段端点重合),且AP=CQ,AQ、BP相交于点O.下列四个结论:①若PC=2AP,则BO=6OP;②若BC=8,BP=7,则PC=5;③AP2=OP⋅AQ;④若AB=3,则OC的最小值为3,其中正确的是()A.①③④B.①②④C.②③④D.①②③8(21-22九年级上·广东深圳·期中)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM =45°,点F在射线AM上,且AF=2,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①CG=3434;②△AEG的周长为8;③△EGF的面积为1710.其中正确的是()A.①②③B.①③C.①②D.②③9(2021·广东深圳·二模)如图,在矩形ABCD中,BC=2AB,E为BC中点,连接AE交BD于点F,连CF,下列结论:①AE⊥BD;②S矩形ABCD=10S△CEF;③DC2=2DO⋅DF;④FCAE=63正确的有( )个.A.1B.2C.3D.410(2020·安徽滁州·模拟预测)在△EFG中,∠G=90°,EG=FG=22,正方形ABCD的边长为1,AD 与EF在一条直线上,点A与点E重合.现将正方形ABCD沿EF方向以每秒1个单位的速度匀速运动,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A. B.C. D.二、填空题11(2024·陕西西安·二模)如图,菱形ABCD中,AB=8,∠B=60°,E为AB的中点,F为BC上一点,连接EF,作∠GEF=60°且△GEF面积为33,则DG的最小值为.12(2023·陕西咸阳·一模)如图,矩形ABCO的顶点A,C分别在x轴、y轴上,点B的坐标为(-8,6),⊙M是△AOC的内切圆,点N,点P分别是⊙M,x轴上的动点,则PB+PN的最小值是.13(2023·天津河西·一模)如图,正方形ABCD的边长为4,E是边CD上一点,DE=3CE,连接BE,与AC 相交于点M ,过点M 作MN ⊥BE ,交AD 于点N ,连接BN ,则点E 到BN 的距离为.14(2021·浙江湖州·二模)对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足-m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数y =-x 2+1-2≤x ≤t ,t ≥0 的图象向上平移t 个单位,得到的函数的边界值n 满足是94≤n ≤52时,则t 的取值范围是.15(2023·湖北武汉·模拟预测)如图,△ABC 是边长为3的等边三角形,延长AC 至点P ,使得CP =1.点E 在线段AB 上,且AE <12AB ,连接PE ,以PE 为边向右作等边△PEF ,过点E 作EM ∥AP 交FA 的延长线于点M ,点N 是MF 的中点,则四边形AEPN 的面积为.16(2023·浙江宁波·二模)如图,y =-2x +b 与y =k 1x (k 1>0,x >0)交于A 、B 两点,过B 作y 轴的垂线,垂足为C ,交y =k 2x (k 2>0,x >0)于点D ,点D 关于直线AB 的对称点E 恰好落在x 轴上,且AE ⊥x 轴,连接BE ,则k 1k 2=;若△ABE 的面积为15,则k 1的值为.三、解答题17(2024·陕西西安·模拟预测)如图,已知抛物线W 1:y =ax 2+bx -2与x 轴交于A ,D 两点,AD =5,点A 在直线l :y =12x +12上.(1)求抛物线W 1的解析式;(2)将抛物线W 1沿x 轴翻折后得到抛物线W 2,W 2与直线l 交于A ,B 两点,点P 是抛物线W 2上A ,B 之间的一个动点(不与点A 、B 重合),PM ⊥AB 于M ,PN ∥y 轴交AB 于N ,求MN 的最大值.18(2024·福建龙岩·模拟预测)在锐角∠MON 内部取一点A ,过点A 分别作AB ⊥OM 于点B ,作AC ⊥ON 于点C ,以AB 为直径作⊙P ,CA 的延长线与⊙P 交于点D .(1)求证:∠MON +∠ABD =90°;(2)若OB =BD ,点D 在OP 的延长线上,求证:ON 是⊙P 的切线;(3)当tan ∠MON =1时,连接OA ,若CP ⊥OA 于点F ,求PFCF的值.19(2024·广东佛山·模拟预测)四边形ABCD 是⊙O 的内接矩形,点E 是AD上的一动点,连接AE ,BE ,DE ,其中BE 交AD 于点F .(1)如1图,当AB =ED 时,①求证:△AEB ≌△EAD ;②若∠EAD =30°,连接BO ,EO .求证:四边形ABOE 是菱形.(2)如2图,若BC =2AB =2,EFFB=k ,请用含k 的式子表示EA ⋅ED 的值.20(2024·黑龙江哈尔滨·一模)如图,抛物线y =-12x 2+bx 交x 轴正半轴于点A ,过顶点C 作CD ⊥x 轴于点D ,OA =CD .(1)求抛物线的解析式;(2)若-2≤x ≤6时,则函数y 的取值范围是;(3)点P 为CD 右侧第一象限抛物线上一点,过点P 作PH ⊥x 轴于点H ,点Q 为y 轴正半轴上一点,连接AQ 、HQ ,tan ∠OHQ =23,PQ 延长线交x 轴于点B ,点N 在y 轴负半轴上,连接BN 、AN ,若∠BQA =135°,∠ANB =45°求直线AN 的解析式.21(2024·吉林长春·一模)如图,在菱形ABCD 中,BC =10,tan B =43.点E 为线段BA 延长线上一点,且BE =15,动点P 从点B 出发,以每秒1个单位长度的速度沿BE 向终点E 匀速运动.连结PC 、PD ,将△PCD 绕点P 按逆时针方向旋转90°得到△PC D ,设点P 运动的时间是t 秒(t >0).(1)菱形ABCD 的面积是;(2)用含t 的代数式表示线段PA PA >0 的长;(3)当C 、A 、C 三点共线时,求t 的值;(4)当△EC D 是直角三角形时,直接写出t 的值.22(2024·吉林长春·一模)如图,在正方形ABCD 中,动点P 从点A 出发,沿A -B -C 运动到点C 停止.过点C 作DP 的垂线,垂足为点G ,延长CG 到点E ,使EG =CG ,连结DE ,AE ,直线EA 与DP 交于点F .设∠ADP 为α,且0°<α<90°.(1)当α=10°时,∠ADE=°,∠DAE=°;(2)当点P在AB上时,①求sin F的值;②当△DEF为轴对称图形时,求α的大小;(3)若正方形ABCD的面积为4,直接写出△DAF面积的最大值.23(2024·黑龙江哈尔滨·一模)综合实践菱形ABCD中,点E在对角线BD上,点M在直线AB上,将线段ME绕点M顺时针旋转得到线段MF,旋转角∠EMF=∠BAD,连接BF.【问题发现】(1)如图1,当点M与点A重合时,线段BE、BF、BD之间的数量关系为.【类比探究】(2)如图2,当点M在AB边上时,∠EMF=60°时,求证:BM+BF=BE;【拓展延伸】(3)如图3,点M在BA延长线上,H为AD中点,当MH⊥BM,AM=74,BD=20时,设BE=x,BF=y,求y与x之间的数量关系.24(2023·吉林白城·模拟预测)下面是小明同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,已知正方形ABCD中,E,F分别是AB、BC边上的点,且∠EDF=45°.求证:EF=AE+ CF.证明:如图,将△DAE绕点D逆时针旋转90°,得到△DCM,则DE=DM,∠A=∠DCM,∠ADE=∠MDC.∵四边形ABCD是正方形,∴∠A=∠ADC=∠DCB=90°,∴∠EDM=∠EDC+∠MDC=∠EDC+∠ADE=∠ADC=90°.∵∠EDF=45°,∴∠MDF=∠EDF=45°.又∵∠A=∠DCM=∠DCB=90°,∴点B,F,C,M在一条直线上.∵DF=DF,∴△EDF≌,∴EF=MF=CM+CF=+CF.【探究】(1)在图①中,若正方形ABCD的边长为3,AE=1,其他条件不变,求EF的长.压轴题【题型精讲】题型一:动态几何1(2021·江苏苏州·一模)如图,△ABC内接于⊙O,BC=12,∠A=60°,点D为弧BC上一动点,BE⊥直线OD于点E.当点D从点B沿弧BC运动到点C时,点E经过的路径长为()A.833π B.83π C.433π D.43π【答案】A【分析】连接OB,设OB的中点为M,连接ME.作OH⊥BC于H.首先判断出点E在以OB为直径的圆上运动,求出点D与C重合时∠EMB的度数,利用弧长公式计算即可.【详解】解:如图,连接OB,设OB的中点为M,连接ME.作OH⊥BC于H.∵OD⊥BE,∴∠OEB=90°,∴点E在以OB为直径的圆上运动,当点D与C重合时,∵∠BOC=2∠A=120°,∴∠BOE=60°,∴∠EMB=2∠BOE=120°,∵BC=12,OH⊥BC,∴BH=CH=6,∠BOH=∠COH=60°,∴OB=BHsin60°=43,∴点E的运动轨迹的长=240∙π×23180=833π,故选:A.【点睛】本题考查轨迹、弧长公式、三角形的外接圆与外心等知识,解题的关键是学会添加常用辅助线,正确寻找轨迹,属于中考常考题型.2(2021·山东威海·中考真题)如图,在菱形ABCD中,AB=2cm,∠D=60°,点P,Q同时从点A出发,点P以1cm/s的速度沿A-C-D的方向运动,点Q以2cm/s的速度沿A-B-C-D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),△APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是()A. B.C. D.【答案】A【分析】先证明∠CAB=∠ACB=∠ACD=60°,再分0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,求出函数解析式,根据二次函数、一次函数图象与性质逐项排除即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,ACD都是等边三角形,∴∠CAB=∠ACB=∠ACD=60°.如图1,当0≤x≤1时,AQ=2x,AP=x,作PE⊥AB于E,∴PE=AP∙sin∠PAE=32x,∴y=12×2x∙32x=32x2,故D选项不正确;如图2,当1<x≤2时,CP=2-x,CQ=4-2x,BQ=2x-2,作PF⊥BC与F,作QH⊥AB于H,∴PF=CP·sin∠PCF=322-x,QH=BQ∙sin∠B=322x-2=3x-1,∴y=34×22-12×2×3x-1-12×4-2x∙322-x=-32x2+3x,故B选项不正确;当2<x≤3时,CP=x-2,CQ=2x-4,∴PQ=x-2,作AG ⊥CD 于G ,∴AG =AC ∙sin ∠ACD =32×2=3,∴y =12×x -2 ∙3=32x -3,故C 不正确.故选:A【点睛】本题考查了菱形性质,等边三角形性质,二次函数、一次函数图象与性质,利用三角函数解三角形等知识,根据题意分类讨论列出函数解析式是解题关键.3(2021·山东济南·三模)如图1,在Rt △ABC 中,∠A =90°,BC =10cm ,点P ,点Q 同时从点B 出发,点P 以2cm/s 的速度沿B →A →C 运动,终点为C ,点Q 出发t 秒时,△BPQ 的面积为ycm 2,已知y 与t 的函数关系的图象如图2(曲线OM 和MN 均为抛物线的一部分),给出以下结论:①AC =6cm ;②曲线MN 的解析式为y =-45t 2+285t (4≤t ≤7);③线段PQ 的长度的最大值为6510cm ;④若△PQC 与△ABC 相似,则t =407秒,其中正确的说法是()A.①②④B.②③④C.①③④D.①②③【答案】A【分析】①根据图2可知:P 走完AB 用了4秒,得AB =2×4=8cm ,利用勾股定理得AC 的长;②当P 在AC 上时,4≤t ≤7,利用同角的三角函数表示高PD 的长,利用三角形面积公式可得y 与t 的关系式;③当P 与A 重合时,PQ 最大,如图4,此时t =4,求出PQ 的长;④当P 在AC 上时,ΔPQC 与ΔABC ,列比例式可得t 的值.【详解】解:①由图2可知:t =4时,y =485,∴AB =2×4=8cm ,∵∠A =90°,BC =10cm ,∴AC =6cm ,故①正确;②当P 在AC 上时,如图3,过P 作PD ⊥BC 于D ,此时:6+82=7,∴4≤t ≤7,由题意得:AB +AP =2t ,BQ =t ,∴PC =14-2t ,sin ∠C =PD PC =ABBC,∴PD =4(14-2t )5,∴y =S ΔBPQ =12BQ ∙PD =12t ∙4(14-2t )5=-45t 2+285t ,故②正确;③当P 与A 重合时,PQ 最大,如图4,此时t =4,∴BQ =4,过Q 作GH ⊥AB 于H ,sin ∠B =QH BQ =ACBC,∴QH 4=610,∴QH =125,同理:BH =165,∴AH =8-165=245,∴PQ =AH 2+QH 2=245 2+125 2=1255;∴线段PQ 的长度的最大值为1255,故③不正确;④若ΔPQC 与ΔABC 相似,点P 只有在线段AC 上,分两种情况:PC =14-2t ,QC =10-t ,i )当ΔCPQ ∽ΔCBA ,如图5,则PCCB =CQ AC,∴14-2t 10=10-t6,解得t =-8不合题意.ii )当ΔPQC ∽ΔABC 时,如图6,∴PCAC=QC BC ,t =407;∴若ΔPQC 与ΔABC 相似,则t =407秒,故④正确;其中正确的有:①②④,故选:A .【点睛】本题是动点问题的图象问题,此类问题比较复杂,考查了二次函数的关系式、三角形相似的性质和判定、勾股定理、三角函数,解题的关键是学会读懂函数图象信息,并构建直角三角形,利用三角形相似或三角函数列方程解决问题.题型二:新定义问题4(2023·重庆·中考真题)在多项式x -y -z -m -n (其中x >y >z >m >n )中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x -y -|z -m |-n =x -y -z +m -n ,x -y -z -m -n =x -y -z -m +n ,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0 B.1C.2D.3【答案】C【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【详解】解:x -y -z -m -n =x -y -z -m -n ,故说法①正确.若使其运算结果与原多项式之和为0,必须出现-x ,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x -y -z -m -n =x -y -z -m -n ;x -y -z -m -n =x -y +z -m -n ;x -y -|z -m |-n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n .当添加两个绝对值时,共有3种情况,分别是x -y -z -m -n =x -y -z +m -n ;x -y -z -m -n =x -y -z -m +n ;x -y -z -m -n =x -y +z -m +n .共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .【点睛】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.5(2021·广西贺州·中考真题)如M =1,2,x ,我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如x ≠1,x ≠2),无序性(即改变元素的顺序,集合不变).若集合N=x ,1,2 ,我们说M =N .已知集合A =1,0,a ,集合B =1a ,a ,b a ,若A =B ,则b -a 的值是()A.-1 B.0 C.1 D.2【答案】C【分析】根据集合的确定性、互异性、无序性,对于集合B 的元素通过分析,与A 的元素对应分类讨论即可.【详解】解:∵集合B 的元素1a ,ba,a ,可得,∴a ≠0,∴1a ≠0,ba =0,∴b =0,当1a =1时,a =1,A =1,0,1 ,B =1,1,0 ,不满足互异性,情况不存在,当1a =a 时,a =±1,a =1(舍),a =-1时,A =1,0,-1 ,B =-1,1,0 ,满足题意,此时,b -a =1.故选:C【点睛】本题考查集合的互异性、确定性、无序性。
专题43 动态几何之其他存在性问题(压轴题)
《中考压轴题》专题42:动态几何之其他存在性问题一、填空题1. 如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;(2)当AB为梯形的腰时,点P的横坐标是二、解答题1. 如图①,双曲线kyx(k≠0)和抛物线y=ax2+bx(a≠0)交于A、B、C三点,其中B(3,1),C(﹣1,﹣3),直线CO交双曲线于另一点D,抛物线与x轴交于另一点E.(1)求双曲线和抛物线的解析式;(2)抛物线在第一象限部分是否存在点P,使得∠POE+∠BCD=90°?若存在,请求出满足条件的点P的坐标;若不存在,请说明理由;(3)如图②,过B作直线l⊥OB,过点D作DF⊥l于点F,BD与OF交于点N,求DNNB的值.2. 如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B 运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.(1)点F在边BC上.①如图1,连接DE,AF,若DE⊥AF,求t的值;②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得BO1 OG6若存在,求出t的值;若不存在,请说明理由.3. 如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.4. 在平面直角坐标系中, 抛物线()2y x k 1x k =+--与直线y kx 1=+交于A, B 两点,点A 在点B 的左侧.(1)如图1,当k 1=时,直接写出....A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线()()2y x k 1x k k >0=+--与x 轴交于C ,D 两点(点C 在点D 的左侧).在直线y kx 1=+上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.5. 如图,二次函数21y x bx c 2=++的图象交x 轴于A 、D 两点,并经过B 点,已知A 点坐标是(2,0),B 点的坐标是(8,6). (1)求二次函数的解析式.(2)求函数图象的顶点坐标及D 点的坐标.(3)该二次函数的对称轴交x 轴于C 点.连接BC ,并延长BC 交抛物线于E 点,连接BD ,DE ,求△BDE 的面积.(4)抛物线上有一个动点P ,与A ,D 两点构成△ADP ,是否存在S △ADP =12S △BCD ?若存在,请求出P 点的坐标;若不存在.请说明理由.6. 如图,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒. (1)求线段CD 的长;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并确定在运动过程中是否存在某一时刻t ,使得S △CPQ :S △ABC =9:100?若存在,求出t 的值;若不存在,说明理由. (3)当t 为何值时,△CPQ 为等腰三角形?7. 如图,在四边形OABC 中,AB ∥OC ,BC ⊥x 轴于C ,()()A 11B 31--,,,,动点P 从O 点出发,沿x 轴正方向以2个单位/秒的速度运动.过P 作PQ ⊥OA 于Q .设P 点运动的时间为t 秒(0 < t < 2),ΔOPQ 与四边形OABC 重叠的面积为S .(1)求经过O 、A 、B 三点的抛物线的解析式并确定顶点M 的坐标; (2)用含t 的代数式表示P 、Q 两点的坐标;(3)将ΔOPQ 绕P 点逆时针旋转90°,是否存在t ,使得ΔOPQ 的顶点O 或Q 落在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由; (4)求S 与t 的函数解析式.8. 如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,433),M是OA的中点.(1)求此二次函数的解析式;(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求P点的坐标;(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D.若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.9. 如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.(1)求y与x之间的函数关系式;(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.10. 在平面直角坐标系xOy ,已知抛物线22y x 2mx m 9=-+-. (1)求证:无论m 为何值,该抛物线与x 轴总有两个交点;(2)该抛物线与x 轴交于A ,B 两点,点A 在点B 的左侧,且OA <OB ,与y 轴的交点坐标为()05-,,求此抛物线的解析式;(3)在(2)的条件下,抛物线的对称轴与x 轴的交点为N ,若点M 是线段AN 上的任意一点,过点M 作直线MC ⊥x 轴,交抛物线于点C ,记点C 关于抛物线对称轴的对称点为D ,点P 是线段MC 上一点,且满足MP=14MC ,连结CD ,PD ,作PE ⊥PD 交x 轴与点E ,问是否存在这样的点E ,使得PE=PD ,若存在,求出点E 的坐标;若不存在,请说明理由.11. 如图,在平面直角坐标系中,抛物线2y ax bx 3=++与x 轴交于点A (﹣4,0),B (﹣1,0)两点. (1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D .①如图(1),若四边形ODAE 是以OA 为对角线的平行四边形,当平行四边形ODAE 的面积为6时,请判断平行四边形ODAE 是否为菱形?说明理由. ②如图(2),直线1y x 32=+与抛物线交于点Q 、C 两点,过点D 作直线DF ⊥x 轴于点H ,交QC 于点F .请问是否存在这样的点D ,使点D 到直线CQ 的距离与点C 到直线DF 的距离之比为5:2?若存在,请求出点D 的坐标;若不存在,请说明理由.12.如图,抛物线2y x bx c =-++与x 轴交于A(-1,0),B(5,0)两点,直线3y x 34=-+与y 轴交于点C ,,与x 轴交于点D.点P 是x 轴上方的抛物线上一动点,过点P 作PF ⊥x 轴于点F ,交直线CD 于点E.设点P 的横坐标为m.(1)求抛物线的解析式; (2)若PE =5EF ,求m 的值;(3)若点E /是点E 关于直线PC 的对称点、是否存在点P ,使点E /落在y 轴上?若存在,请直接写出相应的点P 的坐标;若不存在,请说明理由.EF ABDCOPyX13. 如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上一动点,连结CD,DE,以CD,DE为边作□CDEF。
专题48 动态几何之多形式变化问题(压轴题)
《中考压轴题》专题48:动态几何之多形式变化问题一、选择题1.将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是A.(﹣5,﹣3)B.(1,﹣3)C.(﹣1,﹣3)D.(5,﹣3)2.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD 沿直线PD折叠,使点C落下点C1处;作∠BPC1的平分线交AB于点E.设BP=x,BE=y,那么y关于x 的函数图象大致应为A. B. C. D.3.如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为.4.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P 的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP′为菱形,则t的值为B.2C.D.4A.1.如图,点C 在以AB 为直径的半圆上,AB=8,∠CBA=30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F .下列结论:①CE=CF ;②线段EF 的最小值为;③当AD=2时,EF 与半圆相切;④若点F 恰好落在BC 上,则AD=;⑤当点D 从点A 运动到点B 时,线段EF 扫过的面积是.其中正确结论的序号是.2.如图,一次函数2y x =-的图象与二次函数23y x x =-+图象的对称轴交于点B.(1)写出点B 的坐标;(2)已知点P 是二次函数23y x x =-+图象在y 轴右侧..部分上的一个动点,将直线2y x =-沿y 轴向上平移,分别交x 轴、y 轴于C 、D 两点.若以CD 为直角边的△PCD 与△OCD 相似,则点P 的坐标为.1.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(﹣2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.2.已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM 为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.3.如图,梯形ABCD 中,AB ∥CD ,∠ABC=90°,AB=3,BC=4,CD=5.点E 为线段CD 上一动点(不与点C 重合),△BCE 关于BE 的轴对称图形为△BFE ,连接CF .设CE=x ,△BCF 的面积为S 1,△CEF 的面积为S 2.(1)当点F 落在梯形ABCD 的中位线上时,求x 的值;(2)试用x 表示21S S ,并写出x 的取值范围;(3)当△BFE 的外接圆与AD 相切时,求21S S的值.4.如图,在△ABC 中,AB=AC ,AD ⊥AB 点D ,BC=10cm ,AD=8cm ,点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(t >0).(1)当t=2时,连接DE 、DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的△PEF 的面积存在最大值,当△PEF 的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使△PEF 为直角三角形?若存在,请求出此时刻t 的值,若不存在,请说明理由.5.如图,抛物线y=ax 2+bx ﹣3a (a≠0)与x 轴交于点A (﹣1,0)和点B ,与y 轴交于点C (0,2),连接BC .(1)求该抛物线的解析式和对称轴,并写出线段BC 的中点坐标;(2)将线段BC 先向左平移2个单位长度,在向下平移m 个单位长度,使点C 的对应点C 1恰好落在该抛物线上,求此时点C 1的坐标和m 的值;(3)若点P 是该抛物线上的动点,点Q 是该抛物线对称轴上的动点,当以P ,Q ,B ,C 四点为顶点的四边形是平行四边形时,求此时点P 的坐标.6.如图(1),在平面直角坐标系xOy 中,抛物线()2y ax bx c a 0=++≠与x 轴交于()()A 1,0,B 3,0- ,与y 轴交于C(0,3),顶点为D(1,4),对称轴为DE.(1)抛物线的解析式是;(2)如图(2),点P 是AD 上的一个动点,P'是P 关于DE 的对称点,连结PE ,过P'作P'F ∥PE 交x 轴于F.设EPP'F y,E S F x == 四边形,求y 关于x 的函数关系式,并求y 的最大值;(3)在(1)中的抛物线上是否存在点Q ,使△BCQ 成为以BC 为直角边的直角三角形?若存在,求出Q 的坐标;若不存在,请说明理由.7.如图,正方形ABCD 的边长为l ,AB 边上有一动点P ,连接PD ,线段PD 绕点P 顺时针旋转90°后,得到线段PE ,且PE 交BC 于F ,连接DF ,过点E 作EQ ⊥AB 的延长线于点Q .(1)求线段PQ 的长;(2)问:点P 在何处时,△PFD ∽△BFP ,并说明理由.8.如图,二次函数24y x bx c 3=++的图象与x 轴交于A (3,0),B (﹣1,0),与y 轴交于点C .若点P ,Q 同时从A 点出发,都以每秒1个单位长度的速度分别沿AB ,AC 边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C 的坐标;(2)当点P 运动到B 点时,点Q 停止运动,这时,在x 轴上是否存在点E ,使得以A ,E ,Q 为顶点的三角形为等腰三角形?若存在,请求出E 点坐标;若不存在,请说明理由.(3)当P ,Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请判定此时四边形APDQ 的形状,并求出D 点坐标.9.已知两条平行线l1、l2之间的距离为6,截线CD分别交l1、l2于C、D两点,一直角的顶点P在线段CD上运动(点P不与点C、D重合),直角的两边分别交l1、l2与A、B两点.(1)操作发现如图1,过点P作直线l3∥l1,作PE⊥l1,点E是垂足,过点B作BF⊥l3,点F是垂足.此时,小明认为△PEA∽△PFB,你同意吗?为什么?(2)猜想论证将直角∠APB从图1的位置开始,绕点P顺时针旋转,在这一过程中,试观察、猜想:当AE满足什么条件时,以点P、A、B为顶点的三角形是等腰三角形?在图2中画出图形,证明你的猜想.(3)延伸探究在(2)的条件下,当截线CD与直线l1所夹的钝角为150°时,设CP=x,试探究:是否存在实数x,使△PAB的边AB的长为10.如图①,已知:在矩形ABCD的边AD上有一点O,,以O为圆心,OA长为半径作圆,交AD 于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG 与矩形ABCD重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.11.如图①,已知:在矩形ABCD的边AD上有一点O,,以O为圆心,OA长为半径作圆,交AD 于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG 与矩形ABCD重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.12.如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,EF分别与AB,BC交于M,N两点.(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.13.如图,在四边形OABC 中,AB ∥OC ,BC ⊥x 轴于C ,()()A 11B 31--,,,,动点P 从O 点出发,沿x 轴正方向以2个单位/秒的速度运动.过P 作PQ ⊥OA 于Q .设P 点运动的时间为t 秒(0<t <2),ΔOPQ 与四边形OABC 重叠的面积为S .(1)求经过O 、A 、B 三点的抛物线的解析式并确定顶点M 的坐标;(2)用含t 的代数式表示P 、Q 两点的坐标;(3)将ΔOPQ 绕P 点逆时针旋转90°,是否存在t ,使得ΔOPQ 的顶点O 或Q 落在抛物线上?若存在,直接写出t 的值;若不存在,请说明理由;(4)求S 与t 的函数解析式.14.如图,已知直线AB 分别交x 轴、y 轴于点A (﹣4,0)、B (0,3),点P 从点A 出发,以每秒1个单位的速度沿直线AB 向点B 移动,同时,将直线3y x 4=以每秒0.6个单位的速度向上平移,分别交AO 、BO 于点C 、D ,设运动时间为t 秒(0<t <5).(1)证明:在运动过程中,四边形ACDP 总是平行四边形;(2)当t 取何值时,四边形ACDP 为菱形?且指出此时以点D 为圆心,以DO 长为半径的圆与直线AB 的位置关系,并说明理由.15.如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.(1)求y与x之间的函数关系式;(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.16.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?17.已知矩形ABCD 的一条边AD=8,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.(1)如图1,已知折痕与边BC 交于点O ,连接AP ,OP ,OA.①求证:△OCP ∽△PDA ;②若△OCP 与△PDA 的面积比为1:4,求边AB 的长;(2)若图1中的点P 恰巧是CD 边的中点,求∠OAB 的度数;(3)如图2,在(1)条件下,擦去折痕AO 、线段OP ,连结BP.动点M 在线段AP 上(点M 与点P 、A 不重合),动点N 在线段AB 的延长线上,且BN=PM ,连结MN 交PB 于点F ,作ME ⊥BP 于点E.试问当点M ,N 在移动过程中,线段EF 的长度是否发生变化?若变化,说明理由;若不变,求线段EF 的长度.18.如图,在平面直角坐标系中,将抛物线23y x 3=先向右平移1个单位,再向下平移433个单位,得到新的抛物线2y ax bx c =++,该抛物线与y 轴交于点B ,与x 轴正半轴交于点C.(1)求点B 和点C 的坐标;(2)如图1,有一条与y 轴重合的直线l 向右匀速平移,移动的速度为每秒1个单位,移动的时间为t 秒,直线l 与抛物线2y ax bx c =++交于点P.当点P 在x 轴上方时,求出使△PBC 的面积为的t 值;(3)如图2,将直线BC 绕点B 逆时针旋转,与x 轴交于点M (1,0),与抛物线2y ax bx c =++交于点A ,在y 轴上有一点D 0,⎛ ⎝⎭.在x 轴上另取两点E 、F (点E 在点F 的左侧)EF=2,线段EF 在x 轴上平移,当四边形ADEF 的周长最小时,先简单描述如何确定此时点E 的位置?再直接写出点E 的坐标.19.如图,抛物线y=a(x﹣m)2+2m﹣2(其中m>1)与其对称轴l相交于点P,与y轴相交于点A(0,m ﹣1).连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC.点C关于直线l的对称点为C′,连接PC′,即有PC′=PC.将△PBC绕点P逆时针旋转,使点C与点C′重合,得到△PB′C′.(1)该抛物线的解析式为(用含m的式子表示);(2)求证:BC∥y轴;(3)若点B′恰好落在线段BC′上,求此时m的值.20.如图,抛物线23y ax x c2=++与x轴交于点A(4,0)、B(﹣1,0),与y轴交于点C,连接AC,点M是线段OA上的一个动点(不与点O、A重合),过点M作MN∥AC,交OC于点N,将△OMN沿直线MN折叠,点O的对应点O′落在第一象限内,设OM=t,△O′MN与梯形AMNC重合部分面积为S.(1)求抛物线的解析式;(2)①当点O′落在AC上时,请直接写出此时t的值;②求S与t的函数关系式;(3)在点M运动的过程中,请直接写出以O、B、C、O′为顶点的四边形分别是等腰梯形和平行四边形时所对应的t值.21.已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.22.如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A 到x轴的距离AB=4,点P(m,0)是线段OE上一动点,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.(1)求抛物线的解析式;(2)求点C的坐标(用含m的代数式表示);(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.23.如图1,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=13,BD=24,在菱形ABCD 的外部以AB 为边作等边三角形ABE .点F 是对角线BD 上一动点(点F 不与点B 重合),将线段AF 绕点A 顺时针方向旋转60°得到线段AM ,连接FM .(1)求AO 的长;(2)如图2,当点F 在线段BO 上,且点M ,F ,C 三点在同一条直线上时,求证:AM ;(3)连接EM ,若△AEM 的面积为40,请直接写出△AFM 的周长.24.如图1,在平面直角坐标系中,二次函数24y x 1227=-+的图象与y 轴交于点A ,与x 轴交于B ,C 两点(点B 在点C 的左侧),连接AB ,AC .(1)点B 的坐标为,点C 的坐标为;(2)过点C 作射线CD ∥AB ,点M 是线段AB 上的动点,点P 是线段AC 上的动点,且始终满足BM=AP (点M 不与点A ,点B 重合),过点M 作MN ∥BC 分别交AC 于点Q ,交射线CD 于点N (点Q 不与点P 重合),连接PM ,PN ,设线段AP 的长为n .①如图2,当n <12AC 时,求证:△PAM ≌△NCP ;②直接用含n 的代数式表示线段PQ 的长;③若PM 24y x 1227=-+的图象经过平移同时过点P 和点N 时,请直接写出此时的二次函数表达式.25.已知:抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,﹣3).(1)求抛物线的表达式及顶点D的坐标;(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.26.已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.(1)求该抛物线的解析式及点M的坐标;(2)连接ON,AC,证明:∠NOB=∠ACB;(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离为22时,求点E的坐标;(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.27.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B 的抛物线y=﹣x2+bx+c与直线BC交于点D(3,﹣4).(1)求直线BD和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP 是平行四边形时,试求动点P的坐标.28.如图1,抛物线23y x 16=-平移后过点A (8,,0)和原点,顶点为B ,对称轴与x 轴相交于点C ,与原抛物线相交于点D .(1)求平移后抛物线的解析式并直接写出阴影部分的面积S 影阴;(2)如图2,直线AB 与y 轴相交于点P ,点M 为线段OA 上一动点,PMN ∠为直角,边MN 与AP 相交于点N ,设OM t =,试探求:①t 为何值时,△MAN 为等腰三角形?②t 为何值时,线段PN 的长度最小,最小长度是多少?29.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c 经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD 重叠部分的面积记为S,试求S的最大值.30.已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE :S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.31.如图,抛物线()2y ax bx c a 0=++≠与y 轴交于点C(0,4),与x 轴交于点A 和点B ,其中点A 的坐标为()2,0-,抛物线的对称轴x=1与抛物线交于点D ,与直线BC 交于点E.(1)求抛物线的解析式;(2)若点F 是直线BC 上方的抛物线上的一个动点,是否存在点F 使四边形ABFC 的面积为17,若存在,求出点F 的坐标;若不存在,请说明理由;(3)平行于DE 的一条动直线Z 与直线BC 相交于点P ,与抛物线相交于点Q ,若以D 、E 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标.1.如图,抛物线y=ax 2+bx+c (a≠0)的图象过点C (0,1),顶点为Q (2,3),点D 在x 轴正半轴上,且OD=OC .(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ;(4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2.在平面直角坐标系x 、y 中,过原点O 及点A (0,2)、C (6,0)作矩形OABC ,∠AOC 的平分线交AB 于点D .点P 从点O 个单位长度的速度沿射线OD 方向移动;同时点Q 从点O 出发,以每秒2个单位长度的速度沿x 轴正方向移动.设移动时间为t 秒.(1)当点P 移动到点D 时,求出此时t 的值;(2)当t 为何值时,△PQB 为直角三角形;(3)已知过O 、P 、Q 三点的抛物线解析式为()2y x t t =--+(t >0).问是否存在某一时刻t ,将△PQB 绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t 的值;若不存在,请说明理由.3.如图,在△ABC 中,∠C=90°,BC=3,AB=5.点P 从点B 出发,以每秒1个单位长度沿B→C→A→B 的方向运动;点Q 从点C 出发,以每秒2个单位沿C→A→B 方向的运动,到达点B 后立即原速返回,若P 、Q 两点同时运动,相遇后同时停止,设运动时间为t 秒.(1)当t=▲时,点P 与点Q 相遇;(2)在点P 从点B 到点C 的运动过程中,当ι为何值时,△PCQ 为等腰三角形?(3)在点Q 从点B 返回点A 的运动过程中,设△PCQ 的面积为s 平方单位.①求s 与ι之间的函数关系式;②当s 最大时,过点P 作直线交AB 于点D ,将△ABC 中沿直线PD 折叠,使点A 落在直线PC 上,求折叠后的△APD 与△PCQ 重叠部分的面积.4.如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s.当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB'F,设点E,F,G运动的时间为t(单位:s).(1)当t=▲s时,四边形EBFB'为正方形;(2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B'与点O重合?若存在,求出t的值;若不存在,请说明理由.5.如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D 终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.(1)求点Q运动的速度;(2)求图2中线段FG的函数关系式;(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t 的值;若不存在,请说明理由.6.如图①,若二次函数2y bx c =++的图象与x轴交于点A (-2,0),B (3,0)两点,点A 关于正比例函数y =的图象的对称点为C 。
九年级数学中考专题:动态几何综合压轴题
2023年九年级数学中考专题:动态几何综合压轴题1.如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转.若B 、P 在直线a 的异侧,BM △直线a 于点M ,CN △直线a 于点N ,连接PM 、PN ; (1)延长MP 交CN 于点E (如图2). △求证:△BPM △△CPE ; △求证:PM =PN ;(2)若直线a 烧点A 旋转到图3的位置时,点B 、P 在直线a 的同侧,其它条件不变.此时PM =PN 还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a 绕点A 旋转到与BC 边平行的位置时,其它条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 还成立吗?(不必说明理由)2.如图△,在Rt ABC △中,90ABC ∠=︒,AB BC =,延长CA 至点E ,作DE CE ⊥交BA 的延长线于点D ,连接CD ,点F 为CD 的中点,连接EF ,BF .(1)直接写出线段EF 和BF 之间的数量关系为______.(2)将ADE 绕A 顺时针旋转到图△的位置,猜想EF 和BF 之间的数量关系,并加以证明;(3)若AC =:5AD BC =,将ADE 绕点A 顺时针旋转,当A ,E ,B 共线时,请直接写出EF 的长.3.如图,O 是正ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,连接AO ′、OO ′, (1)OO ′= .(2)求△AOB 的度数及四边形AOB O '的面积.(3)直接写出AOC AOB S S +△△的值,AOC AOB S S +△△= .4.如图1,在△ABC 中,△C =90°,△ABC =30°,AC =1,D 为△ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证:△BDA △△BFE ;(2)△CD +DF +FE 的最小值为 ; △当CD +DF +FE 取得最小值时,求证:AD △BF .(3)如图2,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断△MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.5.已知在ABC 中,O 为BC 边的中点,连接AO ,将AOC 绕点O 顺时针方向旋转(旋转角为钝角),得到EOF ,连接AE ,CF .(1)如图1,当△BAC =90°且AB =AC 时,则AE 与CF 满足的数量关系是 ; (2)如图2,当△BAC =90°且AB ≠AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,延长AO 到点D ,使OD =OA ,连接DE ,当AO =CF =5,BC =6时,求DE 的长.6.已知,在ABC 中,AB AC =,D 是平面上一点,连接AD ,把AD 绕点A 逆时针旋转至点E ,使DAE BAC ∠=∠.连接DE 并延长,交AB 于点O ,交BC 于点F .连接BD 和CE ,CE 的延长线分别交AB ,BD 于点P ,G .(1)如图1,求证:BGC DAE ∠=∠;(2)如图2,若点F 是BC 的中点,//AD CB ,求证12AE BC =; (3)在(2)的条件下,若G 是BD 的中点,连接,OG FG .当5,3AB AD ==时,请直接写出OFG △的周长.7.【问题探究】(1)如图1,△ABC和△DEC均为等腰直角三角形,△ACB=△DCE=90°,点B,D,E 在同一直线上,连接AD,BD.△请探究AD与BD之间的位置关系?并加以证明.△若AC=BC,DC=CE AD的长.【拓展延伸】(2)如图2,△ABC和△DEC均为直角三角形,△ACB=△DCE=90°,AC BC,CD CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角△BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.8.如图1和图2,四边形ABCD中,已知AD=DC,△ADC=90°,点E、F分别在边AB、BC上,△EDF=45°.(1)观察猜想:如图1,若△A、△DCB都是直角,把△DAE绕点D逆时针旋转90°至△DCG,使AD与DC重合,易得EF、AE、CF三条线段之间的数量关系,直接写出它们之间的关系式_____;(2)类比探究:如图2,若△A、△C都不是直角,则当△A与△C满足数量关系_____时,EF、AE、CF三条线段仍有(1)中的关系,并说明理由;(3)解决问题:如图3,在△ABC中,△BAC=90°,AB=AC=D、E均在边BC上,且△DAE=45°,若BD=1,求AE的长.9.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察图1,猜想线段AP 与BE 的数量关系是______,位置关系是______; (2)把ADE 绕点A 逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立请证明;若不成立,请写出新的结论并说明理由;(3)把ADE 绕点A 在平面内自由旋转,若6DE =,10BC =,请直接写出线段AP 长的取值范围.10.已知AOB 和△MON 都是等腰直角三角形,△AOB =△MON =90°. (1)如图1:连AM ,BN ,求证:AOM △BON ;(2)若将Rt MON 绕点O 顺时针旋转,当点A ,M ,N 恰好在同一条直线上时,如图2所示,线段OH //BN ,OH 与AM 交点为H ,若OB =4,ON =3,求出线段AM 的长; (3)若将MON 绕点O 顺时针旋转,当点N 恰好落在AB 边上时,如图3所示,MN 与AO 交点为P ,求证:MP 2+PN 2=2PO 2.11.如图1,在Rt ABC △中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 顺时针旋转90°,得到AE ,连接DE .(1)如图1所示,若4BC =,在D 点运动过程中,当8tan 11BDE ∠=时,求线段CD 的长.(2)如图2所示,点F 是线段DE 的中点,连接BF 并延长交CA 延长线于点M ,连接DM ,交AB 于点N ,连接CF ,AF ,当点N 在线段CF 上时,求证:AD BF CF +=.(3)如图3,若AB =ABC 绕点A 顺时针旋转得AB C ''△,连接CC ',P 为线段CC '上一点,且CC ''=,连接BP ,将BP 绕点B 顺时针旋转60°得到BQ ,连接PQ ,K 为PQ 的中点,连接CK ,请直接写出线段CK 的最大值.12.已知:如图1,将一块45︒角的直角三角板DEF 与正方形ABCD 的一角重合,连结AF 、CE ,点M 是CE 的中点,连结DM .(1)请你猜想AF 与DM 的数量关系是___________.(2)如图2,把正方形ABCD 绕着点D 逆时针旋转α角(090α︒<<︒). △AF 与DM 的数量关系是否仍成立,若成立,请证明:若不成立,请说明理由;△若60α=︒,且3FDM MDC ∠=∠,求DEDC的值.13.在等腰直角三角形ABC 中,290AC BC ACB ==∠=︒,,点M 为射线CA 上一个动点.过点M 作ME BM ⊥,交射线BA 于E ,将线段BM 绕点B 逆时针旋转90︒得到线段BN ,过点N 作NF BN ⊥交BC 延长线于点F ,连接EF .(1)如图1,当点M 在边AC 上时,线段,,EM EF NF 的数量关系为_______; (2)如图2,当点M 在射线CA 上时,判断线段,,EM EF NF 的数量关系并说明理由; (3)当点M 在射线CA 上运动时,能否存在BEF △为等腰三角形,若不存在,请说明理由;若存在,请直接写出CM 的长.14.如图,等腰Rt CEF 绕正方形ABCD 的顶点C 顺时针旋转,且AB CE EF ==,90CEF ∠=︒.连接AF 与射线BE 交于点G .(1)如图1,当点B 、C 、F 三点共线时,则ABE ∠ FEM ∠(填“>”、“=”或“<”),则AG FG (填“>”、“=”或“<”);(2)如图2,当点B 、C 、F 三点不共线时,求证:AG GF =;(3)若等腰CEF △从图1的位置绕点C 顺时针旋转α(090α︒<≤︒),当直线AB 与直线EF 相交构成的4个角中最小角为30°时,直接写出α的值.15.在菱形ABCD 中,4AB =,60ABC ∠=︒,E 是对角线AC 上一点,F 是线段BC 延长线上一点,且CF AE =,连接BE 、EF .(1)如图1,若E 是线段AC 的中点,求EF 的长;(2)如图2,若E 是线段AC 延长线上的任意一点,求证:BE EF =. (3)如图3,若E 是线段AC 延长线上的一点,12CE AC =,将菱形ABCD 绕着点B 顺时针旋转α︒(0360)α≤≤,请直接写出在旋转过程中DE 的最大值.16.如图,等边三角形ABC 中,D 为AB 边上一点(点D 不与点,A B 重合),连接CD ,将CD 平移到BE (其中点B 和C 对应),连接AE .将BCD △绕着点B 逆时针旋转至BAF △,延长AF 交BE 于点G .(1)连接DF ,求证:BDF 是等边三角形; (2)求证:,,D F E 三点共线;(3)当2BG EG =时,求tan AEB ∠的值.17.ABC 为等边三角形,CD AB ⊥于点D ,点E 为边BC 上一点,点F 为线段CD 上一点,连接EF ,且CE EF =.(1)如图1,若342AB CE ==,,连接BF ,G 为BF 的中点,连接DG ,求线段DG 的长:(2)如图2,将CEF △绕点C 逆时针方向旋转一定的角度得到CMN ,连接BN ,点H为BN 的中点,连接AH HM ,,求证:AH =:(3)如图3,在(2)问的条件下,线段HM 与线段CN 交于点P ,连接AM ,交线段CN 于点Q ,当2CQ PN a ==时,请直接用含a 的式子表示PQ 的长.18.在ABC 中,90ACB ∠=︒.将ABC 绕点C 逆时针旋转一定角度(旋转角度不大于180︒),得到DEC (点D ,E 分别与点A ,B 对应),连接AD ,BE .(1)如图1,当点A ,C ,E 在同一条直线上时,直接写出AD 与BE 的位置关系为__________;(2)如图2,当点D 落在AB 上时,(点D 不与点A 重合),请判断AD 与BE 的位置关系,并证明你的结论;(3)如图3,将ABC 绕点C 逆时针旋转60︒时,延长AD 与直线BC ,BE 分别相交于点F ,G ,连接CG ,试探究线段CG 与DE 之间满足的数量关系,并说明理由.19.如图△,在矩形ABCD 中,1AB =,对角线AC ,BD 相交于点O ,60COD ∠=︒,点E 是线段CD 上一点,连接OE ,将线段OE 绕点O 逆时针旋转60︒得到线段OF ,连接DF .(1)求证:DF CE =;(2)连接EF 交OD 于点P ,求DP 的最大值;(3)如图△,点E 在射线CD 上运动,连接AF ,在点E 的运动过程中,若AF AB =,求OF 的长.20.将等边三角形ABC 如图放置在平面直角坐标系中,8AB =,E 为线段AO 的中点,将线段AE 绕点A 逆时针旋转60°得线段AF ,连接EF . (△)如图1,求点E 的坐标;(△)在图1中,EF 与AC 交于点G ,连接EC ,N 为EC 的中点,连接NG ,求线段NG 的长.请你补全图形,并完成计算;(△)如图2,将AEF △绕点A 逆时针旋转,M 为线段EF 的中点,N 为线段CE 的中点,连接MN ,请直接写出在旋转过程中MN 的取值范围.参考答案:1.(2)成立(3)四边形MBCN的是矩形,PM=PN.2.(1)EF BF=;(2)FE FB=,(33.(1)4;(2)150°,(3)64.(2)(3)是,△MPN=30°.5.(1)AE CF=;(2)成立,(36.(3)47.(1)△AD BD⊥;△4;(2)8.(1)EF=AE+CF;(2)△A+△C=180°;(39.(1)12AP BE=,AP BE⊥;(2)12AP BE=,AP BE⊥仍成立;(3AP≤≤.10.(2;11.(1)3219;(3)312.(1)AF=2DM,(2)△AF=2DM仍然成立;13.(1)结论:EM+EF=FN;(2)结论:EF=EM=FN;(3)2或2+14.(1)=;=;(3)15°或75°15.(1)(3)16.tan AEB∠=17.(1;(318.(1)AD BE⊥;(2)AD BE⊥,(3)CG DE=19.(2)DP的最大值为14;(3)1OF=20.(△)(0,E;(△;(△)44MN≤≤答案第1页,共1页。
压轴题、专题训练卷(6):动态几何专题
压轴题、专题训练卷(6):动态几何专题班级 姓名 号数一、选择题1、如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度大小不变,则以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致为( )2、如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格3、在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( ) A .()43, B .()34, C .()12--,D .()21--, 4、下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )B .C .D .甲乙甲乙A.B .C .D.甲乙甲乙MNED CBA40A4040(图1)BC MNAD 第7题5、如图1,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x=时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处6、已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )二、填空题:7、如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ANMD 的面积y (cm 2)与两动点运动的时间t (s )的函数关系式为 (写出自变量的取值范围) 8、如图,在矩形ABCD 中,已知AB=8 cm ,将矩形绕点A 旋转90°,到达A′B′C′D′的位置,则在旋转过程 中,边CD 扫过的(阴影部分)面积S=_________。
专题37 动态几何之动点形成的等腰三角形存在性问题(压轴题)
《中考压轴题》专题37:动态几何之动点形成的等腰三角形存在性问一、选择题1.如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是A.2B.3C.4D.5二、填空题1.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的△是腰长为5的等腰三角形时,点P的坐标为。
中点,点P在BC上运动,当ODP2.如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ 是等腰三角形,则符合条件的Q点有个.3.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD的中点,点P在x 轴上移动.小明同学写出了两个使△POE为等腰三角形的P点坐标为(-5,0)和(5,0).请你写出其余所有符合这个条件的P点的坐标.三、解答题1.如图,抛物线21y x mx n 2=-++与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 时线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.2.如图,二次函数24y x bx c 3=++的图象与x 轴交于A (3,0),B (﹣1,0),与y 轴交于点C .若点P ,Q 同时从A 点出发,都以每秒1个单位长度的速度分别沿AB ,AC 边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C 的坐标;(2)当点P 运动到B 点时,点Q 停止运动,这时,在x 轴上是否存在点E ,使得以A ,E ,Q 为顶点的三角形为等腰三角形?若存在,请求出E 点坐标;若不存在,请说明理由.(3)当P ,Q 运动到t 秒时,△APQ 沿PQ 翻折,点A 恰好落在抛物线上D 点处,请判定此时四边形APDQ 的形状,并求出D 点坐标.3.已知抛物线经过A (﹣2,0),B (0,2),C (32,0)三点,一动点P 从原点出发以1个单位/秒的速度沿x 轴正方向运动,连接BP ,过点A 作直线BP 的垂线交y 轴于点Q .设点P 的运动时间为t 秒.(1)求抛物线的解析式;(2)当BQ=12AP 时,求t 的值;(3)随着点P 的运动,抛物线上是否存在一点M ,使△MPQ 为等边三角形?若存在,请直接写t 的值及相应点M 的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t )秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.5.在平面直角坐标系xOy 中,二次函数213y x x 222=-++的图像与x 轴交于点A ,B (点B 在点A 的左侧),与y 轴交于点C ,过动点H (0,m )作平行于x 轴的直线,直线与二次函数213y x x 222=-++的图像相交于点D ,E.(1)写出点A,点B 的坐标;(2)若m >0,以DE 为直径作⊙Q ,当⊙Q 与x 轴相切时,求m 的值;(3)直线上是否存在一点F ,使得△ACF 是等腰直角三角形?若存在,求m 的值;若不存在,请说明理由.6.如图1,抛物线y=ax 2+bx ﹣1经过A (﹣1,0)、B (2,0)两点,交y 轴于点C .点P 为抛物线上的一个动点,过点P 作x 轴的垂线交直线BC 于点D ,交x 轴于点E .(1)请直接写出抛物线表达式和直线BC 的表达式.(2)如图1,当点P 的横坐标为32时,求证:△OBD ∽△ABC .(3)如图2,若点P 在第四象限内,当OE=2PE 时,求△POD 的面积.(4)当以点O 、C 、D 为顶点的三角形是等腰三角形时,请直接写出动点P 的坐标.7.如图,抛物线y=-x 2+bx+c 交x 轴于点A ,交y 轴于点B ,已知经过点A ,B 的直线的表达式为y=x+3.(1)求抛物线的函数表达式及其顶点C 的坐标;(2)如图①,点P (m ,0)是线段AO 上的一个动点,其中-3<m <0,作直线DP ⊥x 轴,交直线AB 于D ,交抛物线于E ,作EF ∥x 轴,交直线AB 于点F ,四边形DEFG 为矩形.设矩形DEFG 的周长为L ,写出L 与m 的函数关系式,并求m 为何值时周长L 最大;(3)如图②,在抛物线的对称轴上是否存在点Q ,使点A ,B ,Q 构成的三角形是以AB 为腰的等腰三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,请说明理由.8.如图,抛物线2y ax bx c =++(a≠0)的图象过点M (2,-,顶点坐标为N 1,3⎛⎫- ⎪ ⎪⎝⎭,且与x 轴交于A 、B 两点,与y 轴交于C 点.(1)求抛物线的解析式;(2)点P 为抛物线对称轴上的动点,当△PBC 为等腰三角形时,求点P 的坐标;(3)在直线AC 上是否存在一点Q ,使△QBM 的周长最小?若存在,求出Q 点坐标;若不存在,请说明理由.称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.对称轴的抛物线过A,B,C三点.(1)求该抛物线线的函数解析式.=+,它与x轴的交于点G,在梯形ABCO的一边上取点P.(2)已知直线l的解析式为y x m①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积.=-时,过P点分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F ②当m3为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.11.已知:在矩形ABCD中,E为边BC上的一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=
【决胜】(预测题)中考数学 专题43 动态几何之其他存在性问题(含解析)
专题43 动态几何之其他存在性问题数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等。
本专题原创编写动态几何之其他存在性问题模拟题。
在中考压轴题中,动态几何之其他存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类。
1.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点B(8,0),A(0,6),点C的坐标为(3,0),过点C作CE⊥AB于点E,点D为y轴上一动点,连结CD,DE,以CD,DE为边作□CDEF。
是否存在点D,使□CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由。
【答案】解:存在。
∵B(8,0),A(0,6),∴OA=6,OB=8。
∴AB=10。
∵C(3,0),∴OC=3,BC=5。
∵∠CEB=∠EBC=900,∠OBA=∠EBC,∴△BCE∽△BAO。
∴CE BCOA AB=,即CE5610=。
∴CE3=。
∴根据勾股定理得BE=4。
∴AE=AB-BE=6。
【考点】单动点问题,勾股定理,平行四边形的性质,相似三角形的判定和性质,锐角三角函数定义。
中考数学动点问题专题练习(含答案)
动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。
专题55:第12章压轴题之动态几何类-备战2021中考数学解题方法系统训练(全国通用)(解析版)
55第12章压轴题之动态几何类一、单项选择题1.如图,在四边形ABCD 中,//AD BC ,6AD =,16BC =,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.假设以点,,,P Q E D 为顶点的四边形是平行四边形,那么点P 运动的时间为〔 〕A .1B .72C .2或72D .1或72【答案】D【分析】要使得以P 、Q 、E 、D 为顶点的四边形是平行四边形,//AD BC ,即要使PD=EQ 即可,设点P 的运动时间为t (0≤t ≤6) 秒,分别表示出PD,EQ 的长度,根据PD=EQ 列方程求解即可.【解答】设点P 的运动时间为t (0≤t ≤6) 秒,那么AP=t ,CQ=3t ,由E 是BC 的中点可得:BE=EC=8,要使得以P 、Q 、E 、D 为顶点的四边形是平行四边形,//AD BC ,即要使PD=EQ 即可.〔1〕如图:点Q 位于点E 右侧时,PD=6-t ,CQ=3t ,EQ=8-3t ,6-t =8-3t ,t =1〔秒〕;〔2〕如图:点Q 位于点E 左侧时,PD=6-t ,CQ=3t ,EQ=3t -8,6-t =3t -8,t =72〔秒〕. 综上所述:P 的运动时间为1或72秒. 应选:D .【点评】此题主要考查平行四边形的判定方法以及一元一次方程的应用,熟记平行四边形的判定方法,根据对应边相等列方程是解题关键.2.如图,如图,在等腰ABC 中,4AB AC m ==,30B ∠=︒,点P 从点B 出发,以3/cm s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发以2cm 的速度沿B A C →→运动到点C 停止.假设BQP ∆的面积为y,运动时间为()x s ,那么以下图象中能大致反映y 与x 之间关系的是〔 〕A .B .C .D .【答案】D【分析】作AH ⊥BC 于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=12AB=2,BH=3AH=23,BC=2BH=43,利用速度公式可得点P 从B 点运动到C 需4s,Q 点运动到C 需4s,然后分0≤x ≤2和2<x ≤4两种情况进行计算,即可得到答案.【解答】解:如图,作AH ⊥BC 于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°, ∴AH=12AB=2,BH=3AH=23, ∴BC=2BH=43,∵点P 运动的速度为3cm/s,Q 点运动的速度为2cm/s,∴点P 从B 点运动到C 需4s,Q 点运动到C 需4s,当0≤x ≤2时,如图,作QD ⊥BC 于D, BQ=2x ,BP=3x ,在Rt △BDQ 中,DQ=12BQ=x , ∴213322y x x x =⋅⋅=,开口向上; 当2<x ≤4时,如图,作QE ⊥BC 于E, CQ=8-2x ,BP=3x ,在Rt △CEQ 中,∠C=∠B=30°,EQ=12CQ =()1822x -,∴()211338223222y x x x x =⋅⋅-=-+,开口向下, 综上所述,223,022323,242x x y x x x ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩.应选:D .【点评】此题考查了动点问题的函数图象,通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数的图象与性质解决问题.3.如图,点A 〔a,1〕,B 〔b,3〕都在双曲线3y x=-上,点P,Q 分别是x 轴,y 轴上的动点,那么四边形ABQP 周长的最小值为〔 〕A .42B .62C .21022+D .82【答案】B【分析】先把A 点和B 点的坐标代入反比例函数解析式中,求出a 与b 的值,确定出A 与B 坐标,再作A 点关于x 轴的对称点D,B 点关于y 轴的对称点C,根据对称的性质得到C 点坐标为〔1,3〕,D 点坐标为〔-3,-1〕,CD 分别交x 轴、y 轴于P 点、Q 点,根据两点之间线段最短得此时四边形ABPQ 的周长最小,然后利用两点间的距离公式求解可得.【解答】解:∵点A 〔a,1〕,B 〔b,3〕都在双曲线y=-3x上,∴a×1=3b=-3,∴a=-3,b=-1,∴A〔-3,1〕,B〔-1,3〕,作A点关于x轴的对称点D〔-3,-1〕,B点关于y轴的对称点C〔1,3〕,连接CD,分别交x轴、y轴于P点、Q点,此时四边形ABPQ的周长最小,∵QB=QC,PA=PD,∴四边形ABPQ周长=AB+BQ+PQ+PA=AB+CD,∴AB=2222()()311322()(3)13142CD-++-==+++=,,∴四边形ABPQ周长最小值为22+42=62,应选:B.【点评】此题考查反比例函数的综合题,勾股定理,掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.4.如图,菱形ABCD中,AB=2,∠B=120°,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,那么△APM的面积y与点P经过的路程x之间的函数关系的图象大致是〔〕A.B.C.D.【答案】B【分析】分类讨论:当0≤x≤2,如图1,作PH⊥AD于H,AP=x,根据菱形的性质得∠A=60°,AM=1,那么∠APH=30°,根据含30度的直角三角形三边的关系得到在RtAH=12x,PH=32x,然后根据三角形面积公式得y=123;当2<x≤4,如图2,作BE⊥AD于E,AP+BP=x,根据菱形的性质得∠A=60°,AM=1,AB=2,BC∥AD,那么∠ABE=30°,在Rt△ABE中,根据含30度的直角三角形三边的关系得AE=1,PH=3,然后根据三角形面积公式得y=12AM•BE=32;当4<x≤6,如图3,作PF⊥AD于F,AB+BC+PC=x,那么PD=6-x,根据菱形的性质得∠ADC=120°,那么∠DPF=30°,在Rt△DPF中,根据含30度的直角三角形三边的关系得DF=12〔6-x〕,PF=3DF=32〔6-x〕,那么利用三角形面积公式得y=12AM•PF=-34x+332,最后根据三个解析式和对应的取值范围对各选项进行判断.【解答】当点P在AB上运动时,即0≤x≤2,如图1,作PH⊥AD于H,AP=x,∵菱形ABCD中,AB=2,∠B=120°,点M是AD的中点, ∴∠A=60°,AM=1,∴∠APH=30°,在Rt△APH中,AH=12AP=12x,PH=3AH=32x,∴y=12AM•PH=12×1×32x=34x;当点P在BC上运动时,即2<x≤4,如图2,作BE⊥AD于E,AP+BP=x,∵四边形ABCD为菱形,∠B=120°, ∴∠A=60°,AM=1,AB=2,BC∥AD, ∴∠ABE=30°,在Rt△ABE中,AE=12AB=1,PH=3AE=3,∴y=12AM•BE=12×1×3=32;当点P在CD上运动时,即4<x≤6,如图3,作PF⊥AD于F,AB+BC+PC=x,那么PD=6-x, ∵菱形ABCD中,∠B=120°,∴∠ADC=120°,∴∠DPF=30°,在Rt△DPF中,DF=12DP=12〔6-x〕,3326-x〕,∴y=12AM•PF=12×1×36-x〕36-x〕333,∴△APM的面积y与点P经过的路程x之间的函数关系的图象为三段:当0≤x≤2,图象为线段,满足解析式y=34x;当2≤x≤4,图象为平行于x轴的线段,且到x轴的距离为32;当4≤x≤6,图象为线段,且满足解析式333.应选B .【点评】此题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.5.如图,在菱形ABCD 中,5AB cm =,120ADC =∠︒,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动〔到点B 为止〕,点E 的速度为1/cm s ,点F 的速度为2/cm s ,经过t 秒DEF ∆为等边三角形,那么t 的值为〔 〕A .34B .43C .32D .53 【答案】D【分析】连接BD,证出△ADE ≌△BDF,得到AE=BF,再利用AE=t,CF=2t,那么BF=BC -CF=5-2t 求出时间t 的值.【解答】解:连接BD ,∵四边形ABCD 是菱形,∠ADC =120°, ∴AB =AD ,∠ADB =12∠ADC =60°, ∴△ABD 是等边三角形,∴AD =BD ,又∵△DEF 是等边三角形,∴∠EDF =∠DEF =60°, 又∵∠ADB =60°, ∴∠ADE =∠BDF ,在△ADE和△BDF中,AD BDA DBCADE BDF=⎧⎪∠=∠⎨⎪∠=∠⎩∴△ADE≌△BDF(ASA), ∴AE=BF,∵AE=t,CF=2t,∴BF=BC−CF=5−2t,∴t=5−2t∴t=5 3 ,应选:D.【点评】此题考查全等三角形,等边三角形,菱形等知识,熟练掌握全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质为解题关键.6.:如图①,长方形ABCD中,E是边AD上一点,且AE=6cm,AB=8cm,点P从B出发,沿折线BE﹣ED﹣DC匀速运动,运动到点C停止.P的运动速度为2c m/s,运动时间为t〔s〕,△BPC的面积为y〔cm2〕,y与t的函数关系图象如图②,那么以下结论正确的有〔〕①a=7;②b=10;③当t=3s时△PCD为等腰三角形;④当t=10s时,y=12cm2A.1个B.2个C.3个D.4个【答案】B【分析】根据点P运动的速度,可以确定某时刻点P的具体位置,再结合△BPC的面积与时间t函数关系的图象,可以得到问题的解答.【解答】当P点运动到E点时,△BPC面积最大,结合函数图象可知当t=5时,△BPC面积最大为40,∴BE=5×2=10.∵12•BC•AB=40,∴BC=10.那么ED=10﹣6=4.当P点从E点到D点时,所用时间为4÷2=2s,∴a=5+2=7.故①正确;P点运动完整个过程需要时间t=〔10+4+8〕÷2=11s,即b=11,②错误;当t=3时,BP=AE=6,又BC=BE=10,∠AEB=∠EBC〔两直线平行,内错角相等〕,∴△BPC≌△EAB,∴CP=AB=8,∴CP=CD=8,∴△PCD是等腰三角形,故③正确;当t=10时,P点运动的路程为10×2=20cm,此时PC=22﹣20=2,△BPC面积为12⨯10×2=10cm2,④错误,∴正确的结论有①③.应选:B.【点评】此题考查矩形性质与函数图象的综合应用,正确理解函数图象各点意义、综合应用等腰三角形和平行线的性质是解题关键.7.如图,正方形ABCD中,点E、F、G分别为边AD、CD、BC中点,动点P从E点出发,沿E D F→→方向移动,连接PG,过G作GQ PG⊥交边AB于点Q;连接PQ,点O为PQ中点,连接AO;设BQ为x,AOQ△的面积为y;那么y与x之间函数图象大致为〔〕A.B.C.D.【答案】A【分析】分两种情况讨论,当点P 在线段ED 上移动时,证得Rt △QBG ~Rt △PEG,求得2131242y x x =-++(102x ≤≤),当点P 在线段FD 上移动时,易求得112y x =-+(112x <≤),根据图象的性质即可判断.【解答】不妨设正方形ABCD 的边长为2,那么BC=AD=AB=CD=2,AE=DF=BG=1,当点P 在线段ED 上移动时,连接EG ,如下图: ∵GQ PG ⊥, ∴∠PGQ=∠B=90︒,∴∠QGB+∠QGE =90︒,∠QGE +∠EGP =90︒,∴∠QGB=∠EGP,∴Rt △QBG ~Rt △PEG,∵BQ x =,BG=1,EG =2,∴PE=2BQ=2x ,∴AQ=AB-BQ=2x -,AP=AE+PE=12x +,∵点O 为PQ 中点,∴()()2AOQ APQ 11111312122224242y S S AQ AP x x x x ===⨯⋅=-+=-++, 取值范围是:当P 、E 重合时,由PE=2x =0,得0x =,当P 、D 重合时,由PE=2x =1,得12x =, ∴2131242y x x =-++(102x ≤≤), ∵102-<,∴图象是开口向下的在区间(102x ≤≤)r 的一段抛物线; 排除选项B 和C ; 当点P 在线段FD 上移动时,连接AP,如下图:∴AQ=AB-BQ=2x -,∵点O 为PQ 中点,∴()AOQ APQ 111112122222y S S AQ AD x x ===⨯⋅=-=-+, 取值范围是:当P 、F 重合时,1x =, ∴112y x =-+(112x <≤), ∵102-<, ∴图象是经过一、二、四象限在区间(112x <≤)的一条线段; 综上,只有A 符合题意,应选:A .【点评】此题考查了动点问题的函数图象,涉及的知识点有正方形的性质,相似三角形的判定和性质,有一定难度.8.如图ABO 的顶点分别是()3,1A ,()0,2B ,()0,0O ,点C ,D 分别为BO ,BA 的中点,连AC ,OD 交于点G ,过点A 作AP OD ⊥交OD 的延长线于点P .假设APO △绕原点O 顺时针旋转,每次旋转90︒,那么第2021次旋转结束时,点P 的坐标是〔 〕A .()2,1B .()2,2C .()1,2D .()1,1A【答案】B【分析】利用三角形的重心和等腰直角三角形的性质确定P 〔2,2〕,确定每4次一个循环,由于2021=4×55,所以第2021次旋转结束时,P 点返回原地,即可求出旋转后的点P 的坐标.【解答】∵点C,D 分别为BO,BA 的中点,∴点G 是三角形的重心,∴AG=2CG ,∵B 〔0,2〕,∴C 〔0,1〕,∵A 〔3,1〕,∴AC=3,AC ∥x 轴,∴CG=1,AG=2,∵OC=1,∴OC=CG ,∴△COG 是等腰直角三角形,∴∠CGO=45°, ∴∠AGP=45°, ∵AP ⊥OD,∴△AGP 是等腰直角三角形,∴AG 边上的高为1,∵等腰直角三角形△AGP 的斜边AG 边上的高也是中线,∴P 〔2,2〕,∵2021=4×55,∴每4次一个循环,第2021次旋转结束时,P 点返回原处,∴点P 的坐标为〔2,2〕.应选:B .【点评】此题考查了三角形重心的判定和性质,等腰直角三角形的判定和性质,坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.9.如图1,在矩形ABCD 中,动点M 从点A 出发,沿A B C -->-->方向运动,当点M 到达点C 时停止运动,过点M 作MN AM ⊥交CD 于点N ,设点M 的运动路程为,x CN y =,图2表示的是y 与x 的函数关系的大致图象,那么函数图象中a 的值为〔 〕A .12B .13C .14D .15【答案】C【分析】由图2知:AB=6,当点M 在BC 上时,画出图形根据MAB NMC ,得出比例式BM CN AB CM =,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【解答】解:由图2知:AB=6,那么CN=BM=6-x,即y=6-x ;如下图,当点M 在BC 上时,AB=6那么BM=x-6,NC=y,在矩形ABCD 中,∵MN ⊥AM,∴∠AMN=90°, ∴∠CMN+∠AMB=90°,∵∠MAB+∠AMB=90°,∴∠CMN=∠MAB,∵在△CMN和△BAM中,∠CMN=∠MAB,∠C=∠B=90°, ∴△CMN∽△BAM,∴BM CN AB CM=由二次函数图象对称性可得M在BC中点时,y=CN有最大值83,此时BM=CM=x-6∴863 66 xx-=-,∴x=10或2〔不合题意舍去〕∴BM=CM=4,∴BC=8∴a=6+8=14应选:C【点评】此题考查了二次函数动点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,此题中由图象得出E为BC中点是解题的关键.10.如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',那么OQ'的最小值为()A.455B5.523D.655【答案】B【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【解答】解:作QM ⊥x 轴于点M,Q′N ⊥x 轴于N,设Q(m ,122m -+),那么PM=1m ﹣,QM=122m -+, ∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN (AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣, ∴ON=1+PN=132m -, ∴Q′(132m -,1m ﹣), ∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5, 当m=2时,OQ′2有最小值为5,∴OQ′5应选:B .【点评】此题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.二、填空题11.如图,O 是正方形ABCD 的外接圆,2,AB =点E 是劣弧AD 上的任意一点,连接BE ,作CF BE ⊥于点F ,连接,AF 那么当点E 从点A 出发按顺时针方向运动到点D 时,AF 长的取值范围为________________.【答案】512AF -≤≤【分析】首先根据题意可知,当点F 与点B 重合时AF 最长,AF 的最大值为2;再证实点F 的运动轨迹为以BC 为直径的'O ,通过添加辅助线连接'AO 交'O 于点M ,连接'O F ,由线段公理可知,当点F 与点M 重合时AF 最短,AF 的最小值为51-.即可得解.【解答】解:∵由题意可知,当点F 与点B 重合时AF 最长∴此时2AF AB ==,即AF 的最大值为2∵CF BE ⊥∴90CFB ∠=︒∴点F 的运动轨迹为以BC 为直径的'O ,连接'AO 交'O 于点M ,连接'O F ,如图:∵2AB =∴11'122BO BC AB === ∴在'Rt ABO 中,22''5AO AB BO =+∴''51AM AO O M =-=∴由两点之间,线段最短可知,当点F 与点M 重合时AF 最短∴AF 的最小值为51-∴512AF -≤≤.【点评】此题考查了正多边形和圆的动点问题、90︒的圆周角所对的弦为直径、勾股定理、线段公理等知识点,解题的关键是确定AF 取最大值和最小值时点F 的位置,属于中考常考题型,难度中等.12.如图,CA AB ⊥,垂足为点A ,24AB =,12AC =,射线BM AB ⊥,垂足为点B ,一动点E 从A 点出发以3厘米/秒沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED CB =,当点E 经过___秒时,DEB ∆与BCA ∆全等.【答案】0,4,12,16【分析】设点E 经过t 秒时,△DEB ≌△BCA ;由斜边ED=CB,分类讨论BE=AC 或BE=AB 或AE=0时的情况,求出t 的值即可.【解答】分情况讨论:〔1〕设点E 经过t 秒时,△DEB ≌△BCA,此时AE=3t,①当点E 在点B 的左侧时,BE=AC,∴AE=AB-BE=24-12=12,∴3t=12,∴t=4;②当点E 在点B 的右侧时,BE=AC,∴AE=AB+BE=24+12=36,∴3t=36,∴t=12;〔2〕设点E经过t秒时,△EDB≌△BCA,此时AE=3t,①当点E在点B的左侧时,BE=AB,即24-3t=24,∴t=0;②当点E在点B的右侧时,BE=AB,∴AE=AB+BE=24+24=48,∴3t=48,∴t=16.综上所述,当点E经过0秒或4秒或12秒或16秒时,△DEB与△BCA全等.故答案为:0,4,12,16.【点评】此题考查了全等三角形的性质;分类讨论各种情况下的三角形全等是解决问题的关键.13.如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC=5cm,CE=6cm,点P以2cm/s 的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从 E 开始,在线段EC上往返运动〔即沿E→C→E→C→…运动〕,当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【答案】1或115或235【分析】根据全等三角形的性质可得PC=CQ,然后分三种情况根据PC=CQ分别得出关于t的方程,解方程即得答案.【解答】解:当点P在AC上,点Q在CE上时,如图,∵以P,C,M为顶点的三角形与△QCN全等,∴PC=CQ,∴5﹣2t=6﹣3t,解得:t=1;当点P在AC上,点Q第一次从点C返回时,∵以P,C,M为顶点的三角形与△QCN全等,∴PC=CQ,∴5﹣2t=3t﹣6,解得:t=11 5;当点P在CE上,点Q第一次从E点返回时, ∵以P,C,M为顶点的三角形与△QCN全等, ∴PC=CQ,∴2t﹣5=18﹣3t,解得:t=235;综上所述:t 的值为1或115或235. 故答案为:1或115或235. 【点评】此题考查了全等三角形的应用,正确分类、灵活应用方程思想、熟练掌握全等三角形的性质是解题的关键.14.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,OA=8,点D 为对角线OB 的中点,假设反比例函数1k y x=在第一象限内的图象与矩形的边BC 交于点F,与矩形边AB 交于点E,反比例函数图象经过点D,且tan ∠BOA=12,设直线EF 的表达式为y=k 2x+b .将矩形折叠,使点O 与点F 重合,折痕与x 轴正半轴交于点H,与y 轴正半轴交于点G,直接写出线段OG 的长_______.【答案】52【分析】利用正切的定义计算出AB 得到B 点坐标为〔8,4〕,那么可得到D 〔4,2〕,然后利用待定系数法确定反比例函数表达式;利用反比例函数图象上点的坐标特征确定F 〔2,4〕,连接GF,如图,设OG =t,那么CG =4−t,利用折叠的性质得到GF =OG =t,那么利用勾股定理得到22+〔4−t 〕2=t 2,然后解方程求出t 得到OG 的长.【解答】在Rt △AOB 中,∵tan ∠BOA =AB OA =12, ∴AB =12OA =12×8=4, ∴B 点坐标为〔8,4〕,∵点D 为对角线OB 的中点,∴D 〔4,2〕,把D 〔4,2〕代入y =1k y x=,得k 1=4×2=8, ∴反比例函数表达式为8y x =;当y=4时,8x=4,解得x=2,那么F〔2,4〕,∴CF=2,连接GF,如图,设OG=t,那么CG=4−t,∵将矩形折叠,使点O与点F重合, ∴GF=OG=t,在Rt△CGF中,22+〔4−t〕2=t2,解得t=5 2 ,即OG的长为52.故答案为:52.【点评】此题考查了反比例函数的综合题:熟练掌握反比例函数图象上点的坐标特征、折叠的性质和矩形的性质;会运用待定系数法求反比例函数解析式;会运用三角函数的定义和勾股定理进行几何计算.15.如图,在矩形ABCD中,AB=6,AD=23,E是AB边上一点,AE=2,F是直线CD上一动点,将AEF沿直线EF折叠,点A的对应点为点A',当点E,A',C三点在一条直线上时,DF的长为_____.【答案】6﹣7或7【分析】利用勾股定理求出CE,再证实CF=CE即可解决问题,〔注意有两种情形〕.【解答】解:如图,由翻折可知,∠FEA=∠FEA′,∵CD ∥AB,∴∠CFE =∠AEF,∴∠CFE =∠CEF,∴CE =CF,在Rt △BCE 中,EC =22BC EB +=22(23)427+=,∴CF =CE =27,∵AB =CD =6,∴DF =CD ﹣CF =6﹣27,当点F 在DC 的延长线上时,易知EF ⊥EF′,CF =CF′=27,∴DF =CD+CF′=6+27故答案为:6﹣27或6+27.【点评】此题考查翻折变换、矩形的性质、勾股定理等知识,此题的突破点是证实△CFE 的等腰三角形,属于中考常考题型.16.如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.当点B '恰好落在边CD 上时,线段BM 的长为_____cm ;在点M 从点A 运动到点B 的过程中,假设边MB '与边CD 交于点E ,那么点E 相应运动的路径长为_____cm .【答案】5 352- 【分析】第一个问题证实BM =MB ′=NB ′,求出NB 即可解决问题.第二个问题,探究点E 的运动轨迹,寻找特殊位置解决问题即可.【解答】如图1中,∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM =MB ′,∴∠2=∠3,∴MB ′=NB ′,∵NB ′22B C NC '''+2221+5cm 〕,∴BM =NB ′5cm 〕. 如图2中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,那么有x 2=22+〔4﹣x 〕2,解得x =52, ∴DE =4﹣52=32〔cm 〕, 如图3中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=5﹣1﹣2=2〔cm 〕,如图4中,当点M 运动到点B ′落在CD 时,DB ′〔即DE ″〕=5﹣1545〔cm 〕,∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=2﹣32+2﹣〔45352〕〔cm 〕.故答案为5,〔352 〕.【点评】此题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.17.如图①,在菱形ABCD中,∠B=60°,M为AB的中点,动点P从点B出发,沿B→C→D的路径运动,到达点D时停止.连接MP,设点P运动的路程为x,MP2=y,假设y与x的函数图象大致如图②所示,那么菱形ABCD 的周长为____________.【答案】8【分析】先从图②分析p的运动过程中MP的变化,再从(4,7)这个点入手求解菱形的边长,再计算周长即可得到答案;【解答】解:如图1,过M 点作ME ⊥BC 与E,结合图像二得到,P 点从B 运动到E,MP 的长度一直在减小,P 点从E 运动到C,MP 的长度一直在增大,P 点从C 运动到D,MP 的长度也在增大,所以在D 点,MP 的长度最大,∴当P 运动到D 时,x=4,y=7,即:27MP = ,4BC CD +=,又∵ABCD 是菱形,∴BC=CD=2〔菱形四边相等〕,∴菱形的周长为:428⨯= ,故答案为:8.【点评】此题主要考查了菱形的性质以及从图像中获取信息得水平,掌握菱形四边相等是解题的关键; 18.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,以此方式,绕点O 旋转2021次得到正方形201820182018OA B C ,如果点A 的坐标为〔1,0〕,那么那么点2019B 的坐标为_____.【答案】〔2,0〕【分析】根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.【解答】∵四边形OABC 是正方形,且OA =1,∴B 〔1,1〕,连接OB,由勾股定理得:OB =22112+=,由旋转得:OB =OB 1=OB 2=OB 3= (2)∵将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,依次得到∠AOB =∠BOB 1=∠B 1OB 2=…=45°, ∴B 1〔0,2〕,B 2〔−1,1〕,B 3〔−2,0〕,…,发现是8次一循环,所以2021÷8=252…余3, ∴点B 2021的坐标为〔−2,0〕故答案为:〔−2,0〕.【点评】此题考查了旋转的性质:对应点到旋转中央的距离相等;对应点与旋转中央所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.19.四边形ABCD 中,45ABC ∠=︒,90C D ∠=∠=︒,含30角〔30P ∠=︒〕的直角三角板PMN 〔如图〕在图中平移,直角边MN BC ⊥,顶点M 、N 分别在边AD 、BC 上,延长NM 到点Q ,使QM PB =,假设10BC =,3CD =,那么点M 从点A 平移到点D 的过程中,点Q 的运动路径长为__________.【答案】72【分析】当点P 与B 重合时,推出△AQK 为等腰直角三角形,得出QK 的长度,当点M′与D 重合时,推出△KQ′M′为等腰直角三角形,得出KQ′的长度,根据题意分析出点Q 的运动路径为QK+KQ′,从而得出结果.【解答】解:如图当点M与A重合时,∵∠ABC=45°,∠ANB=90°,PN=3MN=3CD=33,BN=MN=3,∴此时PB=33-3,∵运动过程中,QM=PB,当点P与B重合时,点M运动到点K, 此时点Q在点K的位置,AK即AM的长等于原先PB和AQ的长,即33-3,∴△AQK为等腰直角三角形,∴QK=2AQ=36-32,当点M′与D重合时,P′B=B C-P′C=10-33=Q′M′,∵AD=BC-BN=BC-AN=BC-DC=7,KD=AD-AK=7-〔33-3〕=10-33,Q′M′=BP′=BC-P′C= BC-PN =10-33,∴△KQ′M′为等腰直角三角形,-,∴KQ′=2Q′M′=2〔10-33〕=10236当点M从点A平移到点D的过程中,点Q的运动路径长为QK+KQ′,-〕=72,∴QK+KQ′=〔36-32〕+〔10236故答案为72.【点评】此题考查平移变换、运动轨迹、解直角三角形等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.20.如图,在Rt ABC ∆中,90B ∠=︒,60A ∠=︒,4AC =,M 是AC 的中点,E 是AB 边上的一个动点,连接ME ,过M 作ME 的垂线,与BC 边交于点F .在E 从A 运动到B 的过程中,EF 的中点N 运动的路程为_______.【答案】233【分析】连接,BN MN ,做射线AN ,根据直角三角形斜边上的中线等于斜边的一半,可得BN MN =,结合条件可证ABN AMN ≅,那么BAN MAN ∠=∠,故动点N 始终在BAC ∠的平分线上,找到点N 起点与终点,求长度即可.【解答】解:如图,连接,BN MN ,做射线AN ,BEF 与MEF 都是直角三角形,且N 为斜边EF 的中点,∴12BN EF MN ==, 在Rt ABC ∆中,90B ∠=︒,9030C BAC ∠=︒-∠=︒, ∴12AB AC AM ==, 在ABN 与AMN 中,BN MN AN AN AB AM =⎧⎪=⎨⎪=⎩∴()ABN AMN SSS ≅,∴BAN MAN ∠=∠,可见点N 始终在BAC ∠的平分线上,当E 从A 出发时,如以下图,点N 运动的起点在AF 的中点,终点即为此时的F , 那么12NF AF =. 在Rt ABF ∆中,AB=2,∠FAB=30°,利用勾股定理求得AF=433 23312NF AF == 故点N 运动的路程为233. 故答案为:233. 【点评】此题是结合了含30°的直角三角形,全等三角形的判定与应用,角平分线的性质等知识点的动点问题,根据题意作出适宜的辅助线,找到动点的起点与终点是解答关键.三、解做题21.如图,在数轴上有三个点A 、B 、C ,O 是原点,满足20OA cm =,60AB cm =,BC 10cm =,动点P 从点O 出发向右以每秒1cm 的速度匀速运动;同时,动点Q 从点C 出发,在数轴上向左运动.〔1〕假设点Q 的速度为每秒0.8cm ,求P ,Q 相遇时,运动的时间.〔2〕假设Q 的运动速度为每秒3cm 时,经过多长时间P ,Q 两点相距70cm ?〔3〕当2PA PB =时,点Q 运动的位置恰好是线段AB 的三等分点,求Q 的速度.【答案】〔1〕50s ;〔2〕经过5秒和40秒时P 、Q 两点相距7Ocm ;〔3〕当点P 在A 、B 两点之间时,点Q 的运动速度为0.5/cm s 或5/6cm s ;当点P 在线段AB 的延长线上时,点Q 的运动速度为314/cm s 或514/cm s . 【分析】〔1〕 设P 、Q 相遇时,运动的时间为t ,列出方程即可解决问题;〔2〕原本P 、Q 之间距离大于70cm,那么分两种情况讨论,第一相距70cm 跟相遇后两者相距70cm,根据路程=速度×时间,即可求得,不过第二次相距70cm 时,Q 点早已到达O 点停止运动;〔3〕 PA=2PB 分两种情况,一种P 在线段AB 内,一种P 在线段AB 的延长线上,根据速度=路程÷时间,即可求得点Q 的速度.【解答】〔1〕设P 、Q 相遇时,运动的时间为t ,由题知:20601090OC OA AB BC cm =++=++=,∴当P 、Q 相遇时,OP CQ OC +=,即0.890t t +=.∴解得:50t s =,故P 、Q 相遇时的运动时间为50s .〔2〕∵9070OA AB BC cm cm ++=>,∴分两种情况,①Q 在P 的右侧时,经过时间为9070513s -=+, ②Q 在P 的左侧时,设经过时间1t ,P 、Q 两点相距70cm ,此时1:P t ,1:903Q t -,∴()1190370t t --=,解得:140t s =,综合①②得知,经过5秒和40秒时P 、Q 两点相距70cm .〔3〕2PA PB =,分两种情况,①当点P 在A 、B 两点之间时,∵2PA PB =, ∴2403PA AB cm ==, 此时运动的时间为601OA PA s += ∵点Q 运动的位置恰好是线段AB 的三等分, ∴1203BQ AB cm ==或2403BQ AB cm ==,点Q 的运动速度为0.5/60BC BQ cm s +=或5/6cm s ; ②当点P 在线段AB 的延长线上时,∵2PA PB =,∴2120PA AB cm ==, 此时运动的时间为1401OA PA s +=, ∵点Q 运动的位置恰好是线段AB 的三等分, ∴1203BQ AB cm ==或2403BQ AB cm ==, 点Q 的运动速度为3/14014BC BQ cm s +=或514/cm s ; 综合①②得知,当点P 在A 、B 两点之间时,点Q 的运动速度为0.5/cm s 或5/6cm s ; 当点P 在线段AB 的延长线上时,点Q 的运动速度为314/cm s 或514/cm s . 【点评】考查了两点间的距离和方程,解题关键是〔1〕根据关系列出方程;〔2〕PQ 相距70cm 分两种情况,第一次相距70cm 和相遇后再次相距70cm ;〔3〕当PA=2PB 时,分两种情况,一种点P 在线段AB 之间和点P 在线段AB 的延长线上.22.数轴上点A 表示的有理数为20,点B 表示的有理数为-10,点P 从点A 出发以每秒5个单位长度的速度在数轴上往左运动,到达点B 后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A 停止,设运动时间为t 〔单位:秒〕.〔1〕当t =5时,点P 表示的有理数为 .〔2〕在点P 往左运动的过程中,点P 表示的有理数为 〔用含t 的代数式表示〕.〔3〕当点P 与原点距离5个单位长度时,t 的值为 .【答案】〔1〕5-;〔2〕205t -;〔3〕3或5或8.5或13.5.【分析】〔1〕先根据运动速度和时间求出PA 的长,再根据数轴的定义即可得;〔2〕先求出在点P 往左运动的过程中,5PA t =,再根据数轴的定义即可得;〔3〕分点P 从点A 运动到点B 和点P 从点B 返回,运动到点A 两种情况,再分别求出点P 表示的有理数,然后根据数轴的定义建立绝对值方程,最后解方程即可得.【解答】〔1〕由题意得:()201030AB =--=,点P 从点A 运动到点B 所需时间为30655AB ==〔秒〕,点P 从点B 返回,运动到点A 所需时间为301522AB ==〔秒〕, 那么当56t =<时,5525PA =⨯=,因此,点P 表示的有理数为20255-=-,故答案为:5-; 〔2〕在点P 往左运动的过程中,5PA t =,那么点P 表示的有理数为205t -,故答案为:205t -;〔3〕由题意,分以下两种情况:①当点P 从点A 运动到点B,即06t ≤≤时,由〔2〕可知,点P 表示的有理数为205t -, 那么2055t -=,即2055t -=或2055t -=-,解得3t =或5t =,均符合题设;②当点P 从点B 返回,运动到点A,即615t <≤时,()26PB t =-,点P 表示的有理数为()2610222t t --=-, 那么2225t -=,即2225t -=或2225t -=-,解得13.5t =或8.5t =,均符合题设;综上,当点P 与原点距离5个单位长度时,t 的值为3或5或8.5或13.5时,故答案为:3或5或8.5或13.5.【点评】此题考查了数轴、绝对值方程、一元一次方程的应用等知识点,较难的是题〔3〕,正确分两种情况讨论,并建立方程是解题关键.23.如图,等边△ABC 的边长为8,动点M 从点B 出发,沿B →A →C →B 的方向以3的速度运动,动点N 从点C 出发,沿C →A →B →C 方向以2的速度运动.〔1〕假设动点M 、N 同时出发,经过几秒钟两点第一次相遇?〔2〕假设动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及△ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.【答案】〔1〕165秒;〔2〕运动了85秒或245秒时,A、M、N、D四点能够成平行四边形,此时点D在BC上,且BD=245或325.【分析】〔1〕设经过t秒钟两点第一次相遇,然后根据点M运动的路程+点N运动的路程=AB+CA列方程求解即可;〔2〕首先根据题意画出图形:如图②,当0≤t≤83时,DM+DN=AN+CN=8;当83<t≤4时,此时A、M、N三点在同一直线上,不能构成平行四边形;4<t≤163时,MB+NC=AN+CN=8;当163<t≤8时,△BNM为等边三角形,由BN=BM可求得t的值.【解答】解:〔1〕设经过t秒钟两点第一次相遇,由题意得:3t+2t=16,解得:t=16 5,所以,经过165秒钟两点第一次相遇;〔2〕①当0≤t≤83时,点M、N、D的位置如图2所示:∵四边形ANDM为平行四边形,∴DM=AN,DM//AN.DN//AB∴∠MDB=∠C=60°,∠NDC=∠B=60°∴∠NDC=∠C.∴ND=NC。
专题44 动态几何之定值(恒等)问题(压轴题)
《中考压轴题》专题42:动态几何之定值(恒等)问题一、解答题1.阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB 于点F,则PE+PF的值为.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.2.已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,54),直线y=kx+2与y 轴相交于点P ,与二次函数图象交于不同的两点A (x 1,y 1),B (x 2,y 2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x 取值范围在﹣1<x <3时,请写出其函数值y 的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y 轴上,必存在定点G ,使△ABG 的内切圆的圆心落在y 轴上,并求△GAB 面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax 2+bx+c=0的两根为x 1,x 2,则:1212bc x x x x a a+=⋅=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x 2﹣3x=15两根的和与积.解:原方程变为:x 2﹣3x ﹣15=0∵一元二次方程的根与系数有关系:1212b c x x x x a a +=⋅=∴原方程两根之和=331--=,两根之积=15151-=-.3.给定直线l :y=kx ,抛物线C :y=ax 2+bx+1.(1)当b=1时,l 与C 相交于A ,B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l 向上平移k 2+1个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点.①求此抛物线的解析式;②若P 是此抛物线上任一点,过P 作PQ ∥y 轴且与直线y=2交于Q 点,O 为原点.求证:OP=PQ.4.如图,在平面直角坐标系xOy 中,一次函数5y x m 4=+的图象与x 轴交于A (﹣1,0),与y 轴交于点C .以直线x=2为对称轴的抛物线C 1:y=ax 2+bx+c (a≠0)经过A 、C 两点,并与x 轴正半轴交于点B .(1)求m 的值及抛物线C 1:y=ax 2+bx+c (a≠0)的函数表达式.(2)设点D (0,2512),若F 是抛物线C 1:y=ax 2+bx+c (a≠0)对称轴上使得△ADF 的周长取得最小值的点,过F 任意作一条与y 轴不平行的直线交抛物线C 1于M 1(x 1,y 1),M 2(x 2,y 2)两点,试探究1211M F M F +是否为定值?请说明理由.(3)将抛物线C 1作适当平移,得到抛物线C 2:()221y x h 4=--,h >1.若当1<x≤m 时,y 2≥﹣x 恒成立,求m的最大值.5.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(﹣4,4).点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过P 点作BP 的垂线,与过点Q 平行于y 轴的直线l 相交于点D .BD 与y 轴交于点E ,连接PE .设点P 运动的时间为t (s ).(1)∠PBD 的度数为,点D 的坐标为(用t 表示);(2)当t 为何值时,△PBE 为等腰三角形?(3)探索△POE 周长是否随时间t 的变化而变化?若变化,说明理由;若不变,试求这个定值.6.如图,已知直线AB :y kx 2k 4=++与抛物线21y x 2=交于A 、B 两点,(1)直线AB 总经过一个定点C ,请直接写出点C 坐标;(2)当1k 2=-时,在直线AB 下方的抛物线上求点P ,使△ABP 的面积等于5;(3)若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离.7.如图,在矩形ABCD 中,把点D 沿AE 对折,使点D 落在OC 上的F 点,已知AO=8.AD=10.(1)求F 点的坐标;(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点O ,F ,且直线y=6x ﹣36是该抛物线的切线,求抛物线的解析式;(3)直线()35y k x 34=--与(2)中的抛物线交于P 、Q 两点,点B 的坐标为(3,354-),求证:11PB QB +为定值.(参考公式:在平面直角坐标系中,若M (x 1,y 1),N (x 2,y 2),则M ,N 两点间的距离为|MN|=.8.数学活动﹣求重叠部分的面积(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P 与等边△ABC 的内心O 重合,已知OA=2,则图中重叠部分△PAB 的面积为.(2)探究1:在(1)的条件下,将纸片绕P 点旋转至如图②所示位置,纸片两边分别与AC ,AB 交于点E ,F ,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD 为∠CAB 的角平分线,点P 在射线AD 上,且AP=2,以P 为顶点的等腰三角形纸片(纸片足够大)与∠CAB 的两边AC ,AB 分别交于点E 、F ,∠EPF=180°﹣α,求重叠部分的面积.(用α或2的三角函数值表示)9.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t )秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.10.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.11.如图,二次函数22y a x 2()mx 3m =--(其中a ,m 是常数,且a>0,m>0)的图象与x 轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴交于点C(0,-3),点D 在二次函数的图象上,CD ∥AB ,连接AD .过点A 作射线AE 交二次函数的图象于点E ,AB 平分∠DAE .(1)用含m 的代数式表示a ;(2))求证:AD AE为定值;(3)设该二次函数图象的顶点为F .探索:在x 轴的负半轴上是否存在点G ,连接CF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,已知抛物线y=ax 2+bx+c (a >0,c <0)交x 轴于点A ,B ,交y 轴于点C ,设过点A ,B ,C 三点的圆与y 轴的另一个交点为D .(1)如图1,已知点A ,B ,C 的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D 的坐标;②若点M 为抛物线上的一动点,且位于第四象限,求△BDM 面积的最大值;(2)如图2,若a=1,求证:无论b ,c 取何值,点D 均为定点,求出该定点坐标.13.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰巧是CD边的中点,求∠OAB的度数;(3)如图2,在(1)条件下,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A 不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求线段EF的长度.14.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,在平面坐标系中,直线y=﹣x+2与x 轴,y 轴分别交于点A ,点B ,动点P (a ,b )在第一象限内,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点P (a ,b )运动时,矩形PMON 的面积为定值2.(1)求∠OAB 的度数;(2)求证:△AOF ∽△BEO ;(3)当点E ,F 都在线段AB 上时,由三条线段AE ,EF ,BF 组成一个三角形,记此三角形的外接圆面积为S 1,△OEF 的面积为S 2.试探究:S 1+S 2是否存在最小值?若存在,请求出该最小值;若不存在,请说明理由.17.如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF=900,且EF 交正方形外角的平分线CF 于点F .(1)图1中若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE=EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE=EF 是否总成立?请给出证明;②在如图2的直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线2y x x 1=-++上,求此时点F 的坐标.18.如图,已知正方形ABCD 的边长为4,对称中心为点P ,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC 成轴对称,设它们的面积和为S 1.(1)求证:∠APE=∠CFP ;(2)设四边形CMPF 的面积为S 2,CF=x ,12S y S .①求y 关于x 的函数解析式和自变量x 的取值范围,并求出y 的最大值;②当图中两块阴影部分图形关于点P 成中心对称时,求y的值.19.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(﹣4,0),点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF.(1)求直线AB 的函数解析式;(2)当点P 在线段AB (不包括A ,B 两点)上时.①求证:∠BDE=∠ADP ;②设DE=x ,DF=y .请求出y 关于x 的函数解析式;(3)请你探究:点P 在运动过程中,是否存在以B ,D ,F 为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P 的坐标:如果不存在,请说明理由.20.已知,如图(a),抛物线2y ax bx c =++经过点A(x 1,0),B(x 2,0),C(0,-2),其顶点为D.以AB 为直径的⊙M 交y 轴于点E 、F ,过点E 作⊙M 的切线交x 轴于点N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考压轴题动态几何之其他问题数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何之其他问题(平面几何)是除前述动态几何问题以外的平面几何问题,本专题原创编写动态几何之其他问题(平面几何)模拟题.在中考压轴题中,其他问题(平面几何)的难点在于准确应用适当的定理和方法进行探究.原创模拟预测题1.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发.按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.【答案】D.考点:动点问题的函数图象;压轴题;动点型;分段函数.原创模拟预测题2.如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()A.B.C.D.【答案】B.考点:动点问题的函数图象;分段函数.原创模拟预测题3.如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()学科网A.B.C.D.【答案】C.考点:动点问题的函数图象.原创模拟预测题4.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()[来源:][来源:学§科§网]A .1或2B .2或3C .3或4D .4或5【答案】A .【解析】试题分析:如图,连接B′D ,过点B′作B′M ⊥AD 于M ,∵点B 的对应点B′落在∠ADC 的角平分线上,∴设DM=B′M=x ,则AM=7﹣x ,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:222''AM AB B M =-,即22(7)25x x -=-,解得x=3或x=4,则点B′到BC 的距离为2或1.故选A .学科网考点:翻折变换(折叠问题);动点型.原创模拟预测题5.如图,在Rt △AOB 中,∠AOB=90°,AO=3,BO=1,AB 的垂直平分线交AB 于点E ,交射线BO 于点F .点P 从点A 出发沿射线AO 以每秒23个单位的速度运动,同时点Q 从点O 出发沿OB 方向以每秒1个单位的速度运动,当点Q 到达点B 时,点P 、Q 同时停止运动.设运动的时间为t 秒.(1)当t= 时,PQ ∥EF ;(2)若P 、Q 关于点O 的对称点分别为P′、Q′,当线段P′Q′与线段EF 有公共点时,t 的取值范围是 .【答案】(1)35;(2)0<t≤1且35t ≠.试题分析:(1)如图1,当PQ∥EF时,则∠QPO=∠ENA,又∵∠AEN=∠QOP=90°,∴△AEN∽△QOP,∵∠AOB=90°,AO=3,BO=1,∴tanA=1333BOAO==,∴∠A=∠PQO=30°,∴32333PO tQO t-==,解得:t=35,故当t=35时,PQ∥EF;故答案为:35;(2)如图2,当P点介于P1和P2之间的区域时,P1′点介于P1′和P2′之间,此时线段P′Q′与线段EF有交点,①当P运动到P1时,∵AE=12AB=1,且易知△AEP1′∽△AOB,∴1'APAEAO AB=,∴AP1′=233,∴P1O=P1′O=3,∴AP1=AO+P1O=43,∴此时P点运动的时间t=4323÷=23s,②当P点运动到P2时,∵∠BAO=30°,∠BOA=90°,∴∠B=60°,∵AB的垂直平分线交AB于点E,∴FB=FA,∴△FBA是等边三角形,∴当PO=OA=3时,此时Q2′与F重合,A与P2′重合,∴PA=23,则t=1秒时,线段P′Q′与线段EF有公共点,故当t的取值范围是:23≤t≤1.故答案为:≤t≤1.考点:几何变换综合题;动点型;分类讨论;综合题.原创模拟预测题6.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M【答案】(1)A(30,30),C(40,﹣30);(2)74m t=;(3)20或46;(4)M(40,15)或M(40,﹣15).【解析】试题分析:(1)利用等腰三角形的性质和勾股定理得出A,C点坐标;(2)利用锐角三角函数关系可得出PR,QP的长,进而求出即可;(3)利用(2)中所求,利用当0<t<30时,当30≤t≤60时,分别利用m与t的关系式求出即可;(4)利用相似三角形的性质,得出M点坐标即可.(3)由(2)得:当0<t<30时,m=35=74t,解得:t=20;如图3,当30≤t≤60时,∵OP=t,则BP=QP=60﹣t,∵PR∥CE,∴△BPR∽△BEC,∴BP PREB EC=,[来源:学科网ZXXK]∴602030t PR-=,解得:PR=3902t-,则m=36090352t t-+-=,解得:t=46,综上所述:t的值为20或46;(4)如图4,当∠PMB+∠POC=90°且△PMB的周长为60时,此时t=40,直线l恰好经过点C,则∠MBP=∠COP,故此时△BMP∽△OCP,则CP MPOP PB=,即304040xx=-,解得:x=15,故M(40,15),同理可得:M(40,﹣15),综上所述:符合题意的点的坐标为:M(40,15)或M(40,﹣15).考点:一次函数综合题;动点型;分类讨论;压轴题.原创模拟预测题7.已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=AB BC,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.学@科网【答案】(1)证明见试题解析;(2)证明见试题解析;(3)4.【解析】试题分析:(1)由同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB交AC于点F由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD于H,由三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.[来源:学科网]考点:圆的综合题;动点型;相似三角形的判定与性质;和差倍分;综合题;压轴题.原创模拟预测题8.如图,在矩形ABCD中,AD=acm,AB=bcm(a>b>4),半径为2cm的⊙O在矩形内且与AB、AD均相切,现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P 到达D点时停止移动.⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动,已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P从A→B→C→D,全程共移动了cm(用含a、b的代数式表示);(2)如图①,已知点P从A点出发,移动2s到达B点,继续移动3s,到达BC的中点,若点P与⊙O的移动速度相等,求在这5s时间内圆心O移动的距离;(3)如图②,已知a=20,b=10,是否存在如下情形:当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切?请说明理由.【答案】(1)()2a b+;(2)20;(3)54.【解析】试题分析:(1)根据点P走过的是线段AB+BC+CD,因此可直接求出;(2)由(1)知P移动的距离为(a+2b)cm,圆心O移动的距离为2(a-4)cm,因此可得a+2b=2(a-4),再由P的移动情况可知1223a b =,联立方程组可求得a=24cm ,b=8cm ,因此可求出它们的速度为2b =4cm/s ,然后求出O 点5s 的路程;(3)存在,设点P 移动的速度为v1cm/s ,⊙O 移动的速度为v2cm/s ,可根据它们的路程求出1254v v =,如图,设直线OO1与AB 交于点E ,与CD 交于点F ,⊙O1与AD 相切于点G .根据相切可得证△DO1G ≌△DO1H ,再进一步得到BP=DP ,设BP=DP=x ,然后根据勾股定理求出x ,再根据相似三角形可求得结果.但是在移动中圆O 有两次可能到达合适的位置,应分两种情况讨论.[来源:学科网]试题解析:(1)a+2b ;(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm ,由题意,得()224a b a +=-①.∵点P 移动2s 到达B 点,即点P 用2s 移动了bcm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =②.由①②解得:248a b =⎧⎨=⎩,∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b =(cm/s ).∴这5s 时间内圆心O 移动的距离为5×4=20(cm );(3)存在这种情形.设点P 移动的速度为v1cm/s ,⊙O 移动的速度为v2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.如图,设直线OO1与AB 交于点E ,与CD 交于点F ,⊙O1与AD 相切于点G .若PD 与⊙O1相切,切点为H ,则O1G=O1H .易得△DO1G ≌△DO1H ,∴∠ADB=∠BDP ,∵BC ∥AD ,∴∠ADB=∠CBD ,∴∠BDP=∠CBD .∴BP=DP .设BP=xcm ,则DP=xcm ,PC=(20-x )cm ,在Rt △PCD中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =,∴此时点P 移动的距离为25451022+=(cm ).∵EF ∥AD ,∴△BEO1∽△BAD .∴1EO BE AD BA =,即182010EO =,∴EO1=16cm .∴OO1=14cm . ①当⊙O 首次到达⊙O1的位置时,⊙O 移动的距离为14cm ,∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠,∴此时PD与⊙O1不可能相切;②当⊙O在返回途中到达⊙O1的位置时,⊙O移动的距离为2×(20-4)-14=18(cm),∴此时点P与⊙O 移动的速度比为45455218364==.∴此时PD与⊙O1恰好相切.考点:圆的综合题;分类讨论;动点型;存在型;综合题;压轴题.原创模拟预测题9.已知如图,在平面直角坐标系xOy中,直线323y x=-与x轴、y轴分别交于A,B 两点,P是直线AB上一动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与x轴相切时,求出切点的坐标.【答案】(1)原点O在⊙P外;(2)23π;(3)(323-,0)或(323+,0).【解析】试题解析:(1)原点O在⊙P外.理由如下:∵直线323y x=-与x轴、y轴分别交于A,B两点,∴点A(2,0),点B(0,-23),在Rt△OAB 中,tan∠OBA=323OAOB==,∴∠OBA=30°,如图1,过点O作OH⊥AB于点H,在Rt△OBH中,OH=OB•sin∠331,∴原点O在⊙P外;(2)如图2,当⊙P过点B时,点P在y轴右侧时,∵PB=PC,∴∠PCB=∠OBA=30°,∴⊙P被y轴所截的劣弧所对的圆心角为:180°﹣30°﹣30°=120°,∴弧长为:120121803ππ⨯⨯=; 同理:当⊙P 过点B 时,点P 在y 轴左侧时,弧长同样为:23π;∴当⊙P 过点B 时,⊙P 被y 轴所截得的劣弧的长为:23π;学科网考点:圆的综合题;分类讨论;动点型;探究型;综合题;压轴题.原创模拟预测题10.如图,已知抛物线2y ax bx c =++的顶点D 的坐标为(1,92-),且与x 轴交于A 、B 两点,与y 轴交于C 点,A 点的坐标为(4,0).P 点是抛物线上的一个动点,且横坐标为m . (l )求抛物线所对应的二次函数的表达式;(2)若动点P 满足∠PAO 不大于45°,求P 点的横坐标m 的取值范围;(3)当P 点的横坐标0m <时,过p 点作y 轴的垂线PQ ,垂足为Q .问:是否存在P 点,使∠QPO=∠BCO ?若存在,请求出P 点的坐标;若不存在,请说明理由. 学科网【答案】(1)2142y x x =--;(2)﹣4≤m≤0;(3)P (3412-,3414-)或P (1332-,3314-).【解析】 试题分析:(1)根据函数值相等的点关于对称轴对称,可得B 点坐标,根据待定系数法,可得函数解析式;(2)根据等腰直角三角形的性质,可得射线AC 、AD ,根据角越小角的对边越小,可得PA 在在射线AC 与AD 之间,根据解方程组,可得E 点的横坐标,根据E 、C 点的横坐标,可得答案;学科。