中考压轴题动态几何之其他问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考压轴题动态几何之其他问题
数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.
动态几何之其他问题(平面几何)是除前述动态几何问题以外的平面几何问题,本专题原创编写动态几何之其他问题(平面几何)模拟题.
在中考压轴题中,其他问题(平面几何)的难点在于准确应用适当的定理和方法进行探究.
原创模拟预测题1.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发.按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()
A.B.C.D.
【答案】D.
考点:动点问题的函数图象;压轴题;动点型;分段函数.
原创模拟预测题2.如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()
A.B.C.D.
【答案】B.
考点:动点问题的函数图象;分段函数.
原创模拟预测题3.如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()学科网
A.B.C.D.
【答案】C.
考点:动点问题的函数图象.
原创模拟预测题4.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()
[来源:][来源:学§科§网]
A .1或2
B .2或3
C .3或4
D .4或5
【答案】A .
【解析】
试题分析:如图,连接B′D ,过点B′作B′M ⊥AD 于M ,∵点B 的对应点B′落在∠ADC 的角平分线上,∴设DM=B′M=x ,则AM=7﹣x ,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:
222
''AM AB B M =-,即22(7)25x x -=-,解得x=3或x=4,则点B′到BC 的距离为2或1.故选A .学科网
考点:翻折变换(折叠问题);动点型.
原创模拟预测题5.如图,在Rt △AOB 中,∠AOB=90°,AO=
3,BO=1,AB 的垂直平分线交AB 于点E ,交射线BO 于点F .点P 从点A 出发沿射线AO 以每秒23个单位的速度运动,同时点Q 从点O 出发沿OB 方向以每秒1个单位的速度运动,当点Q 到达点B 时,点P 、Q 同时停止运动.设运动的时间为t 秒.
(1)当t= 时,PQ ∥EF ;
(2)若P 、Q 关于点O 的对称点分别为P′、Q′,当线段P′Q′与线段EF 有公共点时,t 的取值范围是 .
【答案】(1)35;(2)0<t≤1且
35t ≠.
试题分析:(1)如图1,当PQ∥EF时,则∠QPO=∠ENA,又∵∠AEN=∠QOP=90°,∴△AEN∽△QOP,
∵∠AOB=90°,AO=3,BO=1,∴tanA=
13
3
3
BO
AO
==
,∴∠
A=∠PQO=30°,∴
3233
3
PO t
QO t
-
==
,解得:t=
3
5,故当t=
3
5时,PQ∥EF;故答案为:
3
5;
(2)如图2,当P点介于P1和P2之间的区域时,P1′点介于P1′和P2′之间,此时线段P′Q′与线段EF有交点,①当P运动到P1时,∵AE=
1
2AB=1,且易知△AEP1′∽△AOB,∴
1
'
AP
AE
AO AB
=
,∴AP1′=
23
3,∴P1O=P1′O=
3
,∴AP1=AO+P1O=
43
,∴此时P点运动的时间t=
43
23
÷
=
2
3s,
②当P点运动到P2时,∵∠BAO=30°,∠BOA=90°,∴∠B=60°,∵AB的垂直平分线交AB于点E,∴FB=FA,∴△FBA是等边三角形,∴当PO=OA=3时,此时Q2′与F重合,A与P2′重合,∴PA=23,则t=1秒时,线段P′Q′与线段EF有公共点,故当t的取值范围是:
2
3≤t≤1.故答案为:≤t≤1.
考点:几何变换综合题;动点型;分类讨论;综合题.
原创模拟预测题6.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.
(1)求点A和点C的坐标;
(2)当0<t<30时,求m关于t的函数关系式;
(3)当m=35时,请直接写出t的值;
(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M