第三章 正弦交流电路
合集下载
电工技术3正弦交流电路
![电工技术3正弦交流电路](https://img.taocdn.com/s3/m/02c33d0af78a6529647d533c.png)
j 30
A
求:
i1、 2 i
rad s
解: 2 f 2 1000 6280
i1 100 i 2 10
2 sin( 6280 t 60 ) A 2 sin( 6280 t 30 ) A
小结:正弦波的四种表示法
u
波形图
U
m
T
t
瞬时值
u U m sin t
第三章 正弦交流电路
3-1 正弦交流电路的基本概念 交流电的概念 如果电流或电压每经过一定时间 (T )就重复变 化一次,则此种电流 、电压称为周期性交流电流或
电压。如正弦波、方波、三角波、锯齿波 等。
记做: u(t) = u(t + T )
u
t
T
u
t
T
正弦交流电路 如果在电路中电动势的大小与方向均随时间按 正弦规律变化,由此产生的电流、电压大小和方向 也是正弦的,这样的电路称为正弦交流电路。 正弦交流电的优越性:
角频率 :每秒正弦量转过的弧度 (一个周期的弧度为2 )
2f 2 T
(单位:rad/s)
例
已知:f=50 Hz, 求 T和
解:T=1/f=1/50=0.02s=20ms
2 f 2 3 . 14 50 314 rad / s
二、幅值和有效值 瞬时值—正弦量任意瞬间的值(用i、u、e表示)
j 1 j 2
r1 r2
e
j( 1 2 )
A /B
r1 1 r2 2
r1 r2
(1 2 )
3.讨论 (1) e
j
A
求:
i1、 2 i
rad s
解: 2 f 2 1000 6280
i1 100 i 2 10
2 sin( 6280 t 60 ) A 2 sin( 6280 t 30 ) A
小结:正弦波的四种表示法
u
波形图
U
m
T
t
瞬时值
u U m sin t
第三章 正弦交流电路
3-1 正弦交流电路的基本概念 交流电的概念 如果电流或电压每经过一定时间 (T )就重复变 化一次,则此种电流 、电压称为周期性交流电流或
电压。如正弦波、方波、三角波、锯齿波 等。
记做: u(t) = u(t + T )
u
t
T
u
t
T
正弦交流电路 如果在电路中电动势的大小与方向均随时间按 正弦规律变化,由此产生的电流、电压大小和方向 也是正弦的,这样的电路称为正弦交流电路。 正弦交流电的优越性:
角频率 :每秒正弦量转过的弧度 (一个周期的弧度为2 )
2f 2 T
(单位:rad/s)
例
已知:f=50 Hz, 求 T和
解:T=1/f=1/50=0.02s=20ms
2 f 2 3 . 14 50 314 rad / s
二、幅值和有效值 瞬时值—正弦量任意瞬间的值(用i、u、e表示)
j 1 j 2
r1 r2
e
j( 1 2 )
A /B
r1 1 r2 2
r1 r2
(1 2 )
3.讨论 (1) e
j
电工学课件--第三章 正弦交流电路
![电工学课件--第三章 正弦交流电路](https://img.taocdn.com/s3/m/085510d084254b35eefd3459.png)
U • o I= U =U 0 ∠ R
• •
u =Um sinω t u Um i = = sinω = Im sinω t t R R
U =I R
U =I R
•
•
可见: 可见:电压与电流同相位 ui
i
u
•
IU
•
I
•
U
+−
2.功率关系
ui
i
⑴ 瞬时功率
•
u
IU
p=ui=UmImsin2ωt =UI(1-cos2ωt)
角频率ω: 单位时间里正弦量变化的角度 称为角频率。单位是弧度/秒 (rad/s). ω=2π/T=2πf 周期,频率,角频率从不同角度描 述了正弦量变化的快慢。三者只要知 道其中之一便可以求出另外两时值, 瞬时值中最大的称为最大值。Im、 U m 、E m 分别表示电流、电压和电动 势的最大值. 表示交流电的大小常用有效值的概 念。
单位是乏尔(Var) 单位是乏尔(Var)
第四节 RLC串联交流电路 串联交流电路 一.电压与电流关系
i R u L C
uR uL
u =uR +uL +uC
U =UR+UL+UC
• • • •
uC
以电流为参考相量, 以电流为参考相量, 相量图为: 相量图为:
•
UL UL+UC
φ
• • • •
•
U I
•
U
φ UR
UL-UC
UR
UC
2 可见: 可见: U = UR +(UL −UC)2
U L −UC X L − XC = arctg = arctg UR R
电工电子学第三章
![电工电子学第三章](https://img.taocdn.com/s3/m/08ba90757fd5360cba1adb1a.png)
负半周
3
设正弦交流电流: 设正弦交流电流:
Im
Ψ
i
O π T 2π π
ωt
i = I m sin (ω t + ψ )
初相角:决定正弦量起始位置 初相角: 角频率:决定正弦量变化快慢 角频率: 幅值:决定正弦量的大小 幅值:
幅值、角频率、初相角成为正弦量的三要素。 幅值、角频率、初相角成为正弦量的三要素。
5
3.1.2 幅值与有效值 幅值: 幅值:Im、Um、Em
幅值必须大写, 幅值必须大写, 下标加 m。
有效值: 有效值:与交流热效应相等的直流定义为交流电的 有效值。 有效值。
∫0
T
2 i 2R dt = I RT
交流
直流
则有
I =
1 T
∫
T
0
i 2dt
Im 1 T 2 2 有效值必 = ∫0 Imsin ωt dt = 2 须大写 T U Em 同理: 同理: U = m E= 2 2
12
3. 正弦量的相量表示
实质:用复数表示正弦量 实质: 复数表示形式 为复数: 设A为复数 为复数 (1) 代数式 A =a + jb 式中: a = r cos ψ 式中
+j
b
A
r ψ
0
2 2
a
+1
b = r sin ψ
(2) 三角式 由欧拉公式: 由欧拉公式
r = a + b 复数的模 b ψ = arctan 复数的辐角 a
16
⑥“j”的数学意义和物理意义 因子: 旋转 90o因子:e± j90o
± j90o
e
= cos 90° ± jsin90° = ±j
第三章 正弦交流电路-1
![第三章 正弦交流电路-1](https://img.taocdn.com/s3/m/7d3910e0011ca300a6c39096.png)
一.电阻元件
i
根据欧姆定律,线性电阻上的电压与电流
成正比关系,即 i u R
图3-10
当电压和电流均用相量表示时,欧姆定律
的相量表示式为 第(23)页
•
•
I
U
R
u
R
电阻元件
上式表明,电阻元件上电压和电流的相位相同,
如图3-11所示。
设 i 2ISint
u 2USint 图3-11
电阻元件吸收的瞬时功率为
方法二: 运用矢量运算
Y I2m B
C I3m
10 50
I1m
A
5
0 60 30
X
i1 I1m OA矢量 i2 I2m OB矢量 i3 I3m OC矢量
根据矢量图
I3m 14.6
3 50 于是i3 14.6CoS(t 50)
+j
I3m
方法三.运用复数运算:
11.16
I1m 5e j30
只要有幅值与初相位两个要素就足以表示各电压 与电流之
间的关系,因此我们约定:用式(3-1)中的复常数 Ie ji 表
示正弦电流 i 2ISint i ,并用下列记法
•
I Ie ji I i
(3-2)
上式中I• m不仅是一个复数,而且表示了一个正弦量,所以给它
一个专有名称——相量。代表正弦电流的相量称之为电流相量,
U
的正方向如图3-13(a)所示。
u,i
(b) 0
u
i
t
i ii
i
+ -- +
p- + + 储能 放能 储能 放能
根据楞次定律得出
u
eL
第3章 正弦交流电路
![第3章 正弦交流电路](https://img.taocdn.com/s3/m/57799743b307e87101f6965b.png)
Um 正弦交流电压的有效值为 U = = 0.707U m 2 正弦交流电压的有效值为 E = Em = 0.707 Em 2
i = I m sin (ω t + ψ i )时,可得 也可以写为 i = 2 I sin (ω t + ψ i )
当电流
e = E m sin ( ω t + ψ e ) 时,可得 E = 2 也可以写为 e = 2 E sin ( ω t + ψ e )
1 1 T= = = 0.02s f 50
我国工业和民用交流电源的有效值为220V,频率为50Hz, ,频率为 我国工业和民用交流电源的有效值为 因而通常将这一交流电压简称为工频电压 频率称为工频 工频电压, 工频。 因而通常将这一交流电压简称为工频电压,频率称为工频。
例:已知正弦交流电流为i=2sin(ωt-30˚) A。电路中的电阻 已知正弦交流电流为 。电路中的电阻R=10Ω, , 试求电流的有效值和电阻消耗的功率。 试求电流的有效值和电阻消耗的功率。 解:电流有效值 电阻消耗的功率 I=0.707×Im=0.707×2=1.414A × × P=I2R=20W
已知一正弦电流的有效值为5A,频率为50Hz,初 例:已知一正弦电流的有效值为 ,频率为 , 相为50˚,试写出其解析式。 相为 ,试写出其解析式。 由题目可知, 解:由题目可知,m = 5 2V,ψ=50˚ I 又频率f=50Hz,则角频率 又频率 , ω=2πf=2×3.14×50=314rad/s × × 则该电流解析式为
(三)相位与相位差 相位:表示正弦量的变化进程,也称相位角。 相位:表示正弦量的变化进程,也称相位角。 相位角 初相位: 时的相位 时的相位, 初相位:t=0时的相位,用ψ表示。
第三章 正弦交流电路
![第三章 正弦交流电路](https://img.taocdn.com/s3/m/67b9d724192e45361066f5a0.png)
Um R
m
式中,Im正弦交流电流的幅值。说明正弦交流电压和 电流的幅值之间满足欧姆定律。
(二)电压、电流的有效值关系
据电压、电流幅值之间的关系,把等式两边同 时除以 2 即得到有效值关系,即 或 U IR 这说明,正弦交流电压和电流的有效值之间 也满足欧姆定律。
I U R
(三)相位关系
(黄色)
电动势、电压和电流的大小和方向随时间按正弦规 律性变化。叫做正弦交流电流、电压、电动势。在任一 时刻可用三角函数表示。
e Em sin(t e ) u U m sin(t u ) i I m sin(t i )
第四章
交流电路
第一节 交流电的基本概念
三、描述正弦交流电特征的物理量
(三)相位、初相位与相位差
1、相位(或相角):
t i I m sin(t )
i
O
反映正弦量变化的进程。 2、初相位: 表示正弦量在t =0时的初相位。
——
如:
给出了观察正弦波 的起点或参考点。
ωt
e1 Em sin(t 1 ) e2 Em sin(t 2 )
X L 2fL 2 3.14 50 0.1 31.4Ω
U 10 I 318m A XL 31.4
(2)当 f = 5000Hz 时
X L 2fL 2 3.14 5000 0.1 3140 Ω
U 10 I 3.18m A XL 3140
4
可知
(1)最大值
(2)有效值 (3)角频率 (4)频率 (5)周期
m 30 2 42.6
m 30 2
100s 1 314rad / s
m
式中,Im正弦交流电流的幅值。说明正弦交流电压和 电流的幅值之间满足欧姆定律。
(二)电压、电流的有效值关系
据电压、电流幅值之间的关系,把等式两边同 时除以 2 即得到有效值关系,即 或 U IR 这说明,正弦交流电压和电流的有效值之间 也满足欧姆定律。
I U R
(三)相位关系
(黄色)
电动势、电压和电流的大小和方向随时间按正弦规 律性变化。叫做正弦交流电流、电压、电动势。在任一 时刻可用三角函数表示。
e Em sin(t e ) u U m sin(t u ) i I m sin(t i )
第四章
交流电路
第一节 交流电的基本概念
三、描述正弦交流电特征的物理量
(三)相位、初相位与相位差
1、相位(或相角):
t i I m sin(t )
i
O
反映正弦量变化的进程。 2、初相位: 表示正弦量在t =0时的初相位。
——
如:
给出了观察正弦波 的起点或参考点。
ωt
e1 Em sin(t 1 ) e2 Em sin(t 2 )
X L 2fL 2 3.14 50 0.1 31.4Ω
U 10 I 318m A XL 31.4
(2)当 f = 5000Hz 时
X L 2fL 2 3.14 5000 0.1 3140 Ω
U 10 I 3.18m A XL 3140
4
可知
(1)最大值
(2)有效值 (3)角频率 (4)频率 (5)周期
m 30 2 42.6
m 30 2
100s 1 314rad / s
第3章 正弦交流电路
![第3章 正弦交流电路](https://img.taocdn.com/s3/m/b33ec59daf1ffc4ffe47acf8.png)
3.3.1 单一参数的正弦交流电路
1.纯电阻电路 (1) 电压与电流的关系
+
u iR
u
i I m sin t
_
u iR I m R sin t U m sin t
i R
对于正弦交流电路中的电阻电路(又称纯电阻 电路),一般结论为:
1)电压、电流均为同频率的正弦量。
2)电压与电流初相位相同,即两者同相。
y
i
ω
Im
i1
ωt1 φ
Im
i0
90
o
x
o
ωt1
ωt
φ
t t1 i1 I m sin(t 1)
对于一个正弦量可以找到一个与其对应的旋转矢量,反之, 一个旋转矢量也都有一个对应的正弦量。
3.2.2 复数及复数的运算 1、复数
A a jb
A r cos r sin
e j cos j sin
作相量图时要注意: 只有同频率的正弦量才 能画在一个相量图上,不 同频率的正弦量不能画在 一个相量图上。
+j
U
Φu
o
Φi
+1
I
3.3正弦交流电路的简单分析与运算
电阻元件、电感元件与电容元件都是组成 电路模型的理想元件。
所谓理想元件,就是突出元件的主要电磁 性质,而忽略其次要因素。如电阻元件具 有消耗电能的性质(电阻性),其它的电 磁性质如电感性、电容性等忽略不计。。
f = 1/T T = 1/f
i
角频率是指交流电在1s内变化的电 Im
角度。正弦量每经过一个周期T,
o
对应的角度变化了2π弧度,所以
φ
ωt
T
2f 2
电工基础 第三章
![电工基础 第三章](https://img.taocdn.com/s3/m/a5cb3d56c1c708a1294a442b.png)
角频率 1 2 2πf 2 3.14 333rad/s 2091rad/s
(2)最大值 U ml (10 3)V 30V
U m2 (10 2)V 20V
相应的有效值为
U1
Uml 2
30 2
V 21.2V
U2
Um2 2
20 V 14.1V 2
第一节 正弦交流电的基本概念及其表示方法
相同的时间内,两个电阻产生的热量相等,我们就把这个直流电 流的数值定义为交流电流的有效值。电动势、电压和电流的有效 值分别用大写字母E、U、I表示。
第一节 正弦交流电的基本概念及其表示方法
E
Em 2
0.707Em
U
Um 2
0.707U m
I
Im 2
0.707I m
第一节 正弦交流电的基本概念及其表示方法
交流电是指大小和方向均随时间做周期变化的电流、电压 或电动势,分为正弦交流电和非正弦交流电两大类。正选交流 电按正弦规律变化,如图3-1所示;非正弦交流电不按正弦规 律变化,如图3-1d所示。
图3-1 直流电和交流电的波形 a)恒定直流电 b)脉动直流电 c)正弦交流电 d)非正弦交流电
第一节 正弦交流电的基本概念及其表示方法
1MHz 106 Hz
频率和周期的关系是 (3)角频率
f 1 T
指交流电每秒钟变化的弧度数,用ω表示
2π 2πf
t
T
第一节 正弦交流电的基本概念及其表示方法
3.相位、初相位和相位差
(1)相位 电角度(ωt+φ) 为交流电的相位,其单位是弧度或度。相位 反映了交流电变化的进程。
(2)φ表
(3)平均值 交流电的平均值是指由零点开始的半个周期内的平均值,如
第三章:正弦交流电路
![第三章:正弦交流电路](https://img.taocdn.com/s3/m/81352dd97f1922791688e82a.png)
& =U & = − jI & X = − j 2 × 50∠45 o = 50 2∠ − 45 o V U ao C C C & =U & = jI & X = j 2 × 50∠ − 45o = 50 2∠45o V U bo L L L & & & U = U − U = 50 2∠ − 45o − 50 2∠45o =
2
& 与U & 之间的相位差 I R
ϕ = arctan
XC 1 = arctan R Rω C
第三章
正弦交流电路
31
& 与U & 之间的相位差 U θ = 2ϕ ab 由上式可知,当改变电阻 R 时,输出电压 Uab 是一个不变恒定的值,即有 U U ab = 2 20 本题中 U ab = = 10V 2 当电阻 R 由零变到无穷大时, ϕ 角由 90o 变到零, θ 角由 180o 变到零。当电阻 R & 的相位从 180o 减小到: 由零变到 1.5kΩ 时, U
& = jI &X = j4.4 × 40∠73o = 176∠163o V U L L & & U C = − jIX C = − j4.4 × 80∠73o = 352∠ − 17 o V 【例题 3.2】 图 3.2(a)为 RC 移相电路。已知电阻 R = 100 Ω ,输入电压 u1 的频率为
Z = R + j( X L − X C ) = 30 + j(40 − 80) = 30 − j40 = 50∠ − 53o Ω
28
电工学试题精选与答题技巧
o & & = U = 220∠20 = 4.4∠73o Α I Z 50∠ − 53o & =I &R = 4.4 × 30∠73o = 132∠73o V U R
电路分析基础第3章 正弦交流电路
![电路分析基础第3章 正弦交流电路](https://img.taocdn.com/s3/m/d08fface4a7302768f99393e.png)
初相角的单位可以用弧度或度来表示,初相角ψ的大小 与计时起点的选择有关。另外,初相角通常在|ψ|≤π的主值
20 图3.2.4 不同初相时的正弦电流波形
21
在正弦交流电路的分析中,有时需要比较同频率的正弦 量之间的相位差。例如在一个电路中,某元件的端电压u和 流过的电流i
u=Umsin(ωt+ψu) i=Imsin(ωt+ψi) 它们的初相分别为ψu和ψi,则它们之间的相位差(用φ表 示)为 φ=(ωt+ψu)-(ωt+ψi)=ψu-ψi (3.2.7) 即两个同频率的正弦量之间的相位差就是其初相之差,相位 差φ
以复数运算为基础的,复数的表示如图3.3.1所示。
32 图3.3.1 复数的表示
33
一个复数A可以用下述几种形式来表示。
1.代数形式
A=a+jb
(3.3.1)
式中, j 1 2.三角形式
A=rcosψ+jrsinψ=r(cosψ+jsinψ)
(3.3.2)
式中,r a2b2, t gb,arctban
28
I B I Bm 7 .07 5 A 22
A
100
π
1 300
π 60 3
B
100
π
1 600
π 30 6
A
B
π 3
π 6
π 2
90
(2)
iA=14.1sin(314t+60°)A
iB=7.07sin(314t-30°)A
29 图3.2.6 例3.2.5的波形图
a
a
ψ称为A的辐角。
34
3.指数形式
根据欧拉公式
ejψ=cosψ+jsinψ
20 图3.2.4 不同初相时的正弦电流波形
21
在正弦交流电路的分析中,有时需要比较同频率的正弦 量之间的相位差。例如在一个电路中,某元件的端电压u和 流过的电流i
u=Umsin(ωt+ψu) i=Imsin(ωt+ψi) 它们的初相分别为ψu和ψi,则它们之间的相位差(用φ表 示)为 φ=(ωt+ψu)-(ωt+ψi)=ψu-ψi (3.2.7) 即两个同频率的正弦量之间的相位差就是其初相之差,相位 差φ
以复数运算为基础的,复数的表示如图3.3.1所示。
32 图3.3.1 复数的表示
33
一个复数A可以用下述几种形式来表示。
1.代数形式
A=a+jb
(3.3.1)
式中, j 1 2.三角形式
A=rcosψ+jrsinψ=r(cosψ+jsinψ)
(3.3.2)
式中,r a2b2, t gb,arctban
28
I B I Bm 7 .07 5 A 22
A
100
π
1 300
π 60 3
B
100
π
1 600
π 30 6
A
B
π 3
π 6
π 2
90
(2)
iA=14.1sin(314t+60°)A
iB=7.07sin(314t-30°)A
29 图3.2.6 例3.2.5的波形图
a
a
ψ称为A的辐角。
34
3.指数形式
根据欧拉公式
ejψ=cosψ+jsinψ
第3章正弦交流电路
![第3章正弦交流电路](https://img.taocdn.com/s3/m/f775e9e30b4e767f5bcfce2b.png)
A=a+jb = r(cos jsin) 式中,r叫做复数A的模,又称为A的绝对值, 叫做复数A的辐角 。
3)指数形式
A =r (cos jsin) = re j
4)极坐标形式
A=r∠
从图中可以看出,复数A的实部a、虚部b与模r构成一个直角三角形。
三者之间的关系为
r a2 b2
arctan b
个正弦量同相,如图4.2 (b)所示;
(4) 当 12 = 时,一个正弦量到达正最大值时,另一个正弦量到达
负最大值,此时称第1个正弦量与第2个正弦量反相,如图4.2 (c)所示;
(5) 当 12 = /2时,一个正弦量到达零时,另一个正弦量到达正最
大值(或负最大值),此时称第1个正弦量与第2个正弦量正交。如图4.2 (d) 所示。
U1 U1 1
U U1 U 2
U 2 U 2 2
u(t ) 2 U cos( t )
故同频正弦量相加减运算变成对 应相量的相加减运算。
i1 i2 = i3
I1 I2 I3
3.2 单一参数正弦交流电路的分析
一、纯电阻元件电路
1. 电阻元件 在正弦电路中,电流、电压虽然都是随时间变化
= 311sin(30°)= 115.5V
i= 5sin(314t 90°) = 5sin(314×0.00333 90°) = 5sin(150°)
= 2.5A
可见,当两个同频率正弦量的计时起点变化时,各自的相位将发生
变化,但其相位差不变。说明相位的大小与计时起点的选择有关,
而相位差与计时起点的选择无关。
(2)、 乘除运算——极坐标为例
若 A1= r1 1 ,若A2= r2 2
则
A 1
3)指数形式
A =r (cos jsin) = re j
4)极坐标形式
A=r∠
从图中可以看出,复数A的实部a、虚部b与模r构成一个直角三角形。
三者之间的关系为
r a2 b2
arctan b
个正弦量同相,如图4.2 (b)所示;
(4) 当 12 = 时,一个正弦量到达正最大值时,另一个正弦量到达
负最大值,此时称第1个正弦量与第2个正弦量反相,如图4.2 (c)所示;
(5) 当 12 = /2时,一个正弦量到达零时,另一个正弦量到达正最
大值(或负最大值),此时称第1个正弦量与第2个正弦量正交。如图4.2 (d) 所示。
U1 U1 1
U U1 U 2
U 2 U 2 2
u(t ) 2 U cos( t )
故同频正弦量相加减运算变成对 应相量的相加减运算。
i1 i2 = i3
I1 I2 I3
3.2 单一参数正弦交流电路的分析
一、纯电阻元件电路
1. 电阻元件 在正弦电路中,电流、电压虽然都是随时间变化
= 311sin(30°)= 115.5V
i= 5sin(314t 90°) = 5sin(314×0.00333 90°) = 5sin(150°)
= 2.5A
可见,当两个同频率正弦量的计时起点变化时,各自的相位将发生
变化,但其相位差不变。说明相位的大小与计时起点的选择有关,
而相位差与计时起点的选择无关。
(2)、 乘除运算——极坐标为例
若 A1= r1 1 ,若A2= r2 2
则
A 1
电工技术第三章 正弦交流电路1
![电工技术第三章 正弦交流电路1](https://img.taocdn.com/s3/m/b3461353312b3169a451a499.png)
相量表示:
U Ue
jψ
U ψ
相量的模=正弦量的有效值
相量辐角=正弦量的初相角
电压的有效值相量
或:
Um Ume Um ψ
jψ
相量的模=正弦量的最大值 相量辐角=正弦量的初相角
电压的幅值相量
2、复数表示注意事项: ①相量只是表示正弦量,而不等于正弦量。
i I msin(ω t ψ ) = I m e jψ I m ψ
u
一、正弦量的表示方法
1、波形图
O
ωt
2、瞬时值(三角函数)表达式
u U msin( t )
3、相量
U Uψ
二、正弦量用旋转有向线段表示
正弦量的瞬时值 旋转向量在纵轴 上的投影高度。 ω
+j
u U m sin t
Um
+1
0
t
对于每一个正弦量都可以找到与其对应的旋转向量。
在弱电方面也常用正弦信号作为信号源。
二、正弦量的参考方向 正弦量的正方向是指正半周时的方向。
i
用波形图表示:
实际方向和假 设方向一致
i
R
0
t
实际方向和假设 方向相反
三、 正弦量的三要素
i
i I m sin t
Im
0
t
三个特征量 又称三要素
幅值(最大值)Im
角频率(弧度/秒)ω
t
三角函数式
u U m sin t
相量 图 相量式
反映正 弦量的 全貌包 括三个 要素
反映正 弦量两 个要素
I
j
U
相量 表达 式
电工学第三章
![电工学第三章](https://img.taocdn.com/s3/m/f206dc87a0116c175f0e48e3.png)
第3章 正弦交流电路
本章内容
●正弦交流电的基本概念 ●正弦交流电的相量表示法 ●单一参数交流电路
●串联交流电路
●并联交流电路 ●交流电路的功率 ●电路的功率因数
●电路中的谐振
第3章 交流电路
3.1 正弦交流电的基本概念
3.1 正弦交流电的基本概念
正弦交流电—其大小和方向随时间按正弦函数变化的电
动势、电压和电流总称为正弦交流电。其函数表达式(又 为瞬时表达式)和波形图如下所示
阻抗串联电路及其等效电路
= Ri + X i
(2)分压原理
U1 = U
Z1 Z1 + Z 2
U1 = U
Z1 Z1 + Z 2
第3章 交流电路
3.5 并联交流电路
3.5 并联交流电路
(1)等效阻抗的计算 U U I = I1 + I 2 = + Z1 Z 2 ( 1 + 1 ) = U =U Z1 Z 2 Z
第3章 交流电路
3.4 UL
串联交流电路
① u与i的大小关系
2 U = U R + (U L U C ) 2 = ( IR) 2 + ( IX L IXC ) 2
U
UL+ UC UR I
= I R + (X L XC )
2
2
U = R 2 + ( X L X C )2 = R 2 + X 2 = Z I
.
I L
.
u i
i u ωt 2π
U = jIX L d ( I m sin wt ) di u=L =L dt dt U = wLI m coswt
本章内容
●正弦交流电的基本概念 ●正弦交流电的相量表示法 ●单一参数交流电路
●串联交流电路
●并联交流电路 ●交流电路的功率 ●电路的功率因数
●电路中的谐振
第3章 交流电路
3.1 正弦交流电的基本概念
3.1 正弦交流电的基本概念
正弦交流电—其大小和方向随时间按正弦函数变化的电
动势、电压和电流总称为正弦交流电。其函数表达式(又 为瞬时表达式)和波形图如下所示
阻抗串联电路及其等效电路
= Ri + X i
(2)分压原理
U1 = U
Z1 Z1 + Z 2
U1 = U
Z1 Z1 + Z 2
第3章 交流电路
3.5 并联交流电路
3.5 并联交流电路
(1)等效阻抗的计算 U U I = I1 + I 2 = + Z1 Z 2 ( 1 + 1 ) = U =U Z1 Z 2 Z
第3章 交流电路
3.4 UL
串联交流电路
① u与i的大小关系
2 U = U R + (U L U C ) 2 = ( IR) 2 + ( IX L IXC ) 2
U
UL+ UC UR I
= I R + (X L XC )
2
2
U = R 2 + ( X L X C )2 = R 2 + X 2 = Z I
.
I L
.
u i
i u ωt 2π
U = jIX L d ( I m sin wt ) di u=L =L dt dt U = wLI m coswt
电工与电子技术基础课件第三章正弦交流电
![电工与电子技术基础课件第三章正弦交流电](https://img.taocdn.com/s3/m/34a597a2866fb84ae55c8d80.png)
_
正弦交流电的优越性:
正半周
便于传输;易于变换
便于运算;
有利于电器设备的运行;
.....
负半周
二、正弦交流电的产生
正弦交流电通常是由交流发电机产生的。图3-2a 所示是最简单的交流发电机的示意图。发电机由定子和 转子组成,定子上有N、S两个磁极。转子是一个能转 动的圆柱形铁心,在它上面缠绕着一匝线圈,线圈的两 端分别接在两个相互绝缘的铜环上,通过电刷A、B与 外电路接通。
1 F 106 F
1pF 1012 F
图3-17 电容器的图形符号
(2) 电容器的基本性质 实验现象1
1)图3-18a是将一个电容器和一个灯泡串联起来接在直流电 源上,这时灯泡亮了一下就逐渐变暗直至不亮了,电流表的指 针在动了一下之后又慢慢回到零位。 2)当电容器上的电压和外加电源电压相等时,充电就停止了, 此后再无电流通过电容器,即电容器具有隔直流的特性,直流 电流不能通过电容器。
1.电容器的基本知识 (1)电容器——是储存电荷的容器
组成:由两块相互平行、靠得很近而 又彼此绝缘的金属板构成。
电容元件的图形符号
电容量 C q
u 1)C是衡量电容器容纳电荷本领大小的物理量。 2)电容的SI单位为法[拉], 符号为F; 1 F=1 C/V。
常采用微法(μF)和皮法(pF)作为其单位。
第一节 交流电的基本概念
一、交流电
交流电——是指大小和方向 都随时间作周期性的变化的
电动势、电压和电流的总称。
正弦交流电——接正弦规律 变化的交流电。
图3-1 电流波形图 a)稳恒直流 b)脉动直流
c)正弦波 d)方波
正弦量: 随时间按正弦规律做周期变化的量。
ui
正弦交流电路
![正弦交流电路](https://img.taocdn.com/s3/m/a799d315d5bbfd0a78567330.png)
2. 平均功率(有功功率)P:一个周期内的平均值
i
P=UI
=I2R=i U2/2RI
sint
Uu =IRR
u 2U sint
P1 Tpd t1Tuidt
T0
T0
大写 1 T 2UIsin2t dt
T0
1
T
UI(1cos2t)dtUI
T0
§ 3.4 理想电感元件上的正弦稳态响应
一、电压电流关系
即:瞬时值和相量满足基尔霍夫定律,有效值不满足
I1I2I30
I1
I3
I1-I2+I3= 0
I2
U 3
U 4
U 2 U 1 U 2 U 3 U 4 U 5 U 6 0 U 1
U 5
U 6
例: i162si nt (3)0
i282si nt (6)0
求i=i1+i2
i
解: I 1 6 3 0 5 .1 9 j3 6
Im[Ime ji e jt ]
复指数函数中的一个复常数
复常数定义为正弦量的相量,记
为
Im
相量 的表示
Im 为“最大值”相量
Im Im eji Im i
I 为“有效值”相量 IIeji Ii
相量是一个复数
注意
1)相量可以代表一个正弦量,但不等于该
正弦量。
U 50ej15° 50
2
sin(
实部是余弦量 虚部是正弦量
则 I[ m Im e j( t i)] Im sitn ( i)
正弦量可以用上述形式复数函数描述
I[ m Im e j( t i)] Im sitn ( i)
正弦量可以用上述形式复数函数描述
第3章 正弦交流电路
![第3章 正弦交流电路](https://img.taocdn.com/s3/m/bfc4d4220066f5335a81212c.png)
( R j( X L X C )) I
Z φ 电抗
2
( R jபைடு நூலகம் ) I ZI
Z
XL-XC
R
阻抗
Z R (XL XC)
XL XC arctan R
阻抗角
2
阻抗三角形
阻抗模
相量图
UL UC
U UL+ UC UR I
电压三角形
2 U UR (U L U C ) 2 I R 2 ( X L X C ) 2
2.RL串联电路
u uR uL
I R U R
jX I U L L
U U U R L
i
R
u
L
Z R jX L
Z R X
2 2 L
XL arctan R
例
在RLC串联电路中,
R 30 Ω X L 40Ω X C 80Ω
若电源电压
平均功率
P0
无功功率 能量互换的规模 ,瞬时功率的最大值为无功功率。
QC UI I X C
2
U
2
XC
把电容量为40µ F的电容器接到交流电源上,通过电 容器的电流为
i 2.75 2 sin(314t 30 )A
o
试求电容器两端的电压瞬时值表达式。
解
o I 2.7530 A
u U m sin(t )
有效值相量
U m U m U U
i I m sin(t )
正弦量的相量表示:
I m I m I I
相量的模表示正弦量的有效值 相量的幅角表示正弦量的初相位
Z φ 电抗
2
( R jபைடு நூலகம் ) I ZI
Z
XL-XC
R
阻抗
Z R (XL XC)
XL XC arctan R
阻抗角
2
阻抗三角形
阻抗模
相量图
UL UC
U UL+ UC UR I
电压三角形
2 U UR (U L U C ) 2 I R 2 ( X L X C ) 2
2.RL串联电路
u uR uL
I R U R
jX I U L L
U U U R L
i
R
u
L
Z R jX L
Z R X
2 2 L
XL arctan R
例
在RLC串联电路中,
R 30 Ω X L 40Ω X C 80Ω
若电源电压
平均功率
P0
无功功率 能量互换的规模 ,瞬时功率的最大值为无功功率。
QC UI I X C
2
U
2
XC
把电容量为40µ F的电容器接到交流电源上,通过电 容器的电流为
i 2.75 2 sin(314t 30 )A
o
试求电容器两端的电压瞬时值表达式。
解
o I 2.7530 A
u U m sin(t )
有效值相量
U m U m U U
i I m sin(t )
正弦量的相量表示:
I m I m I I
相量的模表示正弦量的有效值 相量的幅角表示正弦量的初相位
第3章 正弦交流电路.ppt
![第3章 正弦交流电路.ppt](https://img.taocdn.com/s3/m/154d5926b307e87101f696d5.png)
在坐标原点右侧,则初相 为负。
综上所述,如果知道一个正弦量的振幅、角频率(频率)和初 相位,就可以完全确定该正弦量,即可以用数学表达式或波 形图将它表示出来。
上一页 下一页 返回
3.1 正弦交流电的基本概念
3. 1. 2正弦量的相位差
对于两个同频率的正弦量而言,虽然都随时间按正弦规律变 化,但是它们随时间变化的进程可能不同,为了描述同频率 正弦量随时间变化进程的先后,引入了相位差。
3.1.1正弦量的三要素
凡随时间作正弦规律变化的物理量,无论电压、电流还是别 的电量统称为正弦量。正弦量可以用正弦函数表示,也可以 用余弦函数表示。本书用正弦函数表示正弦量。
正弦电流、电压的大小和方向是随时间变化的,其在任意时 刻的数值称为瞬时值,用小写字母i和u表示。
下一页 返回
3.1 正弦交流电的基本概念
前”前者(u),或称前者(u)“滞后”后者(i),如图3-7(c)
所示;
当 示;
时,则称两正弦量“反相”,如图3-7(d)所
当 示;
时,则称两正弦量“正交”,如图3-7(e)所
必须强调,比较正弦量之间的相位差时要注意三个条件(即 “三同”)。
(1)同频率。只有同频率的正弦量才有确定的相位关系,它 们的相位差才有意义。
(2)同函数。正弦和余弦函数表示的交流电都是正弦交流电, 当要比较相位差时要化成同一函数来表达才能用式(3-6)进 行计算。
上一页 下一页 返回
3.1 正弦交流电的基本概念
(3)同符号。用式(3-6)计算两正弦量的相位差时,两正弦 量的数学表达式前面的符号应该相同。
3. 1. 3正弦量的有效值
例如,有两个同频率的电压和电流,分别为
电路分析基础第三章讲解
![电路分析基础第三章讲解](https://img.taocdn.com/s3/m/48b42ec1ec3a87c24028c4fb.png)
IC
CUC
UC 1
UC XC
安
C
徽 职
11
X C C 2fC
业 技
XC称为容抗, 单位为Ω。
术 电流和电压之间的相位关系为正交,即电流超前电压
学
院
ui uC
iC
2
i
u
2
0
t
第三章 正弦交流电路
2.电压与电流的相量关系
安
uC UCm sin(t u )
URIR T
(T
0)
URIR
P
URIR
I
2 R
R
U
2 R
R
第三章 正弦交流电路
p u,i p
安 徽 职
P
Pm=UmIm
P=
1 2
Pm=UI
业
0
t
技
i
术
u
学
电阻元件的功率曲线图
院
例: 一只功率为100W,额定电压为220V 的电烙铁, 接在380V的交流电源上, 问此时它接受的功率为多少? 若接到110V的交流电源上, 它的功率又为多少?
. jt
第三章 正弦交流电路
正弦量的有效值用复数的模表示,
正弦量的初相用复数的幅角来表示。
安 徽 职
该方法为相量表示法。 表示为:
业
.
技 术
I Ie j(ti ) I i
学
院 注:正弦量与相量一一对应。
2、相量图
相量图就是把正弦量的相量画在复平面上。
第三章 正弦交流电路
学
院
同频率正弦量的几种相位关系:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e Em sin Em sin(t )
• 三、周期和频率
• 正弦量交变一次所需的时间称为周期,用字母T 表示,单位为秒(s).如图3-5所示。一个周期 内的波形称为周波。 • 每秒内的周波数称为频率,用字母f表示,单位为 赫兹(Hz)简称赫。 1 f • 频率与周期互为倒数,即 T • 每秒钟所经历的弧度称为角频率,用字母ω表示, 单位为弧度每秒( rad/s)。 2 2f T
• (c) 12
1 2
,表明二者反相。
• (d) ,表明 i 2 超前于3π/4。
1 0
2 3 4 , 12 1 2 3 4 ,
• 五、有效值
• 正弦交流电在变化过程中任一瞬间所对应的数值,称为 瞬时值,用小写字母e、u、i表示。
• 正弦量瞬时值中的最大值叫做振幅值,也叫峰值。用大 写字母带下标“m”表示,如Um、Im。 • 正弦量的三要素 最大值、频率和初相位。 • 有效值 交流电流i通过电阻R在一个周期内所产生的热量 和直流电流I通过同一电阻R在相同时间内所产生的热量 相等,则这个直流电流I的数值叫做交流电流i的有效值, 用大写字母表示,如I、U等。 • 有效值又称为均方根值
u1 100 2 sin(Fra bibliotek 60 )2 sin(t 60 )
• 相量图见图。
• 二、同频率正弦量的求和运算
• 几个同频率的正弦量相加或相减,其和或差还是一个同 频率的正弦量。 • 同频率正弦量的相量和,等于它们和的相量。 • [例3.4] 已知 i1 3 2 sin(314t 60 ) A, 4 2 sin(314t 30 ) i2 A,求总电流 i1 i2 ? • [解法一] 用复数方法求和 • i1、i2 的有效值相量分别为 I1 360 I 2 4 30 • 所以 I I I 360 4 30 1 2
• 1)电流和电压之间的瞬时值关系 • u Ri • 2)电流和电压之间的有效值关系
U RI
• 3) 电流和电压之间的相位关系
• 因电阻是纯实数,在电压和电流为关联参考方向时,电流 和电压同相。图3-13b)是电阻元件上电流和电压的波形图。 • 2.电压与电流的相量关系
U RI
ui u i 125 45 170 0
•
表 明电压u滞后于电流i170°。
• [例3.2] 分别写出图3-8中各图的电流相位差,并说明的 相位关系。
• [解]
1 0 , 2 90 , 90 (a) 12 1 2 ,表明 i1 滞后于 i 2 90°。 • (b)1 2 , 12 1 2 0 ,表明二者同相。
• (2)当 12 1 2 0 且 12 ,称 u 1 滞后于为 u2 ,或称 u2 超前于 u 1 。超前或滞后 的角度为 。 • (3)当 12 1 2 0 ,称这两个正弦量同相, 如图3-7(b)所示。 • (4)当 12 1 2 ,称这两个正弦量反相, 如图3-7(c)所示。 • (5)当 12 1 2 2 ,称这两个正弦量正 交,如图3-7(d)所示。
di dt
• 2)大小关系 • 在正弦交流电路中,设电流i为参考正弦量,即
• 则 u L di LI m cos t U m sin(t 90 ) dt • 式中
U m LI m
i I m sin t
• u、i的有效值关系
• X L 被称为电感元件的感抗,当ω单位为rad/s,L的单 位为H时,单位为Ω。感抗是用来表示电感线圈对电流阻 碍作用的物理量。感抗大小与正弦电流的频率成正比, 频率越高,感抗越大,因此电感线圈对高频电流有较大 的阻碍作用。而对直流来说,频率为零,感抗也就为零, 故电感元件在直流电路中的电压有效值为零,相当于短 路。
图3-1 火力发电生产及输送过程示意图
• 水力发电:
• 将自然界的水所蕴藏的能量转换成电能的生产过程。 • 水能量的大小与其流量的大小和落下高度(称为落差) 有着直接的关系,水的流量和落差越大,则水蕴藏的 能量越大,即水能量与水流量和落差成正比。
• 二、发电机的工作原理
B Bm sin
(3 cos60 j3sin 60 ) [4 cos(30) j 4 sin(30 )] 4.96 j 0.6 56.9
• 总电流
i i1 i2 5 2 sin(314t 6.9)
• [解法二] 用几何方法求和 • i1、i2 的相量图如图3-11所示, • 用平行四边形法则求得
• 正弦交流电路中电阻元件 的平均功率为
p 1 T
T
0
pdt
1 T
T
0
UI (1 cos 2t )dt UI
• 电阻元件的平均功率等于 电压电流有效值的乘积
U2 p UI I R R
2
• 平均功率是电路中实际消 耗的功率,所以称有功功 率,简称功率
u 100 2 sin(t 30) • [例3.6] 某电阻R=100Ω,R两端的电压 V,求 • (1)通过电阻R的电流i和I 。 • (2)电阻R消耗的功率P。 • (3)作U 、I 的相量图。 • [解](1)
第三节 单一参数电路元件的交流电路
• 电阻元件、电感元件和电容元件是交流电路的基本 元件
• 一、电阻电路
• 1.电压电流关系 • 当图所示的线性电阻R两端加上正弦电压u时,电阻 中便有电流i通过。在任一瞬间电压u和i的瞬时值服 从欧姆定律。电压和电流为关联参考方向下,交流 电路中电阻元件的关系式如下:
i u 100 2 sin(t 30) 2 sin(t 30 ) R 100 I 2 I m 1 2 2
• (2) P UI 100 1 100(W ) • (3)电阻电路中电压与电流同相位,电压和电流的相量 分别为 I 1 30 U 100 30 • 相量图如图所示。
• 图3-9中,从坐标原点作一矢量 ,矢量长度等于正弦交 流电动势的最大值Em,矢量与横轴正方向的夹角取正弦 交流电的初相φ,将该矢量以正弦交流电动势的角频率为 角速度,绕原点逆时针旋转,可以发现,在任一瞬间, 旋转矢量在纵轴上的投影就是正弦交流电动势的瞬时值。 • 交流电本身并不是矢量,而是时间的正弦函数。为了与 电场强度、力等一般的空间矢量相区别,我们把表示正 U E 弦交流电的这一矢量称为相量,用 I m 、 m 、 m 表示, 本例中 E E 。
• 电力生产的任务是把一次能源如煤炭、石油、天然 气、水力、核能、风力、地热等转换成电能,并输 送、分配、销售给用户。 • 提高发、供电设备的效率,节约厂用电,降低线损 率,是提高电力生产经济效益的三条主要途径
• 火力发电是指把煤、石油、天然气等燃料的化学能, 通过火力发电设备转化为电能的生产过程。
• 四、相位和相位差
• 相位或相位角 (t ) 被称为正弦量的。在不 同的时刻,对应不同的相位,就有不同的电动势 值。 • 初相位 反映正弦量初始值的物理量,是计时开 始时的相位角,简称“初相”。一般初相用小于 或等于180°的电角度来表示。具有初相角 的 交流电,在t时刻的相位角为 。 • 相位差 两个同频率正弦 (t ) • 量的相位之差. • 两个同频率正弦量的相位 • 差,等于它们的初相之差。
• e1 和 e2 是两个频率相等、初相位不同的的正弦电动 势,它们的函数式为:
e1 Em1 sin(t 1 )
e2 Em2 sin(t 2 )
• 相位差为:
12 (t 1 ) (t 2 ) 1 2
• (1)当 12 1 2 0 且 12 ,如图3-7 • (a)所示, 称为 u1 超前于 u 2 ,或称 u2 滞后于 u 1 。超前或滞后的角度为 12 。
• 电阻元件上电压与电流相量为同相关系
• 3.电阻元件的功率
• 交流电路中,任一瞬间,元件上电压的瞬时值与电流的 瞬时值的乘积叫做该元件的瞬时功率,用小写字母p表示, 即 p=ui • 电阻元件通过正弦交流电时,在关联参考方向下,瞬时 功率为 U I 2 m m (1 cos 2t ) UI (1 cos 2t ) p ui Um I m sin t • 2 • 电阻元件的瞬时功率曲线如图3-14所示。由功率曲线可知, 电阻元件的瞬时功率以电源频率的两倍作周期性变化。 在电压和电流为关联参考方向时,在任一瞬间,电压与 电流同号,电阻电路中的瞬时功率恒为正值,即p≥0, 说明电阻始终在消耗能量。 • 正弦交流电路中电阻元件的平均功率为
U LI X L I
X L L
• 3)相位关系 • 电感上电压和电流相位关系为
• 正弦交流电
1 I T
T
0
i 2 dt
Im I 2
Um U 2
Em E 2
第二节 正弦量的相量表示法
• 一、正弦量的相量表示法
• 正弦量的相量 用复数来表示正弦量。 • 所谓相量图表示法,就是用一个在直角坐标系中用绕原 点旋转的矢量表示正弦交流电的方法。 • 现以正弦电动势e=Emsin(ωt+φ)为例说明如下:
m m
• 实际应用中矢量长度通常不用最大值,而用有效值,有 U 效值相量用 I 、 、E 表示 • 相量的加、减运算就可以按平行四边形法则进行。
u • [例3.3 ] V, 2 50 V。写出表示u1和u2的相量,画相量图。 • [解] V U1 10060 • V U 2 50 60 •
12
• [例3.1]
i 已知 u 220 2 sin(t 235 ) V, 10 2 sin(t 45 ) A,求u和i的初相及两者的相位关系。 u 220 2 sin(t 235 ) 220 2 sin(t 125 ) • [解] • 所以电压u的初相角为-125°,电流i的初相角为45°。 •