第三章 正弦交流电路

合集下载

电工技术3正弦交流电路

电工技术3正弦交流电路
j 30

A
求:
i1、 2 i
rad s
解: 2 f 2 1000 6280
i1 100 i 2 10

2 sin( 6280 t 60 ) A 2 sin( 6280 t 30 ) A

小结:正弦波的四种表示法
u
波形图
U
m

T
t
瞬时值
u U m sin t
第三章 正弦交流电路
3-1 正弦交流电路的基本概念 交流电的概念 如果电流或电压每经过一定时间 (T )就重复变 化一次,则此种电流 、电压称为周期性交流电流或
电压。如正弦波、方波、三角波、锯齿波 等。
记做: u(t) = u(t + T )
u
t
T
u
t
T
正弦交流电路 如果在电路中电动势的大小与方向均随时间按 正弦规律变化,由此产生的电流、电压大小和方向 也是正弦的,这样的电路称为正弦交流电路。 正弦交流电的优越性:
角频率 :每秒正弦量转过的弧度 (一个周期的弧度为2 )
2f 2 T
(单位:rad/s)

已知:f=50 Hz, 求 T和
解:T=1/f=1/50=0.02s=20ms
2 f 2 3 . 14 50 314 rad / s
二、幅值和有效值 瞬时值—正弦量任意瞬间的值(用i、u、e表示)
j 1 j 2

r1 r2
e
j( 1 2 )
A /B
r1 1 r2 2

r1 r2
(1 2 )
3.讨论 (1) e
j

电工学课件--第三章 正弦交流电路

电工学课件--第三章 正弦交流电路

U • o I= U =U 0 ∠ R
• •
u =Um sinω t u Um i = = sinω = Im sinω t t R R
U =I R
U =I R


可见: 可见:电压与电流同相位 ui
i
u

IU

I

U
+−
2.功率关系
ui
i
⑴ 瞬时功率

u
IU
p=ui=UmImsin2ωt =UI(1-cos2ωt)
角频率ω: 单位时间里正弦量变化的角度 称为角频率。单位是弧度/秒 (rad/s). ω=2π/T=2πf 周期,频率,角频率从不同角度描 述了正弦量变化的快慢。三者只要知 道其中之一便可以求出另外两时值, 瞬时值中最大的称为最大值。Im、 U m 、E m 分别表示电流、电压和电动 势的最大值. 表示交流电的大小常用有效值的概 念。
单位是乏尔(Var) 单位是乏尔(Var)
第四节 RLC串联交流电路 串联交流电路 一.电压与电流关系
i R u L C
uR uL
u =uR +uL +uC
U =UR+UL+UC
• • • •
uC
以电流为参考相量, 以电流为参考相量, 相量图为: 相量图为:

UL UL+UC
φ
• • • •

U I

U
φ UR
UL-UC
UR
UC
2 可见: 可见: U = UR +(UL −UC)2
U L −UC X L − XC = arctg = arctg UR R

电工电子学第三章

电工电子学第三章

负半周
3
设正弦交流电流: 设正弦交流电流:
Im
Ψ
i
O π T 2π π
ωt
i = I m sin (ω t + ψ )
初相角:决定正弦量起始位置 初相角: 角频率:决定正弦量变化快慢 角频率: 幅值:决定正弦量的大小 幅值:
幅值、角频率、初相角成为正弦量的三要素。 幅值、角频率、初相角成为正弦量的三要素。
5
3.1.2 幅值与有效值 幅值: 幅值:Im、Um、Em
幅值必须大写, 幅值必须大写, 下标加 m。
有效值: 有效值:与交流热效应相等的直流定义为交流电的 有效值。 有效值。
∫0
T
2 i 2R dt = I RT
交流
直流
则有
I =
1 T

T
0
i 2dt
Im 1 T 2 2 有效值必 = ∫0 Imsin ωt dt = 2 须大写 T U Em 同理: 同理: U = m E= 2 2
12
3. 正弦量的相量表示
实质:用复数表示正弦量 实质: 复数表示形式 为复数: 设A为复数 为复数 (1) 代数式 A =a + jb 式中: a = r cos ψ 式中
+j
b
A
r ψ
0
2 2
a
+1
b = r sin ψ
(2) 三角式 由欧拉公式: 由欧拉公式
r = a + b 复数的模 b ψ = arctan 复数的辐角 a
16
⑥“j”的数学意义和物理意义 因子: 旋转 90o因子:e± j90o
± j90o
e
= cos 90° ± jsin90° = ±j

第三章 正弦交流电路-1

第三章 正弦交流电路-1

一.电阻元件
i
根据欧姆定律,线性电阻上的电压与电流
成正比关系,即 i u R
图3-10
当电压和电流均用相量表示时,欧姆定律
的相量表示式为 第(23)页


I
U
R
u
R
电阻元件
上式表明,电阻元件上电压和电流的相位相同,
如图3-11所示。
设 i 2ISint
u 2USint 图3-11
电阻元件吸收的瞬时功率为
方法二: 运用矢量运算
Y I2m B
C I3m
10 50
I1m
A
5
0 60 30
X
i1 I1m OA矢量 i2 I2m OB矢量 i3 I3m OC矢量
根据矢量图
I3m 14.6
3 50 于是i3 14.6CoS(t 50)
+j
I3m
方法三.运用复数运算:
11.16
I1m 5e j30
只要有幅值与初相位两个要素就足以表示各电压 与电流之
间的关系,因此我们约定:用式(3-1)中的复常数 Ie ji 表
示正弦电流 i 2ISint i ,并用下列记法

I Ie ji I i
(3-2)
上式中I• m不仅是一个复数,而且表示了一个正弦量,所以给它
一个专有名称——相量。代表正弦电流的相量称之为电流相量,
U
的正方向如图3-13(a)所示。
u,i
(b) 0
u
i
t
i ii
i
+ -- +
p- + + 储能 放能 储能 放能
根据楞次定律得出
u
eL

第3章 正弦交流电路

第3章 正弦交流电路

Um 正弦交流电压的有效值为 U = = 0.707U m 2 正弦交流电压的有效值为 E = Em = 0.707 Em 2
i = I m sin (ω t + ψ i )时,可得 也可以写为 i = 2 I sin (ω t + ψ i )
当电流
e = E m sin ( ω t + ψ e ) 时,可得 E = 2 也可以写为 e = 2 E sin ( ω t + ψ e )
1 1 T= = = 0.02s f 50
我国工业和民用交流电源的有效值为220V,频率为50Hz, ,频率为 我国工业和民用交流电源的有效值为 因而通常将这一交流电压简称为工频电压 频率称为工频 工频电压, 工频。 因而通常将这一交流电压简称为工频电压,频率称为工频。
例:已知正弦交流电流为i=2sin(ωt-30˚) A。电路中的电阻 已知正弦交流电流为 。电路中的电阻R=10Ω, , 试求电流的有效值和电阻消耗的功率。 试求电流的有效值和电阻消耗的功率。 解:电流有效值 电阻消耗的功率 I=0.707×Im=0.707×2=1.414A × × P=I2R=20W
已知一正弦电流的有效值为5A,频率为50Hz,初 例:已知一正弦电流的有效值为 ,频率为 , 相为50˚,试写出其解析式。 相为 ,试写出其解析式。 由题目可知, 解:由题目可知,m = 5 2V,ψ=50˚ I 又频率f=50Hz,则角频率 又频率 , ω=2πf=2×3.14×50=314rad/s × × 则该电流解析式为
(三)相位与相位差 相位:表示正弦量的变化进程,也称相位角。 相位:表示正弦量的变化进程,也称相位角。 相位角 初相位: 时的相位 时的相位, 初相位:t=0时的相位,用ψ表示。

第三章 正弦交流电路

第三章 正弦交流电路
Um R
m
式中,Im正弦交流电流的幅值。说明正弦交流电压和 电流的幅值之间满足欧姆定律。
(二)电压、电流的有效值关系
据电压、电流幅值之间的关系,把等式两边同 时除以 2 即得到有效值关系,即 或 U IR 这说明,正弦交流电压和电流的有效值之间 也满足欧姆定律。
I U R
(三)相位关系
(黄色)
电动势、电压和电流的大小和方向随时间按正弦规 律性变化。叫做正弦交流电流、电压、电动势。在任一 时刻可用三角函数表示。
e Em sin(t e ) u U m sin(t u ) i I m sin(t i )
第四章
交流电路
第一节 交流电的基本概念
三、描述正弦交流电特征的物理量
(三)相位、初相位与相位差
1、相位(或相角):
t i I m sin(t )
i
O
反映正弦量变化的进程。 2、初相位: 表示正弦量在t =0时的初相位。
——
如:
给出了观察正弦波 的起点或参考点。

ωt
e1 Em sin(t 1 ) e2 Em sin(t 2 )
X L 2fL 2 3.14 50 0.1 31.4Ω
U 10 I 318m A XL 31.4
(2)当 f = 5000Hz 时
X L 2fL 2 3.14 5000 0.1 3140 Ω
U 10 I 3.18m A XL 3140
4
可知
(1)最大值
(2)有效值 (3)角频率 (4)频率 (5)周期
m 30 2 42.6
m 30 2
100s 1 314rad / s

第3章 正弦交流电路

第3章 正弦交流电路

3.3.1 单一参数的正弦交流电路
1.纯电阻电路 (1) 电压与电流的关系
+
u iR
u
i I m sin t
_
u iR I m R sin t U m sin t
i R
对于正弦交流电路中的电阻电路(又称纯电阻 电路),一般结论为:
1)电压、电流均为同频率的正弦量。
2)电压与电流初相位相同,即两者同相。
y
i
ω
Im
i1
ωt1 φ
Im
i0
90
o
x
o
ωt1
ωt
φ
t t1 i1 I m sin(t 1)
对于一个正弦量可以找到一个与其对应的旋转矢量,反之, 一个旋转矢量也都有一个对应的正弦量。
3.2.2 复数及复数的运算 1、复数
A a jb
A r cos r sin
e j cos j sin
作相量图时要注意: 只有同频率的正弦量才 能画在一个相量图上,不 同频率的正弦量不能画在 一个相量图上。
+j
U
Φu
o
Φi
+1
I
3.3正弦交流电路的简单分析与运算
电阻元件、电感元件与电容元件都是组成 电路模型的理想元件。
所谓理想元件,就是突出元件的主要电磁 性质,而忽略其次要因素。如电阻元件具 有消耗电能的性质(电阻性),其它的电 磁性质如电感性、电容性等忽略不计。。
f = 1/T T = 1/f
i
角频率是指交流电在1s内变化的电 Im
角度。正弦量每经过一个周期T,
o
对应的角度变化了2π弧度,所以
φ
ωt
T
2f 2

电工基础 第三章

电工基础  第三章

角频率 1 2 2πf 2 3.14 333rad/s 2091rad/s
(2)最大值 U ml (10 3)V 30V
U m2 (10 2)V 20V
相应的有效值为
U1
Uml 2
30 2
V 21.2V
U2
Um2 2
20 V 14.1V 2
第一节 正弦交流电的基本概念及其表示方法
相同的时间内,两个电阻产生的热量相等,我们就把这个直流电 流的数值定义为交流电流的有效值。电动势、电压和电流的有效 值分别用大写字母E、U、I表示。
第一节 正弦交流电的基本概念及其表示方法
E
Em 2
0.707Em
U
Um 2
0.707U m
I
Im 2
0.707I m
第一节 正弦交流电的基本概念及其表示方法
交流电是指大小和方向均随时间做周期变化的电流、电压 或电动势,分为正弦交流电和非正弦交流电两大类。正选交流 电按正弦规律变化,如图3-1所示;非正弦交流电不按正弦规 律变化,如图3-1d所示。
图3-1 直流电和交流电的波形 a)恒定直流电 b)脉动直流电 c)正弦交流电 d)非正弦交流电
第一节 正弦交流电的基本概念及其表示方法
1MHz 106 Hz
频率和周期的关系是 (3)角频率
f 1 T
指交流电每秒钟变化的弧度数,用ω表示
2π 2πf
t
T
第一节 正弦交流电的基本概念及其表示方法
3.相位、初相位和相位差
(1)相位 电角度(ωt+φ) 为交流电的相位,其单位是弧度或度。相位 反映了交流电变化的进程。
(2)φ表
(3)平均值 交流电的平均值是指由零点开始的半个周期内的平均值,如

第三章:正弦交流电路

第三章:正弦交流电路

& =U & = − jI & X = − j 2 × 50∠45 o = 50 2∠ − 45 o V U ao C C C & =U & = jI & X = j 2 × 50∠ − 45o = 50 2∠45o V U bo L L L & & & U = U − U = 50 2∠ − 45o − 50 2∠45o =
2
& 与U & 之间的相位差 I R
ϕ = arctan
XC 1 = arctan R Rω C
第三章
正弦交流电路
31
& 与U & 之间的相位差 U θ = 2ϕ ab 由上式可知,当改变电阻 R 时,输出电压 Uab 是一个不变恒定的值,即有 U U ab = 2 20 本题中 U ab = = 10V 2 当电阻 R 由零变到无穷大时, ϕ 角由 90o 变到零, θ 角由 180o 变到零。当电阻 R & 的相位从 180o 减小到: 由零变到 1.5kΩ 时, U
& = jI &X = j4.4 × 40∠73o = 176∠163o V U L L & & U C = − jIX C = − j4.4 × 80∠73o = 352∠ − 17 o V 【例题 3.2】 图 3.2(a)为 RC 移相电路。已知电阻 R = 100 Ω ,输入电压 u1 的频率为
Z = R + j( X L − X C ) = 30 + j(40 − 80) = 30 − j40 = 50∠ − 53o Ω
28
电工学试题精选与答题技巧
o & & = U = 220∠20 = 4.4∠73o Α I Z 50∠ − 53o & =I &R = 4.4 × 30∠73o = 132∠73o V U R

电路分析基础第3章 正弦交流电路

电路分析基础第3章 正弦交流电路
初相角的单位可以用弧度或度来表示,初相角ψ的大小 与计时起点的选择有关。另外,初相角通常在|ψ|≤π的主值
20 图3.2.4 不同初相时的正弦电流波形
21
在正弦交流电路的分析中,有时需要比较同频率的正弦 量之间的相位差。例如在一个电路中,某元件的端电压u和 流过的电流i
u=Umsin(ωt+ψu) i=Imsin(ωt+ψi) 它们的初相分别为ψu和ψi,则它们之间的相位差(用φ表 示)为 φ=(ωt+ψu)-(ωt+ψi)=ψu-ψi (3.2.7) 即两个同频率的正弦量之间的相位差就是其初相之差,相位 差φ
以复数运算为基础的,复数的表示如图3.3.1所示。
32 图3.3.1 复数的表示
33
一个复数A可以用下述几种形式来表示。
1.代数形式
A=a+jb
(3.3.1)
式中, j 1 2.三角形式
A=rcosψ+jrsinψ=r(cosψ+jsinψ)
(3.3.2)
式中,r a2b2, t gb,arctban
28
I B I Bm 7 .07 5 A 22
A
100
π
1 300
π 60 3
B
100
π
1 600
π 30 6
A
B
π 3
π 6
π 2
90
(2)
iA=14.1sin(314t+60°)A
iB=7.07sin(314t-30°)A
29 图3.2.6 例3.2.5的波形图
a
a
ψ称为A的辐角。
34
3.指数形式
根据欧拉公式
ejψ=cosψ+jsinψ

第3章正弦交流电路

第3章正弦交流电路
A=a+jb = r(cos jsin) 式中,r叫做复数A的模,又称为A的绝对值, 叫做复数A的辐角 。
3)指数形式
A =r (cos jsin) = re j
4)极坐标形式
A=r∠
从图中可以看出,复数A的实部a、虚部b与模r构成一个直角三角形。
三者之间的关系为
r a2 b2
arctan b
个正弦量同相,如图4.2 (b)所示;
(4) 当 12 = 时,一个正弦量到达正最大值时,另一个正弦量到达
负最大值,此时称第1个正弦量与第2个正弦量反相,如图4.2 (c)所示;
(5) 当 12 = /2时,一个正弦量到达零时,另一个正弦量到达正最
大值(或负最大值),此时称第1个正弦量与第2个正弦量正交。如图4.2 (d) 所示。
U1 U1 1
U U1 U 2
U 2 U 2 2
u(t ) 2 U cos( t )
故同频正弦量相加减运算变成对 应相量的相加减运算。
i1 i2 = i3
I1 I2 I3
3.2 单一参数正弦交流电路的分析
一、纯电阻元件电路
1. 电阻元件 在正弦电路中,电流、电压虽然都是随时间变化
= 311sin(30°)= 115.5V
i= 5sin(314t 90°) = 5sin(314×0.00333 90°) = 5sin(150°)
= 2.5A
可见,当两个同频率正弦量的计时起点变化时,各自的相位将发生
变化,但其相位差不变。说明相位的大小与计时起点的选择有关,
而相位差与计时起点的选择无关。
(2)、 乘除运算——极坐标为例
若 A1= r1 1 ,若A2= r2 2

A 1

电工技术第三章 正弦交流电路1

电工技术第三章 正弦交流电路1

相量表示:
U Ue

U ψ
相量的模=正弦量的有效值
相量辐角=正弦量的初相角
电压的有效值相量
或:
Um Ume Um ψ

相量的模=正弦量的最大值 相量辐角=正弦量的初相角
电压的幅值相量
2、复数表示注意事项: ①相量只是表示正弦量,而不等于正弦量。
i I msin(ω t ψ ) = I m e jψ I m ψ
u
一、正弦量的表示方法
1、波形图
O
ωt
2、瞬时值(三角函数)表达式
u U msin( t )
3、相量
U Uψ
二、正弦量用旋转有向线段表示
正弦量的瞬时值 旋转向量在纵轴 上的投影高度。 ω
+j

u U m sin t
Um

+1
0
t
对于每一个正弦量都可以找到与其对应的旋转向量。
在弱电方面也常用正弦信号作为信号源。
二、正弦量的参考方向 正弦量的正方向是指正半周时的方向。
i
用波形图表示:
实际方向和假 设方向一致
i
R
0
t
实际方向和假设 方向相反
三、 正弦量的三要素
i
i I m sin t
Im

0
t
三个特征量 又称三要素
幅值(最大值)Im
角频率(弧度/秒)ω
t
三角函数式
u U m sin t
相量 图 相量式
反映正 弦量的 全貌包 括三个 要素
反映正 弦量两 个要素
I
j
U
相量 表达 式

电工学第三章

电工学第三章
第3章 正弦交流电路
本章内容
●正弦交流电的基本概念 ●正弦交流电的相量表示法 ●单一参数交流电路
●串联交流电路
●并联交流电路 ●交流电路的功率 ●电路的功率因数
●电路中的谐振
第3章 交流电路
3.1 正弦交流电的基本概念
3.1 正弦交流电的基本概念
正弦交流电—其大小和方向随时间按正弦函数变化的电
动势、电压和电流总称为正弦交流电。其函数表达式(又 为瞬时表达式)和波形图如下所示
阻抗串联电路及其等效电路
= Ri + X i
(2)分压原理
U1 = U
Z1 Z1 + Z 2
U1 = U
Z1 Z1 + Z 2
第3章 交流电路
3.5 并联交流电路
3.5 并联交流电路
(1)等效阻抗的计算 U U I = I1 + I 2 = + Z1 Z 2 ( 1 + 1 ) = U =U Z1 Z 2 Z
第3章 交流电路
3.4 UL
串联交流电路
① u与i的大小关系
2 U = U R + (U L U C ) 2 = ( IR) 2 + ( IX L IXC ) 2
U
UL+ UC UR I
= I R + (X L XC )
2
2
U = R 2 + ( X L X C )2 = R 2 + X 2 = Z I
.
I L
.
u i
i u ωt 2π
U = jIX L d ( I m sin wt ) di u=L =L dt dt U = wLI m coswt

电工与电子技术基础课件第三章正弦交流电

电工与电子技术基础课件第三章正弦交流电

_
正弦交流电的优越性:
正半周
便于传输;易于变换
便于运算;
有利于电器设备的运行;
.....
负半周
二、正弦交流电的产生
正弦交流电通常是由交流发电机产生的。图3-2a 所示是最简单的交流发电机的示意图。发电机由定子和 转子组成,定子上有N、S两个磁极。转子是一个能转 动的圆柱形铁心,在它上面缠绕着一匝线圈,线圈的两 端分别接在两个相互绝缘的铜环上,通过电刷A、B与 外电路接通。
1 F 106 F
1pF 1012 F
图3-17 电容器的图形符号
(2) 电容器的基本性质 实验现象1
1)图3-18a是将一个电容器和一个灯泡串联起来接在直流电 源上,这时灯泡亮了一下就逐渐变暗直至不亮了,电流表的指 针在动了一下之后又慢慢回到零位。 2)当电容器上的电压和外加电源电压相等时,充电就停止了, 此后再无电流通过电容器,即电容器具有隔直流的特性,直流 电流不能通过电容器。
1.电容器的基本知识 (1)电容器——是储存电荷的容器
组成:由两块相互平行、靠得很近而 又彼此绝缘的金属板构成。
电容元件的图形符号
电容量 C q
u 1)C是衡量电容器容纳电荷本领大小的物理量。 2)电容的SI单位为法[拉], 符号为F; 1 F=1 C/V。
常采用微法(μF)和皮法(pF)作为其单位。
第一节 交流电的基本概念
一、交流电
交流电——是指大小和方向 都随时间作周期性的变化的
电动势、电压和电流的总称。
正弦交流电——接正弦规律 变化的交流电。
图3-1 电流波形图 a)稳恒直流 b)脉动直流
c)正弦波 d)方波
正弦量: 随时间按正弦规律做周期变化的量。
ui

正弦交流电路

正弦交流电路

2. 平均功率(有功功率)P:一个周期内的平均值
i
P=UI
=I2R=i U2/2RI
sint
Uu =IRR
u 2U sint
P1 Tpd t1Tuidt
T0
T0
大写 1 T 2UIsin2t dt
T0
1
T
UI(1cos2t)dtUI
T0
§ 3.4 理想电感元件上的正弦稳态响应
一、电压电流关系
即:瞬时值和相量满足基尔霍夫定律,有效值不满足
I1I2I30
I1
I3
I1-I2+I3= 0
I2
U 3
U 4
U 2 U 1 U 2 U 3 U 4 U 5 U 6 0 U 1
U 5
U 6
例: i162si nt (3)0
i282si nt (6)0
求i=i1+i2
i
解: I 1 6 3 0 5 .1 9 j3 6
Im[Ime ji e jt ]
复指数函数中的一个复常数
复常数定义为正弦量的相量,记

Im
相量 的表示
Im 为“最大值”相量
Im Im eji Im i
I 为“有效值”相量 IIeji Ii
相量是一个复数
注意
1)相量可以代表一个正弦量,但不等于该
正弦量。
U 50ej15° 50
2
sin(
实部是余弦量 虚部是正弦量
则 I[ m Im e j( t i)] Im sitn ( i)
正弦量可以用上述形式复数函数描述
I[ m Im e j( t i)] Im sitn ( i)
正弦量可以用上述形式复数函数描述

第3章 正弦交流电路

第3章  正弦交流电路
( R j( X L X C )) I
Z φ 电抗
2
( R jபைடு நூலகம் ) I ZI
Z
XL-XC
R
阻抗
Z R (XL XC)
XL XC arctan R
阻抗角
2
阻抗三角形
阻抗模
相量图
UL UC
U UL+ UC UR I
电压三角形
2 U UR (U L U C ) 2 I R 2 ( X L X C ) 2
2.RL串联电路
u uR uL
I R U R
jX I U L L
U U U R L
i
R
u
L
Z R jX L
Z R X
2 2 L
XL arctan R

在RLC串联电路中,
R 30 Ω X L 40Ω X C 80Ω
若电源电压

平均功率
P0
无功功率 能量互换的规模 ,瞬时功率的最大值为无功功率。
QC UI I X C
2
U
2
XC
把电容量为40µ F的电容器接到交流电源上,通过电 容器的电流为
i 2.75 2 sin(314t 30 )A
o
试求电容器两端的电压瞬时值表达式。

o I 2.7530 A
u U m sin(t )
有效值相量
U m U m U U


i I m sin(t )
正弦量的相量表示:
I m I m I I


相量的模表示正弦量的有效值 相量的幅角表示正弦量的初相位

第3章 正弦交流电路.ppt

第3章 正弦交流电路.ppt

在坐标原点右侧,则初相 为负。
综上所述,如果知道一个正弦量的振幅、角频率(频率)和初 相位,就可以完全确定该正弦量,即可以用数学表达式或波 形图将它表示出来。
上一页 下一页 返回
3.1 正弦交流电的基本概念
3. 1. 2正弦量的相位差
对于两个同频率的正弦量而言,虽然都随时间按正弦规律变 化,但是它们随时间变化的进程可能不同,为了描述同频率 正弦量随时间变化进程的先后,引入了相位差。
3.1.1正弦量的三要素
凡随时间作正弦规律变化的物理量,无论电压、电流还是别 的电量统称为正弦量。正弦量可以用正弦函数表示,也可以 用余弦函数表示。本书用正弦函数表示正弦量。
正弦电流、电压的大小和方向是随时间变化的,其在任意时 刻的数值称为瞬时值,用小写字母i和u表示。
下一页 返回
3.1 正弦交流电的基本概念
前”前者(u),或称前者(u)“滞后”后者(i),如图3-7(c)
所示;
当 示;
时,则称两正弦量“反相”,如图3-7(d)所
当 示;
时,则称两正弦量“正交”,如图3-7(e)所
必须强调,比较正弦量之间的相位差时要注意三个条件(即 “三同”)。
(1)同频率。只有同频率的正弦量才有确定的相位关系,它 们的相位差才有意义。
(2)同函数。正弦和余弦函数表示的交流电都是正弦交流电, 当要比较相位差时要化成同一函数来表达才能用式(3-6)进 行计算。
上一页 下一页 返回
3.1 正弦交流电的基本概念
(3)同符号。用式(3-6)计算两正弦量的相位差时,两正弦 量的数学表达式前面的符号应该相同。
3. 1. 3正弦量的有效值
例如,有两个同频率的电压和电流,分别为

电路分析基础第三章讲解

电路分析基础第三章讲解

IC
CUC

UC 1
UC XC

C
徽 职
11
X C C 2fC
业 技
XC称为容抗, 单位为Ω。
术 电流和电压之间的相位关系为正交,即电流超前电压


ui uC
iC

2
i
u


2
0
t
第三章 正弦交流电路
2.电压与电流的相量关系

uC UCm sin(t u )
URIR T
(T

0)

URIR
P
URIR

I
2 R
R

U
2 R
R
第三章 正弦交流电路
p u,i p
安 徽 职
P
Pm=UmIm
P=
1 2
Pm=UI

0
t

i

u

电阻元件的功率曲线图

例: 一只功率为100W,额定电压为220V 的电烙铁, 接在380V的交流电源上, 问此时它接受的功率为多少? 若接到110V的交流电源上, 它的功率又为多少?
. jt


第三章 正弦交流电路
正弦量的有效值用复数的模表示,
正弦量的初相用复数的幅角来表示。
安 徽 职
该方法为相量表示法。 表示为:

.
技 术
I Ie j(ti ) I i

院 注:正弦量与相量一一对应。
2、相量图
相量图就是把正弦量的相量画在复平面上。
第三章 正弦交流电路


同频率正弦量的几种相位关系:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e Em sin Em sin(t )
• 三、周期和频率
• 正弦量交变一次所需的时间称为周期,用字母T 表示,单位为秒(s).如图3-5所示。一个周期 内的波形称为周波。 • 每秒内的周波数称为频率,用字母f表示,单位为 赫兹(Hz)简称赫。 1 f • 频率与周期互为倒数,即 T • 每秒钟所经历的弧度称为角频率,用字母ω表示, 单位为弧度每秒( rad/s)。 2 2f T
• (c) 12
1 2
,表明二者反相。
• (d) ,表明 i 2 超前于3π/4。
1 0
2 3 4 , 12 1 2 3 4 ,
• 五、有效值
• 正弦交流电在变化过程中任一瞬间所对应的数值,称为 瞬时值,用小写字母e、u、i表示。
• 正弦量瞬时值中的最大值叫做振幅值,也叫峰值。用大 写字母带下标“m”表示,如Um、Im。 • 正弦量的三要素 最大值、频率和初相位。 • 有效值 交流电流i通过电阻R在一个周期内所产生的热量 和直流电流I通过同一电阻R在相同时间内所产生的热量 相等,则这个直流电流I的数值叫做交流电流i的有效值, 用大写字母表示,如I、U等。 • 有效值又称为均方根值
u1 100 2 sin(Fra bibliotek 60 )2 sin(t 60 )
• 相量图见图。
• 二、同频率正弦量的求和运算
• 几个同频率的正弦量相加或相减,其和或差还是一个同 频率的正弦量。 • 同频率正弦量的相量和,等于它们和的相量。 • [例3.4] 已知 i1 3 2 sin(314t 60 ) A, 4 2 sin(314t 30 ) i2 A,求总电流 i1 i2 ? • [解法一] 用复数方法求和 • i1、i2 的有效值相量分别为 I1 360 I 2 4 30 • 所以 I I I 360 4 30 1 2
• 1)电流和电压之间的瞬时值关系 • u Ri • 2)电流和电压之间的有效值关系
U RI
• 3) 电流和电压之间的相位关系
• 因电阻是纯实数,在电压和电流为关联参考方向时,电流 和电压同相。图3-13b)是电阻元件上电流和电压的波形图。 • 2.电压与电流的相量关系
U RI

ui u i 125 45 170 0

表 明电压u滞后于电流i170°。
• [例3.2] 分别写出图3-8中各图的电流相位差,并说明的 相位关系。
• [解]
1 0 , 2 90 , 90 (a) 12 1 2 ,表明 i1 滞后于 i 2 90°。 • (b)1 2 , 12 1 2 0 ,表明二者同相。
• (2)当 12 1 2 0 且 12 ,称 u 1 滞后于为 u2 ,或称 u2 超前于 u 1 。超前或滞后 的角度为 。 • (3)当 12 1 2 0 ,称这两个正弦量同相, 如图3-7(b)所示。 • (4)当 12 1 2 ,称这两个正弦量反相, 如图3-7(c)所示。 • (5)当 12 1 2 2 ,称这两个正弦量正 交,如图3-7(d)所示。
di dt
• 2)大小关系 • 在正弦交流电路中,设电流i为参考正弦量,即
• 则 u L di LI m cos t U m sin(t 90 ) dt • 式中
U m LI m
i I m sin t
• u、i的有效值关系
• X L 被称为电感元件的感抗,当ω单位为rad/s,L的单 位为H时,单位为Ω。感抗是用来表示电感线圈对电流阻 碍作用的物理量。感抗大小与正弦电流的频率成正比, 频率越高,感抗越大,因此电感线圈对高频电流有较大 的阻碍作用。而对直流来说,频率为零,感抗也就为零, 故电感元件在直流电路中的电压有效值为零,相当于短 路。
图3-1 火力发电生产及输送过程示意图
• 水力发电:
• 将自然界的水所蕴藏的能量转换成电能的生产过程。 • 水能量的大小与其流量的大小和落下高度(称为落差) 有着直接的关系,水的流量和落差越大,则水蕴藏的 能量越大,即水能量与水流量和落差成正比。
• 二、发电机的工作原理
B Bm sin
(3 cos60 j3sin 60 ) [4 cos(30) j 4 sin(30 )] 4.96 j 0.6 56.9
• 总电流
i i1 i2 5 2 sin(314t 6.9)
• [解法二] 用几何方法求和 • i1、i2 的相量图如图3-11所示, • 用平行四边形法则求得
• 正弦交流电路中电阻元件 的平均功率为
p 1 T

T
0
pdt
1 T

T
0
UI (1 cos 2t )dt UI
• 电阻元件的平均功率等于 电压电流有效值的乘积
U2 p UI I R R
2
• 平均功率是电路中实际消 耗的功率,所以称有功功 率,简称功率
u 100 2 sin(t 30) • [例3.6] 某电阻R=100Ω,R两端的电压 V,求 • (1)通过电阻R的电流i和I 。 • (2)电阻R消耗的功率P。 • (3)作U 、I 的相量图。 • [解](1)
第三节 单一参数电路元件的交流电路
• 电阻元件、电感元件和电容元件是交流电路的基本 元件
• 一、电阻电路
• 1.电压电流关系 • 当图所示的线性电阻R两端加上正弦电压u时,电阻 中便有电流i通过。在任一瞬间电压u和i的瞬时值服 从欧姆定律。电压和电流为关联参考方向下,交流 电路中电阻元件的关系式如下:
i u 100 2 sin(t 30) 2 sin(t 30 ) R 100 I 2 I m 1 2 2
• (2) P UI 100 1 100(W ) • (3)电阻电路中电压与电流同相位,电压和电流的相量 分别为 I 1 30 U 100 30 • 相量图如图所示。
• 图3-9中,从坐标原点作一矢量 ,矢量长度等于正弦交 流电动势的最大值Em,矢量与横轴正方向的夹角取正弦 交流电的初相φ,将该矢量以正弦交流电动势的角频率为 角速度,绕原点逆时针旋转,可以发现,在任一瞬间, 旋转矢量在纵轴上的投影就是正弦交流电动势的瞬时值。 • 交流电本身并不是矢量,而是时间的正弦函数。为了与 电场强度、力等一般的空间矢量相区别,我们把表示正 U E 弦交流电的这一矢量称为相量,用 I m 、 m 、 m 表示, 本例中 E E 。
• 电力生产的任务是把一次能源如煤炭、石油、天然 气、水力、核能、风力、地热等转换成电能,并输 送、分配、销售给用户。 • 提高发、供电设备的效率,节约厂用电,降低线损 率,是提高电力生产经济效益的三条主要途径
• 火力发电是指把煤、石油、天然气等燃料的化学能, 通过火力发电设备转化为电能的生产过程。
• 四、相位和相位差
• 相位或相位角 (t ) 被称为正弦量的。在不 同的时刻,对应不同的相位,就有不同的电动势 值。 • 初相位 反映正弦量初始值的物理量,是计时开 始时的相位角,简称“初相”。一般初相用小于 或等于180°的电角度来表示。具有初相角 的 交流电,在t时刻的相位角为 。 • 相位差 两个同频率正弦 (t ) • 量的相位之差. • 两个同频率正弦量的相位 • 差,等于它们的初相之差。
• e1 和 e2 是两个频率相等、初相位不同的的正弦电动 势,它们的函数式为:
e1 Em1 sin(t 1 )
e2 Em2 sin(t 2 )
• 相位差为:
12 (t 1 ) (t 2 ) 1 2
• (1)当 12 1 2 0 且 12 ,如图3-7 • (a)所示, 称为 u1 超前于 u 2 ,或称 u2 滞后于 u 1 。超前或滞后的角度为 12 。
• 电阻元件上电压与电流相量为同相关系
• 3.电阻元件的功率
• 交流电路中,任一瞬间,元件上电压的瞬时值与电流的 瞬时值的乘积叫做该元件的瞬时功率,用小写字母p表示, 即 p=ui • 电阻元件通过正弦交流电时,在关联参考方向下,瞬时 功率为 U I 2 m m (1 cos 2t ) UI (1 cos 2t ) p ui Um I m sin t • 2 • 电阻元件的瞬时功率曲线如图3-14所示。由功率曲线可知, 电阻元件的瞬时功率以电源频率的两倍作周期性变化。 在电压和电流为关联参考方向时,在任一瞬间,电压与 电流同号,电阻电路中的瞬时功率恒为正值,即p≥0, 说明电阻始终在消耗能量。 • 正弦交流电路中电阻元件的平均功率为
U LI X L I
X L L
• 3)相位关系 • 电感上电压和电流相位关系为
• 正弦交流电
1 I T

T
0
i 2 dt
Im I 2
Um U 2
Em E 2
第二节 正弦量的相量表示法
• 一、正弦量的相量表示法
• 正弦量的相量 用复数来表示正弦量。 • 所谓相量图表示法,就是用一个在直角坐标系中用绕原 点旋转的矢量表示正弦交流电的方法。 • 现以正弦电动势e=Emsin(ωt+φ)为例说明如下:
m m
• 实际应用中矢量长度通常不用最大值,而用有效值,有 U 效值相量用 I 、 、E 表示 • 相量的加、减运算就可以按平行四边形法则进行。
u • [例3.3 ] V, 2 50 V。写出表示u1和u2的相量,画相量图。 • [解] V U1 10060 • V U 2 50 60 •
12
• [例3.1]
i 已知 u 220 2 sin(t 235 ) V, 10 2 sin(t 45 ) A,求u和i的初相及两者的相位关系。 u 220 2 sin(t 235 ) 220 2 sin(t 125 ) • [解] • 所以电压u的初相角为-125°,电流i的初相角为45°。 •
相关文档
最新文档