2016黑龙江高考理科数学真题及答案
(完整word版)2016全国三卷理科数学高考真题及答案.docx
2016 年普通高等学校招生全国统一考试理科数学一.选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 .(1)设集合 S= S x P(x2)(x3)0 ,T x x 0,则 S I T=(A) [2 ,3](B) (-, 2]U [3,+)(C) [3,+ )(D) (0, 2] U[3,+ )(2)若 z=1+2i ,则4izz1(A)1(B)-1(C) i(D)-iuuv( 1uuuv(3,1),(3)已知向量BA, 2 ) , BC则 ABC=2222(A)30 0(B)450(C) 60 0(D)120 0(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C, B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于 200C 的月份有 5 个(5)若tan3,则 cos22sin 26444816(B)(C) 1(A)25(D)2525 431(6)已知a23, b44, c253,则(A )b a c( B)a b c (C) b c a (D) c a b(7)执行下图的程序框图,如果输入的a=4, b=6,那么输出的n=(A ) 3(B ) 4(C) 5(D ) 6(8)在 △ABC 中,B = πBC1cos A =,边上的高等于则43 BC ,( A )3 10( B )101010( C ) -10 ( D ) - 3 1010 10 (9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A ) 18 36 5(B ) 54 18 5(C ) 90 (D ) 81(10) 在封闭的直三棱柱 ABC-A 1B 1C 1 内有一个体积为 V 的球,若AB BC , AB=6 ,BC=8, AA 1 =3,则 V 的最大值是(A ) 4π ( B )9( C ) 6π(D )3223x 2 y 2 1(a b 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为(11)已知 O 为坐标原点, F 是椭圆 C :b 2 a 2C 上一点,且 PF ⊥ x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则C 的离心率为(A )1( B )1( C )2( D )33 2 3 4(12)定义 “规范 01 数列 ”{a n } 如下: { a n } 共有 2m 项,其中 m 项为 0,m 项为 1,且对任意 k 2m , a 1 , a 2, L , a k 中 0 的个数不少于 1 的个数 .若 m=4,则不同的“规范 01 数列”共有 (A ) 18 个( B ) 16 个(C ) 14 个(D ) 12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若 x , y 满足约束条件 错误 ! 未找到引用源。
2016年高考数学新课标Ⅱ(理科)试题及答案 【解析版】
2016年全国统一高考数学试卷(新课标Ⅱ)(理科)(使用地区 :海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.【2016新课标Ⅱ(理)】已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A.()31-,B.()13-,C.()1,∞+D.()3∞--,【答案】A【解析】∴30m +>,10m -<,∴31m -<<,故选A .【2016新课标Ⅱ(理)】已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则A B = A.{}1B.{12},C.{}0123,,,D.{10123}-,,,, 【答案】C【解析】()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B = ,,,, 故选C .【2016新课标Ⅱ(理)】已知向量(1,)(3,2)a m b =- ,=,且()a b b +⊥,则m = A.8- B.6- C.6 D.8【答案】D【解析】 ()42a b m +=-,, ∵()a b b +⊥ ,∴()122(2)0a b b m +⋅=--=解得8m =, 故选D .【2016新课标Ⅱ(理)】圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=A.43-B.34- D.2【答案】A【解析】圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d =,解得43a =-,故选A .【2016新课标Ⅱ(理)】如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24B.18C.12D.9 【答案】B【解析】E F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法故选B .【2016新课标Ⅱ(理)】右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A.20πB.24πC.28πD.32π 【答案】C【解析】几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l =,21π2S r ch cl =++表4π16π8π=++28π=,故选C .【2016新课标Ⅱ(理)】若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 A.()ππ26k x k =-∈Z B.()ππ26k x k =+∈Z C.()ππ212Z k x k =-∈ D.()ππ212Z k x k =+∈ 【答案】B【解析】平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .【2016新课标Ⅱ(理)】中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =A.7B.12C.17D.34 【答案】C【解析】第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=, 第三次运算:62517s =⨯+=,故选C .【2016新课标Ⅱ(理)】若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=A.725B.15C.15-D.725-【答案】D【解析】∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .【2016新课标Ⅱ(理)】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为A.4n m B.2n m C.4m n D.2mn【答案】C【解析】由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .【2016新课标Ⅱ(理)】已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为B.32D.2 【答案】A【解析】离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====--- 故选A .【2016新课标Ⅱ(理)】已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )A.0B.mC.2mD.4m【答案】B【解析】由()()2f x f x =-得()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +, ∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.【2016新课标Ⅱ(理)】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4c o s 5A =,5cos 13C =,1a =,则b = . 【解析】2113∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =, ()63sin sin sin cos cos sin 65B AC A C A C =+=+=,由正弦定理得:sin sin b a B A =解得2113b =.【2016新课标Ⅱ(理)】α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 【解析】②③④【2016新课标Ⅱ(理)】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 【解析】 (1,3)由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足, 若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3),【2016新课标Ⅱ(理)】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = . 【解析】 1ln2-ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++ ∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x =212x =-∴1ln 11ln 2b x =+=-.三、解答题:解答应写出文字说明、证明过程或演算步骤.【2016新课标Ⅱ(理)】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.【2016新课标Ⅱ(理)】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯ 0.2550.150.250.30.1750.a a a a a a a =+++++=,∴平均保费与基本保费比值为1.23.【2016新课标Ⅱ(理)】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置OD '(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==,∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF D H ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =, ∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OH EF H =I , ∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r ,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩ 得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴1212cos n n n n θ⋅===u r u u ru r u u r∴sin θ=【2016新课标Ⅱ(理)】已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+=++ 因为AM AN ⊥,所以21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=, 2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM ⎫==⎪+⎭. ⑵直线AM的方程为(y k x =,联立(2213x y t y k x ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM =所以3AN k k+因为2AM AN =所以23k k=+,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <<.【2016新课标Ⅱ(理)】(I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20;xx x -++>(II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x --> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域. 【解析】⑴证明:()2e 2xx f x x -=+ ()()()22224e e 222x xx x f x x x x ⎛⎫-'⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞ ,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12xx f x ->-+∴()2e 20x x x -++>⑵ ()()()24e 2e xx a x x ax a g x x ----'=()4e 2e 2x x x x ax a x-++=()322e 2x x x a x x-⎛⎫+⋅+⎪+⎝⎭=[)01a ∈,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2tt a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1ee 1e 22t ttt t t a t t h a t t t -++⋅-++===+记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号【2016新课标Ⅱ(理)】如图,在正方形ABCD ,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F . (I) 证明:B ,C ,G ,F 四点共圆;(II)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.【解析】(Ⅰ)证明:∵DF CE ⊥∴Rt Rt DEF CED △∽△∴GDF DEF BCF ∠=∠=∠ DF CFDG BC= ∵DE DG =,CD BC = ∴DF CFDG BC= ∴GDF BCF △∽△ ∴CFB DFG ∠=∠∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒ ∴180GFB GCB ∠+∠=︒. ∴B ,C ,G ,F 四点共圆. (Ⅱ)∵E 为AD 中点,1AB =, ∴12DG CG DE ===, ∴在Rt GFC △中,GF GC =, 连接GB ,Rt Rt BCG BFG △≌△,∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.【2016新课标Ⅱ(理)】选修4—4:坐标系与参数方程在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B两点,AB l的斜率.【解析】解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,=即22369014k k =+,整理得253k =,则k =【2016新课标Ⅱ(理)】选修4—5:不等式选讲已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+, 证毕.2016年全国统一高考数学试卷(新课标Ⅱ)(理科)(使用地区 :海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏) 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【2016新课标Ⅱ(理)】已知z=(m+3)+(m ﹣1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(﹣3,1) B .(﹣1,3) C .(1,+∞) D .(﹣∞,﹣3)2.【2016新课标Ⅱ(理)】已知集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∪B=()A.{1} B.{1,2} C.{0,1,2,3} D.{﹣1,0,1,2,3}3.【2016新课标Ⅱ(理)】已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C.6 D.84.【2016新课标Ⅱ(理)】圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.25.【2016新课标Ⅱ(理)】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B.18 C.12 D.96.【2016新课标Ⅱ(理)】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π7.【2016新课标Ⅱ(理)】若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)8.【2016新课标Ⅱ(理)】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7 B.12 C.17 D.349.【2016新课标Ⅱ(理)】若cos(﹣α)=,则sin2α=()A.B.C.﹣D.﹣10.【2016新课标Ⅱ(理)】从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n构成n个数对(x1,y1),(x2,y2)…(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.B.C.D.11.【2016新课标Ⅱ(理)】已知F1,F2是双曲线E:﹣=1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为()A.B.C.D.212.【2016新课标Ⅱ(理)】已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y=与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0 B.m C.2m D.4m二、填空题:本题共4小题,每小题5分.13.【2016新课标Ⅱ(理)】△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.14.【2016新课标Ⅱ(理)】α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题是(填序号)15.【2016新课标Ⅱ(理)】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.16.【2016新课标Ⅱ(理)】若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.【2016新课标Ⅱ(理)】S n为等差数列{a n}的前n项和,且a1=1,S7=28,记b n=[lga n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.(Ⅰ)求b1,b11,b101;(Ⅱ)求数列{b n}的前1000项和.18.【2016新课标Ⅱ(理)】某保险的基本保费为a(单位:元),继续购买该保险的投保人成为(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(Ⅲ)求续保人本年度的平均保费与基本保费的比值.19.【2016新课标Ⅱ(理)】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交于BD于点M,将△DEF沿EF折到△D′EF的位置,OD′=.(Ⅰ)证明:D′H⊥平面ABCD;(Ⅱ)求二面角B﹣D′A﹣C的正弦值.20.【2016新课标Ⅱ(理)】已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求k的取值范围.21.(12分)(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.请考生在第22~24题中任选一个题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.【2016新课标Ⅱ(理)】如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.[选修4-4:坐标系与参数方程]23.【2016新课标Ⅱ(理)】在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是(t为参数),l与C交与A,B两点,|AB|=,求l 的斜率.[选修4-5:不等式选讲]24.【2016新课标Ⅱ(理)】已知函数f(x)=|x﹣|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.。
2016年高考理科数学全国1卷Word版(含详细答案)
(13)设向量a ,b ,且 a b a b ,则 .
(14) 的展开式中, 的系数是.(用数字填写答案)
(15)设等比数列 满足 , ,则 的最大值为.
(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料,乙材料1kg,用5个工时;生产一件产品B需要甲材料,乙材料,用3个工时.生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.
(A)2(B)4(C)6(D)8
(11)平面 过正方体 的顶点 , 平面 , 平面
, 平面 ,则 所成角的正弦值为
(A) (B) (C) (D)
(12)已知函数 , 为 的零点, 为
图像的对称轴,且 在 单调,则 的最大值为
(A)11(B)9(C)7(D)5
第II卷
本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题为选考题,考生根据要求作答。
(4)某公司的班车在 , , 发车,小明在 至 之间到达发车站乘
坐班车,且到达发车站的时候是随机的,则他等车时间不超过10分钟的概率是
(A) (B) (C) (D)
(5)已知方程 表示双曲线,且该双曲线两焦点间的距离为 ,则 的
取值范围是
(A) (B) (C) (D)
(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中
根据几何概型,所求概率 .
故选B.
5. 表示双曲线,则
∴
由双曲线性质知: ,其中 是半焦距
(完整)【数学】2016年高考真题——全国Ⅲ卷(理)(word版含答案),推荐文档
2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S = ,则S T =( )(A) [2,3] (B)(- ,2] [3,+) (C) [3,+) (D)(0,2] [3,+) (2)若,则( ) (A)1 (B) -1 (C) i (D)-i(3)已知向量 , 则ABC =( ) (A)300 (B) 450 (C) 600 (D)1200 (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C.下面叙述不正确的是( ) (A) 各月的平均最低气温都在00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若 ,则( ) (A)(B) (C) 1 (D) (6)已知,,,则( ){}{}|(2)(3)0,|0S x x x T x x =--≥=>I ∞U ∞∞U ∞12z i =+41izz =-13(,)2BA =uu v 31(,),2BC =uu u v ∠3tan 4α=2cos 2sin 2αα+=642548251625432a =254b =1325c =(A ) (B ) (C ) (D ) (7)执行下图的程序框图,如果输入的,那么输出的( )(A )3 (B )4 (C )5 (D )6 (8)在中,,BC 边上的高等于,则( ) (A )(B ) (C ) (D ) (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( ) (A ) (B ) (C )90 (D )81(10) 在封闭的直三棱柱内有一个体积为V 的球,若,,,,则V 的最大值是( )(A )4π (B )(C )6π (D )(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C的左,右顶点P 为C 上一点,且轴.过点A 的直线l 与线段交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )(B )(C )(D ) (12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个(B )16个(C )14个(D )12个b ac <<a b c <<b c a <<c a b <<46a b ==,n =ABC △π4B =13BC cos A =3101010-310-18365+54185+111ABC A B C -AB BC ⊥6AB =8BC =13AA =92π323π22221(0)x y a b a b+=>>PF x ⊥PF 131223342k m ≤12,,,k a a a L第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若满足约束条件则的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到.(15)已知为偶函数,当时,,则曲线在点处的切线方程是_______________.(16)已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若__________________.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列的前n 项和,其中. (I )证明是等比数列,并求其通项公式; (II )若 ,求.,x y 1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩z x y =+sin y x x =-sin y x x =()f x 0x <()ln()3f x x x =-+()y f x =(1,3)-l 30mx y m ++=2212x y +=,A B ,A B l x ,C D AB =||CD ={}n a 1n n S a λ=+0λ≠{}n a 53132S =λ(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 参考数据:,,7≈2.646.参考公式:相关系数回归方程 中斜率和截距的最小二乘估计公式分别为:719.32ii y==∑7140.17i i i t y ==∑0.55=()()niit t y y r --=∑y a bt =+)))121()()()nii i nii tt y y b tt ==--=-∑∑),=.a y bt -)))(19)(本小题满分12分)如图,四棱锥中,平面,AD BC ∥,,,为线段上一点,,为的中点.(I )证明MN ∥平面;(II )求直线与平面所成角的正弦值.(20)(本小题满分12分)已知抛物线:的焦点为,平行于轴的两条直线分别交于两 点,交的准线于两点.(I )若在线段上,是的中点,证明AR FQ ∥;(II )若的面积是的面积的两倍,求中点的轨迹方程.P ABC -PA ⊥ABCD 3AB AD AC ===4PA BC ==M AD 2AM MD =NPC PAB AN PMN C 22y x =F x 12,l l C A B ,C P Q ,F AB R PQ PQF ∆ABF ∆AB(21)(本小题满分12分)设函数,其中,记的最大值为. (Ⅰ)求; (Ⅱ)求;(Ⅲ)证明.请考生在[22]、[23]、[24]题中任选一题作答.作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,⊙O 中AB 的中点为,弦分别交于两点. (I )若,求的大小;(II )若的垂直平分线与的垂直平分线交于点,证明.()cos 2(1)(cos 1)f x a x a x =+-+0a >|()|f x A ()f x 'A |()|2f x A '≤P PC PD ,AB E F ,2PFB PCD ∠=∠PCD ∠EC FD G OG CD ⊥23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为,以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(I )写出的普通方程和的直角坐标方程;(II )设点P 在上,点Q 在上,求|PQ |的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数(I )当a =2时,求不等式的解集;(II )设函数当时,,求的取值范围.xOy 1C 3cos ()sin x y θθθ⎧=⎪⎨=⎪⎩为参数x 2C sin()224ρθπ+=1C 2C 1C 2C ()|2|f x x a a =-+()6f x ≤()|21|,g x x =-x ∈R ()()3f x g x +≥a参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【答案】D考点:1、不等式的解法;2、集合的交集运算. (2)【答案】C 【解析】试题分析:,故选C . 考点:1、复数的运算;2、共轭复数. (3)【答案】A 【解析】试题分析:由题意,得,所以,故选A .考点:向量夹角公式. (4)考点:1、平均数;2、统计图 (5)【答案】A 【解析】试题分析:由,得或,所以,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. (6)【答案】A44(12)(12)11i ii ii zz ==+---112222cos 11||||BA BC ABC BA BC ⋅∠===⨯u u u r u u u r u uu r u u u r 30ABC ∠=︒3tan 4α=34sin ,cos 55αα==34sin ,cos 55αα=-=-2161264cos 2sin 24252525αα+=+⨯=【解析】试题分析:因为,,所以,故选A . 考点:幂函数的图象与性质. (7)【答案】B考点:程序框图. (8)【答案】C 【解析】试题分析:设边上的高线为,则,所以,.由余弦定理,知,故选C . 考点:余弦定理. (9)【答案】B考点:空间几何体的三视图及表面积. (10)【答案】B 【解析】试题分析:要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B . 考点:1、三棱柱的内切球;2、球的体积. (11)【答案】A422335244a b ==>=1223332554c a ==>=b a c <<BC AD 3BC AD=AC ==AB=222222cos 210AB AC BC A AB AC +-===⋅V R 32334439()3322R πππ==考点:椭圆方程与几何性质.(12)【答案】C【解析】试题分析:由题意,得必有,,则具体的排法列表如下:二、填空题:本大题共3小题,每小题5分(13)【答案】1a=81a=32考点:简单的线性规划问题. (14)【答案】 【解析】试题分析:因为,=,所以函数的图像可由函数的图像至少向右平移个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数. (15)【答案】考点:1、函数的奇偶性与解析式;2、导数的几何意义. (16)【答案】4 【解析】试题分析:因为,且圆的半径为到直线,,解得,代入直线的方程,得的倾斜角为,由平面几何知识知在梯形中,.考点:直线与圆的位置关系.三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【答案】(Ⅰ);(Ⅱ). 【解析】32πsin 2sin()3y x x x π=+=+sin 2sin()3y x x x π=-=-2sin[()]33x π2π+-sin y x x =-sin y x x =32π21y x =--||AB =(0,0)30mx y m ++=3=3=3m =-l y x =+l 30︒ABDC ||||4cos30AB CD ==︒1)1(11---=n n a λλλ1λ=-考点:1、数列通项与前项和为关系;2、等比数列的定义与通项及前项和为. (18)(本小题满分12分)【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.(Ⅱ)由及(Ⅰ)得, . 所以,关于的回归方程为:. 将2016年对应的代入回归方程得:. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 考点:线性相关与线性回归方程的求法与应用.n a n n S n nS 331.1732.9≈=y 103.02889.2)())((ˆ71271≈=---=∑∑==i i i i it t y y t tb 92.04103.0331.1ˆˆ≈⨯-≈-=t b y ay t t y10.092.0ˆ+=9=t 82.1910.092.0ˆ=⨯+=y(19)【答案】(Ⅰ)见解析;(Ⅱ).设为平面的法向量,则,即,可取,于是.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积. (20)【答案】(Ⅰ)见解析;(Ⅱ).25),,(z y x n =PMN ⎪⎩⎪⎨⎧=⋅=⋅00PM ⎪⎩⎪⎨⎧=-+=-0225042z y x z x )1,2,0(=n 2558|||||,cos |==><AN n21y x =-考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法. (21)(本小题满分12分)【答案】(Ⅰ);(Ⅱ); (Ⅲ)见解析. 【解析】试题分析:(Ⅰ)直接可求;(Ⅱ)分两种情况,结合三角函数的有界'()2sin 2(1)sin f x a x a x =---2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩()f x '1,01a a ≥<<性求出,但须注意当时还须进一步分为两种情况求解;(Ⅲ)首先由(Ⅰ)得到,然后分,三种情况证明试题解析:(Ⅰ). (Ⅱ)当时,因此,. ………4分当时,将变形为.令,则是在上的最大值,,,且当时,取得极小值,极小值为.令,解得(舍去),.考点:1、三角恒等变换;2、导数的计算;3、三角函数的有界性. 22. 【答案】(Ⅰ);(Ⅱ)见解析.A 01a <<110,155a a <≤<<|()|2|1|f x a a '≤+-1a ≥110,155a a <≤<<'()2sin 2(1)sin f x a x a x =---1a ≥'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f =32A a =-01a <<()f x 2()2cos (1)cos 1f x a x a x =+--2()2(1)1g t at a t =+--A |()|g t [1,1]-(1)g a -=(1)32g a =-14a t a -=()g t 221(1)61()1488a a a a g a a a--++=--=-1114a a --<<13a <-15a>60︒考点:1、圆周角定理;2、三角形内角和定理;3、垂直平分线定理;4、四点共圆.23.【答案】(Ⅰ)的普通方程为,的直角坐标方程为;(Ⅱ).考点:1、椭圆的参数方程;2、直线的极坐标方程. 24.【答案】(Ⅰ);(Ⅱ). 【解析】试题分析:(Ⅰ)利用等价不等式,进而通过解不等式可求得;1C 2213x y +=2C 40x y +-=31(,)22{|13}x x -≤≤[2,)+∞|()|()h x a a h x a ≤⇔-≤≤(Ⅱ)根据条件可首先将问题转化求解的最小值,此最值可利用三角形不等式求得,再根据恒成立的意义建立简单的关于的不等式求解即可. 试题解析:(Ⅰ)当时,. 解不等式,得.因此,的解集为. ………………5分 (Ⅱ)当时,,当时等号成立,考点:1、绝对值不等式的解法;2、三角形绝对值不等式的应用.()()f x g x +a 2a =()|22|2f x x =-+|22|26x -+≤13x -≤≤()6f x ≤{|13}x x -≤≤x R ∈()()|2||12|f x g x x a a x +=-++-|212|x a x a ≥-+-+|1|a a =-+12x=。
(完整word版)2016年全国高考理科数学试题及答案,推荐文档
2016年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4. 作图可先使用铅笔画出,确定后必须用墨色笔迹的签字笔描黑。
5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m 的取值范围是(A ))1,3(-(B ))3,1(-(C )),1(+∞(D )(2)已知集合,,则(A )(B )(C )(D )(3)已知向量,且,则m =(A )-8 (B )-6 (C )6 (D )8 (4)圆的圆心到直线的距离为1,则a=(A )34-(B )43- (C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为 (A )x =62k ππ- (k ∈Z ) (B )x=62ππ+k (k ∈Z ) (C )x=122k ππ- (k ∈Z ) (D )x =122k ππ+ (k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(4π–α)= 53,则sin 2α= (A )257(B )51(C )51- (D )257- (10)从区间随机抽取2n 个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率 的近似值为(A ) (B ) (C ) (D )(11)已知F 1,F 2是双曲线E 的左,右焦点,点M 在E 上,M F 1与 轴垂直,sin,则E 的离心率为(A ) (B ) (C ) (D )2(12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为)(1,1y x ,),(22y x ···,(m m y x ,),则=+∑=mi i iy x1)((A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分。
2016年高考全国2卷理科数学及答案
绝密★启用前2016年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共12页)(适用地区:贵州,甘肃,青海,西藏,黑龙江,吉林,辽宁,宁夏,新疆,内蒙古,云南,重庆,陕西,海南)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答案卡一并交回。
第I 卷一、 选择题:本题共12小题,每小题5分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
(1) 已知i m m z )1()3(−++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3−,1) (B )(1−,3) (C )(1,∞+) (D )(∞−,3−) (2) 已知集合{}3,2,1=A ,{}Z x x x x B∈<−+=,0)2)(1(,则=B A(A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1− (3) 已知向量),1(m a =,)2,3(−=b 且b b a ⊥+)(,则=m(A )8− (B )6− (C )6 (D )8 (4) 圆0138222=+−−+y x y x的圆心到直线01=−+y ax 的距离为1,则=a(A )34−(B )43− (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈−=ππ (B ))(62Z k k x ∈+=ππ(C ))(122Z k k x ∈−=ππ (D ))(122Z k k x ∈+=ππ(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s(A )7 (B )12(C )17 (D )34(9) 若53)4cos(=−απ,则=α2sin(A )257(B )51(C )51− (D )257−(10) 以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )n 4 (B )n 2 (C )m 4 (D )m 2否是 0,0==s kn k >输入n x ,输出s开始 结束输入a1+=+⋅=k k ax s s(11) 已知21,F F 是双曲线E :12222=−by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2(12) 已知函数))((R x x f ∈满足)(2)(x f x f −=−,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i i y x 1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。
2016全国卷Ⅱ高考理科数学试卷及答案(word版)
2016年普通高等学校招生全统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知i m m z )1()3(-++=在复平面对应的点在第四象限,则实数m 的取值围是(A )(3-,1) (B )(1-,3) (C )(1,∞+) (D )(∞-,3-)(2) 已知集合{}3,2,1=A ,{}Z x x x x B ∈<-+=,0)2)(1(,则=B A (A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1- (3) 已知向量),1(m a =,)2,3(-=b 且b b a ⊥+)(,则=m(A )8- (B )6- (C )6 (D )8 (4) 圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a(A )34-(B )43- (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π(C )28π (D )32π (7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈-=ππ (B ))(62Z k k x ∈+=ππ 44423(C ))(122Z k k x ∈-=ππ (D ))(122Z k k x ∈+=ππ (8) 中国古代有计算多项式值的九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s (A )7 (B )12 (C )17 (D )34 (9) 若53)4cos(=-απ,则=α2sin (A )257 (B )51 (C )51- (D )257-(10)以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )m n 4 (B )m n 2 (C )n m 4 (D )nm 2 (11)已知21,F F 是双曲线E :12222=-by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2 (12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i iy x1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。
2016年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2016年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)2.(5分)若z=1+2i,则=()A.1B.﹣1C.i D.﹣i3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.6.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b 7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.68.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.B.C.﹣D.﹣9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.8110.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个二、填空题:本大题共4小题,每小题5分.13.(5分)若x,y满足约束条件,则z=x+y的最大值为.14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f (x)在点(1,﹣3)处的切线方程是.16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;附注:参考数据:y i t i y i≈参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.2016年全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)【考点】1E:交集及其运算.【专题】37:集合思想;4O:定义法;5J:集合.【分析】求出S中不等式的解集确定出S,找出S与T的交集即可.【解答】解:由S中不等式解得:x≤2或x≥3,即S=(﹣∞,2]∪[3,+∞),∵T=(0,+∞),∴S∩T=(0,2]∪[3,+∞),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.【点评】本题考查复数的代数形式混合运算,考查计算能力.3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°【考点】9S:数量积表示两个向量的夹角.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【点评】考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,以及向量夹角的余弦公式,向量夹角的范围,已知三角函数值求角.4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个【考点】F4:进行简单的合情推理.【专题】31:数形结合;4A:数学模型法;5M:推理和证明.【分析】根据平均最高气温和平均最低气温的雷达图进行推理判断即可.【解答】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确C.三月和十一月的平均最高气温基本相同,都为10°,正确D.平均最高气温高于20℃的月份有7,8两个月,故D错误,故选:D.【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.5.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.【考点】GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;4R:转化法;56:三角函数的求值.【分析】将所求的关系式的分母“1”化为(cos2α+sin2α),再将“弦”化“切”即可得到答案.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题.6.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【考点】4Y:幂函数的单调性、奇偶性及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.【解答】解:∵a==,b=,c==,综上可得:b<a<c,故选:A.【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.6【考点】EF:程序框图.【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.【解答】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4满足条件s>16,退出循环,输出n的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.8.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.B.C.﹣D.﹣【考点】HT:三角形中的几何计算.【专题】35:转化思想;44:数形结合法;58:解三角形.【分析】作出图形,令∠DAC=θ,依题意,可求得cosθ===,sinθ=,利用两角和的余弦即可求得答案.【解答】解:设△ABC中角A、B、C、对应的边分别为a、b、c,AD⊥BC于D,令∠DAC=θ,∵在△ABC中,B=,BC边上的高AD=h=BC=a,∴BD=AD=a,CD=a,在Rt△ADC中,cosθ===,故sinθ=,∴cosA=cos(+θ)=cos cosθ﹣sin sinθ=×﹣×=﹣.故选:C.【点评】本题考查解三角形中,作出图形,令∠DAC=θ,利用两角和的余弦求cosA 是关键,也是亮点,属于中档题.9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.81【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,其底面面积为:3×6=18,侧面的面积为:(3×3+3×)×2=18+18,故棱柱的表面积为:18×2+18+18=54+18.故选:B.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.10.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】根据已知可得直三棱柱ABC﹣A1B1C1的内切球半径为,代入球的体积公式,可得答案.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r==2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值=,故选:B.【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程.【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为=,化简可得=,即为a=3c,可得e==.另解:由△AMF∽△AEO,可得=,由△BOH∽△BFM,可得==,即有=即a=3c,可得e==.故选:A.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【考点】8B:数列的应用.【专题】16:压轴题;23:新定义;38:对应思想;4B:试验法.【分析】由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故选:C.【点评】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.二、填空题:本大题共4小题,每小题5分.13.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;4R:转化法;57:三角函数的图像与性质.【分析】令f(x)=sinx+cosx=2sin(x+),则f(x﹣φ)=2sin(x+﹣φ),依题意可得2sin(x+﹣φ)=2sin(x﹣),由﹣φ=2kπ﹣(k∈Z),可得答案.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.【点评】本题考查函数y=sinx的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象,得到﹣φ=2kπ﹣(k∈Z)是关键,也是难点,属于中档题.15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f (x)在点(1,﹣3)处的切线方程是2x+y+1=0.【考点】6H:利用导数研究曲线上某点切线方程.【专题】34:方程思想;51:函数的性质及应用;52:导数的概念及应用.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;49:综合法;5B:直线与圆.【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.【考点】87:等比数列的性质;8H:数列递推式.【专题】34:方程思想;4R:转化法;54:等差数列与等比数列.【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.【点评】本题主要考查数列递推关系的应用,根据n≥2时,a n=S n﹣S n﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;附注:参考数据:y i t i y i≈参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;35:转化思想;5I:概率与统计.【分析】(1)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;(2)根据已知中的数据,求出回归系数,可得回归方程,2016年对应的t值为9,代入可预测2016年我国生活垃圾无害化处理量.【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:∵r==≈≈≈∵>故y与t之间存在较强的正相关关系;(2)==≈≈=﹣≈×4≈∴y关于t的回归方程+2016年对应的t值为9,故×9+【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】15:综合题;35:转化思想;44:数形结合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD 内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN 所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面PAB,NM⊄平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA⊂平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA•AM=PM•AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.【点评】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【考点】J3:轨迹方程;K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,=|FN||y1﹣y2|,∴S△ABF∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.【考点】6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4J:换元法;51:函数的性质及应用;53:导数的综合应用;56:三角函数的求值.【分析】(Ⅰ)根据复合函数的导数公式进行求解即可求f′(x);(Ⅱ)讨论a的取值,利用分类讨论的思想方法,结合换元法,以及一元二次函数的最值的性质进行求解;(Ⅲ)由(I),结合绝对值不等式的性质即可证明:|f′(x)|≤2A.【解答】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx.(II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a|cos2x|+(a﹣1)|(cosx+1)|≤a|cos2x|+(a﹣1)(|cosx|+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.当0<a<1时,f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,令g(t)=2at2+(a﹣1)t﹣1,则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣,(二次函数在对称轴处取得极值)令﹣1<<1,得a<(舍)或a>.①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,∴A=2﹣3a,②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(),又|g()|﹣|g(﹣1)|=>0,∴A=|g()|=,综上,A=.(III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,当0<a≤时,|f′(x)|<1+a≤2﹣4a<2(2﹣3a)=2A,当<a<1时,A==++>1,∴|f′(x)|≤1+a≤2A,当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,综上:|f′(x)|≤2A.【点评】本题主要考查函数的导数以及函数最值的应用,求函数的导数,以及换元法,转化法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.【考点】NC:与圆有关的比例线段.【专题】35:转化思想;49:综合法;5M:推理和证明.【分析】(1)连接PA,PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,运用圆的性质和四点共圆的判断,可得E,C,D,F共圆,再由圆内接四边形的性质,即可得到所求∠PCD的度数;(2)运用圆的定义和E,C,D,F共圆,可得G为圆心,G在CD的中垂线上,即可得证.【解答】(1)解:连接PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,由⊙O中的中点为P,可得∠4=∠5,在△EBC中,∠1=∠2+∠3,又∠D=∠3+∠4,∠2=∠5,即有∠2=∠4,则∠D=∠1,则四点E,C,D,F共圆,可得∠EFD+∠PCD=180°,由∠PFB=∠EFD=2∠PCD,即有3∠PCD=180°,可得∠PCD=60°;(2)证明:由C,D,E,F共圆,由EC的垂直平分线与FD的垂直平分线交于点G可得G为圆心,即有GC=GD,则G在CD的中垂线,又CD为圆G的弦,则OG⊥CD.【点评】本题考查圆内接四边形的性质和四点共圆的判断,以及圆的垂径定理的运用,考查推理能力,属于中档题.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程;5S:坐标系和参数方程.【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).【点评】本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化,同时考查直线与椭圆的位置关系,主要是相切,考查化简整理的运算能力,属于中档题.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】11:计算题;35:转化思想;49:综合法;59:不等式的解法及应用.【分析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣|+|x﹣|≥,由此能求出a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).【点评】本题考查含绝对值不等式的解法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用.。
2016年普通高等学校招生全国统一考试理科数学卷(含答案及解析)
2016年普通高等学校招生全国统一考试理科数学.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()(A)1(B) (C)2( D) 3⑶已知方程m+n-mb=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()则它的表面积是()C1)设集合A{x|x2 4x 3 0},B {x|2x 3 0},则AI(2)(3)(A)( 3,设(1 i)x(A)13)(B) (3,3)(C)(谆(D) (23)已知等差数列(A) 1001 yi,其中x,y是实数,则x yi =((B) (C).'3 (D){a n}前9项的和为27, 印0=8,则a100=((B) 99 (C) 98 (D) 97(4)(A) ( -,3) (B) (-1^/3) (C) (0,3) (D) (0,「3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28 n(A) 17n(B) 18n(C) 20n(D) 28 n(7)函数ynZx2—^在[22]的图像大致为((A))则m 、n 所成角的正弦值为()(D)3尹-为f(x)的零点,x 4为y f(x)图像的对称轴5且f(x)在一,J 单调,则的最大值为()18 36:■、填空题:本大题共 3小题,每小题 5分(13) 设向量 a=(m , 1),b=(1,2),且 |a+b|2=|a|2+|b|2,贝U m= _______ .(14) _________________________________________ (2x Vx)5的展开式中,x 3的系数是 .(用数字填写答案) (15) _____________________________________________________________ 设等比数列满足 a 1+a 3=10, a 2+a 4=5,则a 1a 2・・・an 的最大值为 ________________________________________ . (16)某高科技企业生产产品 A 和产品B 需要甲、乙两种新型材料。
2016 年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案
2262016年普通高等学校招生全国统一考试 理科数学(Ⅰ)参考答案第Ⅰ卷(选择题 共60分) 一、选择题 (60分) 1—12 DBCBA ADCCB AB 第Ⅱ卷(非选择题 90分)二、填空题:本大题共4小题,每小题5分13.2- 14.10 15.64 16.216000三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分为12分) 解:(I )由已知及正弦定理得, ()2cosC sin cos sin cos sinC A B+B A =, 即()2cosCsin sinC A+B =.∴2sinCcosC sinC =.可得1cosC 2=,所以C 3π=. (II)由已知,1sin C 2ab =.又C 3π=,所以6ab =.由已知及余弦定理得, 222cosC 7a b ab +-=.∴2213a b +=,从而()225a b +=.∴C ∆AB的周长为5.18.(本小题满分为12分) 解:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,∴平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG =可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB 平面FDC DC E =, ∴//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,∴C F ∠E 为二面角C F -BE-的平面角,C F60∠E =.从而可得(C -.∴(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-.设(),,n x y z =是平面C B E 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即040x y ⎧=⎪⎨=⎪⎩, ∴可取(3,0,n =. 设m 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩, 同理可取()0,3,4m =.则219cos ,19n m n m n m ⋅==-∴二面角C E -B -A 的余弦值为19-. 19.(本小题满分12分) 解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而04.02.02.0)16(=⨯==X P ;22716.04.02.02)17(=⨯⨯==X P ;24.04.04.02.02.02)18(=⨯+⨯⨯==X P ; 24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ; 2.02.02.04.02.02)20(=⨯+⨯⨯==X P ; 08.02.02.02)21(=⨯⨯==X P ; 04.02.02.0)22(=⨯==X P . 所以X 的分布列为(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19. (Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当19=n 时,192000.68(19200500)0.2EY =⨯⨯+⨯+⨯(192002500)0.08+⨯+⨯⨯+(192003500)0.044040⨯+⨯⨯=; 当20=n 时,202000.88(202002500)0.08EY =⨯⨯+⨯+⨯⨯(202002500)0.044080+⨯+⨯⨯=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .20.(本小题满分12分) 解:(Ⅰ)因为||||AC AD =,AC EB //,∴ADC ACD EBD ∠=∠=∠, ∴||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .则3482221+=+k k x x ,341242221+-=k k x x . ∴34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m :)1(1--=x ky ,A 到m 的距离为122+k , ∴1344)12(42||22222++=+-=k k k PQ .∴四边形MPNQ 的面积341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ面积的取值范围为(.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.21.(本小题满分12分)解:(Ⅰ)()(1)2(1)x f x x e a x '=-+-(1)(2)x x e a =-+.(i )设0a =,则()(2)xf x x e =-,()f x 只有一个零点. (ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.∴()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->,228∴()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2ea ≥-,则ln(2)1a -≤,∴当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增. 又当1x ≤时,()0f x <, ∴()f x 不存在两个零点.若2ea <-,则ln(2)1a ->,∴当(1,ln(2))x a ∈-时,'()0f x <; 当(ln(2),)x a ∈-+∞时,'()0f x >. ∴()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增. 又当1x ≤时,()0f x <, ∴()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设12x x <,由(Ⅰ)知 12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,∴122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,∴222222(2)(2)x x f x x e x e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.∴当1x >时,'()0g x <,而(1)0g =, ∴当1x >时,()0g x <. 从而22()(2)0g x f x =-<,∴122x x +<.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲 解:(Ⅰ)设E 是AB 的中点,连结OE , ∵,120OA OB AOB =∠=︒, ∴OE AB ⊥,60AOE ∠=︒. 在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径, ∴直线AB 与⊙O 相切.(Ⅱ)∵2OA OD =,∴O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上, ∴'OO AB ⊥.同理可证,'OO CD ⊥. ∴//AB CD . 23.(本小题满分10分)解:(I )由cos 1sin x a ty a t =⎧⎨=+⎩ (t 均为参数)消去参数t 得1C 的普通方程为 ()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆. 方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程(II )24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =.229由题意:1C 和2C 的公共方程所在直线即为3C .①—②得:24210x y a -+-=,即为3C ,∴210a -=∴1a =或1a =-(舍去).24.(本小题满分10分)解:(I )()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥()y f x =如图所示:(II )由⑴及()1f x >得当1x -≤时,由41x ->,解得5x >或3x <, 1x -∴≤;当312x -<<时,由321x ->,解得1x >或13x <,113x -<<∴或312x <<.当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >. 综上,13x <或13x <<或5x >, ()1f x >∴的解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,.2302016年普通高等学校招生全国统一考试理科数学(Ⅱ)参考答案 第Ⅰ卷(选择题 共60分) 一、选择题 (60分)1—12 ACDAB CBCDC AB第Ⅱ卷(非选择题 90分)二、填空题13.211314.②③④ 15.1和3 16.1ln2-三.解答题17.(本题满分12分) 解:(I )设{}n a 的公差为d ,72874S a ==,∴44a =,∴4113a ad -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===, [][]1111lg lg111b a ===, [][]101101101lg lg 2b a ===.(II )记{}n b 的前n 项和为n T ,则 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时, 100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=. 18.(本题满分12分) 解:(I )设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=. (II )设续保人保费比基本保费高出60%为事件B ,()0.100.053()()0.5511P AB P B A P A +===.(Ⅲ)设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20EX a a =⨯++⨯1.50.20 1.750.1020.05a a a +⨯+⨯+⨯0.2550.150.250.3a a a a =+++0.1750.1 1.23a a a ++=,∴平均保费与基本保费比值为1.23. 19.(本小题满分12分)解:(I )证明:∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥,∴EF BD ⊥, ∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =; 又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO=⋅=, ∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD . (II )建立如图坐标系H xyz -. ()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =uu u r ,,,()'133AD =-uuur,,,()060AC =uuu r,,,设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,. 同理可得面'AD C 的法向量 ()2301n =u u r,,,∴1212cosn nn nθ⋅==u r u u ru r u u r,∴sinθ.20.(本小题满分12分)解:(I)当4t=时,椭圆E的方程为22143x y+=,A点坐标为()20-,.由已知条件及椭圆的对称性知,直线AM的倾斜角为4π,直线AM的方程为2y x=+.将2x y=-代入22143x y+=,并整理得27120y y-=,解得0y=或127y=,∴1127y=.∴AMN△的面积为11212144227749AMNS∆=⨯⨯⨯=.(II)由已知条件知,3,0,(t k A>>,直线AM的方程为(y k x=.联立(2213x yty k x⎧+=⎪⎨⎪=+⎩并整理,得()222223230tk x x t k t+++-=,解得x=x=∴AM=+=由已知条件知,直线AN的方程为(1y xk=-,∴同理可得AN=.由2AM AN=得22233ktk k t=++,即23632k ktk-=-.∵椭圆E的焦点在x轴,所以3t>,即236332k kk->-,整理得()()23122k kk+-<-2k<.21.(本小题满分12分)解:(I)()f x的定义域为()()22,-∞--+∞,.()()()22224ee222xxx xf xx x x⎛⎫-' ⎪=+=⎪+++⎝⎭.∵当x∈()()22,-∞--+∞,时,()0f x'>,∴()f x在()()22,-∞--+∞,和上单调递增,∴0x>时,()2e0=12xxfx->-+,∴()2e20xx x-++>.(II)()()()24e2ex xa x x ax ag xx----'=()4e2e2x xx x ax ax-++=()322e2xxx axx-⎛⎫+⋅+⎪+⎝⎭=,[)01a∈,.由(I)知,当0x>时,()2e2xxf xx-=⋅+的值域为()1-+∞,,只有唯一解使得2e2ttat-⋅=-+,(]02t∈,.当(0,)x t∈时()0g x'<,()g x单调减;当(,)x t∈+∞时()0g x'>,()g x单调增.()()()222e1ee1e22t tt ttta t th at t t-++⋅-++===+.记()e2tk tt=+.231232在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22.(本小题满分10分) 解:(I )∵DF EC ⊥, ∴,DEF CDF ∆~∆∴GDF DEF FCB ∠=∠=∠,DF DE DGCF CD CB ==, ∴,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠由此0180,CGF CBF ∠+∠= ∴,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥.连结GB .由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ ∴四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=23.(本小题满分10分)解:(I )由c o s ,s i nx y ρθρθ==可得C的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-= 12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==,所以l 的斜率为3或3-.24.(本小题满分10分)解:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-,∴112x -<≤-;当1122x -<<时,()2f x <恒成立;当12x ≥时,由()2f x <得22,x <解得1x <, ∴112x ≤<.综上可得,()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时, 11,11a b -<<-<<,∴222222()(1)1a b ab a b a b +-+=+-- 22(1)(1)0a b =--<, ∴|||1|.a b ab +<+2332016年普通高等学校招生全国统一考试理科数学(Ⅲ)参考答案 第Ⅰ卷(选择题 共60分) 一、选择题(60分)1—12 DCADA ABCBB A C第Ⅱ卷(非选择题 90分)二、填空题:本大题共3小题,每小题5分 13.32 14.32π 15.21y x =-- 16.4 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)由题意得1111a S a λ==+,∴1≠λ,λ-=111a ,01≠a .由n n a S λ+=1,111+++=n n a S λ得 n n n a a a λλ-=++11,即n n a a λλ=-+)1(1.由01≠a ,0≠λ得0≠n a , ∴11n n a a λλ+=-. ∴}{n a 是首项为λ-11,公比为1-λλ的等比数列, ∴1)1(11---=n n a λλλ. (Ⅱ)由(Ⅰ)得n n S )1(1--=λλ, 由32315=S 得3231)1(15=--λλ,即=-5)1(λλ321,解得1λ=-.18.(本小题满分12分) 解:(Ⅰ)由折线图中数据和附注中参考数据得4=t ,28)(712=-∑=i i t t ,55.0)(712=-∑=i iy y,=40.1749.32 2.89=-⨯=,99.0646.2255.089.2≈⨯⨯≈r .因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关相当高,从而可以用线性回归模型拟合y 与t 的关系.(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i it ty y t tb, 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a. ∴y 关于t 的回归方程为: t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. ∴预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 19.(本小题满分12分)解:(Ⅰ)由已知得232==AD AM . 取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,∴TN AM ,四边形AMNT 为平行四边形,∴AT MN //.∵⊂AT 平面PAB ,⊄MN 平面PAB ,∴//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE . 由AC AB =得BC AE ⊥,从而 AD AE ⊥,且5)2(2222=-=-=BC AB BE AB AE .234以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=PN ,)2,1,25(=AN .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取(0,2,1)n =,∴2558|||||,cos |==><AN n AN n . 20.解:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且221(,0),(,),(,),222a b A B b P a - 11(,),(,)222a b Q b R +--.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . (Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=. ∴FQ AR ∥.(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则1111222ABF S b a FD b a x ∆=-=--,2PQF a bS ∆-=.由题设可得221211ba x ab -=--,∴01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合.∴所求轨迹方程为12-=x y . 21.(本小题满分12分)解:(Ⅰ)'()2sin 2(1)sin f x a x a x =---. (Ⅱ)当1a ≥时,'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f = ∴32A a =-.当01a <<时,将()f x 变形为2()2c o s (1)c o s 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值, (1)g a -=,(1)32g a =-,且当14a t a -=时,()g t 取得极小值,极小值为221(1)61()1488a a a a g a a a --++=--=-. 令1114a a--<<,解得13a <-(舍去),15a >.235(ⅰ)当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(ⅱ)当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>.又1(1)(17)|()||(1)|048a a a g g a a --+--=>,∴2161|()|48a a a A g a a-++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩. (Ⅲ)由(Ⅰ)得'|()||2sin 2(1)sin |f x a x a x =--- 2|1|a a ≤+-.当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=. 当115a <<时,131884a A a =++≥, ∴'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,∴'|()|2f x A ≤.22.(本小题满分10分) 解:(Ⅰ)连结BC PB ,,则,BFD PBA BPD ∠=∠+∠ PCD PCB BCD ∠=∠+∠.∵AP BP =,∴PCB PBA ∠=∠, 又BCD BPD ∠=∠, ∴PCD BFD ∠=∠.又180PFD BFD ∠+∠=, 2PFB PCD ∠=∠,∴1803=∠PCD , ∴ 60=∠PCD .(Ⅱ)∵BFD PCD ∠=∠, ∴ 180=∠+∠EFD PCD ,由此知E F D C ,,,四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,∴G 就是过E F D C ,,,四点的圆的圆心, ∴G 在CD 的垂直平分线上, ∴CD OG ⊥.23.(本小题满分10分)解:(I )1C 的普通方程为2213x y +=, 2C 的直角坐标方程为40x y +-=.(Ⅱ)由题意,可设点P的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,()d α=sin()2|3πα=+-.当且仅当2()6k k Z παπ=+∈时,()d α,此时P 的直角坐标为31(,)22.24.(本小题满分10分) 解:(Ⅰ)当2a =时,()|22|2f x x =-+. 解不等式|22|26x -+≤,得13x -≤≤. ∴()6f x ≤的解集为236 {|13}x x -≤≤.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++- |212|x a x a ≥-+-+|1|a a =-+, 当12x =时等号成立, ∴当x R ∈时,()()3f xg x +≥等价于|1|3a a -+≥. ① 当1a ≤时,①等价于13a a -+≥,无解. 当1a >时,①等价于13a a -+≥,解得2a ≥.∴a 的取值范围是[2,)+∞.。
2016年高考真题——理科数学(新课标Ⅰ卷) Word版含解析 _1_
答案 A 解析 因 方程 题意知 双曲线的焦点在 x 轴 ,所
m2 + n + 3m2 − n = 4 ,解得 m 2 = 1 ,
x2 y2 − = 1 表示双曲线,所 1+ n 3 − n
1 + n > 0 n > −1 ,解得 ,所 3 − n > 0 n < 3
n 的取值范
围是 ( −1,3) ,故选 A. 考点 双曲线的性质 6 如 ,某几何体的 视 是 个半径相等的圆及 个圆中两条互相垂直的半径.若该
7 函数 y=2x2–e|x|在[–2,2]的
大
A
B
C 答案 D
D
考点 函数
性质
, 0 < c < 1 ,则 8 若 a > b >1
A C 答案 C
a c < bc
B D
ab c < ba c
a log b c < b log a c
log a c < log b c
考点 指数函数 对数函数的性质 9 执行右面的程序框 ,如果输入的 x = 0,y = 1,n = 1 ,则输出 x,y 的值满足 A C 答案 C 解析 试题 析 当 x = 0, y = 1, n = 1 时 , x = 0 +
1 + 36d = 27 ,所 a1 + 9d = 8
a1 = −1, d = 1, a100 = a1 + 99d = −1 + 99 = 98,
车,且到达发车站的时刻是随机的,则他等车时间 超过 10 1 A 3 答案 B 1 B 2 2 C 3
考点 几何概型 5 范围是 A (–1,3) B (–1, 3) C (0,3) D (0, 3) x2 y2 知方程m2+n–3m2–n=1 表示双曲线,且该双曲线两焦点间的距离 4,则 n 的取值
2016年全国高考数学(理科)试题与答案_全国1卷(解析版)
绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =I (A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (C 3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B.考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )34【答案】B考点:几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度由:长度、面积、体积等.(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 (A )17π (B )18π (C )20π (D )28π【答案】A 【解析】试题分析: 该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(7)函数22xy x e =-在[]2,2-的图像大致为(A )(B )(C ) (D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项. (8)若101a b c >><<,,则(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 【答案】C 【解析】试题分析:用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B错误,2313log 2log 22<,选项C 正确,3211log log 22>,选项D 错误,故选C . 考点:指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足 (A )2y x = (B )3y x = (C )4y x = (D )5y x =结束【答案】C考点:程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=42,|DE|=25,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.(11)平面α过正方体ABCD-A1B1C1D1的顶点A,α//平面CB1D1,αI平面ABCD=m,αI平面AB B1A1=n,则m、n所成角的正弦值为(A)32(B)22(C)33(D)13【答案】A【解析】试题分析:如图,设平面11CB D I 平面ABCD ='m ,平面11CB D I 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角.延长AD ,过1D 作11//DE B C ,连接11,CE B D ,则CE 为'm ,同理11BF 为'n ,而111//,//BD CE B F A B ,则','m n 所成的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.(12).已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖,是一道考查能力的好题.注意本题解法中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是半个周期;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图像关于直线x x =对称,则()0f x A= 或()0f x A=-.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 【答案】2- 【解析】试题分析:由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-. 考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .(14)5(2)x x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10考点:二项式定理【名师点睛】确定二项展开式指定项的系数通常是先写出通项1r T +,再确定r 的值,从而确定指定项系数.(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 【答案】64 【解析】试题分析:设等比数列的公比为q ,由1324105a a a a +=⎧⎨+=⎩得,2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q--++++-==⨯=L L ,于是当3n =或4时,12n a a a L 取得最大值6264=.考点:等比数列及其应用高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做.(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 【答案】216000作出二元一次不等式组②表示的平面区域(如图),即可行域.考点:线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分为12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ;(II )若7,c ABC =∆的面积为33,求ABC V 的周长. 【答案】(I )C 3π=(II )57+【解析】 试题分析:(I )先利用正弦定理进行边角代换化简得得1cosC 2=,故C 3π=;(II )根据133sin C 22ab =.及C 3π=得6ab =.再利用余弦定理得 ()225a b +=.再根据7c =可得C ∆AB 的周长为57+.考点:正弦定理、余弦定理及三角形面积公式【名师点睛】三角形中的三角变换常用到诱导公式,()()sin sin ,cos cos ,A B C A B C +=+=- ()tan tan A B C +=-,就是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边.”(18)(本小题满分为12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD , 90AFD ∠=o ,且二面角D -AF -E 与二面角C -BE -F 都是60o .(I )证明:平面ABEF ⊥平面EFDC ;(II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )219- 试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E .又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF u u u r 的方向为x 轴正方向,GF u u u r 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =o ,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D 3.由已知,//F AB E ,所以//AB 平面FDC E . CA BD EF又平面CD AB I 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE-的平面角,C F 60∠E =o.从而可得(C -.所以(C E =u u u r ,()0,4,0EB =u u u r,(C 3,A =--u u u r ,()4,0,0AB =-u u u r . 设(),,n x y z =r是平面C B E 的法向量,则 C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩u u u r r u u u r r ,即040x y ⎧=⎪⎨=⎪⎩,所以可取(3,0,n =r . 设m r 是平面CD AB 的法向量,则C 00m m ⎧⋅A =⎪⎨⋅AB =⎪⎩u u u r r u u u r r ,同理可取()4m =r.则cos ,n m n m n m ⋅==r r r r r r 故二面角C E-B -A的余弦值为. 考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【答案】(I )见解析(II )19(III )19n =【解析】试题分析:(I )先确定X 的取值分别为16,17,18,18,20,21,22,,再用相互独立事件概率模型求概率,然后写出分布列;(II )通过频率大小进行比较;(III )分别求出n =9,n =20的期望,根据19=n 时所需费用的期望值小于20=n 时所需费用的期望值,应选19=n .所以X 的分布列为 X 16 17 18 19 20 21 22P 04.0 16.0 24.0 24.0 2.0 08.0 04.0(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19.(Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元).当19=n 时,08.0)500220019(2.0)50020019(68.020019⨯⨯+⨯+⨯+⨯+⨯⨯=EY 404004.0)500320019(=⨯⨯+⨯+.当20=n 时,04.0)500220020(08.0)50020020(88.020020⨯⨯+⨯+⨯+⨯+⨯⨯=EY 4080=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n . 考点:概率与统计、随机变量的分布列【名师点睛】本题把随机变量的分布列与统计及函数结合在一起进行考查,有一定综合性但难度不是太大大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.(20). (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为: 13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x . 所以34)1(12||1||22212++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为)38,12[.考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.(21)(本小题满分12分)已知函数()()()221x f x x e a x =-+-有两个零点.(I)求a 的取值范围;(II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.【答案】(0,)+∞试题解析;(Ⅰ)'()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+.(i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln 2a b <,则 223()(2)(1)()022a fb b a b a b b >-+-=->, 故()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-. 若2e a ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 若2e a <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞.考点:导数及其应用【名师点睛】,对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;,解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,12OA为半径作圆.(I)证明:直线AB与e O相切;(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.OD CBA【答案】(I)见解析(II)见解析试题解析:(Ⅰ)设E 是AB 的中点,连结OE ,因为,120OA OB AOB =∠=︒,所以OE AB ⊥,60AOE ∠=︒.在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径,所以直线AB 与⊙O 相切. E O'DC OBA(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上,所以'OO AB ⊥. 同理可证,'OO CD ⊥.所以//AB CD .考点:四点共圆、直线与圆的位置关系及证明【名师点睛】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,a >0). 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=Q ,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =考点:参数方程、极坐标方程与直角坐标方程的互化及应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)(本小题满分10分),选修4—5:不等式选讲已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像;(II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭U U ,,,试题解析:⑴如图所示:考点:分段函数的图像,绝对值不等式的解法【名师点睛】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。
2016全国卷Ⅱ高考理科数学试卷及答案(word版)
2016年普通高等学校招生全统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知i m m z )1()3(-++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3-,1) (B )(1-,3) (C )(1,∞+) (D )(∞-,3-)(2) 已知集合{}3,2,1=A ,{}Z x x x x B ∈<-+=,0)2)(1(,则=B A Y (A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1- (3) 已知向量),1(m a =,)2,3(-=b 且b b a ⊥+)(,则=m(A )8- (B )6- (C )6 (D )8 (4) 圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a(A )34-(B )43- (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π(C )28π (D )32π (7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈-=ππ (B ))(62Z k k x ∈+=ππ 44423(C ))(122Z k k x ∈-=ππ (D ))(122Z k k x ∈+=ππ (8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s (A )7 (B )12 (C )17 (D )34 (9) 若53)4cos(=-απ,则=α2sin (A )257 (B )51 (C )51- (D )257-(10)以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )m n 4 (B )m n 2 (C )n m 4 (D )nm 2 (11)已知21,F F 是双曲线E :12222=-by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2 (12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i iy x1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。
2016年高考数学全国1卷(理)及答案
绝密 ★ 启用前2016年普通高等学校招生全国统一考试理科数学本试题卷共5页,24题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域内均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、 考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合}034{2<+-=x x x A ,}032{>-=x x B ,则=B A(A ))23,3(--(B ))23,3(-(C ))23,1((D ))3,23((2)设yi x i +=+1)1(,其中y x ,是实数,则=+yi x(A )1(B )2(C )3(D )2(3)已知等差数列}{n a 前9项的和为27,810=a ,则=100a(A )100 (B )99 (C )98 (D )97(4)某公司的班车在30:7,00:8,30:8发车,小明在50:7至30:8之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是(A )31 (B )21 (C )32 (D )43 (5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 (A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0((6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的 表面积是(A )π17 (B )π18 (C )π20 (D )π28 (7)函数xe x y -=22在]2,2[-的图像大致为(A(B(C((8)若1>>b a ,10<<c ,则(A )cc b a <(B )cc ba ab < (C )c b c a a b log log < (D )c c b a log log <(9)执行右面的程序框图,如果输入的0=x ,1=y ,1=n ,则输出y x ,的值满足(A )x y 2=(B )x y 3=(C )x y 4=(D )x y 5=(10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2(B )4(C )6(D )8(11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB , α平面ABCDm =, α平面n A ABB =11,则n m ,所成角的正弦值为(A )23 (B )22 (C )33(D )31(12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为 (A )11(B )9(C )7(D )5第II 卷本卷包括必考题和选考题两部分。
2016年高考全国Ⅲ理科数学试题及答案(word解析版)
2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅲ,理1,5分】设集合 ,则( )()(){}{}|230,|0S x x x T x x =--≥=>S T =(A ) (B ) (C )(D )[]2,3(][),23,-∞+∞ [)3,+∞(][)0,23,+∞ 【答案】D【解析】由解得或,,所以,故选()()230x x --≥3x ≥2x ≤{}23S x x ∴=≤≥或{}023S T x x x =<≤≥ 或D .【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若,则( )i 12z =+4i1zz =-(A )1 (B ) (C ) (D )1-i i -【答案】C【解析】,故选C .4i 4ii (12i)(12i)11zz ==+---【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“”的多项式合并同类项,复数的乘法与多i 项式的乘法相类似,只是在结果中把换成.复数除法可类比实数运算的分母有理化.复数加、减2i 1-法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量,,则( )1(2BA =u u v 1)2BC =u u u v ABC ∠=(A ) (B ) (C ) (D )30︒45︒60︒120︒【答案】A【解析】由题意,得,所以,故选A .cos BA BC ABC BA BC⋅∠=== 30ABC ∠=︒【点评】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值a b ·cos a b a b θ或θa b 范围:;(2)由向量的数量积的性质有,,因此,0180θ︒≤≤︒|a ·cos a ba bθ=·0a b a b ⇔⊥ 或利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为A ,点表示四月的平均最低气温约为.下面叙述不正确的是( )15C ︒B 5C ︒(A )各月的平均最低气温都在以上 (B )七月的平均温差比一月的平均温差大 0C ︒(C )三月和十一月的平均最高气温基本相同(D )平均气温高于的月份有5个20C ︒【答案】D【解析】由图可知均在虚线框内,所以各月的平均最低气温都在以上,A 正确;由图0C ︒0C ︒可在七月的平均温差大于,而一月的平均温差小于,所以七月的平均7.5C ︒7.5C ︒温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,5C ︒C 正确;由图可知平均最高气温高于的月份有3个或2个,所以不正确,故选D .20C ︒【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.(5)【2016年全国Ⅲ,理5,5分】若,则()3tan4α=2cos2sin2αα+=(A)(B)(C)1 (D)642548251625【答案】A【解析】由,得或,所以,3tan4α=34sin,cos55αα==34sin,cos55αα=-=-2161264cos2sin24252525αα+=+⨯=故选A.【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.(6)【2016年全国Ⅲ,理6,5分】已知,,,则()432a=254b=1325c=(A)(B)(C)(D)b a c<<a b c<<b c a<<c a b<<【答案】A【解析】因为,,所以,故选A.422335244a b==>=1223332554c a==>=b a c<<【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的,那么输出的46a b==或()n=(A)3 (B)4 (C)5 (D)6【答案】B【解析】第一循环,得;第二循环,得;2,4,6,6,1a b a s n=====2,6,4,10,2a b a s n=-====第三循环,得;第四循环,得2,4,6,16,3a b a s n=====;2,6,4,2016,4a b a s n=-===>=退出循环,输出,故选B.4n=【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在中,,边上的高等于,则 ( )ABCDπ4B=BC13BC cos A=(A(B(C)(D)--【答案】C【解析】设边上的高线为,则,所以,.由余弦定理,BC AD3BC AD=AC==AB=知,故选C.222cos2AB AC BCAAB AC+-===⋅【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)(B)(C)90 (D)8118+54+【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积B.2362332354S=⨯⨯+⨯⨯+⨯⨯=+【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱内有一个体积为的球,若,111ABC A B C -V AB BC ⊥,,,则的最大值是( )6AB =8BC =13AA =V (A ) (B ) (C ) (D )4π92π6π323π【答案】B【解析】要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半V R 径取得最大值,此时球的体积为,故选B .32334439(3322R πππ==【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知为坐标原点,是椭圆的左焦点,分O F 2222:1(0)x y C a b a b+=>>,A B 别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于C P C PF x ⊥A l PF M y 点.若直线经过的中点,则的离心率为( )E BM OE C (A ) (B ) (C ) (D )13122334【答案】A【解析】由题意设直线的方程为,分别令与得点,,由l ()y k x a =+x c =-0x =()FM k a c =-OE ka=~OBE ∆,得,即,整理得,所以椭圆离心率为,故选A .CBM ∆12OE OB FM BC=()2ka ak a c a c=-+13c a =1e 3=【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得的值,进而求得的值;(2)建立,a c e 的齐次等式,求得或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.,,a b c ba e e (12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”如下:共有项,其中项为0,项为{}n a {}n a 2m m m 1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有(2k m ≤12,,,k a a a 4m =)(A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有,,则具体的排法列表如下:,故选C .10a =81a =011101101111001101011001110100110101100101010101【点评】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。
2016年黑龙江省高考理科数学试题与答案
12016年黑龙江省高考理科数学试题与答案(满分150分,时间120分)分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分共24题,共5页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题 ,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知Z=Z=((m+3m+3))+(m-1m-1))i 在复平面内对应的点在第四象限,则实数m 的取值范围是的取值范围是(A )(-3,1-3,1)) (B )(-1,3-1,3)) (C )()1,+¥ (D )(),3-¥-(2)已知集合{}1,2,3A =,{}|(1)(2)0,B x x x x Z =+-<Î,则A B =(A ){1} (B ){1,2} (C ){0,1,2,3} (D ){-1,0,1,2,3}(3)已知向量a=a=((1,m ),b=b=((3,-2-2)),且(,且(a+b a+b a+b))^b ,则m=(A )-8 -8 (B )-6 -6 (C )6 6 (D )8(4)圆22x +y -2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(A )4-3 (B )3-4(C )3 (D )2 (5)如图,如图,小明从街道的小明从街道的E 处出发,处出发,先到先到F 处与小明回合,处与小明回合,再一起到位于再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20p (B )24p (C )28p (D )32p (7)若将函数2sin 2y x = 的图像向左平移12p个单位长度,则平移后的图像对称轴为个单位长度,则平移后的图像对称轴为 (A )()26k x k Z p p =-Î (B )()26k x k Z pp=+Î (C )()212k x k Z p p=-Î (D )()212k x k Z p p=+Î(8)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为
(A)20π (B)24π (C)28π (D)32π
(7)若将函数y=2sin 2x的图像向左平移 个单位长度,则评议后图象的对称轴为
(A)x= – (k∈Z) (B)x= + (k∈Z) (C)x= – (k∈Z) (D)x= + (k∈Z)
(16)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+2)的切线,则b=。
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本题满分12分)
为等差数列 的前n项和,且 记 ,其中 表示不超过x的最大整数,如 .
(I)求 ;
(II)求数列 的前1 000项和.
18.(本题满分12分)
(I)讨论函数 的单调性,并证明当 >0时,
(II)证明:当 时,函数 有最小值.设g(x)的最小值为 ,求函数 的值域.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分10分)选修4-1:集合证明选讲
如图,在正方形ABCD,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.
【结束】
18.(本题满分12分)
【答案】(Ⅰ)根据互斥事件的概率公式求解;(Ⅱ)由条件概率公式求解;(Ⅲ)记续保人本年度的保费为 ,学.科网求 的分布列为,在根据期望公式求解..
【解析】
试题分析:
试题解析:(Ⅰ)设 表示事件:“一续保人本年度的保费高于基本保费”,则事件 发生当且仅当一年内出险次数大于1,故
(4)【答案】A
(5)【答案】B
(6)【答案】C
(7)【答案】B
(8)【答案】C
(9)【答案】D
(10)【答案】C
(11)【答案】A
(12)【答案】C
第Ⅱ卷
二、填空题
(13)【答案】
(14)【答案】②③④
(15)【答案】1和3
(16)【答案】
三.解答题
17.(本题满分12分)
【答案】(Ⅰ) , , ;(Ⅱ)1893.
试题解析:(I)
当 时,学科&网由 得 解得 ;
当 时, ;
当 时,由 得 解得 .
所以 的解集 .
(II)由(I)知,当 时, ,从而
,
因此
考点:绝对值不等式,不等式的证明.
(1)已知 在复平面内对应的点在第四象限,则实数m的取值范围是
(A) (B) (C) (D)
(2)已知集合 , ,则
(A) (B) (C) (D)
(3)已知向量 ,且 ,则m=
(A)-8(B)-6(C)6(D)8
(4)圆 的圆心到直线 的距离为1,则a=
(A) (B) (C) (D)2
(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为
试题解析:(I)学科&网因为 ,所以
则有
所以 由此可得
由此 所以 四点共圆.
(II)由 四点共圆, 知 ,连结 ,
由 为 斜边 的中点,知 ,故
因此四边形 的面积 是 面积 的2倍,即
考点:三角形相似、全等,四点共圆
【结束】
(23)(本小题满分10分)选修4—4:坐标系与参数方程
【答案】(Ⅰ) ;(Ⅱ) .
(Ⅱ)设 表示事件:“一续保人本年度的保费比基本保费高出 ”,则事件 发生当且仅当一年内出险次数大于3,故
又 ,故
因此所求概率为
(Ⅲ)记续保人本年度的保费为 ,则 的分布列为
因此续保人本年度的平均保费与基本保费的比值为
考点:条件概率,随机变量的分布列、期望.
【结束】
19.(本小题满分12分)
【答案】(Ⅰ)详见解析;(Ⅱ) .
某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数
0
1
2
3
4
5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数
0
1
2
3
4
5
概率
0.30
0.15
0.20
0.20
且仅当 时, ,所以 在 单调递增,
因此当 时,
所以
(II)
由(I)知, 单调递增,对任意
因此,存在唯一 使得 即 ,
当 时, 单调递减;
当 时, 单调递增.
因此 在 处取得最小值,最小值为
于是 ,由 单调递增
所以,由 得
因为 单调递增,对任意 存在唯一的
使得 所以 的值域是
综上,当 时, 有 , 的值域是
【解析】
试题分析:(Ⅰ)证 ,再证 ,最后证 ;(Ⅱ)用向量法求解.
试题解析:(I)由已知得 , ,又由 得 ,故 .
因此 ,从而 .由 , 得 .
由 得 .学.科网所以 , .
于是 , ,
故 .
又 ,而 ,
所以 .
(II)如图,以 为坐标原点, 的方向为 轴的正方向,学.科网建立空间直角坐标系 ,则 , , , , , , , .设 是平面 的法向量,则 ,即 ,所以可以取 .设 是平面 的法向量,则 ,即 ,所以可以取 .于是 , .因此二面角 的正弦值是 .
考点:函数的单调性、极值与最值.
【结束】
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分10分)选修4-1:几何证明选讲
【答案】(Ⅰ)详见解析;(Ⅱ) .
【解析】
试题分析:(Ⅰ)证 再证 四点共圆;(Ⅱ)证明 四边形 的面积 是 面积 的2倍.
【解析】
试题分析:(I)利用 , 可得C的极坐标方程;(II)先将直线 的参数方程化为普通方程,再利用弦长公式可得 的斜率.
试题解析:(I)由 可得 的极坐标方程
(II)在(I)中建立的极坐标系中,学科&网直线 的极坐标方程为
由 所对应的极径分别为 将 的极坐标方程代入 的极坐标方程得
于是
由 得 ,
二、填空题:本大题共3小题,每小题5分
(13)△ABC的内角A、B、C的对边分别为a、b、c,若cosA= ,cosC= ,a=1,则b=.
(14)α、β是两个平面,m、n是两条直线,有下列四个命题:
(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.
(2)如果m⊥α,n∥α,那么m⊥n.
(3)如果α∥β,m α,那么m∥β.学科.网
0.10
0. 05
(I)求一续保人本年度的保费高于基本保费的概率;
(II)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(III)求续保人本年度的平均保费与基本保费的比值.
19.(本小题满分12分)
如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF= ,EF交BD于点H.将△DEF沿EF折到△ 的位置, .
所以 的斜率为 或 .
考点:圆的极坐标方程与普通方程互化,直线的参数方程,点到直线的距离公式.
【结束】
(24)(本小题满分10分)选修4—5:不等式选讲
【答案】(Ⅰ) ;(Ⅱ)详见解析.
【解析】
试题分析:(I)先去掉绝对值,再分 , 和 三种情况解不等式,即可得 ;(II)采用平方作差法,再进行因式分解,进而可证当 , 时, .
【解析】
试题分析:(Ⅰ)先求公差、通项 ,再根据已知条件求 ;(Ⅱ)用分段函数表示 ,学.科.网再由等差数列的前 项和公式求数列 的前1 000项和.
试题解析:(Ⅰ)设 的公差为 ,据已知有 ,学.科.网解得
所以 的通项公式为
(Ⅱ)因为
所以数列 的前 项和为
考点:等差数列的的性质,前 项和公式,学.科网对数的运算.
(24)(本小题满分10分),选修4—5:不等式选讲
已知函数f(x)=∣x- ∣+∣x+ ∣,M为不等式f(x)<2的解集.
(I)求M;
(II)证明:当a,b∈M时,∣a+b∣<∣1+ab∣。
2016年普通高等学校招生全国统一考试
理科数学答案
第Ⅰ卷
一.选择题:
(1)【答案】A
(2)【答案】C
(3)【答案】D
(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=
(A)7 (B)12 (C)17 (D)34
(9)若cos( –α)= ,则sin 2α=
(A) (B) (C)– (D)–
(10)从区间 随机抽取2n个数 , ,…, ,学科&网 , ,…, ,构成n个数对 , ,…, ,其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率 的近似值为
因此 的取值范围是 .
考点:椭圆的性质,直线与椭圆的位置关系.
【结束】
(21)(本小题满分12分)
【答案】(Ⅰ)详见解析;(Ⅱ) .
【解析】
试题分析:(Ⅰ)先求定义域,用导数法求函数的单调性,学科&网当 时, 证明结论;(Ⅱ)用导数法求函数 的最值,在构造新函数 ,又用导数法求解.
试题解析:(Ⅰ) 的定义域为 .
2016黑龙江高考理科数学真题及答案