最新七年级有理数专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学有理数解答题压轴题精选(难)

1.

(1)观察发现

,,,……,

=1﹣=.

=1﹣=.

=________.

(2)构建模型

=________.(n为正整数)

(3)拓展应用:

① =________.

② =________.

③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.

【答案】(1)

(2)

(3);;20.

【解析】【解答】(1) =

=1﹣=,

故答案为:;(2) =

=1﹣=,

故答案为:;(3)①原式==1﹣

=,

故答案为:;

②原式==

=1﹣=,

故答案为:;

③设这个数为x,

根据题意得:( )x= x﹣1,

整理得: x= x﹣1,

去分母得:( )x=x﹣4,

即(1﹣ )x=x﹣4,

整理得: x=x﹣4,

解得:x=20,

答:这个数是20.

【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.

2.如图1,A、B两点在数轴上对应的数分别为﹣12和4.

(1)直接写出A、B两点之间的距离;

(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.

(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.

【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16

(2)解:设点P表示的数为x.分两种情况:

①当点P在线段AB上时,

∵AP= PB,

∴x+12=(4﹣x),

解得x=﹣8;

②当点P在线段BA的延长线上时,

∵AP= PB,

∴﹣12﹣x=(4﹣x),

解得x=﹣20.

综上所述,点P表示的数为﹣8或﹣20

(3)解:分两种情况:

①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,

此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,

∵OP=4OQ,

∴12﹣5t=4(4﹣2t),

解得t=,符合题意;

②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,

此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,

∵OP=4OQ,

∴|12﹣5t|=4×3(t﹣2),

∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,

解得t=,符合题意;或t=,不符合题意舍去.

综上所述,当OP=4OQ时的运动时间t的值为或秒

【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据

AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当

t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.

3.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.

(1)填空: ________ , ________ .

(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.

(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?

【答案】(1)-1;3

(2)解:依题可得:

PA=|x+1|,PB=|3-x|,

∵点P到点A、点B的距离相等,

∴PA=PB,

即|x+1|=|3-x|,

解得:x=1,

∴点P对应的数为1.

(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,

∴A点对应的数为2t-1,

点B对应的数为3+0.5t,

①当点A在点B左边时,

∵AB=2,

∴(3+0.5t)-(2t-1)=2,

解得:t=,

∵点P以 3 个单位长度/秒的速度同时从原点向左运动,

∴×3=4,

∴P点对应的数为:-4.

②当点A在点B右边时,

∵AB=2,

∴(2t-1)-(3+0.5t)=2,

解得:t=4,

∵点P以 3 个单位长度/秒的速度同时从原点向左运动,

∴4×3=12,

∴P点对应的数为:-12.

【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,

∴,

解得:.

故答案为:-2;3.

【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.

(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.

(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.

4.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.

(1)请写出线段AB的中点C对应的数.

(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?

(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?

【答案】(1)解:AB=120-(-20)=140,则BC=70

C点对应的数是50.

(2)解:设P、Q运动时间为t,则BP=3t,AQ=2t

当点P、Q重合时,则BP+AQ=140

即:3t+2t=140,解得:t=28

所以AP=56

点P、Q重合时对应的数为56-20=36

(3)解:分两种情况,①当P、Q相遇之前,BP+AQ=140-50,

即3t+2t=140-50,解得:t=18

②当P、Q相遇之后,BP+AQ=140+50,

即3t+2t=140+50,解得:t=38

当P、Q两点运动18秒或38秒时,P、Q相距50个单位长度.

【解析】【分析】(1)先求出AB的长度,即可求出线段BC,再确定C在数轴上表示的数即可;(2)设P、Q运动时间为t,则BP=3t,AQ=2t,根据题意可知BP+AQ=140,即3t+2t=140,进而求得t的值,即可表示P、Q重合点的对应数.(3)分两种情况,①当

相关文档
最新文档