中考数学中的探究性问题动态几何(终审稿)

合集下载

中考复习专题:动态几何之定值问题探讨

中考复习专题:动态几何之定值问题探讨

20XX年中考复习专题:动态几何之定值问题探讨一、线段(和差)为定值问题:典型例题:例1:已知:在矩形ABCD中,AB=6cm,AD=9cm,点P从点B出发,沿射线BC方向以每秒2cm的速度移动,同时,点Q从点D出发,沿线段DA以每秒1cm的速度向点A方向移动(当点Q到达点A时,点P与点Q同时停止移动),PQ交BD于点E.求证:在点P、Q的移动过程中,线段BE的长度保持不变.例2:如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B左边),与y轴交于点C,顶点坐标为P.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.练习题:1.如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P在线段BA上从B向A 运动.Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运动.作PM⊥PQ交CA 于点M,过点P分别作BC、CA的垂线,垂足分别为E、F.(1)求证:△PQE∽△PMF;(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想;(3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来.2、已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)(1)(2) (3)3、如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时..出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).(1)当t为何值时,四边形PCDQ为平行四边形?(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.4、已知:A、B、C不在同一直线上.(1)若点A、B、C均在半径为R的⊙O上,i)如图一,当∠A=45°时,R=1,求∠BOC的度数和BC的长度;ii)如图二,当∠A为锐角时,求证sin∠A= BC2R;(2).若定长线段....BC的两个端点分别在∠MAN的两边AM、AN(B、C均与点A不重合)滑动,如图三,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为点P,试探索:在整个滑动过程中,P、A 两点的距离是否保持不变?请说明理由.二、面积(和差)为定值问题:典型例题:例1:如图,在梯形ABCD中,AD∥BC,E、F分别是AB、DC边的中点,AB=4,∠B=60°,(1)求点E到BC边的距离;(2)点P为线段EF上的一个动点,过P作PM⊥BC,垂足为M,过点M作MN∥AB交线段AD于点N,连接PN、探究:当点P在线段EF上运动时,△PMN的面积是否发生变化?若不变,请求出△PMN的面积;若变化,请说明理由.例2:如图,在平面直角坐标系x O y中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P 从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C 出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同2.时停止,设运动时间为t秒,当t=2秒时PQ=5(1)求点D的坐标,并直接写出t的取值范围;(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?练习题:1.如图1,在△ABC 中,AB=AC=5,BC=6,D 、E 分别是AB 、AC 的中点,F 、G 为BC 上的两点,FG=3,线段DG ,EF 的交点为O ,当线段FG 在线段BC 上移动时,三角形FGO 的面积与四边ADOE 的面积之和恒为定值,则这个定值是 .2.如图2,在矩形ABCD 中,AD=5,AB=4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF=CG=2,BE=DH=1,点P 是直线EF 、GH 之间任意一点,连接PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 _________ .图1 图23.如图所示,四边形OABC 是矩形.点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重含),过点D 作直线12y x b =+交折线OAB 于点E 。

中考复习专题动态几何之存在性问题探讨

中考复习专题动态几何之存在性问题探讨

20XX 年中考复习专题:动态几何之存在性问题探讨一、等腰(边)三角形存在问题:例:如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过点A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.练习:已知直线y = 2x + 4 与x 轴、y 轴分别交于A , D 两点,抛物线21y=x +bx+c 2-经过点A , D ,点B 是抛物线与x 轴的另一个交点。

(1)求这条抛物线的解析式及点B 的坐标;(2)设点M 是直线AD 上一点,且AOM OMD S : S 1 : 3∆∆=,求点M 的坐标; (3)如果点C (2,y )在这条抛物线上,在y 轴的正半轴上是否存在点P ,使△BCP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由。

二、直角三角形存在问题:例:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0) .如图所示,B 点在抛物线y =12x 2+12x -2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌△COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.练习:如图,抛物线2y x bx 5=--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC |:|OA |=5:1.(1)求抛物线的解析式;(2)求直线AF 的解析式;(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.三、平行四边形存在问题:例:如图,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,且A 点坐标为(-3,0),经过B 点的直线交抛物线于点D (-2,-3).(1)求抛物线的解析式和直线BD 解析式;(2)过x 轴上点E (a ,0)(E 点在B 点的右侧)作直线EF ∥BD ,交抛物线于点F ,是否存在实数a 使四边形BDFE 是平行四边形?如果存在,求出满足条件的a ;如果不存在,请说明理由.练习:已知抛物线2y ax 2ax c =-+与y 轴交于C 点,与x 轴交于A 、B 两点,点A 的坐标是(-1,0),O 是坐标原点,且OC A 3O =.(1)求抛物线的函数表达式;(2)直接写出直线BC 的函数表达式;(3)如图2,点P (1,k )在直线BC 上,点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的平行四边形?若存在,请直接写出M 点坐标;若不存在,请说明理由.四、矩形、菱形、正方形存在问题;例:如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=122,点C的坐标为(-18,0)。

中考数学动态几何试题研究

中考数学动态几何试题研究

中考数学动态几何试题研究一、中考数学动态几何问题研究的背景和意义1、研究背景:时代在进步,科学在发展,随着改革开放以来,我国的生活水平发展迅速,教育依然是发掘人才的重要战略,培养人才成了中国的重中之重。

教育成为了我国最看重的问题,我国开展的九年义务教育就可以看出我国认真发展教育的决心。

在我国人才紧缺的背景下,考试成了选拔人才的一种必要方式,所以中考无论在老师眼中还是在家长眼中都很关心。

如今国家正在快速的发展之中,世界各地都很重视教育,教育的发展直接影响一个国家的发展情况,而数学思想在显示生活中是不可或缺的。

只有良好的基础教育才能为培养中国人才打下良好的基础,而数学几何动态问题是中考的必考试题,数学动态几何问题在试卷中占有至关重要的位置,也是让许多学生对数学失去信心的原因,动态几何问题作为中考数学很难的一部分,如果学生长期对动态几何无能为力,会严重打击学生的积极性和自信心,逐渐让学生对数学失去兴趣甚至出现厌学的心理。

只有对动态几何进行研究把动态几何问题的解题思维方式传授给学生,培养学生的学习兴趣,激发学生的自信心。

2意义:数学思想方法在现代金融学、建筑学等中必不可少,数学动态几何问题在数学教育中显得格外精彩,数学是一门理论灵活多变的教学,动态几何问题使数学教学更加丰富多彩,能够调动学生的脑力,开发学生的思维空间,对开发学生的大脑起着很重要的作用,掌握好动态几何问题对学生的发展有着很重要的意义。

二、中考数学动态几何问题国内外的发展历史和现状1、国内外发展历史:公元前两百多年,伟大的科学家、数学家、物理学家阿基米德说:“给我一个支点,我能撬起整个地球。

”阿基米德、高斯、牛顿被誉为世界三大数学家数学发展史氛围四个时期,第一时期人类才建立最基本的数学概念,简单的计算法并认识最基本的几何形式。

第二时期从公元前5世纪开始直到17世纪是常量数学时期,逐渐形成了几何、代数、算数。

从17世纪开始就是第三时期:变量数学时期,解析几何的产生,积分学的产生。

初中数学_中考专题复习 动态探究型问题教学设计学情分析教材分析课后反思

初中数学_中考专题复习  动态探究型问题教学设计学情分析教材分析课后反思

动态探究型问题练习题型一图形运动与函数图象〖课前预习1〗如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,.大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为()题型二点的运动与几何图形〖课前预习2〗△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB 于点D,PE⊥AC于点E,则PD+PE的长是( ).A. 4.8B. 4.8或3.8C. 3.8D. 5题型 三 动态问题中存在探究〖课前预习3〗如图,在平面直角坐标系中,点C(−3,0),点A,B 分别在x 轴,y 轴的正半轴上,且满足0132=-+-OA OB .(1) 求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP.设△ABP 的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,是否存在点P ,使以点A ,B ,P 为顶点的三角形与△AOB 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.〖举一反三1〗如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( ).〖举一反三2〗如图,Rt△ABC中,∠ACB=90∘,∠ABC=60∘,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为().A 2 B2.5或3.5C3.5或4.5 D2或3.5或4.5中考链接达标检测1.(2017.济宁)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是( ).)0(62>+-=a c ax ax y 2721+-=x y2.(2016•济宁)如图,已知抛物线m :的顶点A 在x 轴上,并过点B (0,1),直线n : 与x 轴交于点D ,与抛物线m 的对称轴L 交于点F ,过B 点的直线BE 与直线n 相交于点E (﹣7,7).(1)求抛物线m 的解析式.(2)P 是对称轴L 上的一个动点,若以B ,E ,P 为顶点的三角形的周长最小,求点P 的坐标.(3)抛物线m 上是否存在一动点Q ,使以线段FQ 为直径的圆恰好经过点D ?若存在,求点Q 的坐标;若不存在,请说明理由.《动态探究型问题》学情分析动态探究型问题这类题目多出现在压轴题题目中,题目难度较大,试题信息量大,对同学们获取信息和处理信息的能力要求较高,是近年来中考数学的热点题型,学生遇到这类题目时都会感到恐惧。

九年级中考数学复习专题十 几何动态探究题

九年级中考数学复习专题十  几何动态探究题

专题十几何动态探究题1. 如图,在菱形ABCD中,∠ABC=120°,点E,F分别是边AB,BC上的动点,在运动过程中,始终保持AE=BF,若AB=2,则EF的取值范围为________.第1题图2.如图,在三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F,若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为________.第2题图3. 如图,在Rt△ABC中,AB=AC=4 cm,∠BAC=90°,O为边BC上一点,OA=OB=OC,点M、N分别在边AB、AC上运动,且始终保持AN=BM.在运动过程中,四边形AMON的面积为________cm2.第3题图4. 如图,在正方形ABCD中,AB=4,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为________.第4题图5. 如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=42,则AB的长为________;若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于点F,当DE∥AC时,tan∠BCD的值为________.第5题图6.如图,在Rt△ABC中,∠ACB=90°,AC=BC=4 cm,将△ABC绕点A顺时针旋转30°得到△AB′C′,直线BB′、CC′交于点D,则CD的长为________cm.第6题图7. 如图,四边形ABCD是正方形,且AB=2,将正方形ABCD绕点A顺时针旋转后得到正方形AEFG,在旋转过程中,当点A、G、C三点共线时,则点F到BC的距离为________.第7题图8.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一个动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是________.第8题图9. 如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC,GC.则EC+GC的最小值为________.第9题图10. 如图,在菱形ABCD 中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,BN CN的值为________.第10题图11.如图,在△ABC 中,已知AD 是BC 边上的中线,∠ADC =60°,BC =3AD.将△ABD 沿直线AD 翻折,点B 落在平面上的点B ′处,连接AB ′交BC 于点E ,那么CE ∶BE 的值为________.第11题图12.如图,在平行四边形ABCD 中,AB =2,∠ABC =45°,点E 为射线AD 上一动点,连接BE ,将BE 绕点B 逆时针旋转60°得到BF ,连接AF ,则AF 的最小值是________.第12题图13. 如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为________.第13题图14. 如图,在▱ABCD 中,AB =3,BC =5,AC ⊥AB ,△ACD 沿AC 的方向以每秒1个单位的速度平移得到△EFG (点E 在线段AC 上,运动到点C 停止运动,且不与点A 重合),同时,点H 从点C 出发以相同的速度沿CB 方向移动,当△EFG 停止平移时,点H 也停止移动,连接EH ,GH ,当EH ⊥GH 时,AE BH的值为________.第14题图15.如图,在正方形ABCD中,E是线段CD上一点,连接AE,将△ADE沿AE翻折至△AEF,连接BF并延长BF交AE延长线于点P,当PF=22BF时,DECD=________.第15题图16. 如图,在边长为6的菱形ABCD中,AC为其对角线,∠ABC=60°,点M、N分别是边BC、CD上的动点,且MB=NC.连接AM、AN、MN,MN交AC于点P,则点P到直线CD的距离的最大值为________.第16题图17. 如图,在边长为6的等边△ABC中,点D在边AC上,AD=1,线段PQ在边AB上运动,PQ=1,则四边形PCDQ面积的最大值为________;四边形PCDQ周长的最小值为________.第17题图18.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG为腰的等腰三角形,则AF的长为________.第18题图19. 如图,Rt△ABC中,∠ACB=90°,AC=BC=8,F为AC中点,D是线段AB上一动点,连接CD,将线段CD绕点C沿逆时针方向旋转90°得到线段CE,连接EF,则点D在运动过程中,EF的最大值为________,最小值为________.第19题图20. 如图①,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图②,点C落在点C′处,最后按图③所示方式折叠,使点A落在DE的中点A′处,折痕是FG.若原正方形....纸片的边长为6 cm,则FG=________ cm.第20题图21. 如图,在△ABC中,AC=BC=4,∠ACB=120°,CD⊥AB,点P是直线CD上一点,连接P A,将线段P A绕点P逆时针旋转120°得到P A′,点M、N分别是线段AC、P A′的中点,连接MN,则线段MN的最小值为________.第21题图22. 如图,在矩形ABCD中,AB=6,BC=8,点E是AB边上一点,且AE=4,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为点G,连接AG、CG,则四边形AGCD面积的最小值为________,此时BF的长为________.第22题图专题十几何动态探究题1. 3≤EF≤2【解析】如解图,连接BD,过点D作DH⊥AB,垂足为点H,∵四边形ABCD为菱形,∠ABC=120°,∴∠A=∠DBA=∠C=60°,AB=BD=BC,∵AE=BF,∴BE=CF,∴△DBE≌△DCF(SAS).∴DE=DF,∠BDE=∠CDF,∵∠EDF=∠EDB+∠BDF=∠CDF+∠BDF=60°,∴△DEF 是等边三角形,∴EF=DE,当点E与点H重合时,DE的值最小,此时DE=AD·sin A=3,当点E与点A (或点B )重合时,DE 的长最大,此时DE =2,∴EF 的取值范围为3≤EF ≤2. 第1题解图 2. 255 【解析】∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折的性质得△ADB ≌△ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12(AF +DF )·BF =4,即12(3+DF )×2=4,∴DF =1,∴DB =BF 2+DF 2=22+12=5,设点F 到BD 的距离为h ,则有12BD ·h =12BF ·DF ,即12×5·h =12×2×1,∴h =255.3. 4 【解析】∵AC =AB ,∠BAC =90°,∴∠B =∠C =45°,∵OA =OB =OC ,∴∠BAO =∠CAO =45°,∠AOB =∠AOC =90°,∴∠B =∠BAO =∠CAO ,在△AON 和△BOM 中,⎩⎪⎨⎪⎧OA =OB ∠CAO =∠B AN =BM,∴△AON ≌△BOM (SAS),∴S △AON =S △BOM ,∴S △AON +S △AOM =S △BOM +S △AOM ,即S 四边形AMON =S △AOB ,∴S 四边形AMON =12S △ABC =12×12×4×4=4 cm 2.4. 210-2 【解析】如解图,连接DO ,将线段DO 绕点D 逆时针旋转90°得到DM ,连接FM ,OM ,∵ ∠EDF = ∠ODM =90°,∴ ∠EDO =∠FDM ,在△EDO 与△FDM 中,⎩⎪⎨⎪⎧DE =DF ∠EDO =∠FDM DO =DM,∴ △EDO ≌△FDM (SAS) ,∴ FM =OE =2,∵在正方形ABCD 中,AB =4,O 是BC 边的中点,∴ OC =2,∴OD =42+22=2 5 ,∴OM =2OD =210,∵OF ≥OM -MF ,∴OF ≥210-2 ,∴线段OF 长的最小值为210-2.第4题解图5. 7;34 【解析】如解图,过点A 作AM ⊥BC 于点M .在Rt △ABM 中,∵∠AMB =90°,∠B =45°,∴BM =AM ,AB =2AM ,设AM =BM =x ,在Rt △AMC 中,∵AC 2=AM 2+CM 2,∴52=x 2+(42-x )2,解得x=722或22(舍),∴AB =2x =7.过点F 作FN ⊥BC 于点N .∵DE ∥AC ,∴∠ACF =∠D =∠B ,∵∠CAF =∠CAB ,∴△ACF ∽△ABC ,∴AC AB =AF AC ,∴AC 2=AF ·AB ,∴AF =257,∴BF =AB -AF =7-257=247,∴BN =FN =1227,∴CN =BC -BN =42-1227=1627,∴tan ∠BCD =FN CN =12271627=34.第5题解图6. 2 6 cm 【解析】如解图,过点C 作CE ⊥BD 交DB 的延长线于点E ,由旋转的性质得∠B ′AB =∠C ′AC=30°,AB ′=AB ,AC ′=AC ,∴∠B ′BA =∠C ′CA =12×(180°-30°)=75°,∵∠ACB =90°,AC =BC =4cm ,∴∠ABC =∠BAC =45°,∠DCB =90°-∠C ′CA =15°,∴∠CDE =180°-∠B ′BA -∠ABC -∠DCB =180°-75°-45°-15°=45°,∴∠DCE =∠CDE =45°,DE =CE ,∴∠BCE =∠DCE -∠DCB =45°-15°=30°,在Rt △BCE 中,BC =4 cm ,∠BCE =30°,∴BE =12BC =2 cm ,∴CE =BC 2-BE 2=42-22=2 3 cm ,∴CD =CE cos45°=2322=2 6 cm.第6题解图7. 2-2或2+2 【解析】由旋转的性质可知AG =FG =AB =2,AF =2AG =2.分两种情况讨论:①如解图①,当点G 在线段AC 上时,连接AC ,BF ,可知点B 在线段AF 上,即点F 到BC 的距离为BF 的长,∴BF =AF -AB =2-2;②如解图②,当点G 在CA 的延长线上时,连接AC ,AF ,此时点F 在BA 的延长线上,即点F 到BC 的距离为BF 的长,∴BF =AB +AF =2+ 2.综上所述,点F 到BC 的距离为2-2或2+ 2.图①图②第7题解图8. 7-1 【解析】如解图①,以点M 为圆心,AM 长为半径作圆,过点M 作MH ⊥CD 交CD 的延长线于点H ,连接MC ,∵菱形ABCD 的边长为2,∠DAB =60°,M 是AD 的中点,∴MA =MA ′=MD =12AD =1,∴点A ′在⊙M 上运动,由解图①得,只有当A ′运动到与点M 、C 三点共线时,A ′C 的长度最小,∵CH ∥AB ,∴∠MDH =∠DAB =60°,在Rt △MDH 中,DH =MD ·cos ∠MDH =12,MH =MD ·sin ∠MDH =32,在Rt △MHC 中,HC =DH +DC =12+2=52,由勾股定理得MC =HC 2+MH 2=7,此时A ′C =MC -MA ′=7-1,即A ′C 长度的最小值为7-1.第8题解图①【一题多解】如解图②,连接MC ,过点M 作MH ⊥CD 交CD 的延长线于点H ,由题意可知,MA =MA ′=12AD ,在△ MA ′C 中,由三角形三边关系可知,一定存在MA ′+A ′C ≥MC ,∴当点M 、A ′、C 三点共线时,A ′C 的长度最小,此时A ′C =MC -MA ′,其余解法同上.第8题解图②9. 45 【解析】如解图,连接AE 并延长,作点D 关于AE 的对称点H ,连接EH ,ED ,过点H 作HM ⊥CD ,与CD 的延长线交于点M ,则DE =EH ,∵△ABD 沿射线BD 平移得△EGF ,∴AE ∥BD ,AB =EG ,AB ∥EG ,∵AB ∥CD ,AB =CD =4,∴EG ∥CD ,EG =CD =4,∴四边形CDEG 是平行四边形,∴CG =DE =EH ,∴当点C ,E ,H 三点共线时,EC +GC 取得最小值,最小值为CH 的长.∵AE ∥BD ,AB ∥CD ,∴四边形ABDM 为平行四边形,∴DM =AB =4,∠DAM =45°,∴∠ADH =45°,∴∠MDH =45°,∴DM =HM =4,∴CH =CM 2+HM 2=(4+4)2+42=45,∴EC +GC 的最小值为4 5.第9题解图10. 27 【解析】如解图,延长NF 与DC 交于点H .由折叠的性质得∠E =∠A ,∠EFN =∠B ,EM =AM ,EF =AB .∵EF ⊥AD ,∴∠MDE =90°.在Rt △MDE 中,tan E =DM DE =tan A =43,设DM =4k ,则DE =3k ,EM=5k .∴AM =5k ,AD =9k .∵四边形ABCD 是菱形,∴AB =CD =BC =AD =9k ,∠C =∠A ,AB ∥CD ,AD ∥BC .∴∠A +∠ADC =180°,∠A +∠B =180°.∵∠ADF =90°,∴∠A +∠FDH =90°.∵∠DFH +∠EFN =180°,∠A +∠B =180°,∠EFN =∠B ,∴∠A =∠DFH .∴∠DFH +∠FDH =90°.∴∠DHF =90°.∵EF =AB =9k ,DE =3k ,∴DF =6k .在Rt △DHF 中,tan ∠DFH =tan A =43,易得sin ∠DFH =45,∴DH =DF ·sin ∠DFH =245k .∴HC =9k -245k =215k .在Rt △CHN 中,tan C = tan A =43,易得cos C =35.∴NC =HC cos C =7k .∴BN =9k -7k =2k .∴BN CN =2k 7k =27.第10题解图11. 37 【解析】如解图,过点A 作AF ⊥BC 于点F ,过点B ′作B ′G ⊥BC 于点G ,∵∠ADC =60°,∴∠ADB =120°,由折叠的性质得,∠ADB ′=120°,∠CDB ′=60°,B ′D =BD ,∵BC =3AD ,AD 是BC 边上的中线,∴设AD =m ,则BC =3m ,BD =B ′D =32m ,在Rt △ADF 中,DF =AD ·cos60°=12m ,AF =AD ·sin60°=32m ,∴BF =BD +DF =2m ,CF =BC -BF =m ,在Rt △B ′DG 中,DG =B ′D ·cos60°=34m ,B ′G =B ′D ·sin60°=334m ,∴FG =DG -DF =14m ,∵AF ⊥BC ,B ′G ⊥BC ,∴AF ∥B ′G ,∴△AFE ∽△B ′GE ∴FE GE =AF B ′G =32m334m=23,∵FE +GE =FG =14m ,∴FE =110m ,∴BE =BF +FE =2110m ,CE =CF -FE =910m ,∴CE BE =910m 2110m =37.第11题解图12. 6+22 【解析】如解图,以AB 为边向下作等边△ABK ,连接EK ,在EK 上取一点T ,连接AT ,使得TA =TK .由旋转的性质得BE =BF ,∠EBF =60°,∵△ABK 为等边三角形,∴BK =BA ,∠EBF =∠ABK =60°,∴∠ABF =∠KBE ,∴△ABF ≌△KBE (SAS),∴AF =EK ,根据垂线段最短可知,当KE ⊥AD 时,KE 的值最小,即AF 最小.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BAD =180°-∠ABC =135°,∵∠BAK =60°,∴∠EAK =75°,∵∠AEK =90°,∴∠AKE =15°,∵TA =TK ,∴∠TAK =∠AKT =15°,∴∠ATE =∠TAK +∠AKT =30°,设AE =a ,则AT =TK =2a ,ET =3a ,在Rt △AEK 中,AE 2+EK 2=AK 2,∴a 2+(2a +3a )2=22,∴a =6-22,∴EK =2a +3a =6+22,∴AF 的最小值为6+22.第12题解图13. 133 【解析】如解图,连接CM ,在矩形ABCD 中,AB =3,BC =4,∴AD =BC =4,CD =AB =3,∠D =90°,由折叠的性质得,AM =PM ,∠MPN =∠A =90°,∠AMN =∠PMN ,∴∠CPM =90°,∵点M 为AD 的中点,∴AM =DM =12AD =2,∴PM =AM =DM =2,在Rt △CPM 与Rt △CDM 中,⎩⎪⎨⎪⎧PM =DM CM =CM,∴Rt △CPM ≌Rt △CDM (HL),∴CP =CD =3,∠CMP =∠CMD ,∴∠NMC =∠NMP +∠CMP =12(∠AMP +∠DMP )=90°,∴CM =DM 2+CD 2=22+32=13,∵∠CPM =∠CMN =90°,∠MCP =∠NCM ,∴△CMP ∽△CNM ,∴CM CN =CP CM ,即13CN =313,∴CN =133.第13题解图14. 37 【解析】如解图,过点E 作EM ⊥BC 的于点M ,过点G 作GN ⊥BC 交BC 的延长线于点N ,∴四边形EMNG 是矩形,∴EG =MN =5,EM =GN ,∵∠BAC =∠EMH =90°,∠ACB =∠MCE ,∴△ABC ∽△MEC ,∴AB ME =BC EC =AC MC ,∵AB =3,BC =5,在Rt △ABC 中,由勾股定理得AC =4,设运动时间为t (0<t ≤4),则AE =CH =t ,CE =4-t ,∴3ME =54-t =4MC ,∴EM =12-3t 5,CM =16-4t 5,∴HN =5-MH =5-(CM -CH )=5-(16-4t 5-t )=9+9t 5.∵EH ⊥GH ,∴∠EHG =90°,∴∠EHM +∠GHN =90°,又∵EM ⊥BC ,∴∠EHM +∠MEH =90°,∴∠GHN =∠MEH ,又∵∠EMH =∠HNG =90°,∴△EMH ∽△HNG ,∴EM HN =MH NG ,即12-3t 59+9t 5=16-4t5-t 12-3t 5,整理得2t 2-3t =0,解得t =32或t =0(舍去),即AE =32,BH =5-CH =5-32=72,∴AE BH =3272=37.第14题解图15. 2-1 【解析】如解图,过点A 作AM ⊥BP 于点M ,过点E 作EN ⊥BP 于点N .∵四边形ABCD 是正方形,∴AD =AB ,∠BAD =90°,由翻折的性质得AD =AF ,∠DAE =∠EAF ,∴AB =AF ,∵AM ⊥BF ,∴BM =FM ,∠BAM =∠FAM ,∴∠PAM =∠PAF +∠FAM =12∠BAD =45°,∵∠AMP =90°,∴∠P =∠PAM=45°,∴AM =MP ,设BF =2a ,则BM =MF =a ,PF =22BF =2a ,∴AM =PM =FM +PF =a +2a ,∵∠AMF =∠AFE =∠ENF =90°,∴∠AFM +∠EFN =90°,∠EFN +∠FEN =90°,∴∠AFM =∠FEN ,∴△AMF ∽△FNE ,∴AM FM =FN EN =a +2aa =1+2,设EN =PN =x ,则FN =(1+2)x ,∴(1+2)x +x =2a ,∴x =(2-1)a ,∴EN =(2-1)a ,∴EF AF =EN FM =(2-1)a a=2-1,∵CD =AD =AF ,DE =EF ,∴DE CD =EFAF =2-1.第15题解图16. 334 【解析】如解图,过点P 作PE ⊥CD 于点E .∵∠ABC =60°,AB =BC ,∴△ABC 为等边三角形,∠ACB =∠ACD =60°,在△ABM 和△ACN 中,⎩⎪⎨⎪⎧AB =AC ∠ABM =∠ACN ,BM =CN∴△ABM ≌△ACN (SAS),∴AM =AN ,∠BAM =∠CAN ,∴∠MAN =∠BAM +∠MAC =60°,∴△AMN 为等边三角形,∵∠B =∠ACB =∠AMP =60°,∴∠BAM +∠BMA =∠BMA +∠CMP =180°-60°=120°,∴∠BAM =∠CMP ,∠BMA =∠CPM ,∴△BAM ∽△CMP ,∴BA BM =CM CP ,设BA 长为a ,BM 长为x ,则CM =a -x ,∴a x =a -xCP ,∴a ·CP =x (a -x )=-x 2+ax =-(x -a 2)+a 24,∴CP =-1a (x -a 2)+a 4,∴当x =a 2时,CP 最长,即当AM ⊥BC 时,△AMN 边长最小,此时CP 最长,满足条件,∵AB =AC ,AM ⊥BC ,∴BM =MC =3,∠CMP =30°,∠CPM =90°,∴PC =12MC =32,在Rt △PCE 中,∵∠ACD =60°,∴PE =PC ·sin60°=334.第16题解图17. 3134;6+39 【解析】设AQ =x ,则S 四边形PCDQ =S △ABC -S △ADQ -S △BCP =34×62-12·x ·32×1-12×(6-x -1)×32×6=332+534x ,∵x 的最大值为6-1=5,∴当x =5时,S 四边形PCDQ 最大,最大值为332+534×5=3134;如解图,作点D 关于AB 的对称点D ′,连接D ′Q ,以D ′Q 、PQ 为边作平行四边形PQD ′M ,则DQ =D ′Q =MP ,∴C 四边形PCDQ =PM +PC +PQ +DC ,DD ′=2AD ·sin60°=3,D ′M =PQ =1,过点C 作CH ⊥AB ,交AB 于点H ,交D ′M 的延长线于点N ,则∠N =90°,CH =BC ·sin60°=33,NH =12DD ′=32,∴MN =AH -D ′M -AD ·cos60°=AC ·cos60°-1-12=3-1-12=32,CN =NH +CH =32+33=732,当点M ,P ,C 在同一直线上时,MP +CP 的最小值等于CM 的长,即DQ +CP 的最小值等于CM 的长,此时,Rt △MNC 中,CM =MN 2+CN 2=(32)2+(732)2=39,又∵PQ =1,CD =6-1=5,∴四边形PCDQ 周长的最小值为CM +PQ +CD =6+39.第17题解图18. 27-952或92 【解析】分两种情况讨论,如解图①,当GD =GE 时,过点G 作GM ⊥AD 于点M ,GN ⊥CD 于点N .设AF =x .∵四边形ABCD 是矩形,∴AD =BC =12,∠BAF =∠ADE =90°,由翻折的性质得AF =FG ,BF ⊥AG ,∴∠DAE +∠BAE =90°,∠ABF +∠BAE =90°,∴∠ABF =∠DAE ,∴△BAF ∽△ADE ,∴AB DA =AF DE ,即912=x DE ,∴DE =43x ,∵GM ⊥AD ,GN ⊥CD ,∴∠GMD =∠GND =∠MDN =90°,∴四边形GMDN 是矩形,∴GM =DN =EN =23x ,∵GD =GE ,∴∠GDE =∠GED ,∵∠GDA +∠GDE =90°,∠GAD +∠GED =90°,∴∠GDA =∠GAD ,∴GA =GD =GE ,∵GM ⊥AD ,∴AM =MD =6,在Rt △FGM 中,由勾股定理得x 2=(6-x )2+(23x )2,解得x =27-952或27+952(舍),∴AF =27-952;如解图②,当DG =DE 时,由翻折的性质得,BA =BG ,∴∠BAG =∠BGA ,∵DG =DE ,∴∠DGE =∠DEG ,∵AB ∥CD ,∴∠BAE =∠DEG ,∴∠AGB =∠DGE ,∴B ,G ,D 三点共线,∵BD =AB 2+AD 2=92+122=15,BG =BA =9,∴DG =DE =6,由①知,△BAF ∽△ADE ,∴AF DE =AB DA ,即AF 6=912,∴AF =92.综上所述,AF 的值为27-952或92.图①图②第18题解图19. 45;22 【解析】如解图,取BC 的中点G ,连接DG ,由旋转的性质得DC =EC ,∠DCE =90°,∵∠ACB =90°,AC =BC =8,F 为AC 中点,∴CG =CF ,∠DCG +∠ACD =∠ECF +∠ACD =90°,∴∠DCG =∠ECF ,∴△DCG ≌△ECF (SAS),∴DG =EF .分两种情况讨论:如解图①,当GD ⊥AB 时,DG 最短,此时△BDG 是等腰直角三角形,∴DG =BG ·sin45°=4×22=22,∴EF 的最小值为22;当点D 与点B 重合时,DG =BG =4;如解图②,当点D 与点A 重合时,DG =CG 2+AC 2=42+82=45>4,∴EF 的最大值为45,最小值为2 2.图①图②第19题解图20. 10 【解析】如解图,过点A ′作A ′H ⊥AD 于点H ,延长FA ′与BE 的延长线交于点J ,过点F 作FI ⊥BE 于点I ,∵A ′是DE 的中点,∴A ′H 是△DC ′E 的中位线,∴A ′H =12C ′E =12×3=32 cm ,由折叠性质知∠A ′DH =45°,∴DH =A ′H =32 cm ,设AF =x cm ,则FH =6-x -32=(92-x ) cm ,由折叠的性质得A ′F =AF=x cm ,在Rt △A ′HF 中,由勾股定理得A ′F 2-FH 2=A ′H 2,即x 2-(92-x )2=(32)2,解得x =52,∴A ′F =AF =52 cm ,FH =92-52=2 cm ,∴EI =FC ′=FH +DH -C ′D =2+32-3=12 cm ,∵A ′是DE 的中点,易证△A ′DF ≌△A ′EJ ,∴EJ =DF =2+32=72 cm ,A ′F =A ′J =52 cm ,∴FJ =5 cm ,由折叠的性质得∠AFG =∠JFG ,∵AD ∥BJ ,∴∠JGF =∠AFG =∠JFG ,∴JG =JF =5 cm ,∴GI =JG -JE -EI =5-72-12=1 cm ,在Rt △FGI 中,FI =3 cm ,∴FG =32+12=10 cm.第20题解图21. 5217 【解析】如解图,点P 在直线CD 上运动时,当MN 垂直于点N 的运动轨迹(直线)时,MN 最短,当点P 和C 重合时,N 1 是CB 的中点,当PA ′和直线CD 重合时,N 2 是PA ′的中点,∵AC =CB =4,∠ACB =120°,CD ⊥AB ,∴CD =2,AD =23,∴AB =2AD =43,∵M 、N 1分别是AC 、BC 中点,∴MN 1∥AB ,MN 1=12AB =23,DE =1,∵PA ′是PA 绕点P 逆时针旋转120°得到的,当PA ′和直线CD 重合时,PA ′=PA ,∠APA ′=120°,∴∠APD =60°,∴AP =AD sin60°=2332=4,DP =AP ·cos60°=4×12=2,∵N 2是PA ′的中点,∴PN 2=2,EN 2=2+2+1=5,∵MN 1∥AB ,CD ⊥AB ,MN 1⊥CD ,在△MEN 2和△N 1EN 2中,⎩⎪⎨⎪⎧ME =N 1E ∠MEN 2=∠N 1EN 2EN 2=EN 2,∴△MEN 2≌△N 1EN 2(SAS),∴N 2M =N 2N 1,在Rt △MN 2E 中,N 2M =ME 2+EN 22=(3)2+52=27,∴S △MN 1N 2=12MN 1·EN 2=12×23×5=53,又∵S △MN 1N 2=12N 1N 2·MN ,∴12×27×MN =53,∴MN =5217.第21题解图22. 30;6 【解析】如解图①,连接AC ,分别过点E ,G 作AC 的垂线,垂足为M ,N ,易证△AEM ∽△ACB ,∴AE AC =EM CB ,∵AB =6,BC =8,∴AC =AB 2+BC 2=10,∴410=EM 8,∴EM =165.∵△BEF 沿EF 翻折后点B 的对应点为点G ,∴GE =BE =2,∴点G 在以点E 为圆心,2为半径的⊙E (在矩形ABCD 内的部分)上.连接EN ,则EG +GN ≥EN ≥EM ,∴GN ≥EM -EG =165-2=65.∵S 四边形AGCD =S △ACD +S △AGC =12AD ·CD +12AC ·GN =24+5GN ,如解图②,当点G 在EM 上,即点N 与点M 重合,此时GN 取得最小值65,S 四边形AGCD 取得最小值为24+5GN =24+5×65=30;如解图②,过点F 作FH ⊥AC 于点H ,∵EM ⊥FG ,EM ⊥AC ,∴四边形FGMH 是矩形,∴FH =GM =65,∵∠FCH =∠ACB ,∠CHF =∠CBA =90°,∴△CHF ∽△CBA ,∴CF CA =FH AB ,即CF 10=656,∴CF =2,∴BF =BC -CF =8-2=6.图①图②第22题解图。

中考数学专题动态几何变化问题

中考数学专题动态几何变化问题

中考数学专题动态几何变化问题中考数学专题复习七动态几何变化问题动态几何题已成为中考试题的一大热点题型。

在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力。

解决动态几何题的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律。

通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质。

下面就动点型、动线型、动面型等几何题作一简要分析。

一. 动点型1. 单动点型例1. 如图1,在矩形ABCD 中,AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E ,F 分别是垂足,求PE+PF 的长。

分析与略解:P 是AD 边上任意一点,不妨考虑特殊点的情况,即在“动”中求“静”。

当P 点在D (或A )处时,过D 作DG ⊥AC ,垂足为G ,则PE=0,PF=DG ,故PE+PF=DG ,在Rt △ADC 中,13512DC AD AC 2222=+=+= 由面积公式有:1360AC DC AD DG =?=,再有“静”寻求“动”的一般规律,得到PE+PF=DG=1360。

图12. 双动点型例2. (2003年吉林省)如图2,在矩形ABCD 中,AB=10cm ,BC=8cm ,点P 从A 出发,沿A →B →C →D 路线运动,到D 点停止;点Q 从D 点出发,沿D →C →B →A 路线运动,到A 停止。

若点P 、Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,a 秒时点P 、点Q 同时改变速度,点P 的速度变为每秒bcm ,点Q 的速度为每秒dcm 。

图3是点P 出发x 秒后△APD 的面积)cm (S 21与x (秒)的函数关系图象,图4是点Q 出发x 秒后△AQD 的面积)cm (S 22与x (秒)的函数关系图象。

中考数学动态几何问题探究

中考数学动态几何问题探究

中考数学动态几何问题探究作者:刘垚
来源:《新高考·新世纪智能·升学考试》2019年第05期
动态几何问题不仅是初中数学的重要组成部分,更是中考数学中的必考问题,它往往以压轴题的形式出现在考卷当中,并占有较大的分值.因此结合近些年中考数学中的动态几何问题的出题状况,对中考数学动态几何出现的几种类型的问题进行了简要分析,仅供参考.
题型一:点动型
点动型就是在三角形、矩形、梯形等一些几何图形上,设计一个或几个动点,并对这些点在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究.运动型问题常常集几何、代数知识于一体,数形结合,有较强的综合性.
解决点运动型问题需要用运动与变化的眼光去观察和研究图形,把握动点运动与变化的全
过程,抓住其中的等量关系和变量关系,并特别关注一些不变量、不变关系或特殊关系.尽管
一些试题大多属于静态的知识和方法,然而,这些试题中常常渗透着运动与变化的思想方法,需要用运动与变化的观点去研究和解决.
点运动型问题有时把函数、方程、不等式联系起来.当一个问题是求有关图形的变量之间关系时,通常建立函数模型或不等式模型求解;当求图形之间的特殊位置关系和一些特殊的值時,通常建立方程模型去求解.。

中考数学复习专题讲座探究型问题(含详细参考答案)

中考数学复习专题讲座探究型问题(含详细参考答案)

中考数学复习专题讲座探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法.当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法.即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲考点一:动态探索型:此类问题结论明确,而需探究发现使结论成立的条件.例1 (2015•自贡)如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF 和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.考点:菱形的性质;二次函数的最值;全等三角形的判定与性质;等边三角形的性质。

中考数学动态几何问题(经典)

中考数学动态几何问题(经典)

一(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.A DM Q60【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,.(1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)图3图2图1FEABCDABCDEFGGFED CBA【例6】已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处.(1)当CE BE =1 时,CF=______cm ,(2)当CE BE=2 时,求sin ∠DAB ′ 的值; (3)当CEBE= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。

(新)中考数学几何动态综合专项探究详解课件PPT

(新)中考数学几何动态综合专项探究详解课件PPT

∴∠AOP=∠AOB+∠BOP=∠POQ+∠BOP=90°,
∴OA⊥OP;
(新)中考数学几何动态综合专项探究详解课件
当PQ向左移动时,如解图②,由题意得,
∠ABO=∠OBC=45°,OQ⊥BD,
∴△BOQ为等腰直角三角形,
∴BO=OQ,∠PQO=45°,
∴∠ABO=∠PQO,
在△ABO和△PQO中,
(新)中考数学几何动态综合专项探究详解课件
(2)在Rt△ACF中,AC=6,EF经过点C,则DE∥AC, ∴∠ACF=∠E=30°, ∵cos∠ACF= AC ,
∠ABO=∠OBC=45°,OQ⊥BD, ∴△BOQ为等腰直角三角形,
例2题解图①
(新)中考数学几何动态综合专项探究详解课件
∴BO=OQ,∠PQO=45°,
∴∠ABO=∠PQO,
在△ABO和△PQO中,
AB=PQ
∠ABO=∠PQO BO=OQ,
例2题解图①
∴△ABO≌△PQO(SAS),
∴OA=OP,∠AOB=∠POQ,
例3题图
(新)中考数学几何动态综合专项探究详解课件
(1)如图②,当三角板DEF运动到点D与点A重合时,设 EF与BC交于点M,则∠EMC=______度;
【思维教练】要求∠EMC的度数,已知∠FDE=90°, AB=AC=6,DF=4,DE=4 3 ,根据等腰直角三角形性质和 三角函数分别求得∠ACB 和∠E 的度数,观察图形 ∠E+∠EMC=∠ACB,∠EMC的度数即可求解;
值是2.
例2题解图②
(新)中考数学几何动态综合专项探究详解课件
类型三 形动型探究题
(新)中考数学几何动态综合专项探究详解课件

中考动态几何问题探索

中考动态几何问题探索

中考动态几何问题探索题型一:点动型点动型就是在三角形、矩形、梯形等一些几何图形上,设计一个或几个动点,并对这些点在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究。

1.单动点型例1(2007年辽宁十二市)如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.练习1(2007年福州市)如图,直线AC∥BD,连结AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角.)(1)当动点P落在第①部分时,求证:∠APB =∠PAC +∠PBD;(2)当动点P落在第②部分时,∠APB =∠PAC +∠PBD是否成立(直接回答成立或不成立)?(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点的具体位置和相应的结论.选择其中一种结论加以证明.练习2(2006年绵阳市)在正方形ABCD中,点P是CD上一动点,连结PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足分别为E、F,如图①.(1)请探索BE、DF、EF这三条线段长度具有怎样的数量关系.若点P在DC 的延长线上(如图②),那么这三条线段的长度之间又具有怎样的数量关系?若点P在CD 的延长线上呢(如图③)?请分别直接写出结论;(2)请在(1)中的三个结论中选择一个加以证明.解决此类动点几何问题常常用的是“类比发现法”,也就是通过对两个或几个相类似的数学研究对象的异同进行观察和比较,从一个容易探索的研究对象所具有的性质入手,去猜想另一个或几个类似图形所具有的类似性质,从而获得相关结论。

教学反思浅析中考热点动态探究型问题

教学反思浅析中考热点动态探究型问题

浅析中考热点——动态探究型问题动态几何题是指随着图形的某一元素的运动变化,导致问题的结论或者改变或者保持不变的几何题.它的主要特点是以某种几何图形为载体,点、线、形在这种几何图形上按某种规律运动的过程中引起了相关元素或某种几何图形的变化,且这种变化具有一定的规律性,是近年来中考数学的热点题型.这类试题信息量大,对学生获取信息和处理信息的能力要求较高;注重在图形的形状或位置的变化过程中寻求函数与方程、函数与几何、函数与解直角三角形、函数与面积的联系,有较强的综合性.解题时要用运动和变化的眼光去观察和研究问题,把握运动、变化和全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.综合运用函数、方程、分类讨论、数形结合等数学思想,展示了一种数学的创造过程.本文以2008年的中考试题为例,对此类问题进行浅析,供大家参考:一、探究动态变化中的不变动态几何题是以图形中的一些元素的运动变化为载体,来探究图形中的某些元素之间在变化过程中相互依存关系的本质特征,这些本质特征中也包含“变中不变”的特殊情况.所谓“变中不变”,对于一个元素而言,是指该元素虽然处于变化过程中,但它的某些属性不变;对于两个或两个以上的元素而言,是指这些元素虽然处于变化过程中,但它们的某些属性之间的关系不变.例1(宁夏回族自治区)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(以下问题略)分析与解:正方形ABCD始终关于AC对称,因此,当点P在AB上运动时,不会影响到此结论.»AB上异于A、B 例2(广州)如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形»AB上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求(2)当点C在出该线段的长度(3)求证:223CD CH +是定值分析与解:当点C 在»AB 上运动时,半径OC 的位置发生着变化,但由圆的特性可知,半径OC 的长度始终保持不变.(1)连结OC 交DE 于M ,由矩形得OM =CG ,EM =DM 因为DG=HE 所以EM -EH =DM -DG 得HM =DG(2)DG 不变,在矩形ODCE 中,DE =OC =3,所以DG =1 (3)设CD =x ,则CE =29x -,由EC CD CG DE ⋅=⋅得CG =392x x -所以3)39(222x x x x DG =--=2所以HG =3-1-36322x x -= 所以3CH 2=2222212))39()36((3x x x x -=-+- 所以121232222=-+=+x x CH CD二、探究动态变化中的变量关系动态几何题的根本是探究图形中的某些元素之间在变化过程中的相互依存的关系,用数学的眼光来看这些相互依存的关系实际上就是函数关系.所以,求图形运动变化过程中某些变量之间的函数解析式是研究这类问题的最常见的形式.例3 (广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边 AB 重合,直角边不重合,已知AB=8,BC=AD=4,AC 与BD 相交于点E ,连结CD .(1)填空:如图9,AC= ,BD= ;四边形ABCD 是 梯形. (2)请写出图9中所有的相似三角形(不含全等三角形).(3)如图10,若以AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴建立如图10的平面直角坐标系,保持ΔABD 不动,将ΔABC 向x 轴的正方向平移到ΔFGH 的位置,FH 与BD 相交于点P ,设AF=t ,ΔFBP 面积为S ,求S 与t 之间的函数关系式,并写出t 的取值值范围.DCBAE图9分析与解:(1)(2)共有9对相似三角形. ①△DCE 、△ABE 与△ACD 或△BDC 两两相似,分别是:△DCE ∽△ABE ,△DCE ∽△ACD ,△DCE ∽△BDC ,△ABE ∽△ACD ,△ABE ∽△BDC ;②△ABD ∽△EAD ,△ABD ∽△EBC ; ③△BAC ∽△EAD ,△BAC ∽△EBC ; 所以,一共有9对相似三角形. (3)由题意知,FP ∥AE , ∴ ∠1=∠PFB , 又∵ ∠1=∠2=30°, ∴ ∠PFB =∠2=30°, ∴ FP =BP.过点P 作PK ⊥FB 于点K ,则2FK BK ==∵ AF =t ,AB =8, ∴ FB =8-t ,1(8)2BK t =-. 在Rt △BPK 中,1tan 2(8)tan 30)2PK BK t t =⋅∠=-︒=-. ∴ △FBP 的面积11(8))226S FB PK t t =⋅⋅=⋅-⋅-, ∴ S 与t 之间的函数关系式为: 28)S t =-,或243S t =-+t 的取值范围为:08t ≤<.作为语言和工具的数学文化能让纷繁复杂的运动变化变得清晰可见.三、探究动态变化中的存在与否在动态几何题中探究存在与否,主要包括:探究问题的结论是否成立,探究符合条件的对象相关链接 :若12,x x 是一元二次方程20ax bx c ++=(0)a ≠的两根,则1212,.b cx x x x a a+=-= 是否存在、是否唯一,探究使结论成立的条件等.例4 (茂名市)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)分析与解:(1) ∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根.∴x =4969b 32-±b ,∴x 2-x 1=2969b 2-=5,解得 b =±314当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b =-314. (2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上, 又∵y =-32x 2-314x -4=-32(x +27)2+625∴抛物线的顶点(-27,625)即为所求的点D .(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点,x∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4, ∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形.四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. 四、探究动态变化中的结论推广在动态几何题中,还有一种是探究条件与结论的关系,即当条件发生变化时,结论是否变化或哪些结论可以推广到更一般的情况.例5(齐齐哈尔市)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,.当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=.(1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.分析与解:(1)BM DN MN +=成立.如图,把AND △绕点A 顺时针90,得到ABE △, 则可证得E B M ,,三点共线.证明过程中, 证得:EAM NAM ∠=∠证得:AEM ANM △≌△ME MN ∴=ME BE BM DN BM =+=+ DN BM MN ∴+=BBMBCNCNM CNM 图1图2图3A A A DD D BEACDN(2)DN BM MN -=五、探究动态变化中的精彩瞬间研究动态几何题的最终目的是研究变化过程中能否有我们期待或遐想的精彩瞬间出现,如果出现了,它应该在什么情况下出现.例6(齐齐哈尔市)如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y 轴的10OA -=. (1)求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P分析与解:(1)10OA -=230OB ∴-=,10OA -=OB ∴=,1OA =点A ,点B 分别在x 轴,y 轴的正半轴上 (10)(0A B ∴,,(2)求得90ABC ∠=(0(t t S t t ⎧<⎪=⎨->⎪⎩ ≤(3)1(30)P -,;21P ⎛- ⎝;31P ⎛ ⎝;4(3Px。

中考数学专题动态几何问题

中考数学专题动态几何问题

中考数学专题3 动态几何问题第一部分 真题精讲【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。

但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。

对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。

但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。

所以当题中设定MN//AB 时,就变成了一个静止问题。

由此,从这些条件出发,列出方程,自然得出结果。

【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形.AB M CNE D∵AB DE ∥,AB MN ∥.∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t =. 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。

在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。

具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】(2)分三种情况讨论:① 当MN NC =时,如图②作NF BC ⊥交BC 于F ,则有2MC FC =即.(利用等腰三角形底边高也是底边中线的性质)∵4sin 5DF C CD ∠==,∴3cos 5C ∠=,∴310225tt -=⨯,解得258t =.AB M CNF D② 当MN MC =时,如图③,过M 作MH CD ⊥于H .则2CN CH =,∴()321025t t =-⨯.∴6017t =.AB M CN HD③ 当MC CN =时, 则102t t -=. 103t =.综上所述,当258t =、6017或103时,MNC △为等腰三角形.【例2】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC=3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【思路分析1】本题和上题有所不同,上一题会给出一个条件使得动点静止,而本题并未给出那个“静止点”,所以需要我们去分析由D 运动产生的变化图形当中,什么条件是不动的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学中的探究性问题动态几何Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】中考数学中的《探究性问题——动态几何》动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查学生的综合分析和解决问题的能力。

有关动态几何的概念,在很多资料上有说明,但是没有一个统一的定义,在这里就不在赘述了。

本人只是用2005 年的部分中考数学试题加以说明。

一、知识网络《动态几何》涉及的几种情况动点问题?动线问题动形问题??二、例题经典1.【05 重庆课改】如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1 个单位长度的速度向点O 移动,同时动点Q 从点B开始在线段BA 上以每秒2 个单位长度的速度向点A 移动,设点P、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;y(2) 当t 为何值时,△APQ 与△AOB 相似24A(3) 当t 为何值时,△APQ 的面积为个平方单位5P Q【解】(1)设直线AB 的解析式为y=k x+b 由题意,得b=68k+b=03解得k=-b=643所以,直线AB 的解析式为y=-x+6.4(2)由AO=6,BO=8 得AB=10所以AP=t ,AQ=10-2t1°当∠APQ=∠AOB 时,△APQ∽△AOB.t 10 2t 30所以=解得t=(秒)6 10 112°当∠AQP=∠AOB 时,△AQP∽△AOB.t 10 2t 50所以=解得t=10 6 13(秒) (3)过点Q 作QE 垂直AO 于点E.BO 4在Rt△AOB 中,Sin∠BAO==AB5 OyyAP QOAQyBBBxxxPOAx P QEO在Rt△AEQ 中,QE=AQ·Sin∠BAO=(10-2t)·1 1所以,S AP·QE=t·(8-△APQ=224 24=- 2t+4t=5 5解得t=2(秒)或t=3(秒).85t)45=8-85t2.【05 青岛】如图,在矩形ABCD 中,AB=6 米,BC=8 米,动点P 以2 米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1 米/秒的速度从点C 出发,沿CB 向点B 移动,设P、Q 两点移动t 秒(0<t<5)后,四边形ABQP 的面积为S 米2。

(1)求面积S 与时间t 的关系式;(2)在P、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面积能否相等若能,求出此时点P 的位置;若不能,请说明理由。

【解】(1)过点P 作PE⊥BC于ERtABC中,AC =AB2 +BC2 =62 +82 =10(米)由题意知:AP =2t,CQ =t,则PC =10 2t由AB⊥BC,PE⊥ΒC得PE / /AB ∴PE =PCAB AC即:PE t ,PE t t=10 2 3 10 2 6∴=( ) =+6?6 10 5 5=1 ××=又QSABC6 8 24224 1 6 3ABC PCQ6∴S=S S=t(t+) =t3t+2422 5 5即:S =3 t t +2 3 245(2)假设四边形ABQP与CPQ的面积相等,则有: 35 t 3t +24 =12 2即:t2 5t +20 =0 Q b2 4ac =(5)2 4 ×1×20 <0∴方程无实根∴在P、Q两点移动的过程中,四边形ABQP与CPQ的面积不能相等。

3.【05乌鲁木齐】四边形OABC是等腰梯形,OA∥BC。

在建立如图的平面直角坐标系中,A (4,0),B(3,2),点M 从O 点以每秒2 单位的速度向终点A 运动;同时点N 从B 点出发以每秒1 个单位的速度向终点C 运动,过点N 作NP 垂直于x 轴于P 点连结A C 交NP 于Q,连结MQ。

(1)写出C点的坐标;(2)若动点N 运动t 秒,求Q 点的坐标(用含t 的式子表示(3)其△AMQ 的面积S 与时间t 的函数关系式,并写出自变量t 的取值范围。

(4)当t 取何值时,△AMQ 的面积最大;(5)当t 为何值时,△AMQ 为等腰三角形。

【解】(1)C(1,2)(2)过C 作CE⊥x 轴于E,则CE=2当动点N 运动t 秒时,NB=t ∴点Q 的横坐标为3—t|y 1Q+t设Q 点的纵坐标为y Q 由PQ∥CE 得 3=∴2 yQ=2 2t+32 2+t∴点Q(3 ,t)3(3)点M 以每秒2 个单位运动,∴OM=2t,AM=4—2t1 12 2t 2 2 2+S (4 2 ) =(2 t)(t1) =( 2) AM PQ=t+t t= 3△AMQ2 23 3当t=2 时,M 运动到A 点,△AMQ 不存在∴t ≠ 2∴t 的取值范围是0≤t<22 2 2 1 2 3(4)由S (t t2) =(t) +。

= 2△AMQ3 3 21 3当t=时,S=2 2mzx(5)、①若QM=QA∵QP⊥OA∴MP=AP 而MP=4—(1+t+2t)=3—3t1 1即1+t=3—3t t=∴当t=时,△QMA 为等腰三角形。

2 22 2 13+t②若AQ=AM AQ2=AP2+PQ2= 2 2 (1 )2(1 t) +( ) =+t+3 913 13AQ= (1+) AM=4—2t (1 )t t+=4—2t3 3t=85 ?1823 13 85而<?182313 <2∴当t=85182313时,△QMA 为等腰三角形。

2 t+2 85 154③若MQ=MA MQ2=MP2+PQ2= 3 ( )(3 t)2 2 = 2 ++t t3 9 9 85 2 154 85 49 2 10 59∴t+t t=t=(4 2t)2 09 9 9 9 9 959 59解得t=或t=—1(舍去)∵0<<249 4959∴当t=时,△QMA 为等腰三角形。

49 85 9综上所述:当t=12、t=85182313或t=5949△QMA 都为等腰三角形。

4.【05宜昌】如图1,已知△ABC的高AE=5,BC= 40,∠ABC=45°,F是AE上的3点,G是点E关于F的对称点,过点G作BC的平行线与AB交于H、与AC交于I,连接IF并延长交BC于J,连接HF并延长交BC于K.(1)请你探索并判断四边形HIKJ是怎样的四边形并对你得到的结论予以证明;(2)当点F在AE上运动并使点H、I、K、J都在△ABC的三条边上时,求线段AF长的取值范围.A A(图2 供思考用)H G IFB E KJ B E CC图1 图2【解】(1)∵点G 与点E 关于点F 对称,∴GF=FE∵HI∥BC,∴∠GIF=∠EJF,又∵∠GFI=∠EFJ,∴△GFI≌△EFJ,∴GI=JE同理可得HG=EK ,∴HI=JK, ∴四边形HIKJ 是平行四边形(2)当F 是AE 的中点时,A、G 重合,所以AF= 如图1,∵AE 过平行四边形HIJK 的中心F,∴∴HG=EK, GI=JE. HG/BE=GI/EC. HA BG IF∵CE>BE,∴GI>HG, ∴CK>BJ.B J E KC ∴当点F 在AE 上运动时, 点K、J 随之在BC 上运动, 图1如图2,当点F 的位置使得B、J 重合时,这时点K 仍为CE 上的某一点(不与C、EAH G IF重合),而且点H、I 也分别在AB、AC 上设EF=x,∵∠AHG=∠ABC=45°,AE=5,40 —5.∴BE=5=GI,AG=HG=5—2x ,CE=3∵△AGI∽△AEC,∴AG∶AE=GI∶CE. 图240∴(5—2x)∶5=5∶( —5)35 <AF≤4.∴x=1,∴AF=5—x=4 ∴25.【05漳州】如图1,在直角梯形ABCD 中,AD∥BC,顶点D,C 分别在AM,BN上运动(点D 不与A 重合,点C 不与B 重合),E 是AB 上的动点(点E 不与A,B 重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a。

(1)求证:△ADE∽△BEC;(2)当点E 为AB 边的中点时(如图2),求证:①AD+BC=CD;②DE,CE 分别平分∠ADC,∠BCD;(3)设AE=m,请探究:△BEC 的周长是否与m 值有关,若有关请用含m 的代数式表示△BEC 的周长;若无关请说明理由。

【解】(1)太简单,略。

(2)过点E 作梯形两底的平行线交腰CD 于F,则F 是CD 的中点,则EF 既是梯形ABCD 的中位线,又是Rt△DEC 斜边上的中线。

根据各自的性质:AD+BC=2EF,CD=2EF所以AD+BC=CD.由△EFD 是等腰三角形(FD=FE=1 CD)得∠FDE=∠FED2由EF∥AD 可得∠ADE=∠FED ∴∠FDE=∠ADE,即DE 平分∠ADC;同理可证:CE 平分∠BCD。

(3)设AD=x,由已知AD+DE=AB=a 得DE=a-x,又AE=m在Rt△AED 中,由勾股定理得:x2+m2=(a-x)2化简整理得:a2-m2=2ax ①在△EBC 中,由AE=m,AB=a,得BE=a-m因为△ADE∽△BEC,所以AD AE DE==,即:x m a x==,-BE BC EC a m BC EC-解得:BC a m m EC a m a x .(-)(-)(-)=,=x x所以△BEC 的周长=BE+BC+EC= a m a m m a m a x(-)++(-)(-)(-)x x=(a-m)1+m+a x = a m a m(-)=-+x x x a2m2-a2m2x②把①式代入②,得△BEC 的周长=BE+BC+EC=2ax 2a=,x所以△BEC 的周长与m 无关。

6.【05河北】如图12,在直角梯形ABCD 中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。

动点P 从点D 出发,沿射线DA 的方向以每秒2 两个单位长的速度运动,动点Q 从点C 出发,在线段CB 上以每秒1 个单位长的速度向点AP D B 运动,点P,Q 分别从点D,C 同时出发,当点Q 运动到点B时,点P 随之停止运动。

设运动的时间为t(秒)。

(1)设△BPQ 的面积为S,求S 与t 之间的函数关系式;(2)当t 为何值时,以B,P,Q 三点为顶点的三角形是等腰B QC 三角形图10 (3)当线段PQ 与线段AB 相交于点O,且2AO=OB 时,求∠BQP 的正切值;(4)是否存在时刻t,使得PQ⊥BD若存在,求出t 的值;若不存在,请说明理由。

【解】(1)如图3,过点P 作PM⊥BC,垂足为M,则四边形PDCM 为矩形。

相关文档
最新文档