双容水箱液位控制 开题研究报告
双容水箱液位定值控制系统实验
双容水箱液位定值控制系统实验双容水箱液位定值控制系统一、实验目的1( 通过实验,进一步了解双容对象的特性。
2( 掌握调节器参数的整定与投运方法。
3( 研究调节器相关参数的改变对系统动态性能的影响。
二、实验设备1( THJ-2型高级过程控制系统装置。
2( 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3( 万用表一只三、实验原理本实验系统以中水箱与下水箱为被控对象,下水箱的液位高度为系统的被图6-1 双容液位定值控制系统结构图控制量。
基于系统的给定量是一定值,要求被控制量在稳态时等于给定量所要求的值,所以调节器的控制规律为PI或PID。
本系统的执行元件既可采用电动调节阀,也可用变频调速磁力泵。
如果采用电动调节阀作执行元件,则变频调速磁图6-2 双容液位定值控制系统方框图力泵支路中的手控阀F2-4或F2-5打开时可分别作为中水箱或下水箱的扰动。
图6-1为实验系统的结构图,图6-2为控制系统的方框图。
四、实验内容与步骤1( 图6-1所示,完成实验系统的接线。
2( 接通总电源和相关仪表的电源。
3( 打开阀F1-1、 F1-2、F1-7、F1-10和F1-11,且使F1-10的开度大于F1-11的开度。
4( 用实验四(上册)中所述的临界比例度法或4:1衰减振荡法整定调节器的相关参数。
5( 设置系统的给定值后,用手动操作调节器的输出,控制电动调节阀给中水箱打水,待中水箱液位基本稳定不变且下水箱的液位等于给定值时,把调节器切换为自动,使系统投入自动运行状态。
6( 启动计算机,运行MCGS组态软件软件,并进行下列实验:1)当系统稳定运行后,突加阶跃(给定量增加5%,15%),观察并记录系统的输出响应曲线。
2)待系统进入稳态后,启运变频器调速的磁力泵支路,分别适量改变阀F2-4或阀F2-5的开度(加扰动),观察并记录被控制量液位的变化过程。
7.通过反复多次调节PI的参数,使系统具有较满意的动态性能指标。
实验三 双容水箱液位定值控制
实验三双容液位定值控制实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。
要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
实验系统控制方框图如下所示:图3-1 双容液位定值控制系统方框图实验内容一:观察系统在PI控制参数下的动态响应曲线1、按要求设定参数,液位给定值SV=80mm,PI参数为P=20,I=60。
2、设置好系统的给定值后,用手动操作AI智能调节仪的输出,通过电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把输出切换为自动,使系统投入自动运行状态。
其总貌图如下图所示:图3-2 双容液位定值控制系统总貌图上图曲线中所示,恒定不变的曲线线为下水箱液位的设定值,上面一条曲线为下水箱液位的的测量值,下面一条曲线为中水箱液位的测量值。
3、 观察系统在设定的控制参数下的动态响应曲线,如下图所示:图3-3 双容液位定值控制系统动态响应曲线由上图可知,其最大测量值为PV max =119.35mm ,由此可得出其最大超调量δ=(119.35-80)/80*100%,δ=50% 。
又由实时数据知:t 1=09:59:15,t 2=10:04:43则其上升时间t =t 2-t 1=328s 。
由以上可知,该双容控制系统的动态响应不如单容液位定值控制系统的动态响应,并且,在双容定值控制系统中,系统的响应还有一定的滞后,其滞后时间为T=94s 。
分析以上现象可得出以下的结论:本实验中被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。
根据前一实验单容水箱液位定值控制的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述:G(s)=G 1(s)G 2(s)=)1s T )(1s T (K 1s T k 1s T k 212211++=+⨯+ (3-1) 式中K =k 1k 2,为双容水箱的放大系数,T 1、T 2分别为两个水箱的时间常数。
双容水箱液位控制结题研究报告
自动控制系统课程设计双容水箱系统——结题报告学校:北京工业大学学院:电控学院专业:自动化班级:组号:第五组组员:实验日期:指导教师:目录一、课程设计任务 (2)二、被控对象的模型及分析 (2)三、系统控制方案论证 (5)四、控制结构与控制器设计步骤 (6)五、实验过程论述 (8)六、实验结果及分析 (10)七、总结 (10)八、附录 (11)一、课程设计任务1、课程设计目的(1)掌握自动控制系统的分析与控制器设计方法。
(2)掌握基于MATLAB的系统仿真方法(3)掌握基于实验方法确定系统模型参数的方法(4) 掌握基于物理对象的控制系统的调试方法(5)培养编制技术总结报告的能力。
2、被控对象: 双容水箱系统3、性能指标要求衰减率4:1~10:1,超调量Mp<10%,调节时间Ts<45s,稳态误差0=sse二、被控对象的模型及分析1双容水箱的数学模型双容水箱液位控制结构图如下图所示:图2-3 双容水箱液位控制结构图设流量Q1为双容水箱的输入量,下水箱的液位高度H2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为式中K=R4,T1=R2C1,T2=R4C2,R2、R4分别为阀V3和V4的液阻,C1和C2分别为左水箱和右水箱的容量系数。
式中的K、T1和T2可由实验求得的阶跃响应曲线求出。
具体的做法是在下图所示的阶跃响应曲线上取:6)-1(*)1*)(1*()()()(2112e sSTSTKSGSQSHτ-++==1)、h 2(t )稳态值的渐近线h 2(∞);图2-4 阶跃响应曲线 2)、h 2(t )|t=t1=0.4 h 2(∞)时曲线上的点A 和对应的时间t 1;3)、h 2(t )|t=t2=0.8 h 2(∞)时曲线上的点B 和对应的时间t 2。
然后,利用下面的近似公式计算式1-6中的参数K 、T1和T2。
其中:对于式(1-6)所示的二阶过程,0.32<t 1/t 2<0.46。
双容水箱实验报告
一、实验目的1. 了解双容水箱液位控制系统的基本原理和组成。
2. 掌握双容水箱液位控制系统的建模、仿真和实验方法。
3. 学习PID控制算法在双容水箱液位控制系统中的应用。
4. 分析不同控制策略对系统性能的影响,优化控制参数。
二、实验设备1. 双容水箱系统:包括两个水箱、阀门、传感器、执行器等。
2. 控制器:采用PID控制器进行液位控制。
3. 电脑:用于数据采集、仿真和参数调整。
4. MATLAB软件:用于系统建模、仿真和数据分析。
三、实验原理双容水箱液位控制系统主要由水箱、传感器、执行器和控制器组成。
系统的工作原理如下:1. 传感器检测水箱液位,并将液位信号传输给控制器。
2. 控制器根据预设的液位设定值和当前液位值,计算出控制信号。
3. 执行器根据控制信号调整阀门开度,控制进水流量和出水流量。
4. 通过调节进水流量和出水流量,使水箱液位保持在设定值附近。
四、实验步骤1. 系统建模:根据实验设备,建立双容水箱液位控制系统的数学模型。
模型包括水箱的液位方程、进水流量方程和出水流量方程。
2. 系统仿真:在MATLAB中,根据建立的数学模型进行系统仿真。
仿真过程中,调整PID控制器的参数,观察不同参数对系统性能的影响。
3. 实验验证:将PID控制器连接到实际双容水箱系统,进行实验验证。
通过改变液位设定值,观察系统响应和稳定性。
4. 参数优化:根据实验结果,调整PID控制器的参数,使系统性能达到最优。
五、实验结果与分析1. 系统仿真结果:在MATLAB中,通过仿真实验,观察到不同PID控制器参数对系统性能的影响。
结果表明,参数的合理选择对系统性能有显著影响。
2. 实验验证结果:将PID控制器连接到实际双容水箱系统,进行实验验证。
实验结果显示,系统响应速度快,稳定性好,能够有效控制水箱液位。
3. 参数优化结果:根据实验结果,对PID控制器的参数进行优化。
优化后的参数能够使系统在较短时间内达到稳定状态,并保持较高的响应速度。
实验05双容水箱液位定值控制实验
实验05双容水箱液位定值控制实验实验5 双容水箱液位定值控制实验一、实验目的1、掌握多容系统单回路控制的特点2、深入了解PID控制特点。
3、深入研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备A3000现场系统,任何一个控制系统。
三、实验原理与介绍1、系统结构水从中水箱进入,中水箱闸板开度8毫米,进入下水箱,下水箱闸板开度5-6毫米。
要保证中水箱闸板开度大约下水箱闸板开度,这样控制效果好些。
水流入量Qi由调节阀u控制,流出量Qo则由用户通过闸板来改变。
被调量为下水位H。
如图5-3-1所示。
实际上,可以通过控制连接到水泵上的变频器来控制压力,效果可能更好。
图5-3-1 双容水箱液位定值控制实验2、控制逻辑结构双容水箱液位控制系统如图5-3-2所示。
图5-3-2 双容水箱液位定值控制实验逻辑图这也是一个单回路控制系统,它与上一个实验不同的是有两个水箱相串联,控制的目的是使下水箱的液位高度等于给定值所期望的高度;具有减少或消除来自系统内部或外部扰动的影响。
显然,这种反馈控制系统的性能完全取决于调节器Gc(S)的结构和参数的合理选择。
由于双容水箱的数学模型是二阶的,故它的稳定性不如单容液位控制系统。
对于阶跃输入(包括阶跃扰动),这种系统用比例(P)调节器去控制,系统有余差,且与比例度成正比,若用比例积分(PI)调节器去控制,不仅可实现无余差,而且只要调节器的参数δ和Ti调节得合理,也能使系统具有良好的动态性能。
比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的控制作用,从而使系统既无余差存在,又使其动态性能得到进一步改善。
4、参考结果双容水箱液位控制实验PI控制器控制曲线如图5-3-3所示:图5-3-3 PI控制器控制曲线PID控制的曲线具有两个波,然后逐步趋于稳定。
由于系统延迟很大,这个稳定时间非常长。
比较好的效果是P=24, I=200,D=2。
如图5-3-4所示:图5-3-4 PID控制曲线从图可见,增加微分项之后,系统在有10%的扰动下,很快就进入稳定状态。
双容型水箱实验报告
机械电子工程原理实验报告双容型水箱液位与PID控制综合实验组员:XXXXXX年X月实验一压力传感器特性测试及标定测量实验一、实验目的1、了解本实验装置的结构与组成。
2、掌握压力传感器的实验原理及方法,对压力传感器进行标定。
二、实验设备1、德普施双容水箱一台。
2、PC 机及DRLINK4.5 软件。
三、实验原理图1-1 传感器装置图本实验传感器如图1-1所示,使用二个扩散硅压阻式压力传感器,分别用来测量上水箱水柱压力,下水箱水柱压力。
扩散硅压阻式压力传感器实质是硅杯压阻传感器。
它以N型单晶硅膜片作敏感元件,通过扩散杂质使其形成4个P型电阻,形成电桥。
在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,使电桥有相应输出。
经过后级电路的放大处理之后输出0~5V之间的电信号。
扩散硅压力传感器的输出随输入呈线性关系,输出特性曲线一般是一条直线,一般使用传感器前需要对此传感器进行标定,通常的做法是取两个测量点(x1,y1)和(x2,y2)然后计算特性直线的斜率K和截距B即可。
由于扩散硅压力传感器承受的水压力与水的液位高度成正比,因此扩散硅压力传感器通常也用来测量液位高度。
四、实验内容及结果图1-2 上水槽压力传感器特性测试及标定测量实验图1-3 下水槽压力传感器特性测试及标定测量实验5)压力传感器的标定系数值表。
表1-1 压力传感器标定系数值6)依据压力传感器标定系数值绘制的压力传感器特性曲线如图1-3,图1-4所示:图1-3 上水槽压力传感器特性曲线图1-4 下水槽压力传感器特性曲线五、思考题1.在做本实验的时候,为何2次标定的液位高度不能够太接近?答:由于液位高度与电压值为线性关系,故2次标定的液位高度要保持一定距离,这样可以有效降低系统误差。
在控制过程中由于水泵抽水压力冲击传感器等影响会对液位传感器产生一定程度的干扰。
为了更好的体现一阶液位的特性和准确的获得测量值。
双容水箱液位定值控制系统实验报告
XXXX大学电子信息工程学院专业硕士学位研究生综合实验报告实验名称:双容水箱液位定值控制系统专业:控制工程姓名: XXX学号:XXXXXX指导教师: XXX完成时间:XXXXX实验名称:双容水箱液位定值控制系统实验目的:1.通过实验进一步了解双容水箱液位的特性。
2.掌握双容水箱液位控制系统调节器参数的整定与投运方法。
3.研究调节器相关参数的改变对系统动态性能的影响。
4.研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。
5.掌握双容液位定值控制系统采用不同控制方案的实现过程。
实验仪器设备:1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;5.SA-41挂件一个、CP5611专用网卡及网线;6.SA-42挂件一个、PC/PPI通讯电缆一根。
实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。
要求下水箱液位稳定至给定量,将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
调节器的参数整定可采用本章第一节所述任意一种整定方法。
本实验系统结构图和方框图如图所示。
方案设计及参数计算:单回路控制系统方框图的一般形式,它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。
系统的给定量是某一定值,要求系统的被控制量稳定至给定量。
单回路控制系统方框图调节器参数的整定方法(一)经验法系统参数δ(%)T I(min) T D(min)温度20~60 3~10 0.5~3流量40~100 0.1~1压力30~70 0.4~3液位20~80(二)临界比例度法根据临界比例度δk和振荡周期T S,按下表所列的经验算式,求取调节器的参考参数值,这种整定方法是以得到4:1衰减为目标。
双容水箱串级液位控制系统设计_开题汇报1.doc
双容水箱串级液位控制系统设计_开题报告1F o r p e s n a u s e o n y s u d y a n d r e s a c h n o f r c m me r c a u s eFor personal use only in study and research;not for commercial use毕业设计开题报告系部:08自动化系专业:自动化姓名:赵玉龙学号:3157指导教师:胡长松2012年2月26日一选题依据人们生活以及工业生产经常涉及到液位和流量的控制问题,例如饮料、食品加工,居民生活用水的供应,溶液过滤,污水处理,化工生产等多种行业的生产加工过程,通常要使用蓄液池。
蓄液池中的液位需要维持合适的高度,太满容易溢出造成浪费,过少则无法满足需求。
因此,需要设计合适的控制器自动调整蓄液池的进出流量,使得蓄液池内液位保持正常水平,以保证产品的质量和生产效益。
这些不同背景的实际问题都可以简化为某种水箱的液位控制问题。
因此液位是工业控制过程中一个重要的参数。
特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的生产效果。
水箱液位控制系统的设计应用非常长广泛,可以把一个复杂的液位控制系统简化成一个水箱液位控制系统来实现。
所以就选择了该题目的设计。
由于液位检测应用领域的不同,性能指标和技术要求也有差异,但适用有效的测量成为共同的发展趋势,随着电子技术及计算机技术的发展,液位检测的自动控制成为其今后的发展趋势,控制过程的自动化处理以及监控软件良好的人机界面,操作人员在监控计算机上能根据控制效果及时修运行参数,这样能有效地减少工人的疲劳和失误,提高生产过程的实时性、安全性。
随着计算机控制技术应用的普及、可靠性的提高及价格的下降,液位检测的PID控制必将得到更加广泛的应用。
二PID控制的发展历史与前景在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
双容水箱液位控制结题研究报告
双容水箱液位控制结题研究报告————————————————————————————————作者:————————————————————————————————日期:自动控制系统课程设计双容水箱系统——结题报告学校:北京工业大学学院:电控学院专业:自动化班级:组号:第五组组员:实验日期:指导教师:目录一、课程设计任务 (3)二、被控对象的模型及分析 (5)三、系统控制方案论证 (7)四、控制结构与控制器设计步骤 (8)五、实验过程论述 (8)六、实验结果及分析 (12)七、总结 (12)八、附录 (12)一、课程设计任务1、课程设计目的(1)掌握自动控制系统的分析与控制器设计方法。
(2)掌握基于MATLAB的系统仿真方法(3)掌握基于实验方法确定系统模型参数的方法(4) 掌握基于物理对象的控制系统的调试方法(5)培养编制技术总结报告的能力。
2、被控对象: 双容水箱系统3、性能指标要求衰减率4:1~10:1,超调量Mp<10%,调节时间Ts<45s,稳态误差0=sse二、被控对象的模型及分析1双容水箱的数学模型双容水箱液位控制结构图如下图所示:图2-3 双容水箱液位控制结构图设流量Q1为双容水箱的输入量,下水箱的液位高度H2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为式中K=R4,T1=R2C1,T2=R4C2,R2、R4分别为阀V3和V4的液阻,C1和C2分别为左水箱和右水箱的容量系数。
式中的K、T1和T2可由实验求得的阶跃响应曲线求出。
具体的做法是在下图所示的阶跃响应曲线上取:6)-1(*)1*)(1*()()()(2112e sSTSTKSGSQSHτ-++==1)、h 2(t )稳态值的渐近线h 2(∞);图2-4 阶跃响应曲线 2)、h 2(t )|t=t1=0.4 h 2(∞)时曲线上的点A 和对应的时间t 1;3)、h 2(t )|t=t2=0.8 h 2(∞)时曲线上的点B 和对应的时间t 2。
双容水箱液位定值控制系统实验报告
双容水箱液位定值控制系统实验报告实验目的:通过搭建双容水箱液位定值控制系统,了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
实验器材:1.液位控制综合实验台2.电子积分器PID控制器3.水泵4.液位传感器5.两个水箱6.电压表和电流表实验步骤:1.将两个水箱放在实验台上,一个用作上升水箱,一个用作下降水箱。
2.将水泵安装在上升水箱中,并通过输水管连接两个水箱。
3.将液位传感器安装在上升水箱和下降水箱中,并将其连接到电子积分器PID控制器。
4.将电子积分器PID控制器连接到电源,并连接电压表和电流表来监测相应的电压和电流。
5.打开水源,使用电子积分器PID控制器调节水泵的运行方式和水泵的转速。
6.观察液位传感器的反馈信号,并根据反馈信号调整PID控制器的参数,使得液位保持在设定值附近。
7.记录不同设定值下液位的控制效果,并分析数据。
8.关闭水源,停止实验。
实验结果:根据实验数据,可以观察到双容水箱液位控制系统的控制效果。
当设定值改变时,PID控制器能够调整水泵的运行方式和水泵的转速,以使得液位保持在设定值附近。
实验结果表明,在合适的PID控制器参数设置下,液位的稳定性和控制精度较高。
实验分析:在双容水箱液位定值控制系统中,PID控制器起到了关键作用。
P项(比例项)根据液位的偏差来调节水泵的转速,I项(积分项)根据液位的积累偏差来调整水泵的运行方式,D项(微分项)根据液位的变化速度来预测液位的变化趋势。
通过PID控制器的联合作用,可以实现对液位的稳定控制。
从实验结果分析可以看出,PID控制器的参数设置非常重要。
当P参数过大或过小时,会导致液位振荡或调节速度缓慢;当I参数过大或过小时,会导致液位超调或稳态误差;当D参数过大时,系统可能产生过冲。
因此,需要根据具体的系统要求和实验条件来合理设置PID控制器的参数。
结论:通过搭建双容水箱液位定值控制系统,并对其进行实验研究,我们可以了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
液位控制系统设计开题报告
液位控制系统设计开题报告液位控制系统设计开题报告一、引言液位控制系统是工业自动化领域中的重要组成部分,广泛应用于石油化工、水处理、食品加工等领域。
本文将探讨液位控制系统的设计与开发,旨在提高液位控制的精确度和稳定性,以满足工业生产的需求。
二、背景分析液位控制系统的设计是为了实现对液体容器内液位的精确控制。
传统的液位控制系统通常采用浮子式液位传感器,但其存在精度低、易受干扰等问题。
因此,本文将研究并设计一种新型的液位控制系统,以提高液位控制的精确度和稳定性。
三、设计目标本文的设计目标是开发一种基于电容传感技术的液位控制系统,实现对液体容器内液位的精确测量和控制。
具体目标如下:1. 提高液位控制的精确度,使其误差小于0.1%;2. 提高液位控制的稳定性,减小受环境干扰的影响;3. 实现对液位的实时监测和报警功能。
四、设计方案本文的设计方案主要包括以下几个方面:1. 传感器选择:选择一种适用于液位控制的电容传感器,通过测量电容值来获取液位信息。
2. 信号处理:设计合适的信号处理电路,对传感器采集到的电容值进行放大、滤波和数字化处理。
3. 控制算法:采用PID控制算法对液位进行控制,通过调节控制信号来实现液位的精确控制。
4. 系统集成:将传感器、信号处理电路和控制算法进行集成,实现一个完整的液位控制系统。
五、预期效果通过本文的设计和研究,我们预期能够达到以下效果:1. 提高液位控制的精确度,使其误差小于0.1%,满足工业生产的需求。
2. 提高液位控制的稳定性,减小受环境干扰的影响,保证系统的可靠性。
3. 实现对液位的实时监测和报警功能,及时发现异常情况并采取相应措施。
六、研究方法本文将采用实验研究的方法,具体步骤如下:1. 选择适用于液位控制的电容传感器,并进行性能测试和比较。
2. 设计并搭建信号处理电路,对传感器采集到的电容值进行放大、滤波和数字化处理。
3. 设计并实现基于PID控制算法的液位控制系统,进行系统集成和测试。
基于MCGS的双容水箱液位监控系统设计 开题报告
毕业设计开题报告题目:基于MCGS的双容水箱液位监控系统设计学生姓名:学号:专业:测控技术与仪器指导教师:2014年04月23日1.文献综述1.1 液位控制系统的研究与应用背景及现状人们生活以及工业生产经常会涉及到水箱液位控制的问题,例如锅炉,食品加工,居民生活用水,污水处理等,在这个过程中仅仅靠人工来调节是远远不够的。
为了解决人工控制的控制准度低、控制速度慢、灵敏度低等一系列问题。
从而现在就引入了工业生产的自动化控制。
在自动化控制的工业生产过程中,一个很重要的控制参数就是液位。
一个系统的液位是否稳定,直接影响到了工业生产的安全与否、生产效率的高低、能源是否能够得到合理的利用等一系列重要的问题。
随着现在工业控制的要求越来越高,一般的自动化控制已经也不能够满足工业生产控制的需求,所以就又引入了可编程逻辑控制既PLC。
引入PLC使控制方式更加的集中、有效、更加的及时。
多容水箱液位控制系统是集计算机技术、自动化仪表技术、通信技术、自动控制技术为一体的多功能实验装置。
它的特点包括:结构简单、观察直观、组态灵活等。
基于以上的特点在该系统平台可以实施和开发各种相异的控制方案。
国内外许多学者和工程技术人员基于该类装置做出了重要的研究报告,验证了重要的理论成果和指导生产实践[7]。
1.3 双容水箱液位控制系统的工作原理控制系统如图1所示,采用单回路控制系统,实现对水箱液位(下水箱的液位H)的恒定控制。
当通过一旁通管道往上水箱注水或下水箱注水时,即给系统加入了干扰1或干扰2。
此时,下水箱的水位就会增加,从而偏离给定值(设定为15cm)。
液位检测变送器将信号转变为电信号(4-20mA)送入PLC中。
控制器PLC通过内部A/D模块将模拟信号转换为数字信号,再经过内部PID运算,输出模拟控制信号给电动执行器。
电动执行器在PLC的输出信号控制下,改变阀门的开度,从而调节流进上水箱的水流量,实现对水位的恒定调节,双容水箱液位控制的方块原理图如图2所示[1]。
双容水箱液位控制 开题报告1
自动控制系统课程设计双容水箱系统——开题报告学校: 北京工业大学学院: 电控学院专业: 自动化班级:组号: 第五组组员:实验日期:指导教师:目录1.绪论 (2)2.研究对象的数学模型及特性分析 (3)3.控制系统的性能指标要求 (5)4.控制器的选择与控制方案的设计与仿真 (6)5.拟采用的实验步骤及理想的实验曲线 (15)6.模型参数获取的实验设计 (17)7、附录 (19)1绪论双容水箱系统是一种比较常见的工业现场液位系统 , 在实际生产中 , 双容水箱控制系统在石油、化工﹑环保﹑水处理﹑冶金等行业尤为常见。
通过液位的检测与控制从而调节容器内的输入输出物料的平衡, 以便保证生产过程中各环节的物料搭配得当。
经过比较和筛选, 串级控制系统PID控制无论是从操作性、经济性还是从系统的控制效果均有比较突出的特性, 因此采用串级控制系统PID控制对双容水箱液位控制系统实现控制。
论文以THBDC-1型控制理论•计算机控制技术实验平台为基础的实验数据作为出发点, 利用MATLAB的曲线拟合的方法分别仿真出系统中上水箱、下水箱的输出响应曲线。
对曲线进行处理求出各水箱的参数, 用所求出的参数列写出水箱的传递函数。
采用复杂控制系统中的串级控制系统列写出系统框图, 根据串级控制系统PID参数整定的方法整定出主控制器和副控制器的P、I、D的数值, 从而满足控制系统对各项性能的要求。
2.1 2.研究对象的数学模型及特性分析2.2在控制系统设计工作中, 需要针对被控过程中的合适对象建立数学模型。
被控对象的数学模型是设计过程控制系统、确定控制方案、分析质量指标、整定调节器参数等的重要依据。
被控对象的数学模型(动态特性)是指过程在各输入量(包括控制量和扰动量)作用下, 其相应输出量(被控量)变化函数关系的数学表达式。
在液位串级控制系统中, 我们所关心的是如何控制好水箱的液位。
上水箱和下水箱是系统的被控对象, 必须通过测定和计算他们模型, 来分析系统的稳态性能、动态特性, 为其他的设计工作提供依据。
双容水箱串级液位控制系统设计开题报告
双容水箱串级液位控制系统设计开题报告双容水箱串级液位控制系统设计开题报告在人们素养不断提高的今天,报告十分的重要,报告中提到的所有信息应该是准确无误的。
那么一般报告是怎么写的呢?下面是小编为大家整理的双容水箱串级液位控制系统设计开题报告,欢迎阅读与收藏。
一、选题依据人们生活以及工业生产经常涉及到液位和流量的控制问题,例如饮料、食品加工,居民生活用水的供应,溶液过滤,污水处理,化工生产等多种行业的生产加工过程,通常要使用蓄液池。
蓄液池中的液位需要维持合适的高度,太满容易溢出造成浪费,过少则无法满足需求。
因此,需要设计合适的控制器自动调整蓄液池的进出流量,使得蓄液池内液位保持正常水平,以保证产品的质量和生产效益。
这些不同背景的实际问题都可以简化为某种水箱的液位控制问题。
因此液位是工业控制过程中一个重要的参数。
特别是在动态的'状态下,采用适合的方法对液位进行检测、控制,能收到很好的生产效果。
水箱液位控制系统的设计应用非常长广泛,可以把一个复杂的液位控制系统简化成一个水箱液位控制系统来实现。
所以就选择了该题目的设计。
由于液位检测应用领域的不同,性能指标和技术要求也有差异,但适用有效的测量成为共同的发展趋势,随着电子技术及计算机技术的发展,液位检测的自动控制成为其今后的发展趋势,控制过程的自动化处理以及监控软件良好的人机界面,操作人员在监控计算机上能根据控制效果及时修运行参数,这样能有效地减少工人的疲劳和失误,提高生产过程的实时性、安全性。
随着计算机控制技术应用的普及、可靠性的提高及价格的下降,液位检测的PID控制必将得到更加广泛的应用。
二、PID控制的发展历史与前景在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。
液位控制系统开题报告
液位控制系统开题报告液位控制系统开题报告一、引言液位控制系统是一种广泛应用于工业生产和实验室实践中的自动化控制系统。
它通过监测和调节液体的液位,确保液体在设定的范围内保持稳定。
液位控制系统在许多领域中都起着重要作用,如化工工艺、石油炼制、食品加工等。
本文将探讨液位控制系统的原理、应用以及未来的发展方向。
二、液位控制系统原理液位控制系统的核心原理是通过传感器监测液体的液位,并将信号传递给控制器,控制器再根据设定的目标值来调节执行机构,使液位保持在设定的范围内。
传感器是液位控制系统中的关键组件,常用的传感器包括浮子式液位传感器、电容式液位传感器和超声波液位传感器等。
这些传感器能够准确地测量液体的液位,并将信号转换为电信号输出。
三、液位控制系统的应用液位控制系统在许多领域中都有广泛的应用。
在化工工艺中,液位控制系统能够确保反应器中的液位稳定,从而保证反应的效果和安全性。
在石油炼制过程中,液位控制系统可以监测油罐的液位,避免溢出和漏油等安全事故。
在食品加工行业中,液位控制系统能够控制液体的流量和混合比例,提高生产效率和产品质量。
四、液位控制系统的挑战和解决方案液位控制系统在实际应用中面临一些挑战。
首先,不同液体的特性和环境条件会对液位控制系统的准确性和稳定性产生影响。
其次,传感器的选择和校准也是一个关键问题。
为了解决这些挑战,研究人员正在不断努力改进传感器的性能,并开发新的控制算法和技术。
例如,利用先进的信号处理和模型预测控制技术,可以提高液位控制系统的响应速度和准确性。
五、未来的发展方向随着科技的不断进步,液位控制系统将会迎来更多的发展机遇。
首先,人工智能和机器学习的应用将使液位控制系统更加智能化和自适应。
其次,新材料和传感器技术的发展将提高液位控制系统的稳定性和耐用性。
此外,无线通信和互联网技术的发展也将使液位控制系统更加便捷和易于管理。
六、结论液位控制系统是一种重要的自动化控制系统,广泛应用于工业生产和实验室实践中。
双容水箱液位PID控制实验
上海电力学院实验报告过程控制实验课程题目双容水箱液位PID控制实验班级姓名学号同组成员指导老师时间 2011-5-16 上海电力学院电力与自动化工程学院一、实验目的1、学习双容水箱液位PID 控制系统的组成和原理2、进一步熟悉PID 的调节规律3、进一步熟悉PID 控制器参数的整定方法二、实验设备1、四水箱实验系统硬件平台2、PC 机(Window XP操作系统)三、实验原理1、控制系统的组成及原理单回路调节系统,一般是指用一个控制器来控制一个被控对象,其中控制器只接收一个测量信号,其输出也只控制一个执行机构。
双容水箱液位PID 控制系统也是一种单回路调节系统,典型的双容水箱液位控制系统如下图所示:双容水箱液位PID 控制系统的方框图在双容水箱液位PID 控制系统中,以液位为被控量。
其中,测量电路主要功能是测量对象的液位并对其进行归一化等处理;PID 控制器是整个控制系统的核心,它根据设定值和测量值的偏差信号来进行调节,从而控制双容水箱的液位达到期望的设定值。
单回路调节系统可以满足大多数工业生产的要求,只有在单回路调节系统不能满足生产更高要求的情况下,才采用复杂的调节系统。
2、PID 调节规律PID控制是比例、积分、微分控制的简称。
在生产过程自动控制的发展历程中,PID控制是历史最久、生命力最强的基本控制方式。
目前,PID控制仍然是得到最广泛应用的基本控制方式。
常用的PID控制规律有:P、PI、PD、PID,可根据被控对象的特点和控制要求选择其中之一作为控制器。
3、PID 控制器参数的实验整定方法双容水箱液位PID控制器参数整定,是为了得到某种意义下的最佳过渡过程。
我们这里选用较通用的“最佳”标准,即要求在阶跃扰动作用下,被调量的波动具有衰减率0.75左右,在这个前提下,尽量满足准确性和快速性的要求。
常用的实验整定方法有:a、动态特性曲线法b、稳定边界法c、衰减曲线法四、实验步骤1、实验前准备工作2、进入实验运行四水箱实验系统DDC 实验软件,进入首页界面;选择实验模式为“实验装置”;单击实验菜单,进入双容水箱液位PID 控制实验界面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双容水箱液位控制开题研究报告————————————————————————————————作者:————————————————————————————————日期:自动控制系统课程设计双容水箱系统——开题报告学校:北京工业大学学院:电控学院专业:自动化班级:组号:第五组组员:实验日期:指导教师:目录1、绪论 (2)2、研究对象的数学模型及特性分析 (3)3、控制系统的性能指标要求 (5)4、控制器的选择与控制方案的设计与仿真 (6)5、拟采用的实验步骤及理想的实验曲线 (15)6、模型参数获取的实验设计 (17)7、附录 (19)1绪论双容水箱系统是一种比较常见的工业现场液位系统,在实际生产中,双容水箱控制系统在石油、化工﹑环保﹑水处理﹑冶金等行业尤为常见。
通过液位的检测与控制从而调节容器内的输入输出物料的平衡,以便保证生产过程中各环节的物料搭配得当。
经过比较和筛选,串级控制系统PID控制无论是从操作性、经济性还是从系统的控制效果均有比较突出的特性,因此采用串级控制系统PID控制对双容水箱液位控制系统实现控制。
论文以THBDC-1型控制理论•计算机控制技术实验平台为基础的实验数据作为出发点,利用MATLAB的曲线拟合的方法分别仿真出系统中上水箱、下水箱的输出响应曲线。
对曲线进行处理求出各水箱的参数,用所求出的参数列写出水箱的传递函数。
采用复杂控制系统中的串级控制系统列写出系统框图,根据串级控制系统PID参数整定的方法整定出主控制器和副控制器的P、I、D的数值,从而满足控制系统对各项性能的要求。
2、研究对象的数学模型及特性分析在控制系统设计工作中,需要针对被控过程中的合适对象建立数学模型。
被控对象的数学模型是设计过程控制系统、确定控制方案、分析质量指标、整定调节器参数等的重要依据。
被控对象的数学模型(动态特性)是指过程在各输入量(包括控制量和扰动量)作用下,其相应输出量(被控量)变化函数关系的数学表达式。
在液位串级控制系统中,我们所关心的是如何控制好水箱的液位。
上水箱和下水箱是系统的被控对象,必须通过测定和计算他们模型,来分析系统的稳态性能、动态特性,为其他的设计工作提供依据。
上水箱和下水箱为过程控制实验装置中上下两个串接的有机玻璃圆筒形水箱,另有不锈钢储水箱负责供水与储水。
2.1 水箱模型分析双容水箱液位控制结构图如下图所示:图2-3 双容水箱液位控制结构图设流量Q 1为双容水箱的输入量,下水箱的液位高度H 2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为式中 K=R 4,T 1=R 2C 1,T 2=R 4C 2,R 2、R 4分别为阀V 3和V 4的液阻,C 1 和C 2分别为左水箱和右水箱的容量系数。
式中的K 、T 1和T 2可由实验求得的阶跃响应曲线求出。
具体的做法是在下图所示的阶跃响应曲线上取:6)-1 ( *)1*)(1*()()()(2112e sS T S T K S G S Q S H τ-++==图2-4 阶跃响应曲线1)、h 2(t )稳态值的渐近线h 2(∞); 2)、h 2(t )|t=t1=0.4 h 2(∞)时曲线上的点A 和对应的时间t 1; 3)、h 2(t )|t=t2=0.8 h 2(∞)时曲线上的点B 和对应的时间t 2。
然后,利用下面的近似公式计算式1-6中的参数K 、T1和T2。
其中:对于式(1-6)所示的二阶过程,0.32<t 1/t 2<0.46。
当t 1/t 2=0.32时 ,为一阶环节;当t 1/t 2=0.46时,过程的传递函数G(S)=K/(TS+1)2(此时T 1=T 2=T=(t 1+t 2)/2*2.18 )过曲线的拐点做一条切线,它与横轴交于A 点,OA 即为滞后时间常数て。
注意:在以上对象模型的分析过程中,忽略了泵、进水阀、出水阀等环节对水箱模型的影响,因此水箱特性的实际测试结果,可能与理论分析有一定偏差。
2.16t t T T )4)(K 21212+≈+=∞=、阶跃输入量输入稳态值O R h )55.074.1()T (T T T)52122121-≈+t t 、 t h t0 0.4 0.8 2 0 0 ( h 00 ( h 0 0( 1 t 2 B A h 2 2 (t)2 Pて A3、控制系统的性能指标要求双容水箱性能指标要求: (1) 衰减率4:1~10:1 (2) 超调量%10≤p M (3) 调节时间s t s 45≤ (4) 稳态误差0=ss e4、控制器的选择与控制方案的设计与仿真1、控制器——PID 控制原理目前,随着控制理论的发展和计算机技术的广泛应用,PID 控制技术日趋成熟。
先进的PID 控制方案和智能PID 控制器(仪表)已经很多,并且在工程实际中得到了广泛的应用。
现在有利用PID 控制实现的压力、温度、流量、液位控制器,能实现PID 控制功能的可编程控制器(PLC),还有可实现PID 控制的计算机系统等。
在工程实际中,应用最为广泛的调节器控制规律为比例积分微分控制,简称PID 控制,又称PID 调节。
PID 控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
图2.1 PID 控制基本原理图PID 控制器是一种线性负反馈控制器,根据给定值r(t)与实际值y(t)构成控制偏差:式(3.1) 控制规律为:式(3.2)或以传递函数形式表示:式(3.3) ++r(t) 比例P 积分I 微分D 被控对象 y(t)()()()()01tde t U t Kp e t e i Td Ti dt ⎡⎤=++⎢⎥⎣⎦⎰)11()()()(Tds Tiskp s E s U s G ++==)()()(t y t r t e -=K P:比例系数 T I:积分时间常数 T D:微分时间常数。
PID控制器各控制规律的作用如下:(1)比例控制(P):比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系,能较快克服扰动,使系统稳定下来。
但当仅有比例控制时系统输出存在稳态误差(2)积分控制(I):在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称此控制系统是有差系统。
为了消除稳态误差,在控制器中必须引入“积分项”。
积分项对误差的累积取决于时间的积分,随着时间的增加,积分项会越大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
但是过大的积分速度会降低系统的稳定程度,出现发散的振荡过程。
比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
(3)微分控制(D):在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。
其原因是由于存在有较大惯性环节或有滞后环节,具有抑制误差的作用,其变化总是落后于误差的变化。
解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
所以在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。
特别对于有较大惯性或滞后环节的被控对象,比例积分控制能改善系统在调节过程中动态特性。
PID控制器的参数整定是控制系统设计的重要内容,应根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。
2、控制方案的设计与仿真控制方案设计是过程控制系统设计的核心,需要以被控过程模型和系统性能要求为依据,合理选择系统性能指标,合理选择被控参数,合理设计控制规律,选择检测、变送器和选择执行器。
选择正确的设计方案才能使先进的过程仪表和计算机系统在工业生产过程中发挥良好的作2.1液位串级控制系统介绍在工业实际生产中,液位是过程控制系统的重要被控量,在石油﹑化工﹑环保﹑水处理﹑冶金等行业尤为重要。
在工业生产过程自动化中,常常需要对某些设备和容器的液位进行测量和控制。
通过液位的检测与控制,了解容器中的原料﹑半成品或成品的数量,以便调节容器内的输入输出物料的平衡,保证生产过程中各环节的物料搭配得当。
通过控制计算机可以不断监控生产的运行过程,即时地监视或控制容器液位,保证产品的质量和数量。
如果控制系统设计欠妥,会造成生产中对液位控制的不合理,导致原料的浪费﹑产品的不合格,甚至造成生产事故,所以设计一个良好的液位控制系统在工业生产中有着重要的实际意义。
在液位串级控制系统的设计中采用THJ-2高级过程控制实验系统的实验数据作为基础,展开设计控制系统及工程实现的工作。
串级控制系统从总体上看,是定值控制系统,因此主被控变量在扰动作用下的过度过程和单回路定值控制系统的过度过程,具有相同的品质指标和类似的形式。
但是,串级控制系统在结构上增加了一个随动的副回路,因此,与单回路相比有以下几个优点。
1)串级控制系统对进入副回路的扰动具有较强的克服能力。
2)由于副回路的存在,明显改善了对象的特性,提高了系统的工作频率。
3)串级控制系统具有一定的自适应能力。
除上述优点外串级控制系统在有些场合应用效果显著,它主要应用于以下4中场合。
1)对象的容量滞后比较大。
2)调节对象的纯滞后比较长。
3)系统内存在激烈且幅值较大的干扰作用。
4)调节对象具有较大的非线性特性而且负荷变化较大。
而双容水箱均有上述缺点,因此可以看出串级控制系统很适合应用于双容水箱液位控制系统的设计2.2系统控制方案设计2.2.1控制系统性能指标(1) 静态偏差:系统过渡过程终了时的给定值与被控参数稳态值之差。
(2) 衰减率:闭环控制系统被施加输入信号后,输出响应中振荡过程的衰减指标,即振荡经过一个周期以后,波动幅度衰减的百分数。
本实验的衰减率要求在4:1~10:1.(3) 超调量:输出响应中过渡过程开始后,被控参数第一个波峰值与稳态值之差,占稳态值的百分比,用于衡量控制系统动态过程的准确性。
(4) 调节时间:从过渡过程开始到被控参数进入稳态值-5%—+5%范围所需的时间2.2.2方案设计设计建立的串级控制系统由主副两个控制回路组成,每一个回路又有自己的调节器和控制对象。
主回路中的调节器称主调节器,控制主对象。
副回路中的调节器称副调节器,控制副对象。
主调节器有自己独立的设定值R,他的输出m1作为副调节器的给定值,副调节器的输出m2控制执行器,以改变主参数c2.通过针对双容水箱液位被控过程设计串级控制系统,将努力使系统的输出响应在稳态时系统的被控制量等于给定值,实现无差调节,并且使系统具有良好的动态性能,较块的响应速度。