干膜厚度测试法SSPC-PA2(DFT Measuring)
涂装专业考试试卷(一)答案
涂装专业考试试卷(一)答案舟山船务涂装专业考试试题部门:姓名:现岗位:日期:得分:一、判断题:(正确的打“√”,错误的打“×”,共20题,每题1分,共20分)1.PSPC规定如车间底漆未通过预备资格认证试验程序,则完整底漆至少要去除70%及以上达到Sa2.5级。
( × )2.根据PSPC要求,如果船舶分段搭载合拢后,压载舱涂层破损面积虽然小于舱室总面积的2%,但有一处涂层连续破损面积达到25平方米以上了,则这部分涂层只需要进行ST3处理就可以了。
(×)3.滚涂(辊涂)可以用于第一道涂层的施工。
( × )4.粗糙度比测器的“S”型号适用于经钢砂处理的表面,“G”型号适用于经钢丸处理的表面。
(×)5.根据PSPC要求,在分段喷砂开始前、喷砂过程中不需要对环境条件进行监控、记录。
(×)6.如果钢板温度高于露点温度2℃,则钢板表面肯定会发生结露现象。
(×)7.涂装检测设备应按照规定的时间间隔或在使用前进行校准和(或)检定(验证)。
(√)8.使用复制胶带法测量粗糙度时,需要用测量读数减去胶带的胶膜厚度才得到粗糙度值。
(√)9.PSPC中要求预涂应使用刷涂的方式进行,辊涂只适用于流水孔、过焊孔、老鼠洞等部位。
(√)10.SSPC-SP10和ISO 8501-1 Sa2.5级的要求是等效的。
(√)11.有重度氧化皮沉积物的钢表面最好以较小的角度(例如45度)进行喷砂以除去氧化皮。
(√)12.当指定用SSPC-SP11时,如果原始表面已受点蚀,且轻微的锈和油漆残留物可能会留在点蚀的低洼部分是合格的。
(√)13.当采用含有强溶剂的涂料复涂非转化型涂料时,很可能会发生涂膜损坏。
(√)14.镁块不能长期安装于用来运输易燃液体的货舱内,否则若阳极(镁块)发生坠落,产生的火花可能引发爆炸。
(√)15.湿膜厚度可在喷涂结束后的任何时间进行测量。
(×)16.相对湿度高时不应施工涂料的一个原因是溶剂不易挥发。
SSPC油漆标准(中文译稿)
美国钢结构涂装协会标准《SSPC 规范-油漆20》(一)编者按: SSPC:Steel StructurePaint Council 的规范和标准是美国钢结构涂装协会制定的美国国家标准,也是国际上最具权威性和采用最多的钢结构涂装标准。
随着经济全球化的进程,国内许多高标准涂装防护要求的重大钢结构工程,亟待采用国际通用的规范和标准。
为此,我们编译了美国钢结构涂装协会的标准《 SSPC 规范 - 油漆 20 》,以飨读者。
1 总则1.1 技术规范涵盖的两个种类的富锌漆,只有一个定义:在露底和细小擦损部位涂层漆膜不连续的情况下也能保护裸露金属。
1.2 涂料种类可以分为无机锌粉和有机锌粉两大类。
1.3 技术规范不涉及可焊底漆,即车间保养底漆,如 SSPC- 油漆 30 。
1.4 富锌涂层,不论其表面是否涂上面漆,都可以很好地在各种环境下广泛运用。
在不同的工作环境下,不同种类的富锌漆在施工中出现的具体涂层破损情况,请参考 SSPC — PS 指导 12.00 或向油漆制造商咨询对锌粉涂层外露规范的相关建议(见章节 12.1 《注意事项》)。
1.5 富锌涂料应该可以单独使用,或作为多种涂料配套系统中的底漆,而且适合于喷涂施工。
2 应用类型2.1 技术规范的应用2.1.1 符合本技术规范的锌粉底漆应依据涂料的品种和锌含量等级分门别类。
2.1.2 如果没有明确的指定涂料品种,那么种类 I (无机锌粉类)和种类 II (有机锌粉类)都可以接受(见章节 2.3 )。
2.1.3 如果没有明确规定具体的锌含量,那么锌粉含量等级 1 、 2 和 3 都是可以接受的(见章节 2.3 )。
该种类锌粉底漆可以由 (1 ~ 3) 种成分构成。
2.2 组成本技术规范所述的富锌涂料,一般含有金属锌粉、功能性添加剂(助剂),以及有机或无机的油漆主剂和相应的溶剂(见章节 12.2 《注意事项》)。
2.3 油漆主剂的类型2.3.1 种类 I-A : 2 次硬化类无机锌粉涂料 / 水溶性无机锌粉。
sspc pa2 干膜厚度测量
Calibration Verification of Accuracy Adjustment
• Steps are required to be completed before coating thickness data acquisition to determine conformance to a specification
Scope of SSPC-PA 2
• Standard contains 8 non-mandatory appendices (described later) • 9th appendix was recently balloted (precautions regarding the use of the standard for coating failure investigations) • Standard is not intended to be used for measurement of thermal spray coatings (procedure described in SSPC-CS 23.00)
SSPC-PA 2 Procedure for Determining Conformance to Dry Coating Thickness Requirements
William D. Corbett, KTA-Tator, Inc. Chair – SSPC Committee C.3.2 on Dry Film Thickness Measurement
Verification of Type 1 Gage Accuracy
中文版标准SSPC-PA2(DFT Standard
SSPC-PA2 使用磁性测厚仪测试干膜厚度SSPC-PA 2要求如下:每100平方英尺进行5组任意测试(每组取3个读数的平均值)-注意:单个读数不受规定,但包括在‘任意点’测试的平均值中。
5组任意测试的平均值(即:15个测试点)不得高于也不得低于规定的厚度单个测试点的厚度不得低于规定厚度的80%,也不得高于规定厚度的120%最低厚度:每100平方英尺(10平方米)面积内任意测试点的平均厚度不得低于规定的最低厚度。
任何100平方英尺(10平方米)面积内的任一测试点的厚度不得低于规定的最低厚度的80%。
任何测试仪的读数可能会大大低于规定数值。
如果特定100平方英尺(10平方米)面积内任意测试点的平均厚度符合或高于规定的最低厚度,但有一个或多个任意测试点的厚度低于规定的最低厚度的80%,则可能需要增加测试以限定不符合要求的区域。
(见附录1)最高厚度:每100平方英尺(10平方米)面积内任意测试电的平均厚度不得高于规定的最高厚度。
任何100平方英尺(10平方米)面积内的任一测试点的厚度不得高于规定的最高厚度的120%。
任何测试仪的读数可能会大大高于规定数值。
如果特定100平方英尺(10平方米)面积内任意测试点的平均厚度符合或低于规定的最高厚度,但有一个或多个任意测试点的厚度高于规定的最高厚度的120%,则可能需要增加测试以限定不符合要求的区域。
在特定情况下,可查阅生产商的资料以决定是否允许较高的最高厚度读数。
测试区域对于1,000平方英尺(100平方米)以下的区域,任意选择并测试三个100平方英尺(10平方米)的区域。
如果那些区域的干膜厚度符合规定范围,继续进行。
如果不符合规定范围,则增加测试以限定不符合规定的区域,然后再重新开始。
对于1,000平方英尺(100平方米)以上的区域,如上所述测试第一个1,000平方英尺的厚度-如干膜厚度OK-则对另外的每1,000平方英尺(100平方米)任意选择测试100平方英尺(10平方米)的。
sspc漆膜厚度测量
SSPC: The Society for Protective CoatingsPAINT APPLICATION SPECIFICATION NO. 2Measurement of Dry Coating Thickness with Magnetic GagesSSPC PA2 使用磁性测厚仪测量涂层干膜厚度1. Scope范围1.1 GENERAL: This standard describes the procedures to measure the thickness of a dry fi lm of a nonmagnetic coating applied on a magnetic substrate using commercially available magnetic gages. These procedures are intended to supplement manufacturers’ operating instructions for the manual operation of the gages and are not intended to replace them.总则:本标准描述了使用市场上可买到的磁性测厚仪来测量施工在磁性底材上的非磁性涂层的干膜厚度的程序。
该程序作为仪器手工操作说明的补充,但并不替代设备制造商的操作说明书。
1.2The procedures for adjustment and measurement are described for two types of gages: pull-off gages (Type 1) and electronic gages (Type 2).校准和测量的规程适用于两类测厚仪:拉开式测厚仪(类型1)和电子测厚仪(类型2)。
1.3 The standard defines a procedure to determine if the film thickness over an extended area conforms to the minimum and the maximum levels specified. This procedure may be modified when measuring dry film thickness on overcoated surfaces (see Note 7.1).本标准定义了用来确定漆膜厚度是否超出规定的最小值和最大值的范围的程序。
漆膜厚度检验方法ac
蓝海检测-涂装检验
a (2)
漆膜厚度检验仪器
漆膜厚度检验仪器主要有: 湿膜厚度(WFT)测试仪器:(梳齿状)湿膜测厚仪 湿膜厚度(DFT)测试仪器:
磁性拉伸式干膜测厚仪(SSPC PA2 I 类仪器) 固定探头电磁干膜测厚仪(SSPC PA2 II 类仪器) 电磁与涡流干膜测厚仪 其它测试仪器:托克仪,千分尺,游标卡尺
3inchx3inchx0.125inch 通常采用塑料薄片进行校准
a (16)
漆膜厚度测量原则
干膜厚度(DFT)的测量原则:80-20原则(SSPC PA2),90-10原则(IMO),8515原则(CB)
80-20原则的意思是:80%的测量值不得低于规定的干膜厚度,其余20%的测量值不 能低于规定膜厚的80%。
测量湿膜厚的重要意义:可以用来估算干膜厚度!
干膜厚和湿膜厚的关系:
厚x 100%
体积固体份 = 干膜厚/湿膜
用来预测干膜厚,或计算所需的湿膜厚
份x 100%
湿膜厚 = 干膜厚/体积固体
Attention!湿膜测厚仪可能变成破坏性仪器
a (6)
磁性拉伸式干膜测厚仪(SSPC PA2 I 类仪器)
基本原理: 使用弹簧将一块永
久磁铁从漆膜表面拉起, 该仪器可以将从表面拉力 的力转化为涂层的厚度, 磁铁吸附于表面的力会随 着磁铁和表面的距离(即 涂层的厚度)不同而发生 变化。
a (7)
磁性拉伸式干膜测厚仪(SSPC PA2 I 类仪器)
磁性拉伸式干膜测厚仪
机械仪 本身安全 易于使用
保持磁性端头的清洁 确保涂层漆膜已硬干 不要在振动表面(如机器) 或靠近边缘处进行测量 精确性仅为 +/- 5% 单手进行测量会很困难
PSPC检验项目操作方法
≥100-150<
比粗更粗
粗糙度等于并高于模板3但低于模板4
100≤
150≤
注释:该测试结果不单单评定表面特征,也定义了明确的粗糙度值(Ry5或hy)
此方法仅适用于ISO 8501-1中规定的Sa2.5和Sa3。
7.磁性仪器测定干膜厚度(SSPC PA2)
测试工具(仪器):
电磁干膜测厚仪(类型2)
6.开口周围每一边测一个数据;
7.每平方米测五个数据,但复杂区域测量不得少于三个数据(如主支撑构件的大肋板);和
8.涂层检验员对认为必要的任何区域可额外取点以验证涂层厚度。
显示板
-与粉尘颜色有反差作为背景
-例如:玻璃、黑色或白色釉面砖、卡纸或纸
手持式放大镜
-可以放大10倍
弹力负载滚轮
-提供39.2或49.0牛顿的负载或之间的负载
-通常使用拇指,使用此工具的目的是为了避免争执
测试步骤:
1.去除并丢弃首三圈的胶带。
2.取用大约200毫米长的胶带。
3.把刚取下的150毫米长的胶带以下述方法a)或b)牢固粘附在底材上。
1.钢材锈蚀等级和表面处理等级评定(ISO 8501-1)
测试工具(仪器):
目测
测试步骤:
1.锈蚀等级评定
A
大面积覆盖着粘着的氧化皮,而几乎没有铁锈的钢材表面
B
已开始锈蚀,且氧化皮已开始剥落的钢材表面
2.处理等级评定
Sa2彻底喷射清理
在不放大的情况下进行观察时,表面应无可见的油脂和污垢,并且几乎没有氧化皮、铁锈、油漆涂层和异物。任何残留物应是牢固附着的。参见照片B Sa2,C Sa2,D Sa2
3.纵向和横向扶强材:
一组测量点如下所示进行取点,每2~3米测量一组数据,在主支撑构件间不得少于2组:
SSPC-PA2 中文
厚度读数上。在试图建立一个要从最终干膜厚度上减去的基础干膜厚度读数时,这 样的不均匀也会增加统计上的波动。 使用涂层检测膜厚仪(有时称为Tooke或PIG)将提供准确的干膜厚度测量,但 是会切穿涂层,所以必须要修复每一个测量部位。可以使用超声波膜厚仪,但是精 确性远低于1型或2型膜厚仪。在复涂中一个可行的用于监测干膜厚度的方法是通过 湿膜厚度和施工涂料的体积固含量计算干膜厚度。 如果现有涂层的干膜厚度过于不均匀, 可以通过测量现有涂层的平均干膜厚度的 方式制定基础干膜厚度。然后从总干膜厚度中减去这个基础干膜厚度就得到复涂涂 层的膜厚。 7.2 磁性膜厚仪的原理:每一个这种膜厚仪能感应和测量的仅仅是钢材的磁性表面 和接触在涂层表面的磁铁或探头的小圆尖之间的距离。由于钢材的表面粗糙度和为 了将钢材的组成与形状所带来的影响控制在在较小的程度,要使这个测量距离(从 涂层的上表面到磁场零点)等同于波峰之上的涂层厚度,必须修正膜厚仪的读数。 这样的修正在3.3(对1型)和3.4(对2型)中有详细说明。 7.2.1 1型(拉脱型)膜厚仪测量将一小块永磁铁拉脱已涂装钢材表面所用的力。将 磁铁保持在表面的磁力变化与磁铁和钢材之间距离的非线性函数成反比,亦即,干 膜厚度(加上其他所有现有涂层)。 通常,1型的膜厚仪不用为了每一个新系列的测量进行调整或重设。用来调整2 型(电子型)膜厚仪所用到的塑料或非磁性金属薄片不能用于调整1型膜厚仪。这些 薄片通常都相当的坚硬和弯曲,甚至在光滑的钢材测试表面也不能完全的放平。使 用1型膜厚仪,当接近测量的拉脱点时,薄片常常会弹回钢材表面,使得提高磁铁过 快而导致错误的读数。 7.2.2 2型(电子型)膜厚仪有两个不同的磁力原理。一些2型膜厚仪使用永磁体。当 磁铁接近钢材时,磁铁尖端的磁感应强度增加。磁感应强度的变化和磁铁与钢铁基 材的距离成反比,通过测量磁感应强度的变化,可以测得涂层厚度。用来测量磁感 应强度最常用的方法是在磁铁尖端安装霍尔元件和磁电阻元件。 其他2型膜厚仪使用 电磁感应的原理。通过直流电激发有软铁棒的线圈,由此在探头尖端产生变化的磁 场。就像永磁体一样,当探头接近钢铁基材时铁棒内的磁感应强度增大。这个变化 可以很容易的通过使用附加的线圈检测到。这些线圈的输出值与涂层厚度相关。 7.3 重复性:磁性膜厚仪必须对涂层表面或探头正下方的钢材表面的微小不平整有 一定的敏感度。在粗糙表面重复读数,甚至在非常接近的点位,经常差别很大,尤 其是对于较高表面粗糙度的表面上的薄涂层厚度。 7.4 零点设定:不论膜厚仪应用于粗糙的钢材表面还是未涂装的光滑钢材表面,1型 膜厚仪都不能进行调整或刻度归零。 一些2型膜厚仪能在未涂装的冲砂清理表面调整
薄膜厚度测试方法
薄膜厚度测试方法一、引言薄膜厚度是薄膜材料的重要物理参数之一,对于许多应用领域来说都非常关键。
因此,准确地测试薄膜厚度是非常重要的。
本文将介绍几种常用的薄膜厚度测试方法,包括光学法、电子显微镜法和原子力显微镜法。
二、光学法光学法是一种常用的非接触式薄膜厚度测试方法。
它利用光的反射和透射特性来测量薄膜的厚度。
一种常见的光学法是自动反射光谱法。
该方法通过测量光在薄膜表面的反射特性来确定薄膜的厚度。
具体步骤为:首先,将待测薄膜放置在反射镜上,然后使用光源照射薄膜表面,并测量反射光谱。
最后,根据反射光谱的特征,利用相关的数学模型计算出薄膜的厚度。
三、电子显微镜法电子显微镜法是一种高分辨率的薄膜厚度测试方法。
它利用电子束与薄膜相互作用的原理来测量薄膜的厚度。
常见的电子显微镜法包括扫描电子显微镜(SEM)和透射电子显微镜(TEM)。
在SEM中,电子束与薄膜表面相互作用,产生的二次电子或背散射电子被探测器接收并转化为图像。
通过观察图像,可以确定薄膜的厚度。
而在TEM中,电子束穿过薄膜,通过对透射电子的衍射图案进行分析,可以计算出薄膜的厚度。
四、原子力显微镜法原子力显微镜法是一种基于力的薄膜厚度测试方法。
它利用探针与薄膜表面之间的相互作用力来测量薄膜的厚度。
原子力显微镜通过探针的运动来感知薄膜表面的形貌,然后根据探针与薄膜的相互作用力变化,可以计算出薄膜的厚度。
由于原子力显微镜具有非常高的分辨率,所以可以对纳米尺度的薄膜进行精确的厚度测量。
五、其他方法除了上述三种常用的薄膜厚度测试方法外,还有一些其他方法也可以用于薄膜厚度的测量。
例如,X射线衍射法、拉曼光谱法、交流阻抗法等。
这些方法都有各自的优缺点,可以根据具体的应用需求选择合适的方法进行薄膜厚度测试。
六、总结薄膜厚度测试是薄膜材料研究和应用中的重要环节。
本文介绍了几种常用的薄膜厚度测试方法,包括光学法、电子显微镜法和原子力显微镜法。
这些方法各有优劣,可以根据实际需求选择合适的方法。
5 SSPC-PA2-2000中文版
4.1 综述
4.1.1 近似为裸露的衬底:所有的测厚仪都受到衬底条件一定程度上的影响,如粗糙度,形 状,厚度和成分。推荐使用无涂层的衬底以更正此类影响。使用独立的无涂覆的衬底 的其它选择参考具有类似粗糙度,形状,厚度和成分的面板。(参见 8.3 节-8.9 节。) 4.2 和 4.3 节的工艺,这些将作为裸露衬底使用。参考的面板将有足够的尺寸以用来 排除边缘效应。(参见 8.7 节)在油漆前对裸露衬底进行测量,如果涂层已经应用于 整个表面,小区域的涂层可以被脱掉并且进行后续的修补。消除工艺不能改变衬底的 环境。使用油漆模板用来保持构件外形。
4.3.2 按照规定,使用适当的校准量规测量干膜厚度。(参见 4.1.2 章节)
4.3.3 使用一个或者更多标准,对每个构件开始测量值前和测量后,测厚仪校准的核查。(参 见附件 2)。在工件交换期间,如果测厚仪下垂,或者测量数据不可靠,应进行重新 的校准。
5.0 按照厚度规范要求的测量点数量
5.1 测量点:在面积为 10 m2 区域随意间距选 5 个点进行测量(测厚仪读数的水平,参见 4.1.2 节),如果合约双方同意,在给定的区域可以进行对于 5 点的测量。(参见 5.3 章节)面积 为 10 m2 区域按照如下进行五点的测量:
4.1.2 斑点测量:重复测量数据,即使测量点靠的很近,由于涂层和衬底表面的不规则测量 数据也可能不同。因此,衬底或者涂层的斑点测量至少要三个测规仪的读数。移动探 头进行新位置的测量,此位置应在直径为 1.5 英寸(4cm)的圆内,去掉最低和最高 读数,取其它数据的平均值作为斑点测量的数值。
4.2 校准,检查和测量:1 类型-拉动式测厚仪
类型 1B-直接或者间接的在弹簧上安装磁铁,弹簧在涂层表面垂直运动去磁。1B 类型的 测厚仪通常称为“笔式”测厚仪。
美国钢结构涂装协会标准《SSPC 规范-油漆20》
美国钢结构涂装协会标准《SSPC 规范-油漆20》陈贻明,张卫华编译(上海中远关西涂料化工有限公司,)编者按:SSPC:Steel StructurePaint Council 的规范和标准是美国钢结构涂装协会制定的美国国家标准,也是国际上最具权威性和采用最多的钢结构涂装标准。
随着经济全球化的进程,国内许多高标准涂装防护要求的重大钢结构工程,亟待采用国际通用的规范和标准。
为此,我们编译了美国钢结构涂装协会的标准《SSPC 规范- 油漆20 》,以飨读者。
1 总则1.1 技术规范涵盖的两个种类的富锌漆,只有一个定义:在露底和细小擦损部位涂层漆膜不连续的情况下也能保护裸露金属。
1.2 涂料种类可以分为无机锌粉和有机锌粉两大类。
1.3 技术规范不涉及可焊底漆,即车间保养底漆,如SSPC- 油漆30 。
1.4 富锌涂层,不论其表面是否涂上面漆,都可以很好地在各种环境下广泛运用。
在不同的工作环境下,不同种类的富锌漆在施工中出现的具体涂层破损情况,请参考SSPC — PS 指导12.00 或向油漆制造商咨询对锌粉涂层外露规范的相关建议(见章节12.1 《注意事项》)。
1.5 富锌涂料应该可以单独使用,或作为多种涂料配套系统中的底漆,而且适合于喷涂施工。
2 应用类型2.1 技术规范的应用2.1.1 符合本技术规范的锌粉底漆应依据涂料的品种和锌含量等级分门别类。
2.1.2 如果没有明确的指定涂料品种,那么种类I (无机锌粉类)和种类II (有机锌粉类)都可以接受(见章节2.3 )。
2.1.3 如果没有明确规定具体的锌含量,那么锌粉含量等级1 、2 和3 都是可以接受的(见章节2.3 )。
该种类锌粉底漆可以由(1 ~3) 种成分构成。
2.2 组成本技术规范所述的富锌涂料,一般含有金属锌粉、功能性添加剂(助剂),以及有机或无机的油漆主剂和相应的溶剂(见章节12.2 《注意事项》)。
2.3 油漆主剂的类型2.3.1 种类I-A :2 次硬化类无机锌粉涂料/ 水溶性无机锌粉。
SSPC-PA2_中文
SSPC:涂料保护协会涂料应用规范NO.2使用磁性膜厚仪测量干膜厚度1. 范围1.1 综述:本标准描述了使用商用磁性膜厚仪测量应用于磁性基材的非磁性干膜厚度的测量程序。
这些程序的目的是为了补充设备制造商的人工操作指南,而不是去替代那些指南。
1.2本标准说明了两种类型的膜厚仪的调整和测量的程序:拉脱型(1型)和电子型(2型)。
1.3 本标准详细说明了一个程序,用来判断是否涂层厚度超过了所规定的最低和最高水平。
当测量复涂表面的干膜厚度时,可能会修改这个程序(见附注7.1)。
2. 说明和使用2.1 定义2.1.1 膜厚仪读数:在某一点的单个读数。
2.1.2 测量位置的测量值:在直径4 cm(1.5 inch)的圆形范围内至少3个膜厚仪读数的平均值。
2.1.3 校准:控制和记录的过程,用来衡量可追溯的校准标准和核实膜厚仪所规定的精确性。
校准通常由膜厚仪制造厂商或有认证的实验室,在一个可控的环境下,通过使用一个已记录的程序执行。
在校准中所使用的标准,要使得测量结果中不确定性的总和小于膜厚仪规定的精确性。
2.1.4 验证:用户使用已知的参考标准所进行的精确性的检查。
2.1.5 调整:为了提高膜厚仪在一个规定表面上,或在其测量范围内的特定部分的精确性,所进行的调节膜厚仪读数符合已知样本厚度的动作。
只要已知涂层或垫片的厚度,大部分的2型膜厚仪都能在其上进行调整。
2.1.6 涂层厚度标准(试块):一块光滑的铁磁性基材,其上涂覆一层可按照国家标准进行追溯的非磁性涂层。
2.1.7 垫片(薄片):一片用来确认干膜厚度仪的精确性,有均匀的已知厚度,非磁性的塑料、金属或其他材料的薄片。
2.1.8 干膜厚度参考标准:用来确认膜厚仪精确性的已知厚度的样品,例如标准的涂层厚度或薄片。
在某些业主允许的情况下,使用一个部分样品(已涂装钢结构的特定部分)作为特定工作的厚度标准。
2.1.9 精确性:测量值和标准厚度的真实值之间的一致性。
SSPC-PA2-1996_Chn version-使用磁性测厚仪测量涂层干膜厚度
SSPC-PA 2June 1, 1996SSPC: The Society for Protective CoatingsPAINT APPLICATION STANDARD NO. 2 Measurement of Dry Coating Thickness with Magnetic GagesSSPC PA2 使用磁性测厚仪测量涂层干膜厚度1. Scope 范围1.1 GENERAL: This standard describes the procedures to measure the thickness of a dry film of a nonmagnetic coating applied on a magnetic substrate using commercially available magnetic gages. These procedures are intended to supplement manufacturers’ instructions for the manual operation of the gages and are not intended to replace them.总则:本标准描述了使用市场上可买到的磁性测厚仪来测量施工在磁性底材上的非磁性涂层的干膜厚度的规程。
这些规程作为仪器手工操作的补充,但并不替代设备制造商的操作说明书。
1.2 The procedures for calibration and measurement are described for two types of gages: pull-off gages (Type 1) and constant pressure probe gages (Type 2).校准和测量的规程适用于两类测厚仪:拉开式(类型1)和恒压探头式测厚仪(类型2)1.3 The standard defines a procedure to determine if the film thickness over an extended area conforms to the minimum and the maximum levels specified.本标准定义了用来确定漆膜厚度是否超出规定的最小值和最大值的范围的规程。
SSPC-PA2 干膜厚度的测量
SSPC-PA2 于膜厚度的测量
(1)、每10平方米测量5个点。
(2)、每一点的测量,在很小面积内测量3个点的平均值。
(3)、5个测量点的平均值必须符合规定的涂膜范围。
(4)、单一测量点不能低于规定膜厚的80%。
(5)、不同的测量点内的读数可以低度于规定膜厚的80%。
(6)、对于一定面积内的测量,SSPCPA-2 规定;
(7)、10平方米取5个测量点,每个测量点要进行三次测量。
(8)30平方米面积的测量,按上面规定进行。
(9)100平方米的测量,选取三个代表性的10平方米面积进行测量。
超过100平方米时,第一个100平方米按照(3)进行。
接下来的100平方米内可以随意选取10平方米进行测量。
在(3)和(4)的测量中,如果发现测量不符合规格要求,则每个10平方米都要进行测量。
sspc漆膜厚度测量
SSPC: The Society for Protective CoatingsPAINT APPLICATION SPECIFICATION NO. 2Measurement of Dry Coating Thickness with Magnetic GagesSSPC PA2 使用磁性测厚仪测量涂层干膜厚度1. Scope范围1.1 GENERAL: This standard describes the procedures to measure the thickness of a dry fi lm of a nonmagnetic coating applied on a magnetic substrate using commercially available magnetic gages. These procedures are intended to supplement manufacturers’ operating instructions for the manual operation of the gages and are not intended to replace them.总则:本标准描述了使用市场上可买到的磁性测厚仪来测量施工在磁性底材上的非磁性涂层的干膜厚度的程序。
该程序作为仪器手工操作说明的补充,但并不替代设备制造商的操作说明书。
1.2The procedures for adjustment and measurement are described for two types of gages: pull-off gages (Type 1) and electronic gages (Type 2).校准和测量的规程适用于两类测厚仪:拉开式测厚仪(类型1)和电子测厚仪(类型2)。
1.3 The standard defines a procedure to determine if the film thickness over an extended area conforms to the minimum and the maximum levels specified. This procedure may be modified when measuring dry film thickness on overcoated surfaces (see Note 7.1).本标准定义了用来确定漆膜厚度是否超出规定的最小值和最大值的范围的程序。
油漆工程施工质量管理控制措施
油漆工程施工质量管理控制措施摘要:在海洋石油工程施工过程中,最后一个环节也是最为重要的一个环节就是油漆涂装,其实就是在金属、木质或者是混凝土构件的表面上涂刷油质的液体,以对建筑部件起到一个保护和装饰的作用。
在具体施工过程中,其施工质量很容易受到气候、环境、操作水平以及油漆质量的影响。
本文就主要对油漆涂装工程的施工质量管理控制措施进行了一定的探讨。
关键词:油漆涂装;工程施工;质量管理;控制措施;探究0引言钢结构通常情况下都具有比较傲的抗震性能和承载力,而且施工周期也相对比较短,工程造价也比较低等多种优点,所以现如今被广泛应用到建筑工程当中。
可是其也具有自身的一些缺陷,比如钢结构很容易受到腐蚀,特别是在一些空气湿度大的沿海地区或者是工业密集区域,这些地区空气中的腐蚀介质相对比较多,所以钢结构很容易受到腐蚀。
一旦发生腐蚀现象就会严重威胁整个工程的使用安全性和稳定性,甚至还会给企业带来巨大的经济损失。
这就需要相关的工作人员一定要做好钢结构的防腐工作,目前市场上使用比较广泛的一种方式就是油漆涂装模式,虽然在涂装过程中仍然存在一定的缺陷,也许使用不久之后就会出现腐蚀现象,所以需要反复涂装,而且还需要对涂装检测工作引起足够的重视。
1涂装质量检测不足之处就我国目前的情况来看,涂装施工过程中,大部分企业对防腐工作认识不足,防腐涂料在进场的时候并没有非常明确的验收和复验标准,即使有标准执行也存在不到位的情况,而且在具体操作过程中也不能对每一种材料都进行取样检测,送检的材料和施工中使用的总是存在一定的差异,检测委托的标准也有可能存在一定的缺陷。
在对涂料进行验收的时候,相关工作人员并没有对涂料的出厂质量保证书和复检报告进行严格的对比和审核,往往只是简单粗略地看一下是否有复验报告就完事。
1.1油漆流挂油漆一般情况都比较稀,如果在施工过程中漆膜过于干燥或者是涂刷太厚且温度比较高的话就很容易出现流挂现象,这主要是因为油漆当中一般都含有大量的重质颜料,漆膜的附着力又相对比较差,如果稀释剂挥发得太快或者是太慢都会影响漆膜的干燥速度,进一步使得表面出现水、油或者是不平整现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SSPC: The Society for Protective Coatings PAINT APPLICATION STANDARD NO. 2 Measurement of Dry Coating Thickness with Magnetic Gages1.Scope1.1GENERAL: This standard describes the procedures to measure the thickness of a dry film of a nonmagnetic coating applied on a magnetic substrate using commercially available magnetic gages. These procedures are intended to supplement manufacturers’ instructions for the manual operation of the gages and are not intended to replace them.1.2The procedures for calibration and measurement are described for two types of gages: pull-off gages (Type 1) and constant pressure probe gages (Type 2).1.3The standard defines a procedure to determine if the film thickness over an extended area conforms to the minimum and the maximum levels specified.2.Description and Use2.1DEFINITIONS:2.1.1Gage Reading: A single reading at one point.2.1.2Spot Measurement: The average of at least three gage readings made within a 1.5 inch (4 cm) diameter circle.2.2DESCRIPTION OF GAGES:2.2.1Gage Types: The gage type is determined by the specific magnetic properties employed in measuring the thick-ness and is not determined by the mode of data readout, i.e. digital or analog. This standard does not cover gages that measure the effect of eddy currents produced in the substrate.2.2.2Type 1—Pull-Off Gages: In pull-off gages, a per-manent magnet is brought into direct contact with the coated surface and a calibrated scale measures the force necessary to pull the magnet from the surface. Less force is required to remove the magnet from a thick coating. The scale is nonlinear.•Type 1A - A magnet is attached to one end of a pivoting balance arm. This assembly is connected to a calibrated helical spring. By rotating a dial, the spring increases the force on the magnet and pulls it from the surface. The Type 1A gages are commonly called “banana” gages.•Type 1B - A magnet is mounted directly or indirectly to a coil spring. The spring acts perpendicularly to the surface to pull off the magnet. The Type 1B gages are commonly called “pencil” gages.2.2.3Type 2—Constant Pressure Probe Gages: A con-stant pressure probe gage uses a probe which exerts a constant pressure on the coated surface during the entire measuring operation. Electronic circuitry is used to convert a reference signal into coating thickness. (See 8.1.)2.3USE OF STANDARD: This document contains the following:•Calibration, verification and measurement procedures (Section 4).•Required number of measurements for conformance to a thickness specification (Section 5).•Notes on gage principles and various factors affecting thickness measurement (Section 8).• A numerical example of thickness measurement over an extended area (Appendix 1).• A numerical example of verification of the calibration of Type 2 gages using plastic shims (Appendix 2).3.Reference Standards3.1The documents and standards referenced in this stan-dard are listed in Section 3.4 and form a part of this standard.3.2The latest issue, revision or amendment of the refer-enced documents in effect on the date of invitation to bid shall govern unless otherwise specified.3.3If there is a conflict between the requirements of any of the cited documents and this standard, the requirements of this standard shall prevail.3.4NATIONAL INSTITUTE OF STANDARDS AND TECH-NOLOGY (NIST) STANDARD REFERENCE MATERIALS. (See Section 8.15.)4.Calibration, Verification and Measurement Procedures4.1GENERAL4.1.1Access to Bare Substrate: All gages are affected to some degree by substrate conditions such as roughness, shape, thickness and composition. To correct for this effect, access to the uncoated substrate is recommended. Another option is to use separate uncoated reference panels with similar rough-ness, shape, thickness and composition. (See Sections 8.3 to 8.9.) These would be used as the bare substrate in the proce-dures of Sections 4.2 and 4.3. Reference panels shall be of sufficient size to preclude edge effects. (See Section 8.7.) Measurements on the bare substrate can be taken beforethe coating is applied or by masking off small representative areas during painting. If the coating has already been applied to the entire surface, small areas of coating may be removed and later patched. Do not allow the removal process to alter the condition of the substrate. Paint strippers should be used in order to retain the profile.4.1.2Spot Measurement: Repeated gage readings, even at points close together, may differ due to small surface irregu-larities of the coating and the substrate. Therefore, a minimum of three (3) gage readings shall be made for each spot measure-ment of either the substrate or the coating. For each new gage reading, move the probe to a new location within the 1.5 inch (4 cm) diameter circle defining the spot. Discard any unusually high or low gage reading that cannot be repeated consistently. Take the average of the acceptable gage readings as the spot measurement.4.2CALIBRATION, VERIFICATION AND MEASUREMENT: TYPE 1—PULL-OFF GAGES4.2.1For Type 1 gages, use test blocks bearing calibrated non-magnetic coatings that are traceable to a suitable national standard. (See Section 8.15.) The standards must be large enough to exceed the critical mass of steel needed to satisfy the magnetic field of the Type 1 (pull-off) magnets. Shims of plastic or of non magnetic metals which are acceptable for calibration of Type 2 (constant pressure probe) gages should not be used for calibration of the Type 1 gages. (See Section 8.1.1.) If the manufacturer’s instructions are in conflict with this standard by allowing the use of plastic or other non-magnetic shims for the calibration of a Type 1 gage, the contracting parties must both be notified of this fact and agree on a method of calibration.If proprietary thickness standards are to be used, agree-ment between contracting parties should be reached prior to starting the job.4.2.2Using the Type 1 (pull-off) gage, measure the thick-ness of a series of calibration standards covering the expected range of coating thickness. To guard against measuring with an inaccurate gage, recheck the gage at the beginning and the end of each work shift with one or more of the standards. During the work shift, if the gage is dropped or suspected of giving errone-ous readings, its calibration should be rechecked. If deemed appropriate by the contracting parties, initial agreement can be reached on the details and frequency of verification or calibra-tion. Record the calibration data and the method used to verify the calibration. If the gage is found to be out of calibration at the end of the work shift, all measurements made since the last calibration are suspect.4.2.3When the gage no longer agrees with the standard, check the probe for cleanliness. If dirty, clean as described in Section 8.5.1. If the gage still does not agree with the standard, the gage is in need of repair or replacement. Some gages can be adjusted to read accurately in a given range. Adjust the gage to read correctly on a given standard. Then check the gage on standards of higher and lower thicknesses to establish the range over which the gage is accurate. All Type 1 gages have nonlinear scales and any adjusting feature is linear in nature. Therefore, only a given segment of the scale can be accurate after adjustment.4.2.4Measure the bare substrate at a number of spots to obtain a representative average value. This average value is the base metal reading (BMR). Note the gage is not to be calibrated on the bare substrate.4.2.5Measure the dry coating at the number of spots specified in Section5.4.2.6Subtract the base metal reading from the gage read-ing to obtain the thickness of the coating.4.3CALIBRATION, VERIFICATION AND MEASUREMENT: TYPE 2—CONSTANT PRESSURE PROBE GAGES4.3.1Different manufacturers of Type 2 (constant pressure probe) gages follow different methods of calibration or adjustment. Calibrate the gage according to manufacturer’s instructions.4.3.2With a properly calibrated gage, measure the dry coating as specified. (See Section 4.1.2.)4.3.3Verify the calibration of the gage at the beginning and the end of each work shift with one or more of the standards. (See Appendix 2). During the work shift, if the gage is dropped or suspected of giving erroneous readings, its calibration should be rechecked. If deemed appropriate by the contracting parties, initial agreement can be reached on the details and frequency of verification or calibration. Record the calibration data and the method used to verify the calibration. If the gage is found to be out of calibration at the end of the works shift, all measurements made since the last calibration are suspect.5.Required Number of Measurements for Conformance to a Thickness Specification5.1NUMBER OF MEASUREMENTS: Make five (5) sepa-rate spot measurements (average of the gage readings, see Section 4.1.2) spaced randomly over each 10 m2 (100 ft2) area to be measured. If the contracting parties agree, more than five (5) spot measurements may be taken in a given area. (See Section 5.3.) The five spot measurements shall be made for each 10 m2 (100 ft2) of area as follows:5.1.1For structures not exceeding 30 m2 (300 ft2) in area, each 10 m2 (100 ft2) area shall be measured.5.1.2For structures not exceeding 100 m2 (1,000 ft2) in area, three 10 m2 (100 ft2) areas shall be randomly selected and measured.5.1.3For structures exceeding 100 m2 (1,000 ft2) in area, the first 100 m2 (1,000 ft2) shall be measured as stated in Section 5.1.2 and for each additional 100 m2 (1,000 ft2) of area or increment thereof, one 10 m2 (100 ft2) area shall be randomly selected and measured.5.1.4If the dry film thickness for any 10 m2 (100 ft2) area (see Sections 5.1.2 and 5.1.3) is not in compliance with the requirements of Sections 5.2.1 and 5.2.2, then additional mea-surements must be made to isolate the non-conforming area.5.2SPECIFYING THICKNESS: Both a maximum and a minimum thickness should be specified for the coating. If a maximum thickness value is not explicitly specified, the speci-fied thickness shall be the minimum.5.2.1Minimum Thickness: The average of the spot measurements for each 10 m2 (100 ft2) area shall not be less than the specified minimum thickness. No single spot measure-ment in any 10 m2 (100 ft2) area shall be less than 80% of the specified minimum thickness. Any gage reading may under-run by a greater amount. If the average of the spot measurements for a given 10 m2 (100 ft2) area meets or exceeds the specified minimum thickness, but one or more spot measurements is less than 80% of the specified minimum thickness, additional mea-surements may be made to define the non-conforming area. (See Appendix 1.)5.2.2Maximum Thickness: The average of the spot measurements for each 10 m2 (100 ft2) area shall not be more than the specified maximum thickness. No single spot measure-ment in any 10 m2 (100 ft2) area shall be more than 120% of the specified maximum thickness. Any gage reading may over-run by a greater amount. If the average of the spot measurements for a given 10 m2 (100 ft2) area meets or falls below the specified maximum thickness , but one or more spot measurements is more than 120% of the specified maximum thickness, additional measurements may be made to define the non-conforming area. Manufacturers’ literature may be consulted to determine if higher maximum thickness readings are allowable under specific circumstances.5.3Other size areas or number of spot measurements may be specified in the procurement documents as appropriate for the size and shape of the structure to be measured.6.Accuracy6.1To qualify under this standard, a gage must have an accuracy at least within ±10%. For thicknesses less than 25 µm (1 mil), the gage must have an accuracy at least within ±2.5 µm (0.1 mil).7.Disclaimer7.1While every precaution is taken to insure that all information furnished in SSPC standards and specifications is as accurate, complete and useful as possible, SSPC cannot assume responsibility nor incur any obligation resulting from the use of any materials, coatings or methods specified therein, or of the specification or standard itself.8.NotesNotes are not a requirement of this standard.8.1PRINCIPLES OF THE MAGNETIC GAGE: Each of these gages can sense and indicate only the distance between the magnetic surface of the steel and the small rounded tip of the magnet or probe that rests on the top surface of the coating. This measured distance, from the top surface of the coating, must be corrected for the thickness of any extraneous films or other interfering conditions on the surface of the steel. Such correction is described in Section 4.2 for Type 1 gages and manufacturer’s instructions for Type 2 gages.8.1.1Type 1 (pull-off) gages use a calibrated spring mecha-nism to measure the force needed to pull a small permanent magnet from the surface of the coated steel. The magnetic force holding the magnet to the surface varies inversely as a non-linear function of the distance between magnet and steel, i.e., the thickness of the dry coating (plus any other films present).The Type 1A “banana” gages use a helical spring to pull a small permanent magnet from the surface. Internal balancing mechanisms in most banana gages compensate for horizontal, vertical and overhead positions so that there is no need to recalibrate when changing orientation.In a Type 1B “pencil” gage, a calibrated coil spring mea-sures the force necessary to pull the permanent magnet from the surface. Because of gravitational effects, these gages must be recalibrated when the orientation of the surface changes; e.g., a gage calibrated on a horizontal surface will not be accurate when measuring a vertical surface. Some gages have three separate indicators which compensate for horizontal, vertical and overhead positions. Type 1B gages are generally not as precise as Type 1A gages.Normally, Type 1 gages are not adjusted or reset for each new series of measurements.Shims of sheet plastic or of non-magnetic metals, which are permissible for calibrating Type 2, (constant pressure probe) gages, should not be used for calibration of Type 1 gages. Such shims are usually fairly rigid and curved and do not lie perfectly flat, even on a smooth steel test surface. Near the pull-off point of the calibration measurements with any Type 1 gage, the shim frequently springs back from the steel surface, raising the magnet too soon and causing erroneous calibration readings.8.1.2Type 2 (constant pressure probe) gages operate on two different magnetic principles. Some Type 2 gages use a permanent magnet. When the magnet is brought near steel, the magnetic flux density within the magnet is increased. By measuring this change in flux density, which varies inversely to the distance between the magnet and the steel substrate, the coating thickness can be determined. Hall elements and mag-net resistance elements are the most common ways to measure magnetic flux density. However, the response of these ele-ments is temperature dependent, so temperature compensation is required.Other Type 2 gages operate on the principle of electromagneticinduction. A coil containing a soft iron rod is energized with an AC current thereby producing a changing magnetic field at the probe. As with a permanent magnet, the magnetic flux density within the rod increases when the probe is brought near the steel substrate. This change is easy to detect by using a second coil. The output of the second coil is related to coating thickness and this relationship can be determined experimentally.8.2REPEATABILITY:Magnetic gages are necessarily sensitive to very small irregularities of the coating surface or of the steel surface directly below the probe center. Repeated gage readings on a rough surface, even at points very close together, frequently differ considerably, particularly for thin films over a rough surface with a high profile.8.3ZERO SETTING: Type 1 magnetic gages should not be adjusted or set at the scale zero (0) with the gage applied to either a rough or a smooth uncoated steel surface.8.4ROUGHNESS OF THE STEEL SURFACE: If the steel surface is smooth and even, its surface plane is the effective magnetic surface. If the steel is roughened, as by blast cleaning, the “apparent” or effective magnetic surface that the gage senses is an imaginary plane located between the peaks and valleys of the surface profile. With a correctly calibrated and adjusted Type 2 gage, the reading obtained indicates the coat-ing thickness above this imaginary plane. (See Section 4.3.) If a Type 1 gage is used, the coating thickness is obtained by subtracting the base metal reading. (See Section 4.2.)8.5DIRTY, TACKY OR SOFT FILMS: The surface of the coating and the probe of the gage must be free from dust, grease and other foreign matter in order to obtain close contact of the probe with the coating and also to avoid adhesion of the magnet. The accuracy of the measurement will be affected if the coating is tacky or excessively soft. Tacky coating films also cause unwanted adhesion of the magnet. Unusually soft films may be dented by the pressure of the probe. Soft or tacky films can sometimes be measured satisfactorily by putting a shim on the film, measuring total thickness of coating plus shim and sub-tracting shim thickness.8.5.1Ordinary dirt and grease can be removed from a probe by wiping with a soft cloth. Magnetic particles adhering to the probe can be removed using an adhesive backed tape. Any adhesive residue left on the probe must then be removed.8.6ALLOY STEEL SUBSTRATES: Differences among most mild low-carbon steels will not significantly effect magnetic gage readings. For higher alloy steels, the gage response should be checked. In any event, the gage should be recalibrated on the same steel over which the coating has been applied.8.7PROXIMITY TO EDGES: Magnetic gages are sensi-tive to geometrical discontinuities of the steel, such as holes, corners or edges. The sensitivity to edge effects and discontinuities varies from gage to gage. Measurements closer than 2.5 cm (1 in) from the discontinuity may not be valid unless the gage is calibrated specifically for that location.8.8PROXIMITY TO OTHER MASS OF STEEL: The older two-pole Type 2 gages with permanent magnets are sensitive to the presence of another mass of steel close to the body of the gage. This effect may extend as much as three inches (7.6 cm) from an inside angle.8.9CURVATURE OF STEEL SURFACE: Magnetic gage readings may be affected by surface curvature. If the curvature is appreciable, valid measurements may still be obtained by calibrating or adjusting the gage on a similarly curved surface.8.10TILT OF PROBE: All of the magnets or probes must be held perpendicular to the coated surface to produce valid measurements.8.11OTHER MAGNETIC FIELDS: Strong magnetic fields, such as those from welding equipment or nearby power lines, may interfere with operation of the gages. Also, residual magnetism in the steel substrate may affect gage readings. With fixed probe two-pole gages in such cases, it is recom-mended that the readings before and after reversing the pole positions be averaged. Other gages may require demagnetiza-tion of the steel.8.12EXTREMES OF TEMPERATURE: Most of the mag-netic gages operate satisfactorily at 4°C and 49°C (40°F and 120°F). Some gages function well at much higher temperatures. However, if such temperature extremes are met in the field, the gage might well be checked with at least one reference standard after both the standard and the gage are brought to the same ambient temperature. Most electronic gages compensate for temperature differences among the gage, probe and surface.8.13VIBRATION: The accuracy of the Type 1 (pull-off) gages is affected by traffic, machinery, concussions, etc. When these gages are set up for calibration or measurement of coating films, there should be no apparent vibration.8.14VARIATION IN THICKNESS - 80% OF MINIMUM/ 120% OF MAXIMUM: In any measurement there is a certain level of uncertainty. Two inspectors using the same gage will not necessarily record the exact same number for a given spot measurement using the same 4 cm (1.5 in) diameter circle. To allow for this natural fluctuation, an individual spot measure-ment is permitted to be below the specified minimum thickness as long as other spots in the 10 m2 (100 ft2) area are high enough to make the average thickness meet or exceed the specified minimum thickness. Similar reasoning applies to maximum thickness. The 80% of specified minimum and 120% of speci-fied maximum allow for the tolerance of the gage and calibration standards and for variations in the substrate.8.15Polished metal calibration standards are manufac-tured by the National Institute of Standards and Technology (NIST). The chrome plated panels are flat smooth steel 2.86 x 2.86 cm (1.125 x 1.125 in) in size. Examples of some NIST standards are:Certified Coating Thickness Calibration StandardsNonmagnetic Coating on Steel SRM 1358Set of 380, 225, 1000 µm (3, 9, 40 mil)SRM 1359Set of 448, 140, 505, 800 µm (2, 5.5, 20, 31 mil)SRM 1362a Set of 440, 80, 140, 205 µm (1.6, 3, 5.5, 8 mil)SRM 1331a to 1339aSingle standards from 3 µm (0.1 mil)to 62 µm (2.4 mil)8.16CORRECTING LOW OR HIGH THICKNESS: Thecontracting parties should agree upon the method of correcting film thicknesses that are above the maximum or below the minimum specification. This method may be specified in the procurement documents, may follow manufacturer’s instruc-tions or may be a compromise reached after the non-conforming area is discovered.APPENDIX 1—Numerical Example of Average Thickness MeasurementThe following numerical example is presented as an illus-tration of Section 5. (Reference JPCL , Vol 4, No 5, May 1987)Suppose this structure is 30 m 2 (300 ft 2) in area. Mentally divide the surface into three equal parts, each being about 10m 2 (100 ft 2).Part A - 10 m 2 (100 ft 2)Part B - 10 m 2 (100 ft 2)Part C - 10 m 2 (100 ft 2)First, measure the coating thickness on Part A. This involves at least 15 readings of the thickness gage. (See Figure A1.) Assume the specification calls for 64 µm (2.5 mils)minimum thickness. The average thickness for area A is then the average of the five spot measurements made on area A,namely 66 µm (2.6 mils).Spot 164 µm 2.5 mils Spot 276 3.0Spot 353 2.1Spot 476 3.0Spot 5582.3Avg.66 µm 2.6 milsThe average, 66 µm, exceeds the specified minimum of 64µm and thus satisfies the specification. However it must be decided if the lowest spot measurement, 53 µm, is within 80% of the specified minimum thickness. Eighty percent of 64 µm is 51 µm (0.80 x 64 = 51). Although 53 µm is below the specified minimum, it is still within 80 percent of it, so the specification is satisfied. [The average, 2.6 mils, exceeds the specified mini-mum of 2.5 mils and thus satisfies the specification. However it must be decided if the lowest spot measurement, 2.1 mils, is within 80% of the specified minimum thickness. Eighty percent of 2.5 mils is 2.0 mils (0.80 x 2.5 = 2.0). Although 2.1 mils is below the specified minimum, it is still within 80 percent of it, so the specification is satisfied.]There are individual gage readings of 38 µm at spot 5 and 46 µm at spot 3, both of which are clearly less than 51 µm. This is allowed because only the average of the three readings (i.e., the spot measurement) must be greater than or equal to 51 µm. [There are individual gage readings of 1.5 mils at spot 5 and 1.8 mils at spot 3, both of which are clearly less than 2.0 mils. This is allowed because only the average of the three readings (i.e., the spot measurement) must be greater than or equal to 2.0 mils.]Since the structure used in this example is about 30 m2 (300 ft2), the procedure used to measure the film thickness of part A must be applied to both part B and part C. The measured thickness of part B must exceed the 64 µm (2.5 mils) specified minimum as must the thickness of part C.To monitor the thickness of this entire 30 m2 (300 ft2) structure, at least 45 individual gage readings must be taken, from which 15 spot measurements are calculated. The five spot measurements from each 10 m2 (100 ft2) part of the structure are used to calculate the thickness of that part.Appendix 2—Example of Verification of the Calibration of Type 2 Gages Using Plastic ShimsThis example describes a method to check if a Type 2 gage is properly calibrated.Suppose the coating thickness is specified at 100 µm (4.0 mils). The Type 2 constant pressure probe gage being used has been calibrated according to the manufacturer’s recommenda-tion. Now its calibration over blast cleaned steel must be verified. A test coupon which had been blast cleaned during the time the structure was blasted and has a profile representative of that under the coating is available. After selecting a 50 µm (2.0 mil) and a 250 µm (10.0 mil) plastic shim, proceed to take thickness readings of the shims lying on the bare blasted surface.Because of the randomized nature of a blast cleaned surface, repeated readings may exhibit significant variation. Thus, make at least 10 measurements on each shim and record their averages. There is no need to keep track of each individual reading. Many gages will compute the average for you.The thickness of a plastic shim is typically accurate to within ±5%. After calibration according to manufacturer’s instructions, the gage is probably accurate to within ±5% also. Therefore, for the gage to be in agreement with the shim, the average thick-ness measured by the gage should be within ±10% of the shim’s thickness. If the average thickness measured on the 51 µm (2.0 mil) shim is 56 µm (2.2 mils), the gage is in agreement with the shim because 56 is within ±10% of 51 (2.2 is within 10% of 2.0).Similarly, if the average thickness of the 254 µm (10.0 mil) shim is measured to be 279 µm (11.0 mils), the gage calibration is verified because 279 is within ±10% of 254 (11.0 is within ±10% of 10.0).In summary, if the average measurement of the 51 µm (2 mil) shim is between 46 and 56 µm (1.8 and 2.2 mils), and if the average measurement of the 254 µm (10.0 mil) shim is between 229 and 279 µm (9.0 and 11.0 mils), the calibration is verified.Check that another shim of intermediate thickness, for example 127 µm (5.0 mils), is also within ±10%. If the calibration is verified on both the high and the low shims, it is almost always verified on the intermediate value shim.NOTE: With some gages it may be more practical to adjust the gage at the intermediate thickness (e.g., 127 µm shim) first and then verify that the gage also reads the high and the low shims correctly.。