随机过程 第三章 马尔科夫连资料

合集下载

第三章 马尔可夫链

第三章 马尔可夫链

第三章 马尔可夫链 一、马尔可夫链的概念马尔可夫过程是一类有重要应用意义的随机过程,它具有如下特征:随机过程‘将来’所处的状态仅与‘现在’所处的状态有关,而与‘过去’曾处于什么状态无关。

马尔可夫过程按其状态和时间参数是离散还是连续的可以分成三类 (1) 时间和状态都是离散的马尔可夫过程,称为马尔可夫链。

(2) 时间连续、状态离散的马尔可夫过程,称为连续时间的马尔可夫链。

(3) 时间和状态都连续的马尔可夫过程。

本章介绍马尔可夫链定义1 设}0,{≥n X n 为随机序列,其状态空间为},,,{210 i i i I =,如果对任意正整数n 及任意n+2个状态I i i i i n ∈+1210,,,, ,有},,,{110011n n n n i X i X i X i X P ====++}{11n n n n i X i X P ===++则称此随机序列}0,{≥n X n 为马尔可夫链。

若将时刻n 称为‘现在’,将时刻n+1称为‘将来’,而把0,1,2,……,n-1称为‘过去’。

定义中的等式便可通俗解释为:在已知}0,{≥n X n ‘现在’所处的状态条件下,‘将来’所要达到的状态与‘过去’所经历的状态无关,这一特性常称为马尔可夫的无后效性。

例1.一个n 级数字传输系统,每一级的输入和输出信号只取0或1两个值,每一级的输出是下一级的输入;并假定当一级输入为0时,其输出为0和为1的概率分别为p 和1-p;当输入为1时,其输出为1和0的概率分别为p 和1-p (见图)令Xn 表示第n 级输出,则{ Xn,n ≥0}便为一个马尔可夫链。

例2.从1,2,……,N 数字中任取一个数,记为X0;再从1,2,……,X0数字中任取一个数,记为X1;再从1,2,……,X1中任取一个数,记为X2;依此类推,在1,2,……,Xn-1中任取一个数,记为Xn 。

可以证明{ Xn,n ≥0}为马尔可夫链。

事实上,{ Xn,n ≥0}的状态空间为I={1,2,……,N},对任意正整数n ,取n+1个状态I i i i i n ,,,,210 ,由题意可知故{ Xn,n ≥0}为马尔可夫链。

第三章-马尔科夫过程

第三章-马尔科夫过程

第三章 马尔科夫过程第一节 随机过程的概念1、 随机系数必然事件自然界中出现的事件分为 不可能事件随机事件事物的变化过程 必然过程随机过程(1) 必然过程:有确定的变化形式,可以用精确的数学关系式来描述。

如()()sin m u t U t ω= ()()sin m i t I t ωϕ=+(2) 随机过程:没有确定的变化形式,只能用随机函数来描述。

例如:在24h 内对某电网的负荷进行几天的观测,如下图所示:随机系数:观测对象随时间的变化时不确定的,用()x t 表示。

现实:每次观测得到一个具体的系数,称为随机系数的一个“现实”。

如:()()()12,...............n x t x t x t 参数。

t 是随机变量,称为过程的参数,其所有可能的集合为“参数空间”或“时间空间”。

状态:随机函数()x t 在1t 时刻的值()1x t ,称为()x t 在1t t =时的状态。

则所有可能的集合称为“状态空间”。

2、 随机系数的分类(1) 时间(分数)离散,状态空间离散 (2) 时间(分数)连续,状态空间连续 (3) 时间(分数)离散,状态空间连续 (4) 时间(分数)连续,状态空间离散 其中(1)与(4)研究的较多 3、 随机系数的概率分布当,n t t =时,()n t X 的分布与历史i t t =时()()11i t i n X ≤≤-的关系,即根据过程的历史来确定()n t X 的分布:用条件概率来描述:(()i x t 简化成i x )()112211/,............n n n n P x x x x --X =X =X =X = (1)若在特定的情况下,n X 的分布与过去的历史无关,则()()112211/,............n n n n n n P x x x x P x --X =X =X =X ==X =称为过程独立(无记忆过程)。

若n X 的分布只与过去的一部分历史有关,如只与最近一次时间的状态有关,而与以前所有时刻的状态都是无关,即()()11221111/,............/n n n n n n n n P x x x x P x x ----X =X =X =X ==X =X =第二节 马尔科夫链1、 概述将参数和状态空间都是系数的马尔科夫过程称为马尔科夫链。

随机过程课件-马尔可夫链

随机过程课件-马尔可夫链
定理二
对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。

马尔可夫性质

马尔可夫性质

泊松过程与排队论应用
01
泊松过程在排队论中的角色
泊松过程是一种重要的随机过程,在排队论中广泛应用于描述顾客到达
的规律。
02
排队系统的性能指标
排队系统的性能指标包括平均队长、平均等待时间、系统利用率等,这
些指标可以通过泊松过程和其他随机过程进行建模和分析。
03
排队论在实际应用中的价值
排队论在实际应用中具有广泛的价值,如电信网络中的呼叫中心、交通
03
序列生成与预测
利用马尔可夫模型对序列数据的建模 能力,结合深度学习等技术,可以实 现更加准确的序列生成和预测。
THANKS
感谢观看
稳态概率分布求解
对于非齐次、非遍历性马尔可夫模型,如何求解稳态概率分布是一 个重要的问题。
深度学习等新技术融合创新
01
深度学习与马尔可夫 模型融合
利用深度学习强大的特征提取和表示 学习能力,可以改进传统马尔可夫模 型的性能。
02
强化学习与马尔可夫 决策过程
将强化学习算法与马尔可夫决策过程 相结合,可以实现更加智能的决策和 控制。
马尔可夫性质
汇报人: 2024-02-06
目录 CONTENTS
• 马尔可夫性质概述 • 马尔可夫链基本概念 • 马尔可夫性质在随机过程中应用 • 马尔可夫性质在信息科学中应用 • 马尔可夫性质在金融领域应用 • 马尔可夫性质挑战与未来发展
01
马尔可夫性质概述
CHAPTER
定义与基本思想
马尔可夫性质是指在给定现在状 态下,过去的信息与未来状态无 关,即未来只依赖于现在,而与
非线性、非高斯问题
复杂系统往往呈现出非线性和非 高斯特性,这使得基于线性高斯 假设的马尔可夫模型不再适用。

随机过程第三章

随机过程第三章

随机过程的概率密度函数
概率密度函数
对于连续随机过程,其概率密度函数描述了随机过程在各个时间点或位置上的取值的可能性密度。
联合概率密度函数
对于多个连续随机过程的组合,其联合概率密度函数描述了这些随机过程在各个时间点或位置上的取 值的联合可能性密度。
03
随机过程的数字特征
均值函数
总结词
描述随机过程中心趋势的数字特征
泊松过程
定义
泊松过程是一种随机过程,其中事件的 发生是相互独立的,且以恒定的平均速
率在时间上均匀地发生。
应用
在物理学、工程学、生物学等领域都 有应用,如放射性衰变、电话呼叫等。
性质
泊松过程具有无记忆性,即两次事件 发生的时间间隔与它们是否同时发生 无关。
扩展
泊松过程可以推广为更复杂的过程, 如非齐次泊松过程和条件泊松过程。
随机过程第三章
目录
• 随机过程的基本概念 • 随机过程的概率分布 • 随机过程的数字特征 • 随机过程的平稳性和遍历性 • 马尔科夫链和泊松过程 • 随机过程的应用
01
随机过程的基本概念
随机过程的定义
01
随机过程:一个随机过程是一个定义在概率空间上的
参数集的集合,这个集合的元素是随机变量。
02
马尔科夫链和泊松过程的比较
关联性
马尔科夫链和泊松过程都是随机过程,但它们的 性质和应用场景有所不同。
时间连续性
马尔科夫链可以适用于连续时间,而泊松过程通 常适用于离散时间。
ABCD
状态转移
马尔科夫链关注的是状态之间的转移,而泊松过 程关注的是事件的发生。
应用领域
马尔科夫链在社会科学和生物科学中应用广泛, 而泊松过程在物理学和工程学中更为常见。

随机过程与马尔可夫链理论

随机过程与马尔可夫链理论

随机过程与马尔可夫链理论是概率论与数理统计领域中的重要概念和工具。

随机过程是指在不同时间点上变量值以某种概率规律变化的过程。

马尔可夫链则是一类特殊的随机过程,其未来状态只与当前状态有关,与过去状态无关。

马尔可夫链最初由俄国数学家马尔可夫提出,其名字也来源于此。

马尔可夫链的特点是具有马尔可夫性质,即未来状态的条件概率分布只与当前状态有关,与之前的状态无关。

这种性质使得马尔可夫链具有良好的统计特性和可计算性,广泛应用于概率论、统计学、电信工程、物理学、生物学等领域。

马尔可夫链的数学表达是一个序列,其中每一项表示系统的一个状态。

根据系统的状态空间和转移概率,可以构造转移矩阵,用来描述系统状态之间的转移规律。

通过矩阵的乘法和幂次运算,可以得到系统在不同时间点上的状态分布,从而分析系统的演化规律和性质。

马尔可夫链的核心是转移概率矩阵,它描述了状态之间的转移概率。

转移概率矩阵需要满足一些性质,例如每一行之和为1,表示从一个状态转移到其他状态的概率之和为1。

根据转移概率矩阵,可以计算出平稳分布,即系统在长时间演化后的稳定状态分布。

平稳分布是马尔可夫链的一个重要特性,可以用来研究系统的稳定性和平衡性。

马尔可夫链理论在实际应用中有广泛的应用。

在信息传输领域,例如通信网络、数据压缩、编码等,马尔可夫链可以用来描述信道的状态演化和信号的传输过程,从而提高通信系统的性能。

在金融领域,马尔可夫链可以用来分析股票价格的变化趋势和市场的状态转移规律,从而帮助投资者进行风险管理和决策。

在生物学领域,马尔可夫链可以用来模拟分子的随机运动和化学反应等,从而研究生物分子的行为和系统的动力学性质。

总之,随机过程与马尔可夫链理论是概率论与数理统计领域中的重要理论和工具。

马尔可夫链作为一种特殊的随机过程,具有马尔可夫性质,可以用来描述系统状态的演化规律和性质。

马尔可夫链理论在实际应用中有广泛的应用,可以用来分析和模拟各种复杂系统的行为和性质。

工程随机过程_3_马尔可夫过程(Markov)

工程随机过程_3_马尔可夫过程(Markov)

College of Science, Hohai University
Stochastic Processes
定理2 若随机变量序列{X(n),n0}对任何n 均满足下式,则该序列为马氏链。
P{ X (0) i0 , X (1) i1 ,, X ( n) in }
P { X ( 0) i 0 } P{ X (1) i1 | X (0) i0 } P{ X ( 2) i2 | X (1) i1 } P { X ( 3 ) i 3 | X ( 2) i 2 } P{ X ( n) in | X ( n 1) in1 }
Pn ( P1 )
n
College of Science, Hohai University
Stochastic Processes
初始概率分布: 马氏链在初始时刻(即零时刻)取各状态 的概率分布 p0 ( i0 ) P{ X (0) i0 } i E 0 称为它的初始概率分布。 绝对概率分布: 马氏链在第n时刻(n 0)取各状态的概 率分布 p ( j ) P{ X (n) j } j E
第三章
马尔可夫过程 (Markov)
College of Science, Hohai University
Stochastic Processes
Markov过程是一个具有无后效性的随机过程. 无后效性: 当过程在时刻tm所处的状态为已知时, 过程在 大于tm的时刻t所处状态的概率特性只与过程在 tm时刻所处的状态有关, 而与过程在tm时刻之前 的状态无关. (1)参数和状态都离散 -----马氏链 (2)参数离散, 状态连续 -----马氏序列 (3)其余皆为马氏过程.

《马尔科夫链》课件

《马尔科夫链》课件
通过马尔科夫链模型,生成具 有连贯性的自然语言文本。
六、总结
优点与缺点
马尔科夫链具有简化模型、 易于计算的优点,但忽略了 过去信息和状态空间有限的 缺点。
应用前景
随着人工智能和数据科学的 发展,马尔科夫链在各个领 域的应用将得到更广泛的推 广。
发展趋势
未来马尔科夫链可能进一步 发展和改进,并与其他模型 和技术相结合,实现更强大 的应用。
《马尔科夫链》PPT课件
马尔科夫链是一种概率模型,常用于描述离散时间过程的转移规律。本课件 将详细介绍马尔科夫链的概述、基本概念、应用和常见问题,并通过实际案 例分析展示其重要性和应用前景。
一、概述
定义
马尔科夫链是一种离散时间、离散状态的随机过程,其未来状态仅依赖于当前状态。
特点
马尔科夫链具有无后效性、状态转移 Markov 性、齐次性和有限状态空间等特点。
1 自然语言处理
马尔科夫链可用于模拟语言模型、文本生成和自动翻译等。
2 计算机网络
马尔科夫链可以用来建立网络流量模型、分析网络性能和优化网络传输。
3 金融市场
马尔科夫链在金融市场中的应用包括股票价格预测、投资组合优化和风险管理。四、马尔科ຫໍສະໝຸດ 链的常见问题1收敛性
马尔科夫链是否会收敛到一个稳定状
长期行为
2
态?如何判断?
马尔科夫链在长期运行时会以何种形
式表现?
3
平稳分布
马尔科夫链是否存在一个平稳的状态 分布?如何计算?
五、马尔科夫链的实际案例分析
语音识别
马尔科夫链可用于语音识别系 统中,对语音信号进行建模和 识别。
股票涨跌预测
利用马尔科夫链分析历史股票 价格,预测未来股票价格的涨 跌趋势。

随机过程第三章课件

随机过程第三章课件

(3)该过程为平稳增量过程;
(4)在 t , t t 内出现一个事件的概率为t ot(当 t 0 时)
为 ot ,即 P N t t N t 2 ot
则称该计数过程为泊松过程。
为一常数;在 t , t t 内出现事件二次以及二次以上的概率
st
,则 N s N t
3.2 泊松过程
【二】泊松过程:
【定义一】泊松过程 设 N t , t 0 为计数过程,其状态取非负整数,并满 足下列假设:
(1)从 t 0 起开始观察事件,即 N 0 0
和 N t4 N t3 是相互统计独立的;
(2)该过程是独立增量过程,即当 0 t1 t2 t3 t4 时,N t2 N t1
FSn
t k et t 0 t PSn t PN t n

f Sn t
dFSn t dt
t n1 t 0 e t n 1!
k n
k!
3.3 有关泊松过程的几个问题
【三】到达时间的条件分布:
设泊松过程 N t , t 0 ,如果已知在 0, t 内有一个 A 事件出现,问这 一事件到达时间的分布如何?
PT1 s, N t 1 PN s 1, N t N s 0 PN t 1 PN t 1 PN s 1PN t N s 0 PN t 1
(1)从 t 0 起开始观察事件,即 N 0 0
和 N t4 N t3 是相互统计独立的;
(2)该过程是独立增量过程,即当 0 t1 t2 t3 t4 时,N t2 N t1

随机过程马尔科夫过程 ppt课件

随机过程马尔科夫过程 ppt课件
3442马尔可夫链的状态分类ijij3542马尔可夫链的状态分类ii1称状态i为非常返的ii不返回到i期望值表示由i出发再返回到i的平均返回时间iinfiiii定义3642马尔可夫链的状态分类首达概率与n步转移概率有如下关系式定理44对任意状态iijij定义3742马尔可夫链的状态分类ijij3842马尔可夫链的状态分类引理42周期的等价定义gcdgcd例例4848设马尔可夫链的状态空间i123转移概率矩阵为求从状态1出发经n步转移首次到达各状态的概率3942马尔可夫链的状态分类121212124042马尔可夫链的状态分类同理可得11134142马尔可夫链的状态分类以下讨论常返性的判别与性质数列的母函数与卷积的卷积的母函数4242马尔可夫链的状态分类定理45状态i常返的充要条件为规定则由定理44iiiiii4342马尔可夫链的状态分类iiiiii4442马尔可夫链的状态分类4542马尔可夫链的状态分类ii同理ii4642马尔可夫链的状态分类定理47设i常返且有周期为d则其中ndiindii4742马尔可夫链的状态分类由定理47知对d的非整数倍数的nndiindiindii4842马尔可夫链的状态分类子序列所以d1从而i为非周期的i是遍历的ndiindiilim而由定理limlimndii4942马尔可夫链的状态分类状态的可达与互通状态i与状态j互通ij
输一局后输光)
2020/11/13
23
4.1 马尔可夫链与转移概率
( p q )u i pu i 1 qu i 1
p(ui1 ui ) q (ui ui1 )
ui1 ui
q p
(ui
ui1 )
i 1,2, , c 1
(1q)1,即 pq1
p
2
ui1ui uiui1ui1ui2 u1u0 ˆ

《随机过程——计算与应用》课件马尔科夫连 3

《随机过程——计算与应用》课件马尔科夫连 3

0}
若di 1,则称状态i为周期状态,且周期为di. 若di 1,则称状态i为非周期状态.
定理6.3.1 设状态i的周期为d,则正整数N0,使N N0时,有
p(Nd ) ii
0
证明
将{n
n
1,
p(n) ii
0}记为
{nm
m 1,2,
,
p(nm ) ii
0}
令dm GCD{nt t 1, 2, , m}. m 1
归纳法可证明如下:
hi 1时, hi di 1
hi 1时,则对l=1,
hi
1, 必有fii(l )
0
p(l) ii
0
对n hi l (l 1, , hi 1)
n
则由
p(n) ii
f p (l ) (nl ) ii ii
(注意到当n不是hi的倍数时fii(n) 0)
l 1
f p (hi ) (l ) ii ii
综上
lim
n
p (n) ii
0
反之,若
lim
n
p (n) ii
0
p(m)=0 ii
假设i是正常返,(即ii ),由引理6.3.2得
lim
n
p(ndi ii
)
di
ii
0
矛盾! i是零常返.
(2) 设i是遍历态 di=1,且i是正常返的(ii )
由引理6.3.2得
lim
n
p(n) ii
lim n
)
z
l
l
l
ij +Fij (z)Pjj (z)
Pij (z)
1 1
1 Fjj (z) Fij (z) Fjj (z)

马尔可夫过程

马尔可夫过程

Ai lim P{Si (t)}
t
式中
Si(t)--系统i状态的瞬态概率; Ai--i状态的稳态概率。
通常,稳态概率空间的表达式不易求出,该解 法适合于解决一些比较简单系统的稳态状态概率问 题。 同构法 当系统达到稳定状态以后,各种状态将持续转 移,但是每种状态出现的概率基本不变,从而形成 一个稳定的状态空间。求解状态空间方程组,就可 得到系统在各种状态的稳态概率。
马尔可夫过程
神和尧
马尔可夫过程简介 一类随机过程(数学基础是随机过程理论)。 原始模型马尔可夫链,由俄国数学家A.A.马尔可夫 于1907年提出。 该过程具有如下特性:在已知目前状态 (现在) 的条件下,它未来的演变 (将来)不依赖于它以往 的演变 ( 过去 ) 。 ④例如森林中动物头数的变化构成——马尔可夫过 程 。在现实世界中,有很多过程都是马尔可夫过程, 如液体中微粒所作的布朗运动、传染病受感染的人 数、车站的候车人数等,都可视为马尔可夫过程。
马尔可夫特性的直观解释为:
在给定t时刻随机过程的状态为Xn或xn,则该过 程的后续状态及其出现的概率与t之前的状态无关。 也就是说,过程当前的状态包括了过程所有的历史 信息,该过程的进一步发展完全由当前状态所决定, 与当前状态之前的历史无关,这种性质也称为无后 效性或无记忆性。 此特性也可以理解为:随机过程Xn在“现在” 状态已知的条件下,过程“将来”的情况与“过去” 无关。或者说,过去只影响现在,而不影响将来。 P{将来|现在、过去}=P{将来|现在}
kE
状态转移图和状态转移率矩阵 马尔可夫模型常使用状态转移图来描述系统的运行情况。 故障(p)
S
1-p 修复(q)
F
1-q
图1 马尔可夫过程的状态转移图

随机过程 第三章 马尔科夫连

随机过程 第三章 马尔科夫连

1 2
,
pi,i1
1 2
,
pi0
1 2
,i
I , 分析其遍历性.
27
状态空间的分解
定义: 状态空间I的子集C称为闭集,如果对任意 i C 及 k C 都有 pik 0
定义: 闭集C称为不可约的,如果C的状态互通。 定义: 马尔可夫链称为不可约的,如果其状态空间不可约。
28
例:设马氏链{X n}的状态空间I {1, 2,3, 4,5},转移矩阵为
P{X1 i1, , X n in} pi pii1 pin1in iI
证明
14
例:某计算机机房的一台计算机经常出故障,研究者每隔15分钟观察一次计 算机的运行状态,收集了24个小时的数(共作97次观察),用1表示正常状态, 用0表示不正常状态,所得的数据序列如下: 11100100111111100111101111110011111111100011 01101111011011010111101110111101111110011011 111100111
ij
jj
f p (nk ) ( k )
ij
jj
k 1
k 0
fij
f
(n) ij
n1
表示质点由i出发,经有限步终于到达j 的概率。
称状态i为常返的,如fii=1;称状态i为非常返的,如fii<1。
对于常返态i,由定义知{fii(n),n≥1}构成一概率分布
i nfii(n) n 1
表示由i出发再返回i的平均返回时间。
马尔可夫链的状态分类
❖ 周期、非周期 ❖ 常返、非常返 ❖ 正常返、零常返 ❖ 遍历状态
20
设马尔可夫链的状态空间I={1,2,3,4,5,6,7,8,9},状态间的概率转移图如下 图

随机过程作业和答案第三章

随机过程作业和答案第三章

第三章 马尔科夫过程1、将一颗筛子扔多次。

记X n 为第n 次扔正面出现的点数,问{X(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

又记Y n 为前n 次扔出正面出现点数的总和,问{Y(n) , n=1,2,3,···}是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

解:1)由已知可得,每次扔筛子正面出现的点数与以前的状态无关。

故X(n)是马尔科夫链。

E={1,2,3,4,5,6} ,其一步转移概率为:P ij = P ij =P{X(n+1)=j ∣X(n)=i }=1/6 (i=1,2,…,6,j=1,2,…,6) ∴转移矩阵为2)由已知可得,每前n 次扔正面出现点数的总和是相互独立的。

即每次n 次扔正面出现点数的总和与以前状态无关,故Y(n)为马尔科夫链。

其一步转移概率为其中2、一个质点在直线上做随机游动,一步向右的概率为p , (0<p<1),一步向左的概率为 q , q =1-p 。

在x = 0 和x = a 出放置吸收壁。

记X(n)为第n 步质点的位置,它的可能值是0,1,2,···,a 。

试写出一步转移概率矩阵。

解:由已知可得, 其一步转移概率如下:故一步转移概率为3、做一系列独立的贝努里试验,其中每一次出现“成功”的概率为p ( 0<p<1 ) ,出现“失败”的概率为q , q = 1-p 。

如果第n 次试验出现“失败”认为 X(n) 取得数值为零;如果第n 次试验出现“成功”,且接连着前面k 次试验都出现“成功”,而第 n-k 次试验出现“失败”,认为X(n)取值k ,问{X(n) , n =1,2,···}是马尔科夫链吗?试写出其一步转移概率。

解:由已知得:故为马尔科夫链,其一步转移概率为616161616161616161616161616161616161P ={6,,2,1,6/1,,8,7,,0)1,(+++=<++==+i i i j i j i i i j ij n n P 或)1(6,,2,1;6,,2,1,+++=++=n n n j n n n n i {}α,,2,1,0 =E )(0,1;)0(0,1)1,1(0,,1,,2,1101,1,ααααα≠==≠==+-≠===-=-+j P P j P P i i j P q P P P x j j ij i i i i 而时,当 10000000000000001Pp q p q p q ={}{}m m m m m m i n X l n X i n X i n X i n X l n X P ==+=====+)(0)()(,,)(,)(0)(2211 {}{}mm m m m m in X k l n X i n X i n X i n X k l n X P ==+=====+)()()(,,)(,)()(22114、在一个罐子中放入50个红球和50个蓝球。

马尔科夫链培训课件

马尔科夫链培训课件

马尔科夫链培训课件•马尔科夫链基础知识•马尔科夫链的应用•马尔科夫链模型的建立目录•马尔科夫链模型的预测•马尔科夫链模型的优化•马尔科夫链模型的评估01马尔科夫链基础知识1 2 3马尔科夫链是一种随机过程,其未来状态只依赖于当前状态。

随机过程是一种时间序列,其中每个状态都依赖于前一个状态。

时间序列用数学模型描述马尔科夫链的状态转移和概率。

数学模型03状态空间马尔科夫链的状态空间是所有可能的状态的集合。

01离散状态马尔科夫链的状态是离散的,即每个状态都是有限的。

02连续状态马尔科夫链的状态是连续的,即每个状态都是无限的。

马尔科夫链的未来状态只与当前状态有关,与过去状态无关。

无后效性稳定性可预测性不可约性马尔科夫链在长期运行下会达到稳定状态,即每个状态出现的概率相等。

给定当前状态,可以预测下一个状态,但不能预测之前的状态。

马尔科夫链的状态转移概率矩阵是不可约的,即所有状态最终都会转移到其他状态。

02马尔科夫链的应用利用马尔科夫链模型,对股票价格的变化进行预测和分析,为投资者提供参考。

股票价格预测通过构建马尔科夫链模型,评估不同状态之间的转移概率,为金融机构提供风险评估支持。

风险评估在金融领域的应用消费者行为预测利用马尔科夫链模型,预测消费者的购买行为和喜好,为企业制定更加精准的市场营销策略提供依据。

市场细分通过马尔科夫链模型,将市场细分为不同的群体,为企业的产品定位和营销策略提供支持。

在市场营销领域的应用交通流量预测利用马尔科夫链模型,预测交通流量和拥堵情况,为交通管理部门制定合理的交通规划提供依据。

路线规划通过马尔科夫链模型,规划最优路线,提高交通运输的效率和安全性。

在交通领域的应用在自然语言处理中,马尔科夫链模型被广泛应用于语言模型的建模和文本分类等领域。

自然语言处理通过构建马尔科夫链模型,预测天气状态的变化,为气象部门提供更加准确的天气预报。

天气预报在其他领域的应用03马尔科夫链模型的建立确定模型的状态空间根据问题背景和需求,确定马尔科夫链模型的状态集合,一般可以通过专家经验或历史数据进行确定。

随机过程-马尔可夫过程应用

随机过程-马尔可夫过程应用
2 马尔可夫过程的应用
2.1 马氏过程理论在教学质量评估中的应用 马尔可夫链在教学评价中的应用是基于两次测验成绩基础上的,并假设教
学效果稳定,通过分析学生两次测验在不同成绩等级间的变化,构建转移概率 矩阵,以其稳定分布来衡量学生最终达到的成绩分布。根据教学规律与教学质 量评估的需要,马尔可夫链评估法较好地体现其在教学质量评估中的实用性与 有效性。
进入“决标阶段”,或以r3的概率不去投标而“退出”。决定投标后,或 以q4的概率中标,或以r4的概率失标而“退出”。
由于某承包公司在各阶段能否进入下一阶段,只与本阶段的决策依据有 关,而与本阶段前各阶段的决策依据无关,故研究的问题满足后无效性,是一 个有限状态的马尔可夫链。
记为{Xn,n≥0},条件概率P与n无关,故这一马氏链还是时齐的,其一步转 移概率可表示为Pil,由此可得,系统的状态转移矩阵为
从马氏链的理论及图1可知 ,状态空间I可分解为N+C1+C2,由于C1和C2为两 个互不相交的基本常返闭集,N为非常返态,且状态5和状态6分别为正常返、非 周期的吸收态.即系统的状态转移一旦进入
状态5(中标)或状态6(退出)两阶段,就永远处于这两个状态,不会再转移 到其它状态.所以国际工程投标的风险问题,可由一个带有2个吸收状态和4个 非常返状态的可约马氏链来表示。
战时装备的维修是一个动态的随机过程,要求在一系列时间点做出决策。 对于一个状态随机转移系统,在每一个观察时刻要分析系统当时所处的状态, 从可供选择的多种方案中选择一种最佳方案。由于系统下一次出现什么样的状
态具有随机性,事先无法确定,就需按实际出现的状态再作决策,这样继续下 去形成的多重决策就是序贯决策。对于具有马氏性的随机系统,其状态转移概 率已知,因此不必在状态实际出现的每一时间点去根据状态选取方案,可预先 根据分析结果决定出控制系统进一步发展的最佳方案。系统状态的马氏性和所 选择的行动方案的相互作用决定系统的进一步发展方向,运用马氏决策对战时 装备维修进行系统分析时,可降低问题分析的复杂程度。

随机过程与马尔可夫过程

随机过程与马尔可夫过程

F { x 1 , x 2 , , x n ; t 1 , t 2 , , t n }, F = t 1 , t 2 , , t n ∈ T , t ∈ T , n ≥ 1
称为{X(t),t∈T}的有限维分布函数族. () 当n=1时,得到一维分布函数F(x;t)=P{ (t)≤ }, ( ; )=P{ )≤ )=P{X( )≤x} 一维分布函数的全体{F(x;t), t∈T}称为一维分布函数 { ( ; ), ∈ } 族.
注释:(1) 随机过程{X(t), ∈T}是定义在 ×T上的 ),t ( ),
二元函数,因此可以从两个角度去理解, 因而有如上的 两个定义. 在理论分析往往用随机变量族的描述方式,在实际 测量和处理中往往采用样本函数族的描述方式.
2010-7-26
7
(2)通常将随机过程{X(t), ∈T }解释为一个物理系统, ( ), ),t X(t)表示系统在时刻t所处的状态,X(t)的所有可能状 () () 态所构成的集合称为状态空间,记为I,对于给定的 t0 ∈T,及x ∈I,X(t0)= 说成是在时刻t0系统处于状态x. ( )=x (3)从定义2的角度上看,随机过程是有限维随机变量的 推广.
为{X(t),t∈T}的方差函数. () 方差函数. 方差函数 ④ C X ( s, t ) = Cov ( X ( s ), X (t ))
= E {[ X ( s) X ( s)][ X (t ) X (t )]}
为{X(t),t∈T}的协方差函数 () 协方差函数. 协方差函数
2010-7-26
11
二,随机过程的分类
1.按状态空间I和时间是可列集还是连续集分类: 按状态空间I和时间是可列集还是连续集分类:
(1). 连续型随机过程:T是连续集,且t∈T,X(t)是连续型 () 随机变量,则称过程{X(t),t∈T}为连续型随机过程. () (2).离散型随机过程:T是连续集,且t∈T,X(t)是离散型 () 随机变量,则称过程{X(t),t∈T}为离散型随机过程. () (3).连续型随机序列: T是可列集,且t∈T,X(t)是连续型 () 随机变量,则称过程{X(t),t∈T}为连续型随机序列. () 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为马尔可夫链的n步转移矩阵。规定
p
(0) ij
0, i j 1, i j
例题 设马尔可夫链{Xn,n∈T}有状态空间I={0,1},其一步转移概率矩阵为
p00 P p 10

p01 p11
10
P{X m2 0 | X m 0} 和两步转移概率矩阵P(2)
则称{Xn,n∈T}为马尔可夫链,简称马氏链
3
定义 称条件概率
pij (n) P{X n1 j | X n i}
为马尔可夫链{Xn,n∈T}在时刻n的一步转移概率,其中i,j∈I,简称转移概率。
定义 若对任意的i,j∈I,马尔可夫链{Xn,n∈T}的转移概率与n无关,则称马尔 可夫链是齐次马尔可夫链。我们只讨论齐次马氏链。
第三章 马尔可夫链
1. 2.
3.
4. 5. 6.
马尔可夫链定义 一步转移概率及多步转移概率 初始概率及绝对概率 Chapman-Kolmogorov方程 马尔可夫链状态分类 遍历的马尔可夫链及平稳分布
1
马尔可夫过程
设随机过程 X (t ), t T , 其状态空间为I , 对参数集T中任意n个数值t1 t2
4
设P表示一步转移概率所组成的矩阵,则
p11 p12 p1n P p p p 2n 21 22
称为系统状态的一步转移概率矩阵,它具有如下性质:
1 、pij 0, i, j I
2、
p
jI
ij
1, i, j I
1
2
3
4
5
7
例:排队模型 设服务系统由一个服务员和只可以容纳两个人的等候室组 成。服务规则为:先到先服务,后来者需在等候室依次排队, 假设一个需要服务的顾客到达系统时发现系统内已有3个顾客, 则该顾客立即离去。 设时间间隔⊿t内有一个顾客进入系统的概率为q,有一接 受服务的顾客离开系统(即服务完毕)的概率为p,又设当⊿t充分 小时,在这时间间隔内多于一个顾客进入或离开系统实际上是 不可能的,再设有无顾客来到与服务是否完毕是相互独立的。
p j (n)
pj
(n) p (n 1) p
满足上述两个性质的矩阵称为随机矩阵。
5
例:(0-1传输系统)
X0 1 X1
2
X2

Xn-1
n
Xn

如图所示,只传输数字0和1的串联系统中,设每一级的传真率为p, 误码率为q=1-p。并设一个单位时间传输一级,X0是第一级的输入, Xn是第n级的输出(n≥1),那么{Xn,n=0,1,2…}是一随机过程, 状态空间I={0,1},而且当Xn=i为已知时,Xn+1所处的状态的概率分布 只与Xn=i有关,而与时刻n以前所处的状态无关,所以它是一个马氏 链,而且还是齐次的。
P X (tn ) xn | X t1 x1 X tn1 xn1 PX (tn ) xn | X tn1 xn1
tn , n 3, ti T
则称过程 X (t ), t T 具有马尔可夫性或无后效性, 并称此过程为马尔可夫过程。
6
例:一维随机游动。设一醉汉Q(或看作一随机游动的 质点)在直线上的点集I={1,2,3,4,5}作随机游动, 游动的概率规则是:如果Q现在位于点i(1<i<5), 则下一时刻各以1/3的概率向左或向右移动一格, 或以1/3的概率留在原处;如果Q现在处于1(或5) 这一点上,则下一时刻就以概率1移动到2(或4)这点上, 1和5这两点称为反射壁,这种游动称为带有两个反射壁 的随机游动。
将来的状态只与当前状态有关,与过去状态无关义
时间和状态都离散的马尔可夫过程称为马尔可夫链
定义:设有随机过程{Xn,n∈T},若对于任意的整数n∈T和任意的 i0,i1, …,in+1∈I,条件概率满足
P{ X n 1 in 1 | X 0 i0 , X 1 i1 ,, X n in } P{ X n 1 in 1 | X n in }
定理 设{Xn,n∈T}为马尔可夫链,则对任意整数n≥0,0≤l<n和 (n) i,j∈I,n步转移概率 pij 具有下列性质:
1 、p
(n) ij
p
kI
(l ) ik
p
( n l ) kj
ChapmanKolmogorov方程
( n) 2、pij k1I
kn1I

pik1 pk1k2
定义: 称 p j P{X 0 j}, ( j I ) 为马尔可夫链的初始分布; 称 { p j , j I} 为马尔可夫链的初始分布; 称 PT (0) ( p1 , p2 ,)为马尔可夫链的初始概率向量。
12
定理 设{Xn,n∈T}为马尔可夫链,则对任意j∈I和n≥1,绝对概率pj(n)具有下 列性质: 1. 2. 3. 4.
bi , j i 1 pij ri , j i a , j i 1 i
9
定义
( n) 称条件概率 pij P{X mn j | X m i}, i, j I , m 0, n 1
为马尔可夫链{Xn,n∈T}的n步转移概率,并称
( n) P(n) ( pij )
pkn1 j
3、P( n ) PP( n1)
4、P ( n ) P n
11
定义:
称 p j (n) P{X n j}, ( j I ) 为时刻n马尔可夫链的绝对概率; 称 { p j (n), j I } 为马尔可夫链的绝对分布; 称 PT (n) { p1 (n), p2 (n),}, n 0 为n时刻的绝对概率向量。
服务台
随机到达者
等候室
离去者
系统
8
例:生灭链 观察某生物群落,以Xn表示在时刻n群体的数目,设为i个数 量单位,如在时刻n+1增加到i+1个数量单位的概率为bi,减 灭到i-1个数量单位的概率为ai,保持不变的概率为 ri=1- ai - bi ,则 {Xn,n>=0}为齐次马尔科夫链,其转移概率为
相关文档
最新文档