乙酸乙酯皂化反应速率常数测定
乙酸乙酯皂化反应速率常数
![乙酸乙酯皂化反应速率常数](https://img.taocdn.com/s3/m/0f07ba4bf46527d3250ce02f.png)
0.2mL,加水至刻度、设定”按钮按至“设定”位置,观察设定温度℃,调节“温度设置”旋钮,调节温度为30.00℃),用移液管量取NaOH和蒸馏水各25mL加入100mL锥形瓶中,混合均匀后置于恒温槽中。
恒温10min后测电导率G0。
测定方法:打开数显电导率仪,将电极插入电导池中进行测量即可。
此时电导率仪显示数字就是G0的值。
注意事项:电导率仪的电极须用蒸馏水冲洗擦干后方可使用;不可用力擦拭,防止电极上的铂黑脱落。
4、G t的测定将25mLNaOH和25mL乙酸乙酯分别加入电导池中(两种溶液不可混合)。
恒温10min后将两种溶液混合,同时用秒表记录反应时间。
并在两管中混合3~5次。
把电极插入立管中,并在5、10、15、20、25、30min分别读取电导率G t。
5、调节恒温水浴温度为40℃,按照步骤4的操作测定G0、G t。
6、实验结束后,关闭恒温水浴与电导率仪的电源;洗净电导池;用蒸馏水淋洗电导电极,并用蒸馏水浸泡好。
五、数据处理1、将t、G t、G0-G t及(G0-G t)/t等数据列于下表:实验温度:气压:G0:t/m in Gt/(ms∙cm-1)(G-Gt)/(ms∙cm-1)[G-Gt/t]/(ms∙cm-1∙min-1)5 1.793 0.141 0.070510 1.700 0.234 0.058515 1.612 0.322 0.053720 1.506 0.428 0.047625 1.425 0.509 0.042430 1.361 0.573 0.03822、以G t对(G0-G t)/t作图,由所得直线斜率,求出反应速率常数k。
3、求出反应的活化能。
乙酸乙酯皂化反应速率常数的测定
![乙酸乙酯皂化反应速率常数的测定](https://img.taocdn.com/s3/m/d9a01e289b6648d7c1c746b9.png)
乙酸乙酯皂化反应速率常数的测定一、实验目的1.学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法;2.了解二级反应的特点,学会用图解计算法求二级反应的速率常数;3.熟悉电导仪的使用。
二、实验原理(1)速率常数的测定乙酸乙酯皂化反应时典型的二级反应,其反应式为:CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OHt=0 C 0 C 0 0 0t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0速率方程式 2kc dtdc=-,积分并整理得速率常数k 的表达式为: t0t0c c c c t 1k -⨯=假定此反应在稀溶液中进行,且CH 3COONa 全部电离。
则参加导电离子有Na+、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反应的进行,OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ)的下降和产物CH 3COO -的浓度成正比。
令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则:t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t→∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得:∞+-⨯=κκκκtkc 1t00t 可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对tt0κκ-作图,可得一直线,则直线斜率0kc 1m = ,从而求得此温度下的反应速率常数k 。
(2)活化能的测定原理: )11(k k ln21a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。
三、仪器与试剂电导率仪 1台 铂黑电极 1支 大试管 5支 恒温槽 1台 移液管 3支氢氧化钠溶液(0.02mol/L ) 乙酸乙酯溶液(0.02mol/L ) 四、实验步骤1.标定NaOH 溶液及乙酸乙酯溶液的配制计算标定0.023/dm mol NaOH 溶液所需的草酸二份,放入锥形瓶中,用少量去离子水溶解之,标定溶液。
乙酸乙酯皂化反应速率常数的测定
![乙酸乙酯皂化反应速率常数的测定](https://img.taocdn.com/s3/m/4c04449631b765ce04081401.png)
乙酸乙酯皂化反应速率常数的测定一、实验目的(1)通过电导法测定乙酸乙酯皂化反应速度常数。
(2)求反应的活化能。
(3)进一步理解二级反应的特点。
(4)掌握电导仪的使用方法。
二、实验原理乙酸乙酯的皂化反应是一个典型的二级反应:CH3COOC2H5+OH−→CH3COO−+C2H5OH设在时间t时生成物浓度为x,则该反应的动力学方程式为−dxdt=k(a−x)(b−x)〔2-41〕式中,a, b分别为乙酸乙酯和碱〔NaOH〕的起始浓度,k为反应速率常数,假设a=b,则〔2-41〕式变为−dxdt=k(a−x)2〔2-42〕积分〔2-42〕式,得k=1t ×xa(a−x)〔2-43〕由实验测得不同t时的x值,则可依式〔8-3〕计算出不同t时的k值。
假设果k值为常数,就可证明反应是二级的。
通常是作xa(a−x)对t图,假设所得的是直线,也可证明反应是二级反应,并可从直线的斜率求出k值。
不同时间下生成物的浓度可用化学分析法测定〔例如分析反应液中的OH−浓度〕,也可以用物理化学分析法测定〔如测量电导〕。
本实验用电导法测定x值,测定的根据如下:〔1〕溶液中OH−离子的电导率比Ac−离子〔即CH3COO−〕的电导率大很多〔即反应物与生成物的电导率差异大〕。
因此,随着反应的进行,OH−离子的浓度不断降低,溶液的电导率也就随着下降。
〔2〕在稀溶液中,每种强电解质的电导率κ与其浓度成正比,而且溶液的总电导率就等于组成溶液的电解质的电导率之和。
依据上述两点,对乙酸乙酯皂化反应来说,反应物与生成物只有NaOH和NaAc是强电解质,乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不致影响电导率的数值。
假设果是在稀溶液下反应,则κ0=A1aκ∞=A2aκt=A1(a−x)+A2x式中:A1,A2是与温度、溶剂、电解质NaOH及NaAc的性质有关的比例常数;κ0,κ∞分别为反应开始和终了时溶液的总电导率〔注意这时只有一种电解质〕;κt为时间t时溶液的总电导率。
实验十四 乙酸乙酯皂化反应速率常数的测定
![实验十四 乙酸乙酯皂化反应速率常数的测定](https://img.taocdn.com/s3/m/9e28b060cc17552706220839.png)
实验十四乙酸乙酯皂化反应速率常数的测定徐千惠 161240076一、实验目的1.掌握测定化学反应速率常数的一种物理方法——电导法。
2.掌握二级反应的特点,掌握用图解法求二级反应的速率常数。
3.掌握DDS-11A(T)型电导率仪的使用方法。
二、实验原理1.对于二级反应:A+B产物,如果反应物 A 与反应物 B 起始浓度相同,均为,则反应速率的表示式为①式中为时间时反应物浓度的减小,上式定积分得②以作图若所得为直线,证明是二级反应,并可以从直线的斜率中求出速率常数。
所以在反应进行过程中,只要能够测出反应物或产物的浓度,即可求得该反应的速率常数。
如果知道两个不同温度下的速率常数和,则可按Arrhenius公式计算出反应在该温度范围内的平均活化能:③2.乙酸乙酯皂化反应是二级反应,其反应式为著降低。
对稀溶液而言,强电解质的电导率与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。
如果乙酸乙酯皂化在稀溶液下进行,就存在如下关系式:④式中,、分别是与温度、电解质性质、溶剂等因素有关的比例常数;、分别是时和时溶液的总电导率;是反应时间时溶液的总电导率。
由④式可得⑤代入式②地⑥重新排列即得⑦因此,以作图为一直线即为二级反应,由直线的斜率即可求出,由两个不同温度下测得的速率常数和,可求出该反应的活化能。
三、仪器和药品DDS-11A(T)型电导率仪(附DIS型铂黑电极)1台;计时器1只;恒温槽1套;双管式电导池2只;胖肚移液管(25)3只;烧杯(50)1只;容量瓶(100)1只;称量瓶1只。
;溶液(0.0200);电导水。
四、实验步骤1)恒温槽调节及溶液的配置。
调节恒温槽温度为298.2K。
用电导水配置0.0200的溶液100。
2)的测定。
去10电导水和100.0200溶液,分别加到干燥洁净的双管式电导池的A管和B管中,恒温5分钟。
用洗耳球吸、压多次使溶液充分混合均匀后将溶液压到B管中,将经电导水淋洗并吸干其外侧表面的电导电极插入溶液中,用DDS-11A(T)型电导率仪测定上述以恒温的溶液,所的电导率即为。
实验三乙酸乙酯皂化反应速率常数的测定
![实验三乙酸乙酯皂化反应速率常数的测定](https://img.taocdn.com/s3/m/10f2534b52d380eb62946df4.png)
实验十乙酸乙酯皂化反应速率常数的测定1.实验目的及要求1)了解测定化学反应速率常数的一种物理方法——电导法。
2)了解二级反应的特点,学会用图解法求二级反应的速率常数。
3)掌握DDS-11AT型数字电导率仪和控温仪使用方法。
2.实验原理1)对于二级反应:A+B→产物,如果A,B两物质起始浓度相同,均为a,则反应速率的表示式为(1)式中x为时间t反应物消耗掉的摩尔数,上式定积分得:(2)以作图若所得为直线,证明是二级反应。
并可以从直线的斜率求出k。
所以在反应进行过程中,只要能够测出反应物或产物的浓度,即可求得该反应的速率常数。
如果知道不同温度下的速率常数k(T1)和k(T2),按Arrhenius公式计算出该反应的活化能E(3)2.乙酸乙酯皂化反应是二级反应,其反应式为:OH-电导率大,CH3COO-电导率小。
因此,在反应进行过程中,电导率大的OH-逐渐为电导率小的CH3COO-所取代,溶液电导率有显著降低。
对稀溶液而言,强电解质的电导率κ与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和。
如果乙酸乙酯皂化在稀溶液下反应就存在如下关系式:(4)(5)(6)A1,A2是与温度、电解质性质,溶剂等因素有关的比例常数,κ0,κ∞分别为反应开始和终了时溶液的总电导率。
κt为时间t时溶液的总电导率。
由(9.4),(9.5),(9.6)三式可得:代入(2)式得:(7)重新排列即得:因此,以作图为一直线即为二级反应,由直线的斜率即可求出k,由两个不同温度下测得的速率常数点k (T1),k(T2),求出该反应的活化能。
3.仪器与药品DDS-llA(T)型电导率仪(附DIS一型铂黑电极)1台,停表1只,恒温水槽1套,叉形电导池2只,移液管(25mL,胖肚)1根,烧杯(50mL)1只,容量瓶(100mL)1个,称量瓶(25mm×23mm)1只。
乙酸乙酯(分析纯)。
氢氧化钠(O.0200mol/L)。
乙酸乙酯皂化反应速率常数的测定
![乙酸乙酯皂化反应速率常数的测定](https://img.taocdn.com/s3/m/dac6af74e55c3b3567ec102de2bd960590c6d9b6.png)
乙酸乙酯皂化反应速率常数的测定乙酸乙酯是一种常见的有机化合物,在化学实验室和工业生产中广泛应用。
了解乙酸乙酯的反应性质对于合成和应用都具有重要意义。
乙酸乙酯的皂化反应速率常数的测定是对其反应性质进行研究的一种方法。
皂化反应是指酯与碱反应生成相应的醇和盐。
乙酸乙酯的皂化反应可以由以下方程式表示:乙酸乙酯 + 碱→ 乙醇 + 乙酸盐皂化反应的速率常数可以用来描述反应速率的快慢,它与反应物浓度、温度和反应体系的性质有关。
因此,测定乙酸乙酯皂化反应速率常数可以帮助我们了解乙酸乙酯的反应性质以及控制其反应过程。
要测定乙酸乙酯皂化反应速率常数,首先需要准备一系列含有不同浓度的乙酸乙酯和碱溶液。
可以选择一种适当的碱,如氢氧化钠。
然后,将乙酸乙酯和碱溶液混合,并在一定的时间间隔内测量反应体系中乙醇生成的量。
根据乙醇生成的速率与反应物浓度的关系,可以计算得到乙酸乙酯皂化反应速率常数。
在实验过程中,可以通过不同方法来测量乙醇的生成量,如使用分光光度计、气相色谱仪或液相色谱仪等。
同时,为了保证实验的准确性,需要在一定温度下进行实验,并且控制实验条件的一致性。
在测定乙酸乙酯皂化反应速率常数的过程中,还可以探究其他因素对反应速率的影响。
例如,可以研究不同温度下的反应速率,以了解温度对反应速率的影响。
此外,还可以改变反应体系中乙酸乙酯和碱的浓度,以探究浓度对反应速率的影响。
这些研究可以帮助我们更好地理解乙酸乙酯的反应性质,并为其应用提供参考。
乙酸乙酯的皂化反应速率常数的测定是对其反应性质进行研究的一种方法。
通过测量乙醇生成的速率和反应物浓度的关系,可以计算得到乙酸乙酯皂化反应速率常数,并探究其他因素对反应速率的影响。
这些研究有助于我们更好地理解乙酸乙酯的反应性质,并为其应用提供参考和指导。
乙酸乙酯皂化反应速率常数测定
![乙酸乙酯皂化反应速率常数测定](https://img.taocdn.com/s3/m/327da5b4bceb19e8b8f6badb.png)
乙酸乙酯皂化反应速率系数测定姓名:张腾 学号:2012011864 班级:化21同组人姓名:田雨禾实验日期:2014年10月23日 提交报告日期:2014年10月30日指导教师: 麻英1 引言1.1 实验目的(1)学习测定化学反应动力学参数的一种物理化学分析方法——电导法。
(2)了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。
(3)进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。
1.2 实验原理反应速率与反应物浓度的二次方成正比的反应为二级反应,其速率方程式可以表示为22dc-=k c dt(1) 将(1)积分可得动力学方程:0ct 22c 0dc-=k dt c ⎰⎰ (2)2011-=k t c c (3) 式中: 为反应物的初始浓度;c 为t 时刻反应物的浓度; 为二级反应的反应速率常数。
将1/c 对t 作图应得到一条直线,直线的斜率即为 。
对于大多数反应,反应速率与温度的关系可以用阿累经验方程式来表示:aE ln k=lnA-RT(4) 式中: 乌斯活化能或反应活化能;A 指前因子;k 为速率常数。
实验中若测得两个不同温度下的速率常数,就很容易得到21T a 21T 12k E T -T ln=k RT T ⎛⎫ ⎪⎝⎭(5) 由(5)就可以求出活化能 。
乙酸乙酯皂化反应是一个典型的二级反应,325325CH COOC H +NaOH CH COONa+C H OH →t=0时, 0c 0c 0 0 t=t 时, 0c -x 0c -x x x t=∞时, 0 0 0x c → 0x c →设在时间t 内生成物的浓度为x ,则反应的动力学方程为220dx=k (c -x)dt (6) 2001xk =t c (c -x)(7)本实验使用电导法测量皂化反应进程中电导率随时间的变化。
设κ 、κ 和κ∞分别代表时间为0、t 和∞(反应完毕)时溶液的电导率,则在稀溶液中有:010=A c κ20=A c κ∞t 102=A (c -x)+A x κ式中A 1和A 2是与温度、溶剂和电解质的性质有关的比例常数,由上面的三式可得0t0-x=-c -κκκκ∞ (8) 将(8)式代入(7)式得:0t20t -1k =t c -κκκκ∞(9)整理上式得到t 20t 0=-k c (-)t+κκκκ∞ (10)以κ 对 κ κ∞ 作图可得一直线,直线的斜率为 ,由此可以得到反应速率系数 。
实验四、乙酸乙酯皂化反应速度常数的测定
![实验四、乙酸乙酯皂化反应速度常数的测定](https://img.taocdn.com/s3/m/39b15eda541810a6f524ccbff121dd36a32dc4be.png)
实验四、乙酸乙酯皂化反应速度常数的测定一、实验原理皂化反应是指脂类与碱在水溶液中作用生成皂的化学反应,其反应方程式为:脂肪酸酯 + 碱→ 皂 + 甘油其中,脂肪酸酯是由脂肪酸和甘油酯化合成的,碱是一种能与脂肪酸酯中的酸性氢离子反应的化学物质,通常用氢氧化钠(NaOH)作为碱催化剂。
乙酸乙酯为一种脂肪酸酯,在碱的催化下进行皂化反应时,反应速度较慢,需要一定的时间才能完全反应。
其皂化反应速度规律符合一阶反应速率方程式:r = k [EtOAc]其中,r为反应速率;[EtOAc]为乙酸乙酯的浓度;k为速率常数,是反应物浓度的函数,表示单位时间内单位浓度反应物消耗的速度。
实验过程中,利用 pH 电极测定反应过程中酸碱度的变化,计算出反应速率常数k,进而探讨不同反应条件对乙酸乙酯皂化反应速度常数的影响。
二、实验材料和仪器1. 实验材料:氢氧化钠(NaOH)、乙酸乙酯(EtOAc)、丙酮、苯酚、磷酸二氢钾(KH2PO4)、氯化钠(NaCl)、去离子水。
恒温浴,磁力搅拌器,pH计。
三、实验步骤1. 将500 mL 反应瓶清洗干净,加入适量去离子水,连接恒温浴器,将温度调至25℃。
2. 在反应瓶中加入5 mL 乙酸乙酯,并用称量器量取适量 NaOH 固体,并加入反应瓶中,转动磁力搅拌器搅拌均匀。
3. 用 pH 电极测试反应溶液的初始 pH 值,然后每隔10s测定一次,测定10min,记录数据。
4. 重复以上实验,调整反应温度为30℃、35℃、40℃、45℃、50℃,分别记录反应过程中的 pH 值和时间的关系。
5. 计算每个温度下乙酸乙酯皂化反应速度常数k。
四、实验数据处理与分析1. 数据处理根据 pH 值的变化确定反应速率,即ΔpH = pHt – pH0其中,pHt为第t次测定时的 pH 值,pH0为初次测量时的 pH 值。
由于反应时间较短,反应溶液中 NaOH 没有完全被消耗,所以需要校正 NaOH 的浓度。
实验七 乙酸乙酯皂化反应速率常数的测定
![实验七 乙酸乙酯皂化反应速率常数的测定](https://img.taocdn.com/s3/m/3be76c35482fb4daa58d4bd1.png)
实验七 :乙酸乙酯皂化反应速率常数的测定一、目的:1. 通过电导法测定乙酸乙酯皂化反应速率常数2. 求反应的活化能3. 进一步理解二级反应的特点4. 掌握电导仪的使用方法二、基本原理:1、乙酸乙酯皂化反应是典型的二级反应:CH 3COOC 2H 5+OH ˉ→CH 3COO ˉ+C 2H 5OH设乙酸乙酯与碱的起始浓度相同,则反应速率方程为:2kc dt dc =- 01tC k =CC C -∙0(1) C 0为反应物起始浓度,C 为反应过程中时刻t 的浓度2、采用电导法测定任意时刻t 反应物的浓度,求反应速率常数k ①体系中CH 3COOC 2H 5、C 2H 5OH 无明显导电性,浓度变化不影响电导数值,Na +浓度不变,与电导的变化无关;OH ˉ、CH 3COO ˉ的浓度变化对电导影响较大。
OH ˉ的迁移速率约是CH 3COO ˉ的五倍,所以溶液的电导随着OH ˉ的消耗而逐渐降低。
②溶液在t=0,t,∞时的电导分别为G 0、G t 、G ∞。
溶液的电导与电解质的浓度成正比。
G 0为NaOH 浓度为C 0时电导G t 为G NaOH 与G CH3COONa 之和;G ∞为产物CH 3COONa 浓度为C 0时的电导。
G NaOH 00C C G = G CH3COONa 00C C C G -=∞ G t =G NaOH +G CH3COONa 00C C G =+∞G 00C C C - G 0-G t =( G 0-∞G )CC C -∙0 G t -∞G =( G 0-∞G )0C C ∙ ∞--G Gt Gt G 0=00C C C - 则01tC k =∙∞--G Gt Gt G 0 ∞--G Gt Gt G 0=0KtC (2)③以∞--G Gt Gt G 0对t 作图可求出k 测得的G 0、G t 、G ∞代入(2)可求得K 值 ④反应的半衰期 t 1/2=01kC 对两种反应物浓度相同的二级反应,其半衰期与起始浓度成反比3、反应活化能Ea 的求法:由实验求得两个温度下的K ,可利用公式)11(303.2lg 1221T T R E k k -=计算出反应的活化能 4、电导率仪的原理 Em=GRm RmE E Rx Rm Rm 1+=+ G=Rx 1 三、仪器和试剂仪器:恒温槽 1套 电导仪 1台 停表 1块 锥形瓶 250ml ×2 烧杯 250ml ×1 容量瓶 100ml ×2 移液管 25ml ×2试剂:0.02mol/LNaOH 溶液、0.02mol/L CH 3COOC 2H 5溶液、0.01mol/LNaOH 溶液、0.01mol/L CH 3COONa 溶液四、操作要点1.准备:准确配置0.02mol/LNaOH 溶液、0.02mol/L CH 3COOC 2H 5溶液,调节恒温槽恒温至25℃;调试好电导仪,将电导池及配好的NaOH 溶液、CH 3COOC 2H 5溶液,浸入恒温槽2.测G 0:0.01mol/LNaOH 溶液注入干燥的双叉管中,插入铂黑电极(浸没电极),恒温15’测G 03.测G ∞:0.01mol/L CH 3COONa 溶液代替步骤2中的NaOH 溶液,测出G ∞4.测G t :取25mL0.02mol/LNaOH 溶液、0.01mol/L CH 3COONa 溶液,分别注入干燥双叉管的叉管中,二者不能混合,恒温10’,然后二者混合均匀,完全导入装有电极的一侧叉管中。
乙酸乙酯皂化反应速率常数的测定
![乙酸乙酯皂化反应速率常数的测定](https://img.taocdn.com/s3/m/b339ea83ab00b52acfc789eb172ded630a1c986a.png)
乙酸乙酯皂化反应速率常数的测定引言皂化反应是一种常见的有机化学反应,它常用于制取肥皂或合成其他有机化合物。
皂化反应的速率常数是衡量反应速度的重要参数。
本文将探讨如何测定乙酸乙酯的皂化反应速率常数。
实验原理乙酸乙酯的皂化反应可表示为以下方程式:C4H8O2 + NaOH → C4H7O2Na + C2H6O其中,C4H8O2代表乙酸乙酯,NaOH代表氢氧化钠,C4H7O2Na代表乙酸乙酯钠,C2H6O代表乙醇。
皂化反应的速率通常用速率常数k来表示,速率常数k即单位时间内反应物浓度的变化。
在本实验中,我们将通过监测乙酸乙酯和氢氧化钠的浓度变化来确定反应速率常数。
实验步骤1.首先,准备好所需的实验器材:锥形瓶、搅拌棒、取样管、比色皿等。
2.将一定量的乙酸乙酯和氢氧化钠溶液分别倒入两个锥形瓶中。
3.在实验室温度下开始实验,将两个锥形瓶放置在水浴中,水浴温度设定为恒定的。
4.开始实验后,定时取样,取出一定量的混合液体放入取样管中。
5.取样管中的混合液体的浓度可以通过比色法测定。
将取样管放入比色皿中,使用比色计测量吸光度。
6.将测得的吸光度值与预先制备好的标准曲线相对应,可以得到乙酸乙酯和氢氧化钠的浓度。
7.根据浓度的变化,计算反应速率常数。
8.重复上述实验步骤几次,取得多组数据。
数据处理与结果分析通过多次实验所得的数据,可以计算平均速率常数。
将测得的乙酸乙酯和氢氧化钠的浓度与反应时间绘制成曲线图。
通过线性拟合,得到斜率,即为反应速率常数。
结论综上所述,本实验通过测定乙酸乙酯的皂化反应速率常数,通过比色法测定乙酸乙酯和氢氧化钠的浓度,得到了较为准确的实验结果。
通过分析数据和曲线拟合,得到了乙酸乙酯皂化反应的速率常数。
参考文献[1] 张三. 乙酸乙酯皂化反应速率常数的测定[J]. 化学实验, 2020(3): 45-50.。
乙酸乙酯皂化反应速率常数的测定
![乙酸乙酯皂化反应速率常数的测定](https://img.taocdn.com/s3/m/537826dcd4bbfd0a79563c1ec5da50e2524dd18f.png)
实验九 乙酸乙酯皂化反应速率常数的测定1 前言实验目的测定乙酸乙酯皂化反应的速率常数; 实验内容在30℃时,用电导率仪先测定 1mol ·L -1的NaOH 溶液的电导率,然后将20ml ·L -1的NaOH 溶液与20ml ·L -1的乙酸乙酯溶液混合,测定其电导率随时间的变化关系;然后将实验温度升高到37℃,重复上述实验; 实验原理对于二级反应A +B → 产物如果A,B 两物质起始浓度相同,均为a,则反应速率的表示式为2x -a )(k dt dx = 1 式中:x 为t 时刻生成物的浓度;式1定积分得:⎥⎦⎤⎢⎣⎡-=)(1x a a xt k 2以 xa x -对t 作图,若所得为直线,证明是二级反应;并可以从直线的斜率求出k;所以在反应进行过程中,只要能够测出反应物或生成物的浓度,即可求得该反应的速率常数k;温度对化学反应速率的影响常用阿伦尼乌斯方程描述2ln RT E dTkd a = 3 式中:Ea 为反应的活化能;假定活化能是常数,测定了两个不同温度下的速率常数kT 1和kT 2后可以按式3计算反应的活化能Ea;⎪⎪⎭⎫ ⎝⎛-⨯=122112)()(lnT T T T R T k T k E a 4 乙酸乙酯皂化反应是一个典型的二级反应,其反应式为:反应系统中,OH -电导率大,CH 3COO -电导率小;所以,随着反应进行,电导率大的OH -逐渐为电导率小的CH 3COO -所取代,溶液电导率有显着降低;对于稀溶液,强电解质的电导率κ与其浓度成正比,而且溶液的总电导率就等于组成该溶液的电解质电导率之和;若乙酸乙酯皂化反应在稀溶液中进行,则存在如下关系式:a A 10=κ 5a A 2=∞κ 6x A x a A t 21)(+-=κ 7式中:A 1,A 2分别是与温度、电解质性质和溶剂等因素有关的比例常数;κ0、κt 、κ∞分别为反应开始、反应时间为t 和反应终了时溶液的总电导率;由式5—式7,得ax t ⎪⎪⎭⎫ ⎝⎛--=∞κκκκ00 8代入式2并整理,得∞+⎪⎭⎫⎝⎛-=κκκκtak tt 01 9因此,以t κ对ttκκ-0作图为一直线即说明该反应为二级反应,且由直线的斜率可求得速率系数k ;由两个不同温度下测得的速率系数k T 1与kT 2,可以求出反应的活化能Ea;由于溶液中的化学反应实际上非常复杂,如上所测定和计算的是表观活化能;2 实验方法实验仪器和试剂仪器 DDS-llA 型电导率仪1台;自动平衡记录仪1台;恒温水浴1套;DJS-1型电导电极1支;双管反应器2只、大试管1只;100mL 容量瓶1个;20mL 移液管3支;刻度移液管1支;试剂 L 的NaOH 溶液;乙酸乙酯AR ;新鲜去离子水或蒸馏水; 实验步骤1 仪器准备:接通电导率仪的电源,校正电导率仪,正确选择其量程,并将电导率仪的记录输出与记录仪相连;2 配制乙酸乙酯溶液:用容量瓶配制L 的乙酸乙酯溶液100mL;乙酸乙酯密度与温度的关系式ρ= 10其中ρ、t 的单位分别为kg/m 3和℃需要乙酸乙酯约;已知室温等于℃,计算得需要乙酸乙酯;3 0κ的测量;将恒温水浴调至30℃,用移液管吸取L 的NaOH 溶液装入干净的大试管中再加入20mLH 2O,将电导电极套上塞子,电极经去离子水冲洗并用滤纸吸干后插入大试管中,大试管放入恒温水浴恒温约10min,将电导率仪的“校正测量”开关扳到“测量”位置,记录仪开始记录;4 t κ的测定;将洁净干燥的双管反应器置于恒温水浴中,有移液管取20mL L 乙酸乙酯溶液,放入粗管;将电极用电导水认真冲洗3次,用滤纸小心吸干电极上的水,然后插入粗管,并塞好;用另一支移液管取20mL LNaOH 溶液放入细管,恒温约5min;用洗耳球迅速反复抽压细管两次,将NaOH 溶液尽快完全压入粗管,使溶液充分混合;记录仪必须在反应前开始记录,大约20min 可以停止测量;5 重复以上步骤,测定37℃时反应的0κ与t κ;3 结果与讨论由实验室仪器读出室温为℃,大气压为;表1,表2中的第二列由记录仪采集,可见附图t κ-t 关系图上的数据;第一列时间并非直接由记录仪采集的数据读出,而是在t κ-t 关系图上找出最高点,记下最高点对应的时间,之后将各数据点对应的时间减去最高点对应的时间即为表中第一列t;第三列中的0κ同样由记录仪采集,见附图0κ的测量,得30℃时,0κ=格,37℃时,0κ=格;注:附图分别为30℃时0κ的测量图、37℃时0κ的测量图、30℃时t κ-t 关系图、37℃时t κ-t 关系图;表1 乙酸乙酯皂化反应动力学实验数据记录30℃时间t/min格子数t κ/格0κ—t κ/ t以表1中的第二列对第三列作图,得图1;图1 ℃时t κ ~0κ—t κ/ t 图线由图1知,实验的线性拟合较好,该反应为二级反应;由公式9得,图1中直线的斜率为Ca ︒30k 1,在该实验中,a=L,所以。
乙酸乙酯皂化反应速率常数测定
![乙酸乙酯皂化反应速率常数测定](https://img.taocdn.com/s3/m/c07c0a4d227916888486d7ff.png)
(3)
可以看出Lt 对(L0 -Lt)/t作图为一直线,斜率为1/ a.k,实验中,使用电导率仪测定反应体系的电导,用 无纸记录仪记录,直接得出反应体系的电导随时间的变 化曲线Lt ~t。
上一内容 下一内容 回主目录
返回
2019/7/24
二、实验原理
作Lt—t的数据表及图 T=32℃时,Lt—t的数据表,L0=0.76
上一内容 下一内容 回主目录
返回
2019/7/24
二、实验原理
在稀溶液中,NaOH和CH3COONa电导率分别与其 浓度成正比,令L0 、L∞ 、Lt 为反应起始、反应终了和反 应时刻t的电导,则(2)式化为:
(L0 -Lt)/a(Lt -L∞)=kt 进一步化为:
Lt =(L0 -Lt)/a.kt+L∞
磁力搅拌器旋速调节旋 纽,一般拨至适中位置
返回
2019/7/24
四、实验操作步骤
• 反应时电导率κt的测定 用移液管移取25mL0.1000mol·dm-3的
CH3COOC2H5,加入干燥的25mL容量瓶中,用另一 只移液管取25mL0.1000mol·dm-3的NaOH,加入另一 干燥的25mL容量瓶中。将两个容量瓶置于恒温槽中 恒温15min。
上一内容 下一内容 回主目录
返回
2019/7/24
二、实验原理
为了方便数据处理,使a=b。对(1)式积分后得:
x kt (2) a(a x)
反应过程中,溶液中导电能力强的OH- 逐渐被导 电能力弱的CH3COO- 所取代,而CH3COOC2H5 和 C2H5OH不具有明显的导电性,故可通过反应体系电 导的变化来度量反应进程。
上一内容 下一内容 回主目录
返回
物理化学实验乙酸乙酯皂化反应速率常数的测定
![物理化学实验乙酸乙酯皂化反应速率常数的测定](https://img.taocdn.com/s3/m/6c9780385e0e7cd184254b35eefdc8d376ee14e7.png)
物理化学实验报告实验名称乙酸乙酯皂化反应速率常数的测定一.实验目的及要求1.了解测定化学反应速率常数的一种物理方法----电导法。
2.了解二级反应的特点,学会用图解法求二级反应的速率常数。
3.掌握DDS-307型数字电导率仪和控温仪使用方法。
二.实验原理乙酸乙酯皂化反应是典型的二级反应。
设初始反应物浓度皆为Co,经过t时间后消耗的反应物浓度为x,其反应式为CHaCOOCH5 + NaOH === CH,COONa +CH5OHt=0 Co Co 0 0t=t Co-x Co-x x xt=oo 0 0 Co Co其速率方程可表示为dx/dt=k(Co-x)^2,积分得kt=x/Co(Co-x)乙酸乙酯皂化反应的全部过程是在稀溶液中进行的,可以认为生成的CH3COONa是完全电离的,因此,对体系电导值有影响的有Na+、CH3CO0—和OH-。
Na*在反应的过程中浓度保持不变,反应前后其产生的电导值不发生改变,可以不考虑;而OH-的减少量和CH3COO-的增加量恰好相等,但OH-的导电能力大于CH3COO-的导电能力,在反应进行的过程中,电导率大的OH-逐渐被电导率小的CH3COO-所取代,因此,溶液电导率会随着反应进行而显著降低。
对于稀溶液而言,强电解质的电导率:与其浓度成正比,溶液的总电导率就等于组成该溶液的电解质电导率之和。
本实验采用电导法测量乙酸乙酯在皂化反应中电导率κ随时间t的发化。
攻κo、κt 、κ∞分别代表时间为0、t、co(反应完毕)时溶液的电导率,因此在稀溶液中有:κo=A1Coκ∞=A2Coκt=A1(c0—x) +A2 x式中的A1和A2是与温度、溶剂、电解质的性质有关的比例常数。
由以上三式可以推出:因此,对于二级反应,以κt对κo/t-κt/t 作图得到一条直线,直线的斜率为1/c o k,由此可以求出反应常数k。
由两个不同温度下的反应速率常数k(T1)和k(T2),根据阿伦尼乌斯公式可求出该反应的的活化能。
测定乙酸乙酯皂化反应速率常数的原理和方法
![测定乙酸乙酯皂化反应速率常数的原理和方法](https://img.taocdn.com/s3/m/83a6daaaa1116c175f0e7cd184254b35eefd1af2.png)
测定乙酸乙酯皂化反应速率常数的原理和方法电导法和pH值法。
1、电导法测定乙酸乙酯皂化反应的速率常数的步骤:①调节恒温槽的温度在26.00℃;②在1-3号大试管中,依次倒入约20mL蒸馏水、35mL 1.985×10-2mol/L的氢氧化钠溶液和25mL1.985×10-2mol/L乙酸乙酯溶液,塞紧试管口,并置于恒温槽中恒温。
③安装调节好电导率仪;④k0的测定:从1号和2号试管中,分别准确移取10mL蒸馏水和10mL氢氧化钠溶液注入4号试管中摇匀,至于恒温槽中恒温,插入电导池,测定其电导率k0;⑤kt的测定:从2号试管中准确移取10mL氢氧化钠溶液注入5号试管中至于恒温槽中恒温,再从3号试管中准确移取10mL乙酸乙酯溶液也注入5号试管中,当注入5mL时启动秒表,用此时刻作为反应的起始时间,加完全部酯后,迅速充分摇匀,并插入电导池,从计时起2min时开始读kt值,以后每隔2min读一次,至30min时可停止测量。
⑥反应活化能的测定:在35℃恒温条件下,用上述步骤测定kt值。
2、pH法测定乙酸乙酯皂化反应的速率常数的步骤:1).开启恒温水浴电源,将温度调至35℃.2).配制纯乙酸乙酯溶液配制0.0200mol/L乙酸乙酯溶液。
先计算配制0.0200mol/L乙酸乙酯溶液100ml所需的分析乙酸乙酯(约0.1762g)量,根据乙酸乙酯温度与密度的关系式:ρ=925.54-1.68×t-1.95×10-3 t²式中:ρ、t的单位分别为kg·m-3和℃,计算该温度下对应的密度并换算成配准100ml 0.0200mol/L所需乙酸乙酯的体积,用0.5ml刻度移液管移取所需的体积,加到预先放好2/3去离子水的100ml容量瓶中,然后稀释至刻度,加盖摇匀备用。
3).测定35℃,起始浓度的pH值,C(NaOH)=10 pH-14 mol/L,移取20mlNaOH溶液,准确加入20ml水,放入pH计,稳定后读数并记录。
物化设计实验——乙酸乙酯皂化反应速率常数的测定
![物化设计实验——乙酸乙酯皂化反应速率常数的测定](https://img.taocdn.com/s3/m/c2dcd0b6fbb069dc5022aaea998fcc22bcd143af.png)
乙酸乙酯皂化反应速率常数的测定——酸碱滴定法一、实验目的:1、掌握酸碱滴定的一般方法;2、了解二级反应的特点;3、学会用图解法求二级反应的反应速率常数以及活化能的求算。
二、实验原理:1、对于二级反应:A+B P →,如果A 与B 的起始浓度相等,记为0c ,通过积分可以得到二级反应的反应速率常数001a ac c k tc c -=,其中a c 是A 的当前浓度(即[A])。
若0a ac c c -~t 作图为直线,即可说明反应为二级反应,速率常数0/k c =斜率。
如果测得两个不同温度下的速率常数k,在温度范围不大的情况下可以用阿伦尼乌斯公式计算反应的活化能:121212ln ()T a T k T T E R k T T ⋅=⨯-。
2、乙酸乙酯皂化反应是二级反应:325325CH COOC H OH CH COO C H OH --+→+反应过程中,氢氧根离子的浓度逐渐减低,如前所述,只要测得氢氧根离子的浓度与时间的关系,即可求得反应速率常数。
(这里的[]OH -即为前面所说的a c )3、本实验以酸碱滴定的方式来测量[]OH -,产生了两个问题:(1)从反应液中移取溶液导致原反应液浓度改变;(2)移取反应液到滴定的这段时间,反应仍在进行,产生较大的误差。
为了克服这两个问题,我们用以下方案:(1)采用较大的双管式混合反应器,加入原料的总量提高为100mL ,而移取溶液时只从中移取0.5mL ,尽管会移取溶液数次,但是由于移取的体积远小于溶液总体积,我们认为该误差可以忽略;(2)用移液管移出的反应液立即放入事先准备好的加入了30mL 冰水的100mL 锥形瓶中,通过稀释和降温双重手段,是反应的进行基本上处于停滞状态来进行滴定。
三、仪器与药品:计时器一只;恒温槽一套;双管式混合反应器两个;25mL 胖杜移液管两只;1mL 刻度移液管1只;25mL 小烧杯一只;100mL 容量瓶一只;100mL 锥形瓶9个;50mL 酸式滴定管一只。
乙酸乙酯皂化反应速率常数的测定(详细参考)
![乙酸乙酯皂化反应速率常数的测定(详细参考)](https://img.taocdn.com/s3/m/d9c7e798551810a6f4248639.png)
乙酸乙酯皂化反应速率常数的测定一、实验目的1.学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法;2.了解二级反应的特点,学会用图解计算法求二级反应的速率常数;3.熟悉电导仪的使用。
二、实验原理(1)速率常数的测定乙酸乙酯皂化反应时典型的二级反应,其反应式为:CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OHt=0 C 0 C 0 0 0t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0速率方程式 2kc dtdc=-,积分并整理得速率常数k 的表达式为: t0t0c c c c t 1k -⨯=假定此反应在稀溶液中进行,且CH 3COONa 全部电离。
则参加导电离子有Na+、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反应的进行,OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ)的下降和产物CH 3COO -的浓度成正比。
令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则:t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t→∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得:∞+-⨯=κκκκtkc 1t00t 可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对tt0κκ-作图,可得一直线,则直线斜率0kc 1m = ,从而求得此温度下的反应速率常数k 。
(2)活化能的测定原理: )11(k k ln21a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。
三、仪器与试剂电导率仪 1台 铂黑电极 1支 大试管 5支 恒温槽 1台 移液管 3支氢氧化钠溶液(0.02mol/L ) 乙酸乙酯溶液(0.02mol/L ) 四、实验步骤1.标定NaOH 溶液及乙酸乙酯溶液的配制计算标定0.023/dm mol NaOH 溶液所需的草酸二份,放入锥形瓶中,用少量去离子水溶解之,标定溶液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙酸乙酯皂化反应速率系数测定:腾 学号:2012011864 班级:化21同组人:田雨禾实验日期:2014年10月23日 提交报告日期:2014年10月30日指导教师: 麻英1 引言 1.1 实验目的(1)学习测定化学反应动力学参数的一种物理化学分析方法——电导法。
(2)了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。
(3)进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。
1.2 实验原理反应速率与反应物浓度的二次方成正比的反应为二级反应,其速率方程式可以表示为22dc-=k c dt(1) 将(1)积分可得动力学方程:ct 22c 0dc -=k dt c⎰⎰ (2) 2011-=k t c c (3) 式中:为反应物的初始浓度;c 为t 时刻反应物的浓度;为二级反应的反应速率常数。
将1/c 对t 作图应得到一条直线,直线的斜率即为。
对于大多数反应,反应速率与温度的关系可以用阿累经验方程式来表示:aE ln k=lnA-RT(4) 式中:乌斯活化能或反应活化能;A 指前因子;k 为速率常数。
实验中若测得两个不同温度下的速率常数,就很容易得到21T a 21T 12k E T -T ln=k RT T ⎛⎫ ⎪⎝⎭(5) 由(5)就可以求出活化能。
乙酸乙酯皂化反应是一个典型的二级反应,325325CH COOC H +NaOH CH COONa+C H OH →t=0时, 0c 0c 0 0 t=t 时, 0c -x 0c -x x x t=∞时, 0 0 0x c → 0x c → 设在时间t 生成物的浓度为x ,则反应的动力学方程为220dx=k (c -x)dt (6) 2001xk =t c (c -x)(7)本实验使用电导法测量皂化反应进程中电导率随时间的变化。
设、和分别代表时间为0、t和∞(反应完毕)时溶液的电导率,则在稀溶液中有:010=A c κ20=A c κ∞t 102=A (c -x)+A x κ式中A 1和A 2是与温度、溶剂和电解质的性质有关的比例常数,由上面的三式可得0t00-x=-c -κκκκ∞(8) 将(8)式代入(7)式得:0t20t -1k =t c -κκκκ∞(9)整理上式得到t 20t 0=-k c (-)t+κκκκ∞ (10)以对作图可得一直线,直线的斜率为,由此可以得到反应速率系数。
溶液中的电导(对应于某一电导池)与电导率成正比,因此以电导代替电导率,(10)式也成立。
实验中既可采用电导率仪,也可采用电导仪。
2 实验操作2.1 实验药品、仪器型号及测试装置示意图仪器:计算机及接口一套(或其他电导数据记录设备);DDS-11A 型电导率仪一台;恒温槽一套;混合反应器3个;电导管2个;20ml 移液管2支;10ml 移液管2支;0.2ml 移液管1支;100ml 容量瓶1个;洗耳球一个。
药品:0.014191mol ·L -3NaOH 标准溶液;0.00750mol ·L -3NaAc 溶液(此浓度值为NaOH 标准溶液的一半);乙酸乙酯(AR );新鲜去离子水或蒸馏水。
本实验的核心装置为混合反应器,如下图所示:图1 混合反应器示意图2.2 实验条件实验温度:17.5℃2.3 实验操作步骤及方法要点2.3.1 配制乙酸乙酯溶液配制100ml乙酸乙酯溶液,使其浓度与氢氧化钠标准溶液相同。
乙酸乙酯的密度根据下式计算:3)23ρmt℃-t)kg⨯⨯=-⨯-⋅-/(℃95.110(/)/54..1168(924根据环境温度,求得乙酸乙酯的密度为903.50kg/m3,则需要乙酸乙酯的体积为:配制方法如下:在100ml容量瓶中装2/3体积的水,用0.2ml刻度移液管吸取0.145ml 乙酸乙酯,滴入容量瓶中,加水至刻度,混匀待用。
2.3.2 准备工作检查仪器药品,接通电源。
设定恒温槽温度为20℃左右(以温度计为准,比室温高0.5~1℃即可),并接通相应设备电源,调好相应参数,准备数据采集。
2.3.3 测量用20ml移液管移取氢氧化钠标准溶液于1池中,再移取20 ml乙酸乙酯溶液于2池中,将电导电极插入2池,再取适量醋酸钠溶液于电导管中,将反应器和电导管放入恒温槽中,一起恒温约10分钟。
待温度计示数不改变时,开始进行数据采集,再用洗耳球使1、2池中溶液迅速混合均匀,3~5次挤压即可。
约20分钟后即可停止实验。
清洗电导电极后,将其插入到电导管中,测定醋酸钠溶液的电导率(应多次测量,直到显示数据没有太大变化为止)。
再次清洗电导电极。
升高温度1℃左右,重复以上步骤测定反应电导率的变化,一共进行三次实验即可。
2.4 实验注意事项(1)温度的变化会严重影响反应速率,因此一定要保证恒温。
(2)不要敞口放置NaOH溶液,以防吸收空气中CO2,使其浓度变化。
(3)混合过程既要快速进行,又要小心谨慎。
不要将溶液挤出混合器。
(4)过程中更换反应液需要将电导率电极清洗干净,但不可擦拭部镀有铂黑的部分。
(5)采集数据过程中,要尽量避免对计算机进行其他操作,以防数据失真。
(6)控温时,以温度计示数为准,控温仪的旋钮应谨慎调节,最好始终使恒温槽处于加热恒温状态,因降温的速度比较慢。
3 结果与讨论3.1 原始实验数据氢氧化钠溶液浓度:0.014191mol/L,纯乙酸乙酯体积:0.14535ml乙酸乙酯溶液浓度:0.014191mol/L,醋酸钠溶液浓度:0.00750mol/L反应溶液电导率的原始数据略去,NaAc电导率和反应温度等数据见3.23.2 计算的数据、结果书中给出了固溶体的相关数据3.2.1 计算反应速率常数(1)实验点1温度:20.0℃,数据处理方法:首先,在测得的一系列电导率中,找到其最高点,删去之前的数据,将该点作为t=0;再在该点之后的数据点中,删去明显的波动,或是用线性插值替换;最后将为自变量,为因变量,即借助公式,用origin进行线性拟合,得到斜率,再除以-C0即为反应速率常数。
所得结果如下:1300140015001600κt (μS /c m )(κt-κ∞ )t (μS·s/cm)实验数据点 拟合曲线Equation y = a + b*x Adj. R-Squar 0.99994Value Standard Err κt Intercept 1603.971920.05358κtSlope -5.058E-4 1.32813E-7实验点1(T=20℃)的电导率拟合曲线因而反应速率常k=斜率/(-C 0)=0.0005058/0.00750=0.06744(L/mol ·s) R 2为0.99994。
(2) 实验点2 温度:21.0℃, 按照上文所述,使用origin处理数据,绘制的图像如下:1300140015001600κt (μS /c m )(κt-κ∞ )t (μS·s/cm)实验数据点 拟合曲线Equationy = a + b*x Adj. R-Squar0.99997ValueStandard Err κtIntercept 1640.752180.03939κtSlope -5.37459E-41.04852E-7实验点1(T=20℃)的电导率拟合曲线因而反应速率常数k=斜率/(-C 0)=0.000537459/0.00750=0.07166(L/mol ·s) R 2为0.99997(3) 实验点3 温度:22.0℃,按照上文所述,使用origin 处理数据,但本次实验多反应了两分钟,因此为了增加数据的统一性,将20min后的数据点全部删除,绘制的图像如下:1300140015001600κt (μS /c m )(κt-κ∞ )t (μS·s/cm)实验数据点 拟合曲线Equationy = a + b*x Adj. R-Squa 0.99997ValueStandard Er κtIntercept 1652.12970.04455κtSlope-5.68494E- 1.20551E-7实验点3(T=22℃)的电导率拟合曲线因而反应速率常数k=斜率/(-C 0)=0.00056849/0.00750=0.07580(L/mol ·s) R 2为0.99997(4)将上述三个实验点的拟合结果整理如下:表1 各个实验点的反应速率常数——使用origin 拟合序号 温度 /℃k/(L/(mol ·s)) R 2 1 20.0 621 0.06744 0.99994 2 21.0 631 0.07166 0.99997 322.06440.075800.99997根据不同温度下的k 值,结合公式:aE ln k=lnA-RT,使用origin 线性拟合如下:-2.70-2.64-2.58l n (k )1/RTEquationy = a + b*x Adj. R-Squ0.99917ValueStandard E BIntercept 14.550470.35082BSlope-42033.53857.95019(1/RT)对ln(k)线性拟合可得活化能为:3.3 讨论分析由于没有找到可靠的文献值,所以无法对实验结果进行有效的判断评估。
但仅从实验数据上来看,整个数据的线性度很好,最后得到的三个速率值拟合也比较理想,仅从数据质量上来看,实验基本上是成功的。
在数据处理的过程中,鉴于某些点的偏差比较大,对数据进行了简单的分析和剔除,使数据的线性度得到了明显的提高,在分析数据的过程中,发现在实验开始阶段往往是实验数据最不稳定的阶段,最容易出现离群值,这可能和实验开始时混合过程尚未结束,液相之间还未充分混合达到稳态所致,所以在处理数据时应着重关注实验开始阶段的数据点,对其进行取舍。
事实上,表观活化能会随温度的改变而改变,一般会随温度的升高而增大,但由于这种影响极为有限,又由于实验中温度的变化非常小,实验所测量的活化能的值比较高,所以可以认为活化能是不随温度而改变的,这种处理方法是合理的,但一定需要注意活化能是温度的函数这一个事实 。
4 结论本实验我们获得了三个温度下的乙酸乙酯皂化反应速率常数和活化能,如下表所示:表2 实验结果序号 温度 /℃ k /(L/(mol ·s))1 22.0 0.067442 21.0 0.071663 22.0 0.07580 活化能20~2242.03kJ/mol5 参考文献(1)《基础物理化学实验》,高等教育,贺德华、麻英、连庆,2008年5月第1版 (2)《物理化学》,清华大学,朱文涛,2011年9月第1版6 附录 6.1 思考题6.1.1 配制乙酸乙酯溶液时,为什么在容量瓶中要先加入部分蒸馏水?答:因为乙酸乙酯容易挥发,加入水可以起到稀释的作用,减少乙酸乙酯的挥发,减小实验误差。