超级电容器课件
超级电容器简介课件
用。
政策支持与产业发展建议
政策引导与资金支持 建立产业联盟 加强国际合作与交流
超级电容器与其他储能技术 的比较
与电池的比较
充放电速度
。
循环寿命
能量密度 成本
与超级电感的比较
储能原理
超级电容器通过双电层储能, 而超级电感通过磁场储能。
响应速度
超级电容器简介课件
目录
• 超级电容器的性能特点 • 超级电容器的制造工艺与材料 • 超级电容器市场现状与趋势 • 超级电容器的发展前景与挑战 • 超级电容器与其他储能技术的比较
超级电容器概述
定义与工作原理
定义 工作原理
超级电容器的主要类型
根据电解质类型
根据储能原理
可分为水系超级电容器和有机系超级 电容器。
超级电容器的发展前景与挑 战
技术创新与突破方向
材料创新
结构设计 集成化技术
市场拓展与合作机会
电动汽车领域
与电动汽车制造商合作,开发高 性能的超级电容器,提升电动汽
车的续航里程和加速性能。
智能电网领域
与电网公司合作,研发用于智能 电网的储能超级电容器,提高电 网的稳定性和可再生能源的接入
能力。
工业应用领域
主要应用领域市场现状与趋势
总结词
详细描述
市场竞争格局与挑战
总结词
超级电容器市场竞争激烈,企业需要不 断创新以保持竞争优势。
VS
详细描述
目前,全球超级电容器市场已经形成了较 为稳定的竞争格局,但随着新技术的不断 涌现和市场的不断扩大,竞争也日趋激烈。 企业需要不断加大研发投入,提高产品性 能和降低成本,以应对市场竞争的挑战。 同时,企业还需要加强与上下游企业的合 作,共同推动超级电容器市场的快速发展。
《超级电容器》课件
发展历程和前景
1
1 990年
2
实现了高性能的电化学电容器,并开
始在特定领域得到应用。
3
1 978年
超级电容器首次被发现,但技术限制 和高成本限制了商业应用。
2 000年
随着技术进步和成本下降,超级电容 器在多个领域得到广泛应用。
主要厂商
1 Maxwell Technologies
全球领先的超级电容器制造商,提供各种容量和尺寸的产品。
总结和展望
超级电容器是一种具有巨大潜力的电能存储技术,虽然还存在一些挑战和限制,但随着技术的不断进步 和应用需求的增长,它将继续发展并在更多领域得到应用。
超级电容器
超级电容器是一种高容量和高功率的电能存储设备,具有快速充放电速度和 长寿命的特点。
定义和原理
超级电容器是一种能够存储和释放巨大电荷量的装置,通过电荷在电容器的 正负极板之间的吸附和脱附实现能量的存储和释放。 超级电容器的工作原理基于电双层电容和电化学电容两种机制。
应用领域
可再生能源
超级电容器可以存储和释放电能,用于平衡可再生能源的波动性,提高能源利用效率。
2 Nesscap Energy
韩国超级电容器制造商,专注于高功率和高温应用领域。
3 Skeleton Technologies
欧洲超级电容器制造商,开发具有高能量和高功率密度的创新产品。
未来研究方向
超级电容器的研究正在关注提高能量密度、降低成本、延长寿命和提高温度 稳定性等方面的技术改进。
新材料和新结构的研发有望推动超级电容器的性能提升,进一步拓展其应用 领域。
交通运输
超级电容器可以作为电动汽车和混合动力车辆的辅助能源储存装置,提供高功率的提供短时电源支持,防止电子设备数据丢失。
超级电容器.
超级电容器超级电容器从储能机理上面分的话,超级电容器分为双层电容器和赝电容器。
是一种新型储能装置,它具有充电时间短、使用寿命长、温度特性好、节约能源和绿色环保等特点。
超级电容器用途广泛。
概述超级电容器(supercapacitor,ultracapacitor),原理又叫双电层电容器(Electrical Double-Layer Capacitor)、电化学电容器(Electrochemcial Capacitor, EC), 黄金电容、法拉电容,通过极化电解质来储能。
它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。
超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。
超级电容器是建立在德国物理学家亥姆霍兹提出的界面双电层理论基础上的一种全新的电容器。
众所周知,插入电解质溶液中的金属电极表面与液面两侧会出现符号相反的过剩电荷,从而使相间产生电位差。
那么,如果在电解液中同时插入两个电极,并在其间施加一个小于电解质溶液分解电压的电压,这时电解液中的正、负离子在电场的作用下会迅速向两极运动,并分别在两上电极的表面形成紧密的电荷层,即双电层。
它所形成的双电层和传统电容器中的电介质在电场作用下产生的极化电荷相似,从而产生电容效应,紧密的双电层近似于平板电容器,但是,由于紧密的电荷层间距比普通电容器电荷层间的距离更小得多,因而具有比普通电容器更大的容量。
双电层电容器与铝电解电容器相比内阻较大,因此,可在无负载电阻情况下直接充电,如果出现过电压充电的情况,双电层电容器将会开路而不致损坏器件,这一特点与铝电解电容器的过电压击穿不同。
同时,双电层电容器与可充电电池相比,可进行不限流充电,且充电次数可达10^6次以上,因此双电层电容不但具有电容的特性,同时也具有电池特性,是一种介于电池和电容之间的新型特殊元器件。
超级电容器的研究PPT课件
孔径越大,电化学吸附速度越快,即使在比表面 积和总电容量相对低的情况下也可在大电流下传 递更多的能量。
超级电容器的研究
3、表面官能团
主要通过两种途径: 1)改变表面的润湿性能 2)官能团自身发生可逆的氧化还原反应 从制备高容量、耐高压、稳定性好的电容器角度 出发 , 要求活性炭材料表面的官能团有一个合适 的比例。
3) 液体电解质超级电容器 4) 固体电解质超级电容器
超级电容器的研究
三、碳材料超级电容器的性能特点
1、活性炭(AC)电极材料 性能特点:表面积较高,孔径可调,可批量 生产,价格低廉。
碳纤维
超级电容器的研究
2、碳气凝胶电极材料 优点:比表面积高,密度变化范围广,结构 可调。
制备方法如上图所示
超级电容器的研究
超级电容器的研究
2) 赝电容型超级电容器 (1) 金属氧化物材料 • 贵金属氧化物材料 —RuO2:无定型RuO2拥
有更高的电导率,更高的比电容,更高的电 化学可逆性。 • 替代RuO2的廉价金属氧化物材料—MnO2和 NiO。
超级电容器的研究
(2) 导电聚合物材料
聚苯胺(PANI)、聚 吡(PPy)和聚噻吩
超级电容器的研究
超级电容器的研究
缺点:
如果使用不当会造成电解质泄漏等现象; 和铝电解电容器相比,它内阻较大,因而不可以用于 交流电路。
超级电容器的研究
二、超级电容器的分类
1. 按原理分:双电层型超级电容和赝电容 型超级电容器。
1) 双电层型超级电容器
包括:活性炭(粉、纤维)电极材料、碳气凝胶电极 材料、碳纳米管电极材料、石墨烯电极材料超级电 容器。
3、碳纳米管(CNT)电极材料:单壁纳米管和多 壁 纳米管
超级电容器简介
二、超级电容器的基本分类
超级电容储能机制可分为:
双电层电容--电极表面与电解液间双电层储能。
准电容--电极表面快速的氧化-还原反应储能。
相应的两类电极根据电极材料—-—组成三种电容器 双电层电容器 (碳材料超级电容器)正、负极——多孔炭 准电容器 混合材料电容器 正、负极——金属化合物、石墨、 导电聚合物。 电压、能量密度高
2、准电容储能材料 3、高性能电解质溶液
4、以减轻重量为中心的结构设计
活性炭是双电层电容器传统的电极材料,石墨结构的导电炭、碳化物的衍 生碳、碳纳米管、炭黑和石墨烯等各种各样不同结构的碳在双电层电容器 中的应用也越来越广泛。 法拉第赝电容的电极材料主要包括过渡金属氧化物材料和导电聚合物材料, 过渡金属氧化物电极的电容来源于氧化还原反应,比电容远高于双电层的比 电容,过渡金属氧化物电极材料的导电性差,在过渡金属氧化物中例如 MnO2和 NiO 等它们差的导电性阻碍了它们作为超级电容器电极材料的应用。 导电聚合物当氧化反应发生时,离子转移到聚合物骨架;当还原反应发生时,
离子从聚合物骨架中转移到电解液中,导电聚合物的氧化还原反应在聚合物
的整体中进行,不仅局限于表面。然而,导电聚合物存在循环稳定性差的问 题,在长时间的循环测试中导电聚合物会发生收缩和溶胀,影响其循环寿命。
研究人员通过复合的方式在具有高比表面积和良好导电性以及多孔的碳材料
表面负载过渡金属氧化物,制备了具有多层次结构的碳基复合材料。通过这 种方式提高了赝电容电极材料的利用率,改善了复合材料的性能。
4.
以减轻重量为中心的结构设计
碳是双电层电容器理想的电极材料,在水溶液和非水溶液理想极化的条件下电压分别为 1 V 和 3.5 V
电容器电解质:
超级电容介绍-PPT精选文档
Capacitance
106: 10F(10 x 106uF) 357: 350F (35 x 107uF)
C. Tolerance
MG: -20 to + 20% QG: -10 to +20% I: O:
Module Terminal
H: L: T: C:
Custom 订制
Specifications 产品特性
Item Rated Voltage 额定电压 (V R) Surge Voltage 冲击电压 Operation temperature 最佳工作温度 Storage temperature 储存温度 Capacitance tolerance 电容量偏差 Measure 测试 High Temperature Load Life D C 容量差 高温负荷特性 ESR 内阻 85oC Higher Temperature 高温 Measure 测试 Temperature Characteristic D C 容量差 温度特性 ESR 内阻 Cycle 循环 Cycle Life Characterisitc D C 容量差 循环寿命特性 ESR 内阻 Method 方式 Shelf Life 储存期
专供工厂IQC用的超级电容测试仪
直流内阻测试仪
容量测试仪
交流内阻测试仪
Our Customer 我们的客户
Part Number 料号
VNP 3R0 106 QG - H
Series
VNE: Energy Type VNP: Power Type
Voltage
2.3V, 2.5V 2.7V, 3.0V
超级电容原理
常用计算公式: 1. 电容值 C(F) = I(A) x t (s) /ΔV eg: 0.5A x 3600s / (8-1) = 250F Eg: 1mA x 36000s / (5.5-3.3) = 16F 2.安时 Ah = C(F) x V(Cv) / 3600 eg: 10Fx2.5/3600=6.9mAH eg: 200Fx2.7/3600 = 0.15AH
超级电容器PPT课件
有机系超级电容器的优缺点
优点
具有较高的分解电压 较高的能量密度 较高的电化学稳定性 耐高压 产品使用寿命长 工作温度范围宽
缺点
电容器的过充会导致有毒的挥发性 物质产生,同时也会使电容器的储 电能力显著下降甚至消失
有机电解液应该尽量避免水的存在, 水的存在会导致电容器性能的下降, 自放电加剧
4
4-2 超级电容器的电解液
16
3
三种超级电容器对比
三种超级电容器的优缺点对比
双电层电容器
工作温度范围宽
温度变化小
优
功率密度高
点
安全性高 寿命高
已商业化
缺
电压低 能量密度低
点
成本高
自放电大
法拉第赝电容器
能量密度大
功率密度低 电压低
除RuO2外研究中 成本最高
混合超级电容器
工作温度范围宽 能量密度高 安全性高 寿命高
产业化推进中 温度变化大 功率密度低
1.用于小型超级电容器的无纺布隔膜(扣式)
规格
MPF
厚度范围(μm)
应用
30~300
低自放电扣式
材料
P.P.聚丙烯
2.用于大型超级电容器的纤维素隔膜(卷绕式或叠层式)
规格
TF40 TF45 TF48
厚度范围(μm)
30,35,50,60,70 30,35,40,50,60, 40,50
应用
低 ESR 型 低自放电型
研究趋势:材料复合,降低成本
22
4
4-1超级电容器的电极材料
2.碳纳米管
单壁纳米管 多壁纳米管 优点:高导电率,比功率高, 缺点:比表面积小,成本高。
因此一般作为添加剂使用
超级电容器(新能源材料与器件导论第二十节课件)
混料和浆 (活性炭、 粘合剂、导 电剂)—拉 浆—烘干— 裁剪成形
11
7.1.8 超级电容器的性能指标
额定 容量 专项规 性能指标 划的总 体任务
充电到额定电 压后保持2-3分 钟,在规定的 恒定电流放电 条件下放电到 端电压为零所 需的时间与电 流的乘积再除 以额定电压值
额定 电压
可使用的 最高安全 端电压 (如2.3V、 2.5V、 2.7V)
额定 电流
漏电 流 一般为 10μA/F
5秒内 放电到 额定电 压一半 的电流
12
7.1.8 超级电容器的性能指标
等效串 联电阻 专项规 性能指标 划的总 体任务
以规定的恒 定电流和频 率(DC和 大容量的 100Hz或小 容量的KHz )下的等效 串联电阻。
寿命
在25℃环境温 度下的寿命通 常在90 000小 时,在60℃的 环境温度下为 4 000小时, 与铝电解电容 器的温度寿命 关系相似。
超容
锂离子电池
14
对比数据
性 能 铅酸电池 超级电容器 普通电容器
充电时间
放电时间 比能Wh/kg 循环寿命 比功率W/kg 充放电效率
1-5小时
0.3-3小时 30- 40 300 < 300 0.7-0.85
0.3-若干秒
0.3-若干秒 1- 20 >10000 >1000 0.85-0.98
活性炭表面官能团的作用
含氧官能团越多,导电性越差。
羧基浓度越大,漏电电流越大,储存性
能越差。
羧基浓度越高,静态电位越高,越易析
氧,电极越不稳定。
处理炭表面官能团,提高性能
20
高温处理的影响
1
2
超级电容器.ppt
六、总结
DDGS:可溶性干酒糟(Distillers Dried Grains with Solubles) EDLC:双电层电容器(Electric double layer capacitor) EDS:能量色散谱(Energy-dispersive spectroscopy) SEM:扫描电子显微镜(Scanning electron microscope) TEM:透射电子显微镜(Transmission electron microscope) EIS:电化学阻抗谱(Electrochemical Impedance Spectroscopy) CV:循环伏安法(Cyclic Voltammetry)
二、超级电容器的分类
1.双电层电容器(Electrical double-layer capacitor)
公式: C 4d
原理:离子迁移
双电层电容器工作原理示意图
二、超级电容器的分类
2.赝电容电容器
在电极表面或者体相中的二维空间上,活性物质进行欠电位沉积,产生高度 可逆的化学吸附/脱附或者氧化还原反应所产生的电容。
原理:法拉第电池
赝电容器原理图
三、超级电容器性能影响因素
1.比表面积(Specific surface area) 2.孔径分布(Pore size distribution) 3.孔隙结构(Porous structure) 4.表面官能团(Surface functional groups)
四、电极材料
1.炭电极材料 活性炭、活性炭纤维、炭气凝胶、模板炭、
纳米炭管、石墨烯、 2 .氧化物电极材料
二氧化锰的晶体结构、二氧化锰的电荷存储 机理、二氧化锰的制备工艺 3 .导电聚合物电极材料
超级电容电源及应用 ppt课件
(1)电压与电极上施加或释放的电荷几乎成线性关系; (2)设该系统电压随时间呈线性变化dV/dt=K,则产生的电 流为恒定或几乎恒定的容性充电电流I=CdV/dt=CK。
9
储能原理
ppt课件
准电容原理
法拉第准(赝)电容不仅只在电极表面,而且可在整个电极 内部产生,因而可获得比双电层电容更高的电容量和能量密度 。在相同电极面积的情况下,法拉第准(赝)电容可以是双电层 电容量的10~100倍。
Struture diagram of the interface between electrode and electrolyte
8
储能原理
ppt课件
(法拉弟)准电容原理
• 是在电极表面或体相中的二维或准二维空间上, 电活性物质进行欠电位沉积,发生高度可逆的化 学吸附,脱附或氧化,还原反应,产生和电极充 电电位有关的电容。也称为赝电容。
• 额定电流:
▫ 5秒内放电到额定电压一半的电流,除此之外还有最大电流(脉冲峰值电流)
• 最大存储能量:
▫ 在额定电压是放电到零所释放的能量,以焦耳(J)或瓦时(Wh)为单位 • 能量密度: ▫ 最大存储能量除以超级电容器的重量或体积(Wh/kg或Wh/l) 功率密度:
•
▫ 在匹配的负载下,超级电容器产生电/热效应各半时的放电功率,用kW/kg或kW/l 表示。
• 工作与存储温度:
▫ 通常为-40℃-60℃或70℃,存储温度还可以高一些。
• 漏电流:
▫ 一般为10μA/F
返回
16
ppt课件
性能比较
与普通电容比较
性 能 超级电容器 0.3-若干秒 普通电容器 10-3—10-6秒 充电时间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)军事领域
近年来,超级电容器因具有功率密度高,充电 速度快,循环寿命长等优点受到军事家的青睐。例 如美军的“微波炸弹”,依靠其装有的超级电容器 发出的超强电磁脉冲深入掩体内部进行爆炸破坏, 打击威力极其强大。将超级电容器用于重型卡车, 装甲车以及坦克,可以实现快速启动。航母用的电 磁弹射器,要求在10~15秒内将飞机弹射出去,弹 射能量达120兆焦,最短起飞循环时间45秒,用超 级电容器供电可满足要求。
(3)交通领域
将超级电容器与蓄电池并联作为汽车的启动电 源,在启动初始时,由超级电容器向启动机提供强 大的启动电流带动发动机转动,能延长蓄电池使用 寿命,此外,还可使汽车的起步速度大大提高。 汽车在制动过程中消耗的能量大约占总驱动能 量的30%,回收制动能量的有效方法是采用容量大 且能快速充放电的储能元件来收集能量。
超级电容器分类
一、根据电极材料的不同,超级电容器可 分为以下四种: (l)碳电极电容器
(2)金属氧化物电极电容器;
(3)导电聚合物电极电容器;
(4)复合材料电极电容器
二、根据结构及电极上发生的反应,超级电 容器可分为以下两类。
(1)对称型超级电容器,其特点是两个电极 的组成相同,电极反应相同且反应方向相反。 (2)非对称型超级电容器,两个电极组成不 同或反应不同,例如由n型和p型掺杂的导电 聚合物作电极的超级电容器。
法拉第准电容电容器
法拉第准电容电容器,又称赝电容 器,它的储能机理是电活性离子在 贵金属电极表面发生欠电位沉积, 或在贵金属氧化物电极表面及体相 中发生的氧化还原反应而产生的吸 附电容。
法拉第准电容器通常具有更大的比电容,是双电层电容 的10一100倍。
混合型机制电容器
混合型机制电容器又称非对称电容器,它是利用两种不 同的电极材料做正负极制作的电容器,其中一极产生双 电层电容,另一极产生法拉第准电容。其优点是拓宽使 用电压范围并具有较高的能量密度。
超级电容器还可用作汽车的主电源。
(4)工业领域
超级电容器在工业不间断电源(UPs)、安全预防 设备以及仪器仪表等方面得到广泛应用。
(5)消费电子领域
使用超级电容器做为储能元件的手电筒,充电只 需90秒,循环寿命可达50万次,可使用约135年。电 子玩具常要求瞬时大电流,而电池无法提供,使用超 级电容器作为电源不仅可以解决这个问题,还可以降 低使用成本、减轻质量。一种自动的切管工具用于替 代一种己经有十年历史的旧式手持切管设备。考虑实 际应用,要求能提供瞬间高功率及长寿命,并且要求 快速充电,一次充电能满足100次的切割工作,超级 电容器与电池混联后能使产品满足应用的需求。
三、根据储能原理,超级电容器可分为三大类
(l)双电层电容器(EDLC)
(2)法拉第准电容电容器
(3)混合类型电容器
四、根据电解液不同,超级电容器可分为如下 三类
(l)有机系超级电容器 (2)水系超级电容器 (3)全固态超级电容器
超级电容器的结构
超级电容器的特点
超级电容器的应用
(1)绿色能源领域
普通金属氧化物电极材料目前研究的比较多的是MnO2 和NiO
图中ox为氧化态电极物质,red为还原态电极物质,其充放电过程与双 电层电容器基本相同,不同的是其储存电荷的过程不仅包括双电层上的存储, 而且包括电解液中离子在电极活性物质中发生氧化还原反应而将电荷储存于 电极中。不仅发生在电极表面,而且可深入电极内部,通常具有更大的电容 和更高的能量密度。
导电聚合物电极材料
导电聚合物电极材料的电容量主要也是有法拉第准电容提 供的。其作用机理是,通过导电聚合物在充放电过程中的 氧化还原反应,在聚合物中发生快速可逆的n型或p型元素 掺杂和去掺杂氧化还原反应,使聚合物达到很高的储存电 荷密度,产生很高的法拉第准电容而实现电能储存。
聚合物电极材料是由整个三维立体结构内发生快速可逆 的法拉第准电容反应实现储存能量的,因而比电容要优 于仅靠电极/电解液的界面双电层储能的碳材料电极的 比电容。通常聚合物电容器的比电容比活性炭作电极材 料的双电层电容器的比电容大2一3倍,其中以聚毗咯 (PPY)、聚曝吩(PTH)、聚苯胺(pAN)、聚对苯(PP)聚乙 烯二茂铁(PvF)等聚合物最具代表性。
Different Carbon Structures Used in EDLCs with Onion-like Carbon (OLC), Carbon Nanotubes, Graphene, Activated Carbons, and Carbide-Derived Carbons
P. SIMON, AND Y. GOGOTSI, ACCOUNTS OF CHEMICAL RESEARCH, 2011.
在沿海岛屿、边远山区,地广人稀的草原牧场等地方, 风能和太阳能可作为解决生产和生活能源的一种可靠 途径。然而,这些能源还不能稳定地供给。将超级电 容器与风力发电装置或太阳能电池组成混合电源,超 级电容器在白天阳光充足或风力强劲的条件下吸收能 量以电能的形式存储起来,在夜晚或风力较弱时放电, 可解决上述问题。
超级电容器用导电PANI的制备及电化 学性能研究
超级电容器的研究及应用现状
美国、日本、韩国、俄罗斯、德国等国研究超级 电容器起步较早,技术相对比较成熟。
我国研究超级电容器相对较晚,始于上世纪 90年代,目前发展较为迅速。
超级电容器的储能原理
双电层电容器
双电层电容器的电解质一般为硫酸或氢氧化钾,电容是由 双电层所引起。双电层电容器的能量储存在双电层电容器 界面上,界面两边分别是电子导电的电极和离子导电的电 解液。其工作的电化学过程可以写成:
电极材料
电极材料是影响超级电容器性能的重要因素。 为了进一步提高超级电容器的容量和循环寿命,最主要的 是开发新的高比容量,高比功率的电极材料。 超级电容器的电极材料可以分为以下几类:炭电极材料, 金属氧化物电极材料,导电聚合物电极材料,复合电极材 料。
碳电极材料
目前已经开发用在双电层电容器上的碳材料有:活性炭 粉末、活性碳纤维、碳纳米管、膨胀性石墨、碳气凝胶、 炭黑和石墨烯等。 炭材料的性质中最为关键的几个影响因素为炭材料的表 面积和粒径分布,炭材料的电学稳定性,炭材料的导电 率。
超级电容器
超级电容器是一种性能介于常规电容器和二次电池之间的 新型储能元件。与传统意义上的电容器相比,超级电容器 具有更高的比电容量和能量密度,与二次电池相比则具有 功率密度高,充放电时间短,循环性能好,使用寿命长, 便于维护等特点。从某种意义上来说,超级电容器具备了 传统电容器和二次电池的双重功能,其功率密度远高于普 通电池,能量密度远高于传统电容器,填补了这两个传统 技术间的空白。超级电容器同时也可在极低温等极端恶劣 的环境中使用,并且无环境污染。
活性炭材料
对于碳材料而言,理论上,电容量与比表面积成正比, 因此如何提高碳材料的比表面积就是关键。 活性炭表面由大孔、中孔和微孔表面构成。电极受外电 压作用在孔表面形成电双层时,大孔主要起传输电解液的作 用,所形成的电双层对电容的贡献较小;中孔既起输送电解液 的作用又起电双层的作用;孔宽度小于2nm的微孔则仅部分形 成双电层贡献电容量。
不同温度下煅烧产物的SEM照片
产物的孔特性
循环伏安图
充放电图(1mA/cm2)
循环测试
鸡蛋壳膜碳化产物的SEM照片
金属氧化物电极材料
金属氧化物在电极/电解液界面产生的法拉第准电容远 大于炭材料表面的双电层电容,其容量大概是炭材料 电容容量的10一100倍,有很广阔的发展前景。 金属氧化物电极材料分为贵金属氧化物电极材料和普 通金属氧化物电极材料。 贵金属氧化物电极材料目前研究最成熟的是RuO2。
超级电容器的组成
电极
集流体
隔膜
电解液
辅助部件
电解液
电解液的分解电压决定了超级电容器的最大可用电压。 电解质可以是水溶液液,与水系电解液相比,有机电 解液内阻较大,所以开发导电性好、安全性好、成本低的水 系电解液或电解质固态化也是研发超级电容器的主要工作之 一。