2020高考数学复习-导数部分
2020高考数学《导数压轴题》
2020高考数学《导数压轴题》1.已知函数 $f(x)=e^x(1+aln x)$,设 $f'(x)$ 为 $f(x)$ 的导函数。
1) 设 $g(x)=e^xf(x)+x^2-x$ 在区间 $[1,2]$ 上单调递增,求 $a$ 的取值范围;2) 若 $a>2$ 时,函数 $f(x)$ 的零点为 $x$,函数$f'(x)$ 的极小值点为 $x_1$,求证:$x>x_1$。
2.设函数 $f(x)=\frac{x^2-2x+3}{x-1}$,$x\in R$。
1) 求证:当 $x\ge 1$ 时,$f(x)\ge 2$ 恒成立;2) 讨论关于 $x$ 的方程 $f(x)=k$ 的根的个数。
3.已知函数 $f(x)=-x^2+ax+a-e^{-x}+1$,$a\in R$。
1) 当 $a=1$ 时,判断 $g(x)=e^xf(x)$ 的单调性;2) 若函数 $f(x)$ 无零点,求 $a$ 的取值范围。
4.已知函数 $f(x)=\frac{ax+b}{x-1}$,$x\in R$。
1) 求函数 $f(x)$ 的单调区间;2) 若存在 $f(f(x))=x$,求整数 $a$ 的最小值。
5.已知函数 $f(x)=e^{-ln x+ax}$,$a\in R$。
1) 当 $a=-e+1$ 时,求函数 $f(x)$ 的单调区间;2) 当 $a\ge -1$ 时,求证:$f(x)>0$。
6.已知函数 $f(x)=e^x-x^2-ax-1$。
1) 若函数 $f(x)$ 在定义域内单调递增,求实数 $a$ 的范围;2) 设函数 $g(x)=xf(x)-e^x+x^3+x$,若 $g(x)$ 至多有一个极值点,求 $a$ 的取值集合。
7.已知函数 $f(x)=x-1-ln x-a(x-1)^2$,$a\in R$。
1) 讨论函数 $f(x)$ 的单调性;2) 若对 $\forall x\in (0,+\infty)$,$f(x)\ge 0$,求实数$a$ 的取值范围。
2020年高考数学(理)总复习:利用导数解决函数零点问题(解析版)
2020年高考数学(理)总复习:利用导数解决函数零点问题题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∈a >0,∈x 1<x 2,列表如下:∈f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∈存在x ∈[1,2],使h (x )=f (x ),∈f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∈y =1x 3+3x 在x ∈[1,2]上单调递减,∈当x =1时,y =1x 3+3x 的最大值为4,∈2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ∈当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.∈当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∈φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∈φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∈存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(∈)当0<x ≤x 0时,∈φ(x )=f (x )-g (x )≥φ(x 0)=0, ∈h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∈h (x )在(0,x 0)上有一个零点; (∈)当x >x 0时,∈φ(x )=f (x )-g (x )<φ(x 0)=0, ∈h (x )=g (x )且h (x )为增函数,∈g (1)=0,∈h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∈函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∈0<x 1<1,∈g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∈h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∈h (a )在(-∞,0)上单调递减,∈h (a )>h (0)=0, ∈g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∈函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12∈m 4=12∈m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0∈0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1∈g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∈(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∈(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∈(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ∈h ′(x )=kx -2x2.∈当k ≤0时,h ′(x )<0在x ∈(0,1)∈(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;∈当k >0时,h ′(x )=kx -2x 2∈h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∈(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ∈若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;∈若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∈a >12,∈ln 12a <0,∈不等式不成立.∈f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ∈若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;∈若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∈f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∈f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∈t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∈t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∈h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∈e -2<x <e∈函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∈g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∈m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.∈当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;∈当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合∈∈,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:∈当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.∈当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫ ⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合∈∈,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围. [解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∈a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∈x ∈(1,+∞),∈ln x ∈(0,+∞), ∈当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∈a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∈f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∈4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∈g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∈g ′(x )=3x 2-2x -1,g ′(-1)=4,∈点P (-1,1)处的切线斜率k =g ′(-1)=4,∈函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0, ∈当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∈a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∈φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∈φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∈方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
2020版高考数学一轮总复习 第三单元导数及其应用 教案全集 含解析
导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程. 3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理 1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率ΔyΔx= f x0+Δx -f x 0Δx.(2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 ΔyΔx 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0f x 0+Δx -f x 0Δx.(3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) . 3.导数的运算(1)基本初等函数的导数公式 ①C ′= 0 (C 为常数); ②(x n)′= nxn -1(n ∈Q );③(sin x )′= cos x ; ④(cos x )′= -sin x ; ⑤(a x)′= a xln a (a >0且a ≠1);⑥(e x )′= e x; ⑦(log a x )′=1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x.(2)导数的运算法则 ①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) . ②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) . ③商的导数 [f xg x]′= fx g x -f x gxg 2x(g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以Δy Δx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f+Δx -f2Δx等于(C)A .f ′(1) B.2f ′(1) C.12f ′(1) D.f ′(2)因为f (x )可导,所以lim Δx →0f+Δx -f2Δx =12lim Δx →0 f +Δx -fΔx =12f ′(1). 3.下列求导运算中正确的是(B) A .(x +1x )′=1+1x2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 3 .(2)y =xx +1,则y ′x =2= 19.(1)因为f ′(x )=2e x+(2x +1)e x=(2x +3)e x ,所以f ′(0)=3e 0=3. (2)因为y ′=(x x +1)′=x x +-x x +x +2=1x +2,所以y ′x =2=1+2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx x +Δx +x +,所以Δy Δx=-1x +Δx +x +,所以f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0[-1x +Δx +x +]=-1x +x +=-1x +2.利用定义求导数的基本步骤: ①求函数的增量:Δy =f (x +Δx )-f (x ); ②求平均变化率:Δy Δx=fx +Δx -f xΔx;③取极限得导数:f ′(x )=li m Δx →0f x +Δx -f xΔx.1.设函数f (x )在x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于(B)A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0f x 0-Δx -f x 0Δx=-li mΔx →0f [x 0+-Δx-f x 0-Δx=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x.(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=+sin x-cos x -+sin x-cos x-cos x2=cos x-cos x -+sin xx-cos x2=cos x -sin x -1-cos x2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e xln x ,所以f ′(x )=e xln x +ex x,所以f ′(1)=e.(2)因为y ′=+cos x x -+cos x xsin 2x=-sin 2x -+cos x os x sin 2x=-1-cos xsin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y′=2x-1x2,所以y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,所以切线方程为y-2=x-1,即x-y+1=0.(2)因为y′=ln x+1,设切点为P(x0,y0),则y′x=x0=ln x0+1=2,所以x0=e,此时y0=x0ln x0=eln e=e,所以切点为(e,e).故所求切线方程为y-e=2(x-e),即2x-y-e=0.(1)x-y+1=0 (2)2x-y-e=0(1)求切线方程有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.3.(2018·广州市模拟)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为(D) A.ln 2 B.1C.1-ln 2 D.1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x0,x0ln x0),因为y′=ln x+1,所以k=ln x0+1,所以切线方程为y-x0ln x0=(ln x0+1)(x-x0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0Δy Δx=li mΔx→0f x+Δx-f xΔx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.导数在函数中的应用——单调性1.了解函数的单调性与其导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知识梳理1.函数的单调性与导数的关系设函数y=f(x)在某个区间(a,b)内有导数.如果f′(x)>0,则f(x)在(a,b)上为增函数;如果f′(x)<0,则f(x)在(a,b)上为减函数.2.导数与函数单调性的关系设函数y=f(x)在某个区间(a,b)内可导,且f′(x)在(a,b)的任意子集内都不恒等于0.如果f (x )在区间(a ,b )内单调递增,则在(a ,b )内f ′(x ) ≥ 0恒成立; 如果f (x )在区间(a ,b )内单调递减,则在(a ,b )内f ′(x ) ≤ 0恒成立.热身练习1.“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件f ′(x )>0在(a ,b )上成立⇒f (x )在(a ,b )上单调递增;反之,不一定成立,如y =x 3在(-1,1)上单调递增,但在(-1,1)上f ′(x )=3x 2≥0.2.设f (x )=2x 2-x 3,则f (x )的单调递减区间是(D) A .(0,43) B .(43,+∞)C .(-∞,0)D .(-∞,0)和(43,+∞)f ′(x )=4x -3x 2<0⇒x <0或x >43.3.函数f (x )=(3-x 2)e x的单调递增区间是(D) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞) D.(-3,1)因为f ′(x )=-2x e x+(3-x 2)e x =(-x 2-2x +3)e x ,令f ′(x )>0,得x 2+2x -3<0,解得-3<x <1.所以f (x )的单调递增区间为(-3,1).4.设定义在区间(a ,b )上的函数f (x ),其导函数f ′(x )的图象如右图所示,其中x 1,x 2,x 3,x 4是f ′(x )的零点且x 1<x 2<x 3<x 4.则(1)f (x )的增区间为 (a ,x 1),(x 2,x 4) ; (2)f (x )的减区间为 (x 1,x 2),(x 4,b ) .5.(2019·福建三明期中)函数f (x )=x 3-3bx +1在区间[1,2]上是减函数,则实数b 的取值范围为 [4,+∞) .因为f ′(x )=3x 2-3b ≤0,所以b ≥x 2,要使b ≥x 2在[1,2]上恒成立, 令g (x )=x 2,x ∈[1,2],当x ∈[1,2],1≤g (x )≤4,所以b ≥4.利用导数求函数的单调区间函数f (x )=x 2-2x -4ln x 的单调递增区间是____________.函数f (x )的定义域为(0,+∞). f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0,得x 2-x -2>0,解得x >2或x <-1(舍去). 所以f (x )的单调递增区间为(2,+∞).(2,+∞)求可导函数f (x )的单调区间的步骤: ①求函数f (x )的定义域; ②求导数f ′(x );③解不等式f ′(x )>0和f ′(x )<0;④确定函数y =f (x )的单调区间:使f ′(x )>0的x 的取值区间为增区间,使f ′(x )<0的x 的取值区间为减区间.1.(2017·全国卷Ⅱ节选)设函数f (x )=(1-x 2)e x.讨论f (x )的单调性.f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.已知函数的单调性求参数的范围(经典真题)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞) D.[1,+∞)依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x在(1,+∞)上恒成立.令g (x )=1x,因为x >1,所以0<g (x )<1,所以k ≥1,即k 的取值范围为[1,+∞).D函数f (x )在(a ,b )上单调递增,可转化为f ′(x )≥0在该区间恒成立,从而转化为函数的最值(或值域)问题.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是(C)A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,13](方法一)因为f (x )在(-∞,+∞) 单调递增,所以f ′(x )=1-23cos 2x +a cos x ≥0对x ∈(-∞,+∞)恒成立,即f ′(x )=-43cos 2x +a cos x +53≥0对x ∈(-∞,+∞)恒成立,令cos x =t ,-1≤t ≤1,则等价于:g (t )=-43t 2+at +53≥0对t ∈[-1,1]恒成立.等价于⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧-a +13≥0,a +13≥0,所以-13≤a ≤13.即a 的取值范围为[-13,13].(方法二:特殊值法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,因为f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C.利用导数求含参数的函数的单调区间已知f (x )=12x 2-a ln x (a ∈R ),求函数f (x )的单调区间.f (x )的定义域为(0,+∞),因为f ′(x )=x -a x =x 2-ax(x >0),当a ≤0时,f ′(x )≥0恒成立,所以函数f (x )的单调递增区间为(0,+∞). 当a >0时,令f ′(x )>0,得x >a . 令f ′(x )<0,得0<x <a .所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(1)当函数的解析式中含有参数时,如果参数对导函数的符号有影响或导数的零点是否在定义域内不确定时,要对参数进行分类讨论.(2)讨论时,首先要看f ′(x )的符号是否确定,再看f ′(x )的零点与定义域的关系. (3)画出导函数的示意图有助于确定单调性.3.(2017·全国卷Ⅲ节选)已知函数f (x )=ln x +ax 2+(2a +1)x .讨论f (x )的单调性.f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈(0,-12a )时,f ′(x )>0;当x ∈(-12a,+∞)时,f ′(x )<0.故f (x )在(0,-12a )上单调递增,在(-12a,+∞)上单调递减.(1)求f(x)的定义域,并求导数f′(x);(2)解不等式f′(x)>0和f′(x)<0;(3)确定函数y=f(x)的单调区间:使f′(x)>0的x的取值区间为增区间,使f′(x)<0的x的取值区间为减区间.在求单调区间时,要注意如下两点:①要注意函数的定义域;②当求出函数的单调区间(如单调增区间)有多个时,不能把这些区间取并集.2.已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果f(x)在区间[a,b]单调递增⇒f′(x)≥0在x∈[a,b]上恒成立;(2)如果f(x)在区间[a,b]单调递减⇒f′(x)≤0在x∈[a,b]上恒成立.3.处理含参数的单调性问题,实质是转化为含参数的不等式的解法问题,但要注意在函数的定义域内讨论.导数在函数中的应用——极值与最值1.掌握函数极值的定义及可导函数的极值点的必要条件和充分条件(导数在极值点两侧异号).2.会研究一些简单函数的极值.3.会利用导数求一些函数在给定区间上的最值.知识梳理1.函数的极值(1)函数极值的定义:设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0) ,我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.函数的最值(1)(最值定理)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数f(x)在(a,b)内的极值.②将f(x)的极值和端点的函数值比较,其中最大的一个为最大值;最小的一个为最小值.热身练习1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(A)A.1个 B.2个C.3个 D.4个因为f′(x)与x轴有4个交点,即f′(x)=0有4个解,但仅左边第二个交点x=x0满足x<x0时,f′(x)<0;x>x0时,f′(x)>0,其他交点均不符合该条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(C) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件因为函数f(x)在x=x0处可导,所以若x=x0是f(x)的极值点,则f′(x0)=0,所以q⇒p,故p是q的必要条件;反之,以f (x )=x 3为例,f ′(0)=0,但x =0不是极值点.所以p q . 故p 不是q 的充分条件.3.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =(D) A .-4 B .-2 C .4 D .2由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,所以当x <-2或x >2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0,所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数. 所以f (x )在x =2处取得极小值,所以a =2.4.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是(C) A .1,-1 B .1,-17 C .3,-17 D .9,-19令f ′(x )=3x 2-3=0,得x =±1.f (1)=1-3+1=-1,f (-1)=-1+3+1=3, f (-3)=-17,f (0)=1.所以最大值为3,最小值为-17. 5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 2 .f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.求函数的极值、最值求函数f (x )=13x 3-4x +4的极值.因为f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.(1)求可导函数f (x )的极值的步骤: ①确定函数的定义域,求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )在方程根左、右值的符号;④作出结论:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)求可导函数f (x )在[a ,b ]上最值的步骤: ①求f (x )在(a ,b )内的极值;②将f (x )各极值与f (a ),f (b )比较,得出f (x )在[a ,b ]上的最值.1.求函数f (x )=13x 3-4x +4在[-3,3]上的最大值与最小值.由例1可知,在[-3,3]上, 当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.又f (-3)=7,f (3)=1,所以f (x )在[-3,3]上的最大值为283,最小值为-43.含参数的函数的极值的讨论已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值.由f ′(x )=1-a x =x -ax(x >0)可知(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )的零点的存在; (2)参数是否影响f ′(x )不同零点的大小; (3)参数是否影响f ′(x )在零点左右的符号. 如果有影响,则要分类讨论.2.(2018·银川高三模拟节选)已知函数f (x )=ax -1-ln x (a ∈R ).讨论函数f (x )在定义域内的极值点的个数.f (x )的定义域为(0,+∞). f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,所以f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a.所以f (x )在(0,1a )上递减,在(1a,+∞)上递增,所以f (x )在x =1a处有极小值.所以当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.含参数的函数的最值讨论已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最大值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )max =f (1)=-a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )max =f (2)=ln 2-2a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.所以f (x )max =f (1a)=-ln a -1.综上可知:当0<a ≤12时,f (x )max =ln 2-2a ;当12<a <1时,f (x )max =-ln a -1; 当a ≥1时,f (x )max =-a .(1)求函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内使f ′(x )=0的点和区间端点的函数值,最后比较即可.(2)当函数f (x )中含有参数时,需要依据极值点存在的位置与所给区间的关系,对参数进行分类讨论.3.已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最小值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )min =f (2)=ln 2-2a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )min =f (1)=-a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,f (x )min =f (1)=-a ;当ln 2≤a <1时,f (x )min =f (2)=ln 2-2a . 综上可知:当0<a <ln 2时,函数f (x )min =-a ; 当a ≥ln 2时,函数f (x )min =ln 2-2a .1.求可导函数f(x)的极值的步骤:(1)确定f(x)的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根左、右值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.求可导函数f(x)在[a,b]上的最大值和最小值可按如下步骤进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值和最小值.3.求含参数的极值,首先求定义域;然后令f′(x)=0,解出根,根据根是否在所给区间或定义域内进行参数讨论,并根据左右两边导函数的正负号,从而判断f(x)在这个根处取极值的情况.4.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.导数的综合应用——导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x ∈[a,b]内的最小值≥0.(填“最小值”“最大值”“极小值”或“极大值”) 2.若f′(x)>0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b) ,f(x)<0的x的取值范围为(a,x0) .3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值>m.(填“最小值”“最大值”“极小值”或“极大值”)若f (x )<m 在x ∈[a ,b ]上恒成立,则函数f (x )在x ∈[a ,b ]的 最大值 <m .(填“最小值”“最大值”“极小值”或“极大值”)4.若f (x )>m 在x ∈[a ,b ]有解,则函数f (x )在x ∈[a ,b ]的 最大值 >m .(填“最小值”“最大值”“极小值”或“极大值”)热身练习1.对于∀x ∈[0,+∞),则e x与1+x 的大小关系为(A) A .e x≥1+x B .e x<1+xC .e x=1+x D .e x与1+x 大小关系不确定令f (x )=e x-(1+x ),因为f ′(x )=e x-1,所以对∀x ∈[0,+∞),f ′(x )≥0,故f (x )在[0,+∞)上递增,故f (x )≥f (0)=0, 即e x≥1+x .2.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )>0,则必有(B) A .f (0)+f (2)<2f (1) B .f (0)+f (2)>2f (1) C .f (0)+f (2)=2f (1)D .f (0)+f (2)与2f (1)的大小不确定依题意,当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数, 故当x =1时,f (x )取最小值,所以f (0)>f (1),f (2)>f (1),所以f (0)+f (2)>2f (1).3.已知定义在R 上函数f (x )满足f (-x )=-f (x ),且x >0时,f ′(x )<0,则f (x )>0的解集为(A)A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)因为f (x )是定义在R 上的奇函数,所以f (0)=0,又x >0时,f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减,所以f (x )>0的解集为(-∞,0).4.若函数h (x )=2x -k x +k3在[1,+∞)上是增函数,则实数k 的取值范围是 [-2,+∞).因为h′(x)=2+kx2,且h(x)在[1,+∞)上单调递增,所以h′(x)=2+kx2≥0,所以k≥-2x2,要使k≥-2x2在[1,+∞)上恒成立,则只要k≥(-2x2)max,所以k≥-2.5.设f(x)=-x2+a,g(x)=2x.(1)若∀x∈[0,1],f(x)≥g(x),则实数a的取值范围为[3,+∞);(2)若∃x∈[0,1],f(x)≥g(x),则实数a的取值范围为[0,+∞).(1)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]min=F(1)=-3+a.因为“若∀x∈[0,1],f(x)≥g(x)”等价于“[F(x)]min≥0,x∈[0,1]”,所以-3+a≥0,解得a≥3.所以实数a的取值范围为[3,+∞).(2)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]max=F(0)=a.因为“若∃x∈[0,1],f(x)≥g(x)”等价于“[F(x)]max≥0,x∈[0,1]”,所以a≥0.所以实数a的取值范围为[0,+∞).利用导数解不等式若f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4的解集为A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)令g(x)=f(x)-2x-4,因为g′(x)=f′(x)-2>0,所以g(x)在(-∞,+∞)上是增函数,又g(-1)=f(-1)-2×(-1)-4=0,所以f(x)>2x+4⇔g(x)>g(-x>-1.所以f(x)>2x+4的解集为(-1,+∞).B利用导数解不等式的基本方法:(1)构造函数,利用导数研究其单调性;(2)寻找一个特殊的函数值;(3)根据函数的性质(主要是单调性,结合图象)得到不等式的解集.1.(2018·遂宁模拟)已知f(x)为定义在(-∞,0)上的可导函数,2f(x)+xf′(x)>x2恒成立,则不等式(x+2018)2f(x+2018)-4f(-2)>0的解集为(B)A.(-2020,0) B.(-∞,-2020)C.(-2016,0) D.(-∞,-2016)构造函数F(x)=x2f(x),x<0,当x<0时,F′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],因为2f(x)+xf′(x)>x2≥0,所以F′(x)≤0,则F(x)在(-∞,0)上递减.又(x+2018)2f(x+2018)-4f(-2)>0可转化为(x+2018)2f(x+2018)>(-2)2f(-2),即F(x+2018)>F(-2),所以x+2018<-2,所以x<-2020.即原不等式的解集为(-∞,-2020).利用导数证明不等式已知函数f(x)=(1+x)e-2x.当x∈[0,1]时,求证:f(x)≤11+x.要证x∈[0,1]时,(1+x)e-2x≤11+x,只需证明e x≥x+1.记k(x)=e x-x-1,则k′(x)=e x-1,当x∈(0,1)时,k′(x)>0,因此,k(x)在[0,1]上是增函数,故k(x)≥k(0)=0,所以f(x)≤11+x,x∈[0,1].(1)证明f(x)>g(x)的步骤:①构造函数F(x)=f(x)-g(x);②研究F(x)的单调性或最值;③证明F (x )min >0.(2)注意:其中构造函数是将不等式问题转化为函数问题.为了利用导数研究函数的性质,常用分析法...将要证明的不等式进行适当变形或化简,然后构造相应的函数.2.(2018·全国卷Ⅰ节选)已知函数f (x )=a e x-ln x -1.证明:当a ≥1e时,f (x )≥0.当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x .当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.已知不等式恒成立求参数的范围已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围.f (x )≤g (x ) ⇔7x 2-28x -c ≤2x 3+4x 2-40x ⇔c ≥-2x 3+3x 2+12x , 所以原命题等价于c ≥-2x 3+3x 2+12x 在x ∈[-3,3]上恒成立. 令h (x )=-2x 3+3x 2+12x ,x ∈[-3,3],则c ≥h (x )max . 因为h ′(x )=-6x 2+6x +12=-6(x -2)(x +1),当x 变化时,h ′(x )和h (x )在[-3,3]上的变化情况如下表:单调递减单调递增 单调递减 易得h (x )max =h (-3)=45,故c ≥45.(1)已知不等式恒成立,求参数a 的范围,例如f (x )>g (x )在x ∈D 上恒成立,其主要方法是:①构造函数法:将不等式变形为f (x )-g (x )>0,构造函数F (x )=f (x )-g (x ),转化为F (x )min >0.②分离参数法:将不等式变为a >h (x )或a <h (x )在x ∈D 内恒成立,从而转化为a >h (x )max或a <h (x )min .(2)注意:①恒成立问题常转化为最值问题,要突出转化思想的运用;②“f (x )max ≤g (x )min ”是“f (x )≤g (x )”的一个充分不必要条件,分析不等式恒成立时,要注意不等号两边的式子中是否是有关联的变量,再采取相应的策略.1. 已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x 1∈[-3,3],x 2∈[-3,3]都有f (x 1)≤g (x 2)成立,求实数c 的取值范围.此题与例3不同,例3中不等式两边的式子中均有相同的变化的未知量x ,故可先移项,直接进行转化;而此题中不等式两边的式子中的x 1,x 2相互独立,则等价于f (x 1)max ≤g (x 2)min.由∀x 1∈[-3,3],x 2∈[-3,3], 都有f (x 1)≤g (x 2)成立,得f (x 1)max ≤g (x 2)min . 因为f (x )=7x 2-28x -c =7(x -2)2-28-c , 当x 1∈[-3,3]时,f (x 1)max =f (-3)=147-c ;g (x )=2x 3+4x 2-40x ,g ′(x )=6x 2+8x -40=2(3x +10)(x -2),当x 变化时,g ′(x )和g (x )在[-3,3]上的变化情况如下表:单调递减单调递增易得g (x )min =g (2)=-48, 故147-c ≤-48,即c ≥195.1.利用导数证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数F (x )=f (x )-g(x),然后根据函数的单调性,或者函数的最值证明F(x)>0.其中要特别关注如下两点:(1)是直接构造F(x),还是适当变形化简后构造F(x),对解题的繁简有影响;(2)找到F(x)在什么地方可以等于零,往往是解决问题的一个突破口.2.利用导数解不等式的基本方法是构造函数,寻找一个函数的特殊值,通过研究函数的单调性,从而得出不等式的解集.3.处理已知不等式恒成立求参数范围的问题,要突出转化的思想,将其转化为函数的最值问题.已知f(x)>g(x)在x∈D上恒成立,求其中参数a的范围,其主要方法是:①构造函数法:将不等式变形为f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化为F(x)min>0.②分离参数法:将不等式变为a>h(x)或a<h(x)在x∈D内恒成立,从而转化为a>h(x)max 或a<h(x)min.导数的综合应用——导数与方程1.能利用导数研究一般函数的单调性、极值与最值,获得对函数的整体认识.2.会利用导数研究一般函数的零点及其分布.知识梳理1.函数零点的有关知识(1)零点的概念:函数的零点是函数图象与x轴交点的横坐标.(2)几个常用结论:①f(x)有零点y=f(x)的图象与x轴有交点方程f(x)=0有实数解.②F(x)=f(x)-g(x)有零点y=f(x)与y=g(x)的图象有交点方程f(x)=g(x)有实数解.③零点存在定理:f (x )在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )内 至少有一 个零点.2.利用导数研究函数零点的方法(1)研究y =f (x )的图象,利用数形结合的思想求解. (2)研究方程有解的条件,利用函数与方程的思想求解.热身练习1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是(D)观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.2.函数f (x )=13x 3-4x +4的零点个数为(D)A .0B .1C .2D .3因为f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增由此可得到f (x )的大致图象(如下图).由图可知f (x )有3个零点.3.若方程13x 3-4x +4+a =0有3个不同的解,则a 的取值范围为(B)A .(-43,283)B .(-283,43)C .[-43,283]D .[-283,43]13x 3-4x +4+a =0有3个不同的解⇔f (x )=13x 3-4x +4与g (x )=-a 有3个不同的交点.利用第2题图可知,-43<-a <283,即-283<a <43.4.若函数g (x )=13x 3-4x +4+a 的图象与x 轴恰有两个公共点,则a =(B)A.283或-43 B .-283或43C .-283或283D .-43或43g (x )=13x 3-4x +4+a 与x 轴恰有两个公共点⇔方程13x 3-4x +4+a =0有2个不同的解⇔f (x )=13x 3-4x +4与φ(x )=-a 有2个不同的交点.利用第2题图可知,-a =-43或-a =283,所以a =-283或a =43.5.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是(C) A .(-∞,ln 2) B .(ln 2,+∞) C .(-∞,2ln 2-2] D .[2ln 2-2,+∞)(方法一)因为f′(x)=e x-2,令e x-2=0得,e x=2,所以x=ln 2,当x∈(-∞,ln 2)时,f′(x)<0,f(x)单调递减;当x∈(ln 2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取最小值f(x)min=2-2ln 2+a.要f(x)有零点,所以a≤2ln 2-2.(方法二)函数f(x)=e x-2x+a有零点,即关于x的方程e x-2x+a=0有实根,即方程a=2x-e x有实根.令g(x)=2x-e x(x∈R),则g′(x)=2-e x.当x<ln 2时,g′(x)>0;当x>ln 2时,g′(x)<0.所以当x=ln 2时,g(x)max=g(ln 2)=2ln 2-2,所以函数g(x)的值域为(-∞,2ln 2-2].所以a的取值范围为(-∞,2ln 2-2].利用导数研究三次函数的零点及其分布已知函数f(x)=x3-12x+a,其中a≥16,则f(x)的零点的个数是A.0或1 B.1或2C.2 D.3(方法一:从函数角度出发,研究f(x)的图象与x轴的交点)因为f′(x)=3x2-12,令f′(x)=3x2-12=0,得x=±2,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增由此可得到f(x)的大致图象(如图),由a≥16得,a+16>0,a-16≥0,当a=16时,f(x)的图象与x轴有2个交点;当a>16时,f(x)的图象与x轴只有1个交点.所以f(x)的零点个数为1或2.(方法二:从方程角度出发,利用函数与方程的思想)f(x)=x3-12x+a的零点个数⇔方程x3-12x=-a的解的个数⇔g(x)=x3-12x与h(x)=-a的交点个数.画出g(x)=x3-12x与h(x)=-a的图象.由g′(x)=3x2-12=0,得x=±2,当x变化时,g′(x),g(x)的变化情况如下表:单调递增单调递减单调递增所以g(x)的图象如右图所示:因为a≥16,所以y=-a≤-16.由图可知直线y=-a与y=x3-12x的图象有1个或2个交点.B利用导数研究函数的零点的基本思路: (1)研究y =f (x )的图象,利用数形结合的思想求解; (2)研究f (x )=0有解,利用函数与方程的思想求解.1.(经典真题)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为(B)A .(2,+∞) B.(-∞,-2) C .(1,+∞) D.(-∞,-1)当a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由图象知f (x )有负数零点,不符合题意.若a <0,由图象结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a2+1>0,化简得a 2>4,又a <0,所以a <-2.利用导数研究超越方程的根及其分布已知函数f (x )=x -a e x(a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2,求a 的取值范围.由f (x )=x -a e x,可得f ′(x )=1-a e x. 下面分两种情况讨论:(1)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (2)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞). 于是,“函数y =f (x )有两个零点”等价于如下条件同时成立: ①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0; ③存在s 2∈(-ln a ,+∞),满足f (s 2)<0. 由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1,而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;而当x ∈(-ln a ,+∞)时,由于x →+∞时,e x 增长的速度远远大于x 的增长速度,所以一定存在s 2∈(-ln a ,+∞)满足f (s 2)<0.另法:取s 2=2a +ln 2a ,满足s 2∈(-ln a ,+∞),且f (s 2)=(2a -e 2a )+(ln 2a -e 2a)<0.所以a 的取值范围是(0,e -1).函数的零点是导数研究函数的性质的综合应用,要注意如下方面: (1)利用导数研究函数的单调性、极值、最值等性质; (2)数形结合思想方法的应用;(3)函数零点存在定理及根的分布知识的应用.2.(2018·广州模拟节选)已知函数f (x )=a ln x +x 2(a ≠0),若函数f (x )恰有一个零点,求实数a 的取值范围.函数f (x )的定义域为(0,+∞). 因为f (x )=a ln x +x 2,所以f ′(x )=a x +2x =2x 2+ax.①当a >0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增, 取x 0=e -1a ,则f (e -1a )=-1+(e -1a)2<0,(或:因为0<x 0<a 且x 0<1e 时,所以f (x 0) =a ln x 0 +x 20 < a ln x 0+a <a ln 1e +a =0.)因为f (1)=1,所以f (x 0)·f (1)<0,此时函数f (x )有一个零点.②当a <0时,令f ′(x )=0,解得x =-a2. 当0<x <-a 2时,f ′(x )<0,所以f (x )在(0,-a2)上单调递减, 当x >-a2时,f ′(x )>0,所以f (x )在(-a2,+∞)上单调递增. 要使函数f (x )有一个零点, 则f (-a2)=a ln -a 2-a2=0,即a =-2e. 综上所述,若函数f (x )恰有一个零点,则a =-2e 或a >0.利用导数研究两函数图象的交点问题已知函数f (x )=x +a x (a ∈R ),g (x )=ln x .若关于x 的方程g xx 2=f (x )-2e(e 为自然对数的底数)只有一个实数根,求a 的值.由g x x 2=f (x )-2e ,得ln x x 2=x +ax-2e , 化为ln x x=x 2-2e x +a .问题转化为函数h (x )=ln x x与m (x )=x 2-2e x +a 有一个交点时,求a 的值.由h (x )=ln x x ,得h ′(x )=1-ln x x2.令h ′(x )=0,得x =e. 当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0. 所以h (x )在(0,e)上递增,在(e ,+∞)上递减. 所以当x =e 时,函数h (x )取得最大值,其值为h (e)=1e .而函数m (x )=x 2-2e x +a =(x -e)2+a -e 2,当x =e 时,函数m (x )取得最小值,其值为m (e)=a -e 2.所以当a -e 2=1e ,即a =e 2+1e 时,方程g x x 2=f (x )-2e 只有一个实数根.(1)利用f (x )=g (x )的解⇔y =f (x )与y =g (x )的图象交点的横坐标,可将方程的解的问题转化为两函数图象的交点问题,从而可利用数形结合的思想方法进行求解.(2)在具体转化时,要注意对方程f (x )=g (x )尽量进行同解变形,变到两边的函数是熟悉的形式或较简单的形式,以便于对其图象特征进行研究.3.(经典真题)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2, 由题意得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题意知1-k >0,当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ),h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.1.利用导数研究函数的零点及其零点分布问题的基本步骤: (1)构造函数,并确定定义域; (2)求导,确定单调区间及极值; (3)作出函数的草图;(4)根据草图直观判断函数的零点的情况或得到零点所满足的条件. 2.处理函数y =f (x )与y =g (x )的图象的交点问题,常用方法有: (1)数形结合,即分别作出两函数的图象,考察交点情况;。
2020年高考北京版高考数学第三节 导数与函数的极值与最值
,
最大值为
.
答案 -16;20 解析 f '(x)=3x2-12x+9,令f '(x)=0,即x2-4x+3=0,得x=1或x=3,当-1<x<1或 3<x<5时, f '(x)>0,∴f(x)在(-1,1),(3,5)上为增函数, 当1<x<3时, f '(x)<0,∴f(x)在(1,3)上为减函数,f(-1)=-16, f(3)=0, f(1)=4, f(5)=20,故f(x)在闭区间[-1,5]上的最小值为-16,最大值为20.
1 b
ln
b-b+ b1,其中b>1,
则h'(b)= 1
1 b2
ln
b.
因为b>1,所以h'(b)>0,
故h(b)在区间(1,+∞)上单调递增.
所以h(b)>h(1)=0,即f(b)>f b1,
故f(x)的最小值为f b1= -bln
1
b- .b
方法技巧 求函数f(x)在区间[a,b]上最值的方法 (1)若函数f(x)在区间[a,b]上单调,则f(a)与f(b)一个为最大值,一个为最 小值. (2)若函数f(x)在闭区间[a,b]上有极值,要先求出[a,b]上的极值,与f(a), f(b)比较,其中最大的是最大值,最小的是最小值,可列表求解. (3)若函数f(x)在闭区间[a,b]上有唯一一个极值点,这个极值点就是最 大(小)值点.
f '(x)>0 ,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极 小值.
(2)函数的极大值 若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数 值④ 都大 , f '(b)=0,而且在点x=b附近的左侧⑤ f '(x)>0 ,右侧 ⑥ f '(x)<0 ,则点b叫做函数y=f(x)的极大值点, f(b)叫做函数y=f(x) 的极大值,⑦ 极大值 和⑧ 极小值 统称为极值.
2020年 高考数学(文科)常考基础题、易错题 提分必刷题之 导数的概念及运算
第1讲导数的概念及运算一、填空题1.设y=x2e x,则y′=________.解析y′=2x e x+x2e x=(2x+x2)e x.答案(2x+x2)e x2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)=________.解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案-13.曲线y=sin x+e x在点(0,1)处的切线方程是________.解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x -y+1=0.答案2x-y+1=04.(2017·苏州调研)已知曲线y=ln x的切线过原点,则此切线的斜率为________.解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1 e.答案1 e5.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2.答案1 26.(2017·南师附中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.解析由图形可知:f(3)=1,f′(3)=-13,∵g′(x)=f(x)+xf′(x),∴g′(3)=f(3)+3f′(3)=1-1=0. 答案07.(2017·苏北四市模拟)设曲线y=1+cos xsin x在点⎝⎛⎭⎪⎫π2,1处的切线与直线x-ay+1=0平行,则实数a=________.解析∵y′=-1-cos xsin2x,∴由条件知1a=-1,∴a=-1.答案-18.(2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.解析由y=x+ln x,得y′=1+1x,得曲线在点(1,1)处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2(x-1),即y=2x-1.又该切线与y=ax2+(a+2)x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8二、解答题9.已知点M是曲线y=13x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, 所以切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.11.(2016·山东卷改编)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数:①y =sin x ;②y =ln x ;③y =e x ;④y =x 3.其中具有T 性质的是________(填序号).解析 若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)),使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于①:y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k∈Z)时,结论成立;对于②:y′=1x,若有1x1·1x2=-1,即x1x2=-1,∵x1>0,x2>0,∴不存在x1,x2,使得x1x2=-1;对于③:y′=e x,若有e x1·e x2=-1,即e x1+x2=-1.显然不存在这样的x1,x2;对于④:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案①12.(2017·合肥模拟改编)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为________.解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案 213.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x(x>0).∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,即x+1x-a=0有解,∴a=x+1x≥2(当且仅当x=1时取等号).答案[2,+∞)14.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。
高考数学复习:导数的运算
考点二
导数运算的应用(多考向探究预测)
考向1 与导数运算有关的新定义问题
例2(2024·山东烟台模拟)给出定义:若函数f(x)在D上可导,即f'(x)存在,且导
函数f'(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f'(x))'.若
f″(x)<0在D上恒成立,则称f(x)在D上为凸函数,以下四个函数在(0,
处的曲率K=
|″()|
[1 +
3
2 2
('()) ]
.已知f(x)=cos(x-1)-ln x,则曲线y=f(x)在点(1,f(1))处
的曲率为__________.
0
解析 因为 f(x)=cos(x-1)-ln x,所以
则
1
f'(1)=- -sin
1
1
0=-1,f″(1)= -cos
1
1
1
运算量,减少差错;
(3)复合函数求导,要正确分析函数的复合过程,分清内外层函数,按照法则
进行求导;
(4)求函数在某一点处的导数且解析式未知时,应先 根 据 条 件 求 出 该 点
所 在 区 间 的 解 析 式 再求导;
(5)当函数解析式中含有待定系数(如f'(x0)等)时,应将待定系数看成常数进
行求解.
π
当 x∈(0,2)时,f″(x)>0 恒成立,该函数不是凸函数,故选 D.
规律方法
导数新定义问题的求解策略
新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几
个新模型来创设全新的问题情境,要求考生在阅读理解的基础上,依据题目
提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目
2020年高考数学(理)函数与导数 专题02 函数的基本性质(解析版)
函数与导数02函数函数的基本性质【考点讲解】一、具体目标:1.结合具体函数,了解函数奇偶性的含义.会用函数的图象理解和研究函数的奇偶性.2.理解函数的单调性及其几何意义.会用基本函数的图象分析函数的性质.3. 了解函数的周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、知识概述:1.偶函数、奇函数的概念一般地,如果对函数f(x)的定义域内任意一个x,都有__f(-x)=f(x)__,那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有__f(-x)=-f(x)__,那么函数f(x)就叫做奇函数.2.奇、偶函数的图象特征偶函数的图象关于__y轴__对称,奇函数的图象关于__原点__对称.3.函数奇偶性的常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.4.判断函数的奇偶性的常用方法:(1)定义法一般地,对于较简单的函数解析式,可通过定义直接作出判断;对于较复杂的解析式,可先对其进行化简,再利用定义进行判断.利用定义判断函数奇偶性的步骤:(2)图象法:奇函数的图象关于原点成中心对称,偶函数的图象关于y 轴成轴对称.因此要证函数的图象关于原点对称,只需证明此函数是奇函数即可;要证函数的图象关于y 轴对称,只需证明此函数是偶函数即可.反之,也可利用函数图象的对称性去判断函数的奇偶性. (3)组合函数奇偶性的判定方法①两个奇(偶)函数的和、差还是奇(偶)函数,一奇一偶之和为非奇非偶函数.②奇偶性相同的两函数之积(商)为偶函数,奇偶性不同的两函数之积(商)(分母不为0)为奇函数. ③复合函数的奇偶性可概括为“同奇则奇,一偶则偶”. (4)分段函数的奇偶性判定分段函数应分段讨论,注意奇偶函数的整体性质,要避免分段下结1.已知函数的奇偶性求函数的解析式. 抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性产生关于()f x 的方程,从而可得()f x 的解析式.5.已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用()()0f x f x ±-=产生关于字母的恒等式,由系数的对等性可得知字母的值.6.奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. 7.增函数与减函数一般地,设函数f (x )的定义域为I ,(1)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是__增函数__.(2)如果对于定义域I 内某个区间D 上的__任意两个__自变量的值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是__减函数__.8.单调性与单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)__单调性__,区间D 叫做y =f (x )的__单调区间__. 9.函数的最大值与最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有__f (x )≤M __;存在x 0∈I ,使得__f (x 0)=M __,那么,我们称M 是函数y =f (x )的最 大值.(2)对于任意的x ∈I ,都有__f (x )≥M __;存在x 0∈I ,使得__f (x 0)=M __,那么我们称M 是函数y =f (x )的最小值.10.函数单调性的常用结论11.对勾函数的单调性对勾函数y =x +ax (a >0)的递增区间为(-∞,-a ]和[a ,+∞);递减区间为[-a ,0)和(0,a ],且对勾函数为奇函数. 12.函数的周期性(1)对于函数f (x ),如果存在一个__非零常数__T ,使得当x 取定义域内的每一个值时,都有__f (x +T )=f (x )__,那么函数f (x )就叫做周期函数,T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的__最小__正周期. 13.函数周期性的常用结论: 对f (x )定义域内任一自变量x 的值: (1)若f (x +a )=-f (x ),则T =2a (a >0); (2)若f (x +a )=1f (x ),则T =2a (a >0); (3)若f (x +a )=-1f (x ),则T =2a (a >0).14.函数的对称性与周期性的关系(1)如果函数f (x )(x ∈D )在定义域内有两条对称轴x =a ,x =b (a <b ),则函数f (x )是周期函数,且周期T =2(b -a )(不一定是最小正周期,下同).(2)如果函数f (x )(x ∈D )在定义域内有两个对称中心A (a,0),B (b,0)(a <b ),那么函数f (x )是周期函数,且周期 T =2(b -a ).(3)如果函数f (x ),x ∈D 在定义域内有一条对称轴x =a 和一个对称中心B (b,0)(a ≠b ),那么函数f (x )是周期函数,且周期T =4|b -a |.注:对于(1)(2)(3)中的周期公式可仿照正、余弦函数的图象加强记忆.判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.15.根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.1.【2019年高考全国Ⅱ卷理数】已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】本题主要考查函数的奇偶性,对数的计算.由题意知()f x 是奇函数,且当0x <时,()e axf x =-,又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底数的对数,得ln 23ln 2a -=,所以3a -=,即3a =-.【答案】3-2.【2019优选题】已知()f x 是R 上的偶函数,且在[0,)+∞单调递增,若(3)f a f -<(4),则a 的取值范围为 .【解析】:()f x Q 是R 上的偶函数,且在[0,)+∞单调递增,∴不等式(3)f a f -<(4)等价为 (|3|)f a f -<(4),即|3|4a -<,即434a -<-<,得17a -<<,即实数a 的取值范围是17a -<<, 【真题分析】故答案为:17a -<< 【答案】17a -<<.3.【2017课标II 】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+, 则(2)f = ________.【解析】本题考点奇函数的性质解决求函数值的问题. 法一:(2)(2)[2(8)4]12=--=-⨯-+=f f .法二:由题意可知函数()f x 是定义在R 上的奇函数,所以有()()()232x x x f x f +-=-=-,而因为()0,∞-∈x ,()∞+∈-,0x ,()232x x x f --=-所以有()⎪⎩⎪⎨⎧>-<+=0,20,22323x x x x x x x f ,()12222223=-⨯=f【答案】124. 【2017山东】已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当[3,0]x ∈- 时,()6xf x -=,则f (919)= 【解析】由f (x +4)=f (x -2)可知,()()6=+f x f x 是周期函数,且6T =,所以(919)(66531)(1)f f f =⨯+=(1)6f =-=.【答案】65. 【2019年高考江苏】设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 . 【解析】作出函数()f x ,()g x 的图象,如图:由图可知,函数2()1(1)f x x =--1()(12,34,56,78)2g x x x x x =-<≤<≤<≤<≤的图象仅有2个交点,即在区间(0,9]上,关于x 的方程()()f x g x =有2个不同的实数根,要使关于x 的方程()()f x g x =有8个不同的实数根,则2()1(1),(0,2]f x x x =--∈与()(2),(0,1]g x k x x =+∈的图象有2个不同的交点,由(1,0)到直线20kx y k -+=的距离为1211k =+,解得2(0)4k k =>, ∵两点(2,0),(1,1)-连线的斜率13k =,∴1234k ≤<,综上可知,满足()()f x g x =在(0,9]上有8个不同的实数根的k 的取值范围为123⎡⎢⎣⎭,. 【答案】123⎡⎢⎣⎭6.【2017山东理15】若函数()e x f x (e 2.71828=L 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x = ④()22f x x =+【解析】①()e =e e 22xx x xy f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2x f x -=具有M 性质; ②()e =e e 33xx x x y f x -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3=e e xxy f x x =⋅,令()3e xg x x =⋅,则()()322e e 3e3xxxg x x x x x '=⋅+⋅=+,所以当3x >-时,()0g x '>;当3x <-时,()0g x '<,所以()3=e e xxy f x x =⋅在(),3-∞-上单调递减,在()3,-+∞上单调递增,故()3f x x =不具有M 性质;④()()2=e e 2x x y f x x =+.令()()2e 2x g x x =+, 则()()()22e 2e 2e 110xx x g x xx x ⎡⎤'=++⋅=++>⎣⎦,所以()()2=e e 2x x y f x x =+在R 上单调递增,故()22f x x =+具有M 性质.综上所述,具有M 性质的函数的序号为①④.【答案】①④7.【2017天津理6】已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为( ). A.a b c << B.c b a <<C.b a c <<D.b c a <<【解析】 因为奇函数()f x 在R 上增函数,所以当0x >时,()0f x >,从而()()g x xf x =是R 上的偶函数,且在(0,)+∞上是增函数.()()22log 5.1log 5.1a g g =-=,0.822<,又4 5.18<<,则22log 5.13<<,所以0.8202log 5.13<<<,于是()()()0.822log 5.13g g g <<,即b a c <<.故选C.【答案】C8.【2018新课标II 卷11】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…( )A .50-B .0C .2D .50【解析】本题考点是函数的性质的具体应用,根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 由题意可知原函数的定义域为()∞+∞-,的奇函数,并且有()()x f x f +=-11,所以有()()()111--=-=+x f x f x f ,所以有()()()113-=+-=+x f x f x f ,即有()()4+=x f x f ,所以函数是以周期为4的周期函数.因此有()()()()()()()()[]()()2143211250321f f f f f f f f f f +++++=++++Λ.因为()()()()2413f f f f -=-=,,()()()()04321=+++f f f f ,由()()()113-=+-=+x f x f x f 可得()()()00112==+--=f f f从而()()()()()2150321==++++f f f f f Λ,选C .【答案】C9. .已知定义在错误!未找到引用源。
高考数学-导数-专题复习课件
)
v0t
,求1物gt体2 在时刻
2
时的瞬t0时速度.
解析:
s(t)
v0
1 2
g
2t
v0
gt
∴物体在 t时0 刻瞬时速度为 s(t0 ) v0 gt0. 题型四 导数的几何意义及几何上的应用
【例4】(12分)已知曲线 y 1 x3 4 .
33
(1)求曲线在点P(2,4)处的切线方程; (2)求过点P(2,4)的曲线的切线方程.
x0
x0
x0
典例分析
题型一 利用导数求函数的单调区间
【例1】已知f(x)= e-xax-1,求f(x)的单调增区间.
分析 通过解f′(x)≥0,求单调递增区间.
解 ∵f(x)= -aexx -1,∴f′(x)= -a. ex 令f′(x)≥0,得 ≥ae. x 当a≤0时,有f′(x)>0在R上恒成立; 当a>0时,有x≥ln a. 综上,当a≤0时,f(x)的单调增区间为(-∞,+∞); 当a>0时,f(x)的单调增区间为[ln a,+∞).
分析 (1)在点P处的切线以点P为切点.关键是求出切线斜率k=f′(2). (2)过点P的切线,点P不一定是切点,需要设出切点坐标.
解(1)∵y′= ,…x2……………………………2′ ∴在点P(2,4)处的切线的斜率 k y |x..23′ 4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2), 即4x-y-4=0……………………………………….4′ (2)设曲线 y 1 x过3 点4 .P(2,4)的切线相切于点
33
则切线的斜率 k y |xx0……x02…. …………..6′
∴切线方程为
y
(1 3
2020年高考数学一轮总复习集合函数导数专题18含参数导数题型规律总结(2)文(含解析)
专题18含参数导数题型规律总结(2)一、本专题要特别小心:1.图形考虑不周陷阱;2.思维定式陷阱(与等式有关的构造函数);3. 已知条件中含有导函数值而无从下手;4.恒成立中的最值陷阱5. 含有导函数的式子中的和差构造陷阱6.与三角函数有关的构造函数7.忽视分母造成解集不完备8.与指数函数对数函数有关的构造二.【知识点】1.函数的极值(1)若可导函数f(x)在x=x0处导数值为0,且在x=x0处的左边f′(x0)>0,在x=x0处的右边f′(x0)<0,则f(x)在x=x0处有极大值.(2)若可导函数f(x)在x=x0处导数值为0,且在x=x0处的左边f′(x0)<0,在x=x0处的右边f′(x0)>0,则f(x)在x=x0处有极小值.(3)可导函数的极值点导数为零,但导数为零的点不一定是极值点,如y=x3在x=0处导数值为零,但x=0不是极值点.2.函数的最值(1)连续函数f(x)在闭区间[a,b]上必有最大值与最小值.(2)最值的求法:先求f(x)在(a,b)上的极值,再将各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.3.极值与最值的区别和联系(1)函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的整体情况,是函数在整个区间上的函数值的比较.(2)函数的极值不一定是最值,须与端点函数值作比较方可确定是否为最值.(3)如果连续函数在区间(a,b)内只有一个极值(单峰函数),则极大值即是[a,b]上的最大值,极小值即是[a,b]上的最小值.三.【题型方法总结】(一)多次求导例1. 设f″(x)是的导数.某同学经过探究发现,任意一个三次函数()都有对称中心,其中满足.已知,则_________.【答案】4036.【解析】根据题意,对于函数,有f ′(x )=x 2﹣x +3,f ″(x )=2x ﹣1.由f ″(x )=0,即2x ﹣1=0,即x =,又由f ()=2, 即函数的对称中心为(,2),则有f (x )+f (1﹣x )=4, 则==4×1009=4036; 故答案为:4036.练习1. 已知函数.(Ⅰ)若1是函数()f x 的一个极值点,求()f x 的单调递减区间; (Ⅱ)在(Ⅰ)的条件下证明:.【答案】(Ⅰ)()0,1;(Ⅱ)证明见解析. 【解析】(Ⅰ)由题意,函数,则,由1是函数()f x 的一个极值点,所以,解得0a =,则,令()0f x '<,得(0,1)x ∈所以()f x 的单调递减区间为(0,1) . (Ⅱ)在(Ⅰ)的条件下要证,即证,令,则,令,则,故函数()h x 在(0,)+∞为单调递增, 又,所以01(,)2x e ∃∈,使得0()0h x =,即001x x e=,则()g x 在0(0,)x 递减,在0(,)x +∞上递增, 故,故.练习2. 已知函数(1)讨论函数在上的单调性; (2)若,不等式对恒成立,求取值范围.【答案】(1)的单调递减区间为,单调递增区间为 (2)【解析】(1)的定义域为,,若,因为,所以,所以,所以在上单调递减,若,令,得,当时,; 当时,,所以的单调递减区间为,单调递增区间为(2),即对恒成立, 令,则,令,得,当时,; 当时,,所以的最小值为, 令,则,令,得,当时,在上单调递增;当时,在上单调递减,所以当时,的最小值为;当时,的最小值为故的取值范围是(二)由导函数构造原函数例2. 设是定义在上的函数,其导函数为,若,则不等式(其中为自然对数的底数)的解集为__________.【答案】.【分析】由,构造新函数,求导,利用已知的不等式,可以判断出函数的单调性,从而利用单调性求出不等式的解集.【解析】,构造新函数,且,不等式变为,,由已知,所以是上的减函数,因为,所以,因此不等式(其中为自然对数的底数)的解集为.练习1.已知定义在上的函数满足,其中是函数的导函数,若,则实数的取值范围为___________.【答案】【解析】令,则,∵,∴,函数在递减,∴,∴,,∴,即,故,解得:,∴.故答案为:练习2. 已知定义在R上的可导函数f (x)的导函数为,满足<f (x),且f (x+2)为偶函数,f (4)=1,则不等式f (x)<e x的解集为________.【答案】【解析】令,则,∵f′(x)<f(x),∴g′(x)<0.∴g(x)在R上单调递减.∵函数f(x+2)是偶函数,∴函数f(﹣x+2)=f(x+2),∴函数关于x=2对称,∴f(0)=f(4)=1,原不等式等价为g(x)<1,∵g(0)1.∴g(x)<1⇔g(x)<g(0),∵g(x)在R上单调递减,∴x>0.∴不等式f(x)<e x的解集为(0,+∞).故答案为:(0,+∞).练习3.已知定义在的函数的导函数,且满足,,则的解集为__________。
浙江省2020版高考数学第四章导数及其应用第1节导数的概念与导数的计算习题(含解析)
第1节 导数的概念与导数的计算考试要求 1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.知 识 梳 理1.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率f (x 0+Δx )-f (x 0)Δx=ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)= Δy Δx=f (x 0+Δx )-f (x 0)Δx.(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. [常用结论与易错提醒]1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同.2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.基 础 自 测1.思考辨析(在括号内打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)曲线的切线与曲线不一定只有一个公共点.( ) (3)(2x )′=x ·2x -1.( )(4)若f (x )=e 2x,则f ′(x )=e 2x.( )解析 (1)f ′(x 0)是函数f (x )在x 0处的导数,(f (x 0))′是常数f (x 0)的导数即(f (x 0))′=0;(3)(2x )′=2xln 2; (4)(e 2x)′=2e 2x.答案 (1)× (2)√ (3)× (4)× 2.函数y =x cos x -sin x 的导数为( ) A.x sin x B.-x sin x C.x cos xD.-x cos x解析 y ′=(x cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 答案 B3.(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________. 解析 ∵y =2ln(x +1),∴y ′=2x +1.当x =0时,y ′=2,∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 y =2x4.(2019·南通一调)若曲线y =x ln x 在x =1与x =t 处的切线互相垂直,则正数t 的值为________.解析 因为y ′=ln x +1, 所以(ln 1+1)(ln t +1)=-1, ∴ln t =-2,t =e -2. 答案 e -25.定义在R 上的函数f (x )满足f (x )=12f ′(1)e 2x -2+x 2-2f (0)x ,则f (0)=________;f (x )=________.解析 ∵f (x )=12f ′(1)e 2x -2+x 2-2f (0)x ,∴f ′(x )=f ′(1)e2x -2+2x -2f (0),∴f ′(1)=f ′(1)+2-2f (0),∴f (0)=1, 即1=12f ′(1)e -2,∴f ′(1)=2e 2,∴f (x )=e 2x+x 2-2x . 答案 1 e 2x+x 2-2x6.已知曲线y =e -x,则其图象上各点处的切线斜率的取值范围为________;该曲线在点(0,1)处的切线方程为________.解析 由题意得y ′=-e -x,则由指数函数的性质易得y ′=-e -x∈(-∞,0),即曲线y =e -x的图象上各点处的切线斜率的取值范围为(-∞,0).当x =0时,y ′=-e -0=-1,则曲线y =e -x在(0,1)处的切线的斜率为-1,则切线的方程为y -1=-1·(x -0),即x +y -1=0.答案 (-∞,0) x +y -1=0考点一 导数的运算【例1】 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x ex ;(3)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2; (4)y =ln(2x -5).解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x. (3)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .(4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.规律方法 求导一般对函数式先化简再求导,这样可以减少运算量,提高运算速度,减少差错,常用求导技巧有:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【训练1】 分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x·1x=⎝ ⎛⎭⎪⎫ln x +1x e x .(2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x3.(3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12·11+2x ·(1+2x )′=11+2x .考点二 导数的几何意义多维探究角度1 求切线的方程【例2-1】 (1)(2019·绍兴一中模拟)已知函数f (x )=e x+2sin x ,则f (x )在点(0,f (0))处的切线方程为( ) A.x +y -1=0 B.x +y +1=0 C.3x -y +1=0D.3x -y -1=0(2)已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,则过点P 的切线方程为________.解析 (1)因为f (x )=e x+2sin x ,所以f ′(x )=e x+2cos x .所以f ′(0)=3,f (0)=1.由导数的几何意义可知,函数f (x )在点(0,f (0))处的切线方程为y -1=3x ,即为3x -y +1=0,故选C.(2)设切点坐标为⎝ ⎛⎭⎪⎫x 0,13x 30,由y ′=⎝ ⎛⎭⎪⎫13x 3′=x 2,得y ′|x =x 0=x 20,即过点P 的切线的斜率为x 20,又切线过点P ⎝ ⎛⎭⎪⎫2,83,若x 0≠2,则x 20=13x 30-83x 0-2, 解得x 0=-1,此时切线的斜率为1;若x 0=2,则切线的斜率为4. 故所求的切线方程是y -83=x -2或y -83=4(x -2),即3x -3y +2=0或12x -3y -16=0.答案 (1)C (2)3x -3y +2=0或12x -3y -16=0 角度2 求参数的值【例2-2】 (1)(2019·嘉兴检测)函数y =x 3-x 的图象与直线y =ax +2相切,则实数a =( ) A.-1 B.1 C.2D.4(2)(2019·杭州质检)若直线y =x 与曲线y =e x +m(m ∈R ,e 为自然对数的底数)相切,则m =( ) A.1 B.2 C.-1D.-2解析 (1)由题意得⎩⎪⎨⎪⎧y ′=3x 2-1=a ①,y =x 3-x =ax +2 ②,将①代入②,消去a 得x 3-x =(3x 2-1)x +2,解得x =-1,则a =2,故选C. (2)设切点坐标为(x 0,e x 0+m).由y =ex +m,得y ′=ex +m,则切线的方程为y -e x 0+m =e x 0+m(x-x 0) ①,又因为切线y =x 过点(0,0),代入①得x 0=1,则切点坐标为(1,1),将(1,1)代入y =ex +m中,解得m =-1,故选C.答案 (1)C (2)C 角度3 公切线问题【例2-3】 (一题多解)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 解析 法一 ∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切, ∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行). 由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8. 法二 同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案 8规律方法 (1)求切线方程的方法:①求曲线在点P 处的切线,则表明P 点是切点,只需求出函数在点P 处的导数,然后利用点斜式写出切线方程;②求曲线过点P 的切线,则P 点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·苏州调研)已知曲线f (x )=ax 3+ln x 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.(2)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9(a ≠0)都相切,则a 的值为( ) A.-1或-2564B.-1或214C.-74或-2564D.-74或7解析 (1)f ′(x )=3ax 2+1x,则f ′(1)=3a +1=2,解得a =13.(2)由y =x 3得y ′=3x 2,设曲线y =x 3上任意一点(x 0,x 30)处的切线方程为y -x 30=3x 20(x -x 0),将(1,0)代入得x 0=0或x 0=32.①当x 0=0时,切线方程为y =0,由⎩⎪⎨⎪⎧y =0,y =ax 2+154x -9得ax 2+154x -9=0,Δ=⎝ ⎛⎭⎪⎫1542+4·a ·9=0得a =-2564. ②当x 0=32时,切线方程为y =274x -274,由⎩⎪⎨⎪⎧y =274x -274,y =ax 2+154x -9得ax 2-3x -94=0,Δ=32+4·a ·94=0得a =-1.综上①②知,a =-1或a =-2564.答案 (1)13(2)A基础巩固题组一、选择题1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A.2 B.0 C.-2D.-4解析 ∵f ′(x )=2f ′(1)+2x ,∴令x =1,得f ′(1)=-2, ∴f ′(0)=2f ′(1)=-4. 答案 D2.设曲线y =e ax-ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( ) A.0 B.1 C.2D.3解析 ∵y =e ax-ln(x +1),∴y ′=a e ax-1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax-ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.故选D. 答案 D3.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A.(1,3)B.(-1,3)C.(1,3)或(-1,3)D.(1,-3)解析 f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. 答案 C4.(2019·诸暨统考)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( )A.x 2-x ln x +x B.x 2-x ln x -x C.x 2+x ln x +xD.x 2+2x ln x +x解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x,即⎣⎢⎡⎦⎥⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C.答案 C5.(一题多解)(2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A.y =-2xB.y =-xC.y =2xD.y =x解析 法一 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0.因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.法二 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以 -1+a -1-a +(1+a -1+a )=0,解得a =1,此时f (x )=x 3+x (经检验,f (x )为奇函数),所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.法三 易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D. 答案 D6.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A.-1B.0C.2D.4解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.答案 B 二、填空题7.(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e x ln x +e x·1x,则f ′(1)=e.答案 e8.(2018·全国Ⅲ卷)曲线y =(ax +1)e x在点(0,1)处的切线的斜率为-2,则a =________. 解析 y ′=(ax +1+a )e x,由曲线在点(0,1)处的切线的斜率为-2,得y ′|x =0=(ax +1+a )e x|x =0=1+a =-2,所以a =-3. 答案 -39.(2018·台州调考)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为__________;f (x )在x =1处的切线方程为________. 解析 f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.f (x )=3x ln x ,f (1)=0,∴f (x )在x =1处的切线方程为y =3(x -1),即为3x -y -3=0.答案 3 3x -y -3=010.设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)在点P 处的切线垂直,则P 的坐标为________.解析 y ′=e x ,曲线y =e x 在点(0,1) 处的切线的斜率k 1=e 0=1.设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1). 答案 (1,1) 三、解答题11.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求: (1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,∴当x =2时,y ′min =-1,y =53, ∴斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,∴tan α≥-1,又∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 故α的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 12.已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程.解 (1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2, ∴在点P (2,4)处的切线的斜率为y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.能力提升题组13.(2018·萧山月考)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f ′2(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 018(x )等于( )A.-sin x -cos xB.sin x -cos xC.-sin x +cos xD.sin x +cos x解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 018(x )=f 2(x )=-sin x +cos x ,故选C.答案 C14.(2019·无锡模拟)关于x 的方程2|x +a |=e x有3个不同的实数解,则实数a 的取值范围为________.解析 由题意,临界情况为y =2(x +a )与y =e x 相切的情况,y ′=e x =2,则x =ln 2,所以切点坐标为(ln 2,2),则此时a =1-ln 2,所以只要y =2|x +a |图象向左移动,都会产生3个交点,所以a >1-ln 2,即a ∈(1-ln 2,+∞).答案 (1-ln 2,+∞)15.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析 y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1). y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2). ∴⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1, 解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2. 答案 1-ln 216.(2019·湖州适应性考试)已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________.解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时,由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在(0,1)上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]17.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解 (1)方程7x -4y -12=0可化为y =74x -3, 当x =2时,y =12.又f ′(x )=a +b x 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74, 解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x . (2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.18.如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k ,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(k =2,…,n );(2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |. 解 (1)设点P k -1的坐标是(x k -1,0), ∵y =e x ,∴y ′=e x, ∴Q k -1(x k -1,e x k -1),在点Q k -1(x k -1,e x k -1)处的切线方程是y -e x k -1 =e x k -11(x -x k -1),令y =0,则 x k =x k -1-1(k =2,…,n ).(2)∵x 1=0,x k -x k -1=-1, ∴x k =-(k -1),∴|P k Q k |=e xk =e -(k -1), 于是有|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n | =1+e -1+e -2+…+e -(n -1) =1-e -n 1-e -1=e -e 1-n e -1, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-n e -1.。
2020年高考数学(理)二轮专项复习专题04 导数(含答案)
2020年高考数学(理)二轮专项复习专题04 导数导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用.在本专题中,我们将复习导数的概念及其运算,体会导数的思想及其内涵;应用导数探索函数的单调性、极值等性质,感受导数在解决数学问题和实际问题中的作用.导数的相关问题主要围绕以下三个方面:导数的概念与运算,导数的应用,定积分与微积分基本定理.§4-1 导数概念与导数的运算【知识要点】1.导数概念:(1)平均变化率:对于函数y =f (x ),定义1212)()(x x x f x f --为函数y =f (x )从x 1到x 2的平均变化率.换言之,如果自变量x 在x 0处有增量∆x ,那么函数f (x )相应地有增量f (x 0+∆x )-f (x 0),则比值xx f x x f ∆-∆+)()(00就叫做函数y =f (x )从x 0到x 0+∆x 之间的平均变化率.(2)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率是xx f x x f x ∆-∆+→∆)()(lim000,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即xx f x x f x f x ∆-∆+='→∆)()(lim )(0000.(3)函数y =f (x )的导函数(导数):当x 变化时,f ′(x )是x 的一个函数,我们称它为函数y =f (x )的导函数(简称导数),即xx f x x f x f x ∆-∆+='→∆)()(lim)(0.2.导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f '(x 0). 3.导数的运算:(1)几种常见函数的导数: ①(C )′=0(C 为常数);②(x n )′=nx n -1(x >0,n ∈Q *); ③(sin x )′=cos x ; ④(cos x )′=-sin x ; ⑤(e x )′=e x ;⑥(a x )′=a x ln a (a >0,且a ≠1);⑦x x 1)(ln =; ⑧e xx a a log 1)(log =(a >0,且a ≠1).(2)导数的运算法则:①[u (x )±v (x )]′=u ′(x )±v ′(x );②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③)0)(()()()()()(])()([2=/'-'='⋅x v x v x v x u x v x u x v x u . (3)简单的复合函数(仅限于形如f (ax +b ))的导数:设函数y =f (u ),u =g (x ),则函数y =f (u )=f [g (x )]称为复合函数.其求导步骤是:x y '=u f '·x g ',其中u f '表示f 对u 求导,x g '表示g 对x 求导.f 对u 求导后应把u 换成g (x ). 【复习要求】1.了解导数概念的实际背景; 2.理解导数的几何意义;3.能根据导数定义求函数y =C ,y =x ,y =x 2,y =x 3,x y xy ==,1的导数; 4.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 5.理解简单复合函数(仅限于形如f (ax +b ))导数的求法. 【例题分析】例1 求下列函数的导数:(1)y =(x +1)(x 2-1);(2)11+-=x x y ; (3)y =sin2x ; (4)y =e x ·ln x .解:(1)方法一:y ′=(x +1)′(x 2-1)+(x +1)(x 2-1)′=x 2-1+(x +1)·2x =3x 2+2x -1.方法二:∵y =(x +1)(x 2-1)=x 3+x 2-x -1,∴y ′=(x 3+x 2-x -1)′=3x 2+2x -1.(2)方法一:⋅+=+--+=+'+--+'-='+-='222)1(2)1()1()1()1()1)(1()1()1()11(x x x x x x x x x x x y 方法二:∵12111.+-=+-=x x x y ,∴2)1(2)12()121('+='+-='+-=x x x y . (3)方法一:y'=(sin2x )'=(2sin x · cos x )'=2[(sin x )'·cos x +sin x ·(cos x )']=2(cos 2x -sin 2x )=2cos2x . 方法二:y'=(sin2x )'·(2x )'=cos2x ·2=2cos2x .(4))(ln e ln )e ('+'='⋅⋅x x y xx=xx xxx x x e )1(ln e ln e ⋅⋅+=+.【评析】理解和掌握求导法则和式子的结构特点是求导运算的前提条件.运用公式和求导法则求导数的基本步骤为:①分析函数y =f (x )的结构特征;②选择恰当的求导法则和导数公式求导数; ③化简整理结果.应注意:在可能的情况下,求导时应尽量减少使用乘法的求导法则,可在求导前利用代数、三角恒等变形等方法对函数式进行化简,然后再求导,这样可减少运算量.(如(1)(2)题的方法二较方法一简捷).对于(3),方法一是使用积的导数运算公式求解,即使用三角公式将sin2x 表示为sin x 和cos x 的乘积形式,然后求导数;方法二是从复合函数导数的角度求解.方法二较方法一简捷.对利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数要熟练、准确. 例2 (1)求曲线y =x 2在点(1,1)处的切线方程;(2)过点(1,-3)作曲线y =x 2的切线,求切线的方程.【分析】对于(1),根据导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,可求出切线的斜率,进而由直线方程的点斜式求得切线方程.对于(2),注意到点(1,-3)不在曲线y =x 2上,所以可设出切点,并通过导数的几何意义确定切点的坐标,进而求出切线方程.解:(1)曲线y =x 2在点(1,1)处的切线斜率为y ′=2x |x =1=2, 从而切线的方程为y -1=2(x -1),即2x -y -1=0.(2)设切点的坐标为),(20x x . 根据导数的几何意义知,切线的斜率为y '=2x |0x x ==2x 0,从而切线的方程为).(20020x x x x y -=- 因为这条切线过点(1,-3),所以有)1(23002x x x -=--, 整理得03202=--x x ,解得x 0=-1,或x 0=3. 从而切线的方程为y -1=-2(x +1),或y -9=6(x -3),即切线的方程为2x +y +1=0,或6x -y -9=0.【评析】用导数求曲线的切线方程,常依据的条件是:①函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率, 即k =f '(x 0);②切点既在切线上又在曲线上,即切点的坐标同时满足切线与曲线的方程.例3设函数f (x )=ax 3+bx +c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x -6y -7=0垂直,导函数f '(x )的最小值为-12.求a ,b ,c 的值. 【分析】本题考查函数的奇偶性、二次函数的最值、导数的几何意义等基础知识,以及推理能力和运算能力.题目涉及到三个未知数,而题设中有三个独立的条件,因此,通过解方程组来确定参数a 、b 、c 的值. 解:∵f (x )为奇函数, ∴f (-x )=-f (x ), 即-ax 3-bx +c =-ax 3-bx -c , ∴c =0.∵f '(x )=3ax 2+b 的最小值为-12, ∴b =-12. 又直线x -6y -7=0的斜率为61,因此,f '(1)=3a +b =-6, ∴a =2. 综上,a =2,b =-12,c =0. 例4 已知a >0,函数a x x f -=1)(,x ∈(0,+∞).设ax 201<<,记曲线y =f (x )在点M (x 1,f (x 1))处的切线为l .(1)求l 的方程;(2)设l 与x 轴的交点是(x 2,0),证明:ax 102≤<. 【分析】对于(1),根据导数的几何意义,不难求出l 的方程;对于(2),涉及到不等式的证明,依题意求出用x 1表示的x 2后,将x 2视为x 1的函数,即x 2=g (x 1),结合要证明的结论进行推理. 解:(1)对f (x )求导数,得21)(x x f -=',由此得切线l 的方程为: )(1)1(1211x x x a x y --=--. (2)依题意,切线方程中令y =0,得211112122)1(ax x x a x x x -=+-=.由ax 201<<,及)2(2112112ax x ax x x -=-=,有x 2>0; 另一方面,aa x a ax x x 1)1(2212112+--=-=,从而有ax 102≤<,当且仅当a x 11=时,a x 12=.【评析】本题考查的重点是导数的概念和计算、导数的几何意义及不等式的证明.涉及的基础知识都比较基本,题目难度也不大,但把导数的相关知识与不等式等内容有机整合,具有一定新意,体现了导数作为工具分析和解决一些函数性质问题的方法.本题中的(2)在证明ax 102≤<时,还可用如下方法: ①作法,.0)1(1211212112≥-=+-=-ax aax x a x a②利用平均值不等式,aax ax a ax ax a ax x x 1)22(1)2)((1)2(21111112=-+≤-=-=.例5 设函数),(1)('Z ∈++=b a bx ax x f ,曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f'(x )的解析式;(2)证明:曲线y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点处的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 解:(1)2)(1)('b x a x f +-=,于是⎪⎪⎩⎪⎪⎨⎧=+-=++,0)2(1,12122b a b a 解得⎩⎨⎧-==,1,1b a 或⎪⎪⎩⎪⎪⎨⎧-==.38,49b a 因为a ,b ∈Z ,所以⋅-+=11)(x x x f(2)证明:已知函数y 1=x ,xy 12=都是奇函数, 所以函数xx x g 1)(+=也是奇函数,其图象是以原点为中心的中心对称图形. 而1111)(+-+-=x x x f , 可知,函数g (x )的图象按向量a =(1,1)平移,即得到函数f (x )的图象,故函数f (x )的图象是以点(1,1)为中心的中心对称图形.(3)证明:在曲线上任取一点)11,(000-+x x x . 由200)1(11)('--=x x f 知,过此点的切线方程为)]()1(11[110200020x x x x x x y ---=-+--. 令x =1得1100-+=x x y ,切线与直线x =1交点为)11,1(00-+x x ; 令y =x 得y =2x 0-1,切线与直线y =x 交点为(2x 0-1,2x 0-1).直线x =1与直线y =x 的交点为(1,1); 从而所围三角形的面积为2|22||12|21|112||111|2100000=--=----+⋅⋅x x x x x . 所以,所围三角形的面积为定值2. 练习4-1一、选择题:1.(tan x )′等于( ) (A)x2sin 1(B)x2sin 1-(C)x 2cos 1(D)x2cos 1-2.设f (x )=x ln x ,若f '(x 0)=2,则x 0等于( ) (A)e 2(B)e(C)22ln (D)ln23.函数y =ax 2+1的图象与直线y =x 相切,则a 等于( ) (A)81 (B)41 (C)21 (D)14.曲线x y 21e =在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )(A)2e 29 (B)4e 2(C)2e 2(D)e 2二、填空题: 5.f '(x )是1231)(3++=x x x f 的导函数,则f '(-1)=______. 6.若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =x +2,则f (1)+f '(1)=______. 7.过原点作曲线y =e x 的切线,则切点的坐标为______;切线的斜率为______. 8.设函数f (x )=xe kx (k ≠0),则曲线y =f (x )在点(0,f (0))处的切线方程是______. 三、解答题:9.求下列函数的导数: (1)y =x -e x ; (2)y =x 3+cos x ; (3)y =(x +1)(x +2)(x +3);(4)⋅=xxy ln10.已知抛物线y =ax 2+bx +c 经过点A (1,1),B (2,-1),且该曲线在点B 处的切线方程为y =x -3,求a 、b 、c 的值.11.求曲线24121232-=-=x y x y 与在交点处的两条切线的夹角的大小.§4-2 导数的应用【知识要点】1.利用导数判断函数的单调性:(1)函数的单调性与其导函数的正负有如下关系:设函数f (x )在区间(a ,b )内可导, ①如果恒有f '(x )>0,那么函数f (x )在区间(a ,b )内单调递增; ②如果恒有f '(x )<0,那么函数f (x )在区间(a ,b )内单调递减.值得注意的是,若函数f (x )在区间(a ,b )内有f '(x )≥0(或f '(x )≤0),但其中只有有限个点使得f '(x )=0,则函数f (x )在区间(a ,b )内仍是增函数(或减函数).(2)一般地,如果一个函数在某一范围内的导数的绝对值越大,说明这个函数在这个范围内变化得快.这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就比较“平缓”.2.利用导数研究函数的极值:(1)设函数f (x )在点x 0附近有定义,如果对x 0附近所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,x 0是极大值点;如果对x 0附近所有的点,都有f (x )>f (x 0),就说f (x 0)是函数f (x )的一个极小值,x 0是极小值点.(2)需要注意,可导函数的极值点必是导数为零的点,但导数为零的点不一定是极值点.如y =x 3在x =0处的导数值为零,但x =0不是函数y =x 3的极值点.也就是说可导函数f (x )在x 0处的导数f '(x 0)=0是该函数在x 0处取得极值的必要但不充分条件.(3)函数f (x )在区间[a ,b ]上的最值:f (x )在区间[a ,b ]上的最大值(或最小值)是f (x )在区间(a ,b )内的极大值(或极小值)及f (a )、f (b )中的最大者(或最小者).(4)应注意,极值只是相对一点附近的局部性质,而最值是相对整个定义域内的整体性质. 【复习要求】1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次);3.会利用导数解决某些实际问题. 【例题分析】例1 求下列函数的单调区间: (1)f (x )=x 3-3x ; (2)f (x )=3x 2-2ln x ; (3)2)1(2)(--=x bx x f .解:(1)f (x )的定义域是R ,且f '(x )=3x 2-3,所以函数f (x )的减区间是(-1,1),增区间是(-∞,-1)和(1,+∞). (2)f (x )的定义域是(0,+∞),且xx x f 26)(-=', 令f ′(x )=0,得33,3321-==x x .列表分析如下:所以函数f (x )的减区间是)33,0(,增区间是),33(+∞. (3)f (x )的定义域为(-∞,1)∪(1,+∞),求导数得3342)1()1(2)1(222)1()1(2)2()1(2)(---=--+-=-----='⋅x x b x b x x x b x x x f .令f ′(x )=0,得x =b -1.①当b -1<1,即b <2时,f ′(x )的变化情况如下表:所以,当b <2时,函数f (x )在(-∞,b -1)上单调递减,在(b -1,1)上单调递增,在(1,+∞)上单调递减. ②当b -1>1,即b >2时,f ′(x )的变化情况如下表:所以,当b >2时,f (x )在(-∞,1)上单调递减,在(1,b -1)上单调递增,在(b -1,+∞)上单调递减. ③当b -1=1,即b =2时,12)(-=x x f ,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递减. 【评析】求函数f (x )的单调区间的步骤是:①确定f (x )的定义域(这一步必不可少,单调区间是定义域的子集); ②计算导数f ′(x );③求出方程f ′(x )=0的根;④列表考察f ′(x )的符号,进而确定f (x )的单调区间(必要时要进行分类讨论). 例2求函数44313+-=x x y 的极值. 解:y ′=x 2-4=(x +2)(x -2),令y ′=0,解得x 1=-2,x 2=2. 列表分析如下:所以当x =-2时,y 有极大值3;当x =2时,y 有极小值3-. 【评析】求函数f (x )的极值的步骤是:①计算导数f ′(x );②求出方程f ′(x )=0的根;③列表考察f ′(x )=0的根左右值的符号:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.例3 已知函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 解:(1)f ′(x )=-3x 2+6x +9.令f ′(x )<0,解得x <-1或x >3.所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(2)因为f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a ,所以f (2)>f (-2).因为在(-1,3)上f ′(x )>0,所以f (x )在[-1,2]上单调递增,又由于f (x )在[-2,-1]上单调递减,因此f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值.于是有22+a =20,解得a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=1+3-9-2=-7, 即函数f (x )在区间[-2,2]上的最小值为-7.【评析】求函数f (x )在闭区间[a ,b ]上最值的方法: ①计算导数f ′(x );②求出方程f ′(x )=0的根x 1,x 2,…;③比较函数值f (x 1),f (x 2),…及f (a )、f (b )的大小,其中的最大(小)者就是f (x )在闭区间[a ,b ]上最大(小)值. 例4 设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)【分析】本题给出的信息量较大,并且还都是抽象符号函数.解答时,首先要标出重要的已知条件,从这些条件入手,不断深入研究.由f ′(x )g (x )+f (x )g ′(x )>0你能产生什么联想?它和积的导数公式很类似,整理可得[f (x )g (x )]′>0.令h (x )=f (x )g (x ),则当x <0时,h (x )是增函数.再考虑奇偶性,函数h (x )是奇函数.还有一个已知条件g (-3)=0,进而可得h (-3)=f (-3)g (-3)=0,这样我们就可以画出函数h (x )的示意图,借助直观求解.答案:D.例5 求证:当x >0时,1+x <e x .分析:不等式两边都是关于x 的函数,且函数类型不同,故可考虑构造函数f (x )=1+x -e x ,通过研究函数f (x )的单调性来辅助证明不等式.证明:构造函数f (x )=1+x -e x ,则f ′(x )=1-e x . 当x >0时,有e x >1,从而f ′(x )=1-e x <0,所以函数f (x )=1+x -e x 在(0,+∞)上单调递减, 从而当x >0时,f (x )<f (0)=0, 即当x >0时,1+x <e x .【评析】通过构造函数,利用函数的单调性证明不等式是常用方法之一,而借助导数研究函数单调性辅助证明不等式突出了导数的工具性作用.例6用总长14.8 m 的钢条制作一个长方体容器的框架,如果容器底面的长比宽多0.5 m ,那么长和宽分别为多少时容器的容积最大?并求出它的最大容积.解:设容器底面长方形宽为x m ,则长为(x +0.5)m ,依题意,容器的高为x x x 22.3)]5.0(448.14[41-=+--.显然⎩⎨⎧>->,022.3,0x x ⇒0<x <1.6,即x 的取值范围是(0,1.6).记容器的容积为y m 3,则y =x (x +0.5)(3.2-2x )=-2x 3+2.2x 2+1.6x x ∈(0,1.6). 对此函数求导得,y ′=-6x 2+4.4x +1.6.令y ′>0,解得0<x <1;令y ′<0,解得1<x <1.6.所以,当x =1时,y 取得最大值1.8,这时容器的长为1+0.5=1.5.答:容器底面的长为1.5m 、宽为1m 时,容器的容积最大,最大容积为1.8m 3.【评析】解决实际优化问题的关键在于建立数学模型(目标函数),通过把题目中的主要关系(等量和不等量关系)形式化,把实际问题抽象成数学问题,再选择适当的方法求解.例7 已知f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2. (1)求f (x )的解析式;(2)证明对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立.【分析】对于(1)题目涉及到三个未知数,而题设中有三个独立的条件,因此,通过解方程组来确定参数a 、c 、d 的值;对于(2)可通过研究函数f (x )的最值加以解决.解:(1)由f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,知f (0)=0,解得d =0, 所以f (x )=ax 3+cx (a ≠0),f ′(x )=3ax 2+c (a ≠0).由当x =1时,f (x )取得极值-2,得f (1)=a +c =-2,且f ′(1)=3a +c =0,解得 a =1,c =-3, 所以f (x )=x 3-3x .(2)令f ′(x )>0,解得x <-1,或x >1;令f ′(x )<0,解得-1<x <1,从而函数f (x )在区间(-∞,-1)内为增函数,(-1,1)内为减函数,在(1,+∞)内为增函数. 故当x ∈[-1,1]时,f (x )的最大值是f (-1)=2,最小值是f (1)=-2, 所以,对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<2-(-2)=4.【评析】使用导数判断函数的单调性,进而解决极值(最值)问题是常用方法,较为简便. 例8 已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x .令f ′(x )>0,解得e 1>x ; 令f ′(x )<0,解得e 10<<x . 从而f (x )在)e 1,0(单调递减,在),e 1(+∞单调递增.所以,当e 1=x 时,f (x )取得最小值e1-.(2)解法一:令g (x )=f (x )-(ax -1),则g ′(x )=f ′(x )-a =1-a +ln x ,①若a ≤1,当x >1时,g ′(x )=1-a +ln x >1-a ≥0, 故g (x )在(1,+∞)上为增函数,所以,x ≥1时,g (x )≥g (1)=1-a ≥0,即f (x )≥ax -1.②若a >1,方程g ′(x )=0的根为x 0=e a -1,此时,若x ∈(1,x 0),则g ′(x )<0,故g (x )在该区间为减函数. 所以,x ∈(1,x 0)时,g (x )<g (1)=1-a <0, 即f (x )<ax -1,与题设f (x )≥ax -1相矛盾. 综上,满足条件的a 的取值范围是(-∞,1].解法二:依题意,得f (x )≥ax -1在[1,+∞)上恒成立,即不等式x x a 1ln +≤对于x ∈[1,+∞)恒成立. 令xx x g 1ln )(+=,则)11(111)(2x x x x x g -=-='.当x >1时,因为0)11(1)(>-='xx x g ,故g (x )是(1,+∞)上的增函数,所以g (x )的最小值是g (1)=1,从而a 的取值范围是(-∞,1]. 例9 已知函数)1ln()1(1)(-+-=x a x x f n,其中n ∈N *,a 为常数. (1)当n =2时,求函数f (x )的极值;(2)当a =1时,证明:对任意的正整数n ,当x ≥2时,有f (x )≤x -1. 解:(1)由已知得函数f (x )的定义域为{x |x >1},当n =2时,)1ln()1(1)(2-+-=x a x x f ,所以32)1()1(2)('x x a x f ---=. ①当a >0时,由f (x )=0得121,12121<-=>+=ax a x , 此时321)1())(()(x x x x x a x f ----='. 当x ∈(1,x 1)时,f ′(x )<0,f (x )单调递减; 当x ∈(x 1,+∞)时,f ′(x )>0,f (x )单调递增. ②当a ≤0,f ′(x )<0恒成立,所以f (x )无极值. 综上所述,n =2时, 当a >0时,f (x )在ax 21+=处取得极小值,极小值为)2ln 1(2)21(a a a f +=+. 当a ≤0时,f (x )无极值.(2)证法一:因为a =1,所以)1ln()1(1)(-+-=x x x f n. 当n 为偶数时,令)1ln()1(11)(-----=x x x x g n,则)2(0)1(1211)1(1)(11≥>-+--=---+='++x x nx x x x n x g n n .所以当x ≥2时,g (x )单调递增,又g (2)=0, 因此0)2()1ln()1(11)(=≥-----=g x x x x g n恒成立,所以f (x )≤x -1成立.当n 为奇数时,要证f (x )≤x -1,由于0)1(1<-nx ,所以只需证ln(x -1)≤x -1, 令h (x )=x -1-ln(x -1), 则)2(012111)(≥≥--=--='x x x x x h . 所以,当x ≥2时,h (x )=x -1-ln(x -1)单调递增,又h (2)=1>0, 所以,当x ≥2时,恒有h (x )>0,即ln(x -1)<x -1成立. 综上所述,结论成立. 证法二:当a =1时,)1ln()1(1)(-+-=x x x f n.当x ≥2时,对任意的正整数n ,恒有1)1(1≤-nx ,故只需证明1+ln(x -1)≤x -1.令h (x )=x -1-[1+ln(x -1)]=x -2-ln(x -1),x ∈[2,+∞), 则12111)(--=--='x x x x h , 当x ≥2时,h ′(x )≥0,故h (x )在[2,+∞)上单调递增,因此当x ≥2时,h (x )≥h (2)=0,即1+ln(x -1)≤x -1成立. 故当x ≥2时,有1)1ln()1(1-≤-+-x x x n, 即f (x )≤x -1.练习4-2一、选择题:1.函数y =1+3x -x 3有( ) (A)极小值-2,极大值2 (B)极小值-2,极大值3 (C)极小值-1,极大值1(D)极小值-1,极大值32.f '(x )是函数y =f (x )的导函数,y =f '(x )图象如图所示,则y =f (x )的图象最有可能是( )3.函数f (x )=ax 3-x 在R 上为减函数,则a 的取值范围是( ) (A)a <0(B)a ≤0(C)31<a (D)31≤a 4.设a ∈R ,若函数f (x )=e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围是( ) (A)a <-1 (B)a >-1(C)e1-<a (D)e1->a 二、填空题:5.函数f (x )=x 3-3ax 2+2bx 在x =1处取得极小值-1,则a +b =______. 6.函数y =x (1-x 2)在[0,1]上的最大值为______.7.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上的最小值为-37,则实数a =______.8.有一块边长为6m 的正方形铁板,现从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器,为使其容积最大,截下的小正方形边长为______m . 三、解答题:9.已知函数f (x )=x 3+ax 2+bx (a ,b ∈R )的图象过点P (1,2),且在点P 处的切线斜率为8. (1)求a ,b 的值;(2)求函数f (x )的单调区间;(3)求函数f (x )在区间[-1,1]上的最大值与最小值.10.当)2π,0( x 时,证明:tan x >x .11.已知函数f (x )=e x -e -x .(1)证明:f (x )的导数f '(x )≥2;(2)若对所有x ≥0都有f (x )≥ax ,求a 的取值范围.专题04 导数参考答案练习4-1一、选择题:1.C 2.B 3.B 4.D二、填空题:5.3 6.4 7.(1,e);e 8.y =x 三、解答题:9.(1)y '=1-e x ;(2)y '=3x 2-sin x ;(3)y '=3x 2+12x +11;(4)2ln 1xxy -=10.略解:因为抛物线y =ax 2+bx +c 经过点A (1,1),B (2,-1)两点,所以a +b +c =1.① 4a +2b +c =-1.②因为y '=2ax +b ,所以y '|x =2=4a +b .故4a +b =1.③ 联立①、②、③,解得a =3,b =-11,c =9.11.解:由01622412122332=-+⇒⎪⎪⎩⎪⎪⎨⎧-=-=x x x y x y ,所以(x -2)(x 2+4x +8)=0,故x =2,所以两条曲线只有一个交点(2,0).对函数2212x y -=求导数,得y ′=-x , 从而曲线2212x y -=在点(2,0)处切线的斜率是-2.对函数2413-=x y 求导数,得243'x y =,从而曲线2413-=x y 在点(2,0)处切线的斜率是3.设两条切线的夹角为α ,则1|3)2(132|tan =⨯-+--=α,所以两条切线的夹角的大小是45°. 练习4-2一、选择题:1.D 2.C 3.B 4.A 二、填空题: 5.61-6.932 7.3 8.1三、解答题:9.解:(1)a =4,b =-3.(2)函数f (x )的单调增区间为(-∞,-3),),31(+∞;减区间为)31,3(-. (3)函数f (x )在[-1,1]上的最小值为2714-,最大值为6. 10.证明:设f (x )=tan x -x ,)2π,0(∈x .则0tan 1cos 11)'cos sin ()(2.2>=-=-='x xx x x f ,所以函数f (x )=tan x -x 在区间)2π,0(内单调递增. 又f (0)=0,从而当)2π,0(∈x 时,f (x )>f (0)恒成立, 即当)2π,0(∈x 时,tan x >x . 11.解:(1)f (x )的导数f '(x )=e x +e -x .由于2e e 2ee =≥+--⋅x x xx ,故f '(x )≥2,当且仅当x =0时,等号成立.(2)令g (x )=f (x )-ax ,则g '(x )=f '(x )-a =e x +e -x -a ,①若a ≤2,当x >0时,g '(x )=e x +e -x -a >2-a ≥0, 故g (x )在(0,+∞)上为增函数,所以,x ≥0时,g (x )≥g (0),即f (x )≥ax .②若a >2,方程g '(x )=0的正根为24ln 21-+=a a x ,此时,若x ∈(0,x 1),则g ′(x )<0,故g (x )在该区间为减函数.所以,x ∈(0,x 1)时,g (x )<g (0)=0,即f (x )<ax ,与题设f (x )≥ax 相矛盾. 综上,满足条件的a 的取值范围是(-∞,2].习题4一、选择题:1.B 2.B 3.A 4.D 5.C 二、填空题:6.1 7.-2 8.5;-15 9.y =-3x 10.61 三、解答题:11.(1)f '(x )=(1+kx )e kx ,令(1+kx )e kx =0,得)0(1=/-=k kx . 若k >0,则当)1,(k x --∞∈时,f '(x )<0,函数f (x )单调递减;当),1(+∞-∈kx 时,f '(x )>0,函数f (x )单调递增.若k <0,则当)1,(kx --∞∈时,f '(x )>0,函数f (x )单调递增;当),1(+∞-∈kx 时,f '(x )<0,函数f (x )单调递减.(2)若k >0,则当且仅当11-≤-k,即k ≤1时,函数f (x )在区间(-1,1)内单调递增;若k <0,则当且仅当11≥-k ,即k ≥-1时,函数f (x )在区间(-1,1)内单调递增.综上,函数f (x )在区间(-1,1)内单调递增时,k 的取值范围是[-1,0)∪(0,1]. 12.解:(1)f '(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2取得极值,则有f '(1)=0,f '(2)=0.即⎩⎨⎧=++=++.031224,0366b a b a 解得a =-3,b =4.(2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f '(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f '(x )>0;当x ∈(1,2)时,f '(x )<0;当x ∈(2,3)时,f '(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以 9+8c <c 2,解得c <-1或c >9,因此c 的取值范围为(-∞,-1)∪(9,+∞).13.解:对函数f (x )求导得:f '(x )=e ax (ax +2)(x -1).(1)当a =2时,f '(x )=e 2x (2x +2)(x -1). 令f '(x )>0,解得x >1或x <-1; 令f '(x )<0,解得-1<x <1.所以,f (x )单调增区间为(-∞,-1),(1,+∞);f (x )单调减区间为(-1,1).(2)令f '(x )=0,即(ax +2)(x -1)=0,解得ax 2-=,或x =1. 由a >0时,列表分析得:当a x -<时,因为0,,02>>->a a x x ,所以02>--a x x ,从而f (x )>0. 对于a x 2-≥时,由表可知函数在x =1时取得最小值01)1(<-=a e af ,所以,当x ∈R 时,a af x f e 1)1()(min -==.由题意,不等式03)(≥+ax f 对x ∈R 恒成立,所以得031≥+-ae a a ,解得0<a ≤ln3.14.(1)解:对函数f (x )求导数,得x a x x f 21)('++=.依题意有f '(-1)=0,故23=a .从而23)1)(12(23132)(2+++=+++='x x x x x x x f . f (x )的定义域为),23(+∞-,当123-<<-x 时,f '(x )>0; 当211-<<-x 时,f '(x )<0; 当21->x 时,f ′(x )>0. 从而,f (x )分别在区间),21(),1,23(+∞---内单调递增,在区间)21,1(--内单调递减.(2)解:f (x )的定义域为(-a ,+∞),ax ax x x f +++=122)(2.方程2x 2+2ax +1=0的判别式∆=4a 2-8. ①若∆<0,即22<<-a ,在f (x )的定义域内f '(x )>0,故f (x )无极值.②若∆=0,则2=a 或.2-=a若⋅++='+∞-∈=2)12()(),,2(,22x x x f x a 当22-=x 时,f '(x )=0, 当)22,2(--∈x 或),22(+∞-∈x 时,f '(x )>0,所以f (x )无极值.若),2(,2+∞∈-=x a ,f '(x )2)12(2--=x x >0,f (x )也无极值.③若∆>0,即2>a 或2-<a ,则2x 2+2ax +1=0有两个不同的实数根22,222221-+-=---=a a x a a x .当2-<a 时,x 1<-a ,x 2<-a ,从而f ′(x )在f (x )的定义域内没有零点,故f (x )无极值. 当2>a 时,x 1>-a ,x 2>-a ,f '(x )在f (x )的定义域内有两个不同的零点,所以f (x )在x =x 1,x =x 2处取得极值.综上,f (x )存在极值时,a 的取值范围为),2(+∞. f (x )的极值之和为f (x 1)+f (x 2)=ln(x 1+a )+x 12+ln(x 2+a )+x 22 =ln[(x 1+a )(x 2+a )]+(x 1+x 2)2-2x 1x 2=ln21+a 2-1>1-ln2=ln 2e.。
2020年高考数学导数题(含答案)
2020年高考数学导数题卷一理科 21.(12分)已知函数f (x )=e x +ax 2-x.(1)当a=1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.21.解 (1)当a=1时,f (x )=e x +x 2-x ,f'(x )=e x +2x -1. 故当x ∈(-∞,0)时,f'(x )<0;当x ∈(0,+∞)时,f'(x )>0. 所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)f (x )≥12x 3+1等价于(12x 3-ax 2+x +1)e -x ≤1. 设函数g (x )=(12x 3-ax 2+x +1)e -x (x ≥0), 则g'(x )=- 12x 3-ax 2+x+1-32x 2+2ax -1e -x =-12x [x 2-(2a+3)x+4a+2]e -x =-12x (x -2a -1)(x -2)e -x .①若2a+1≤0,即a ≤-12,则当x ∈(0,2)时,g'(x )>0.所以g (x )在(0,2)单调递增,而g (0)=1, 故当x ∈(0,2)时,g (x )>1,不合题意.②若0<2a+1<2,即-12<a<12,则当x ∈(0,2a+1)∪(2,+∞)时,g'(x )<0;当x ∈(2a+1,2)时,g'(x )>0.所以g (x )在(0,2a+1),(2,+∞)单调递减,在(2a+1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a<12时,g (x )≤1. ③若2a+1≥2,即a ≥12,则g (x )≤12x 3+x+1e -x .由于0∈7-e 24,12,故由②可得(12x 3+x +1)e -x ≤1.故当a ≥12时,g (x )≤1. 综上,a的取值范围是[7-e 24,+∞).卷一文科15.曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为 .15.y=2x 设切点坐标为(x 0,y 0).对y=ln x+x+1求导可得y'=1x +1. 由题意得,1x 0+1=2,解得x 0=1,故y 0=ln 1+1+1=2,切线方程为y -2=2(x -1),即y=2x.20.(12分)已知函数f (x )=e x -a (x+2).(1)当a=1时,讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.20.解 (1)当a=1时,f (x )=e x -x -2,则f'(x )=e x -1. 当x<0时,f'(x )<0;当x>0时,f'(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)f'(x )=e x -a.当a ≤0时,f'(x )>0,所以f (x )在(-∞,+∞)单调递增,故f (x )至多存在1个零点,不合题意. 当a>0时,由f'(x )=0可得x=ln a.当x ∈(-∞,ln a )时,f'(x )<0;当x ∈(ln a ,+∞)时f'(x )>0.所以f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)单调递增,故当x=ln a 时,f (x )取得最小值,最小值为f (ln a )=-a (1+ln a ).①若0<a ≤1e ,则f (ln a )≥0,f (x )在(-∞,+∞)至多存在1个零点,不合题意. ②若a>1e ,则f (ln a )<0.由于f (-2)=e -2>0,所以f (x )在(-∞,ln a )存在唯一零点. 由(1)知,当x>2时,e x -x -2>0, 所以当x>4且x>2ln(2a )时,f (x )=e x2·e x2-a (x+2)>e ln(2a )·(x2+2)-a (x+2)=2a>0. 故f (x )在(ln a ,+∞)存在唯一零点. 从而f (x )在(-∞,+∞)有两个零点. 综上,a 的取值范围是(1e ,+∞).卷二理科 21.(12分)已知函数f (x )=sin 2x sin 2x.(1)讨论f (x )在区间(0,π)的单调性; (2)证明:|f (x )|≤3√38; (3)设n ∈N*,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n4n.21.(1)解 f'(x )=cos x (sin x sin 2x )+sin x (sin x sin 2x )' =2sin x cos x sin 2x+2sin 2x cos 2x =2sin x sin 3x.当x ∈(0,π3)∪(2π3,π)时,f'(x )>0;当x ∈(π3,2π3)时,f'(x )<0. 所以f (x )在区间(0,π3),(2π3,π)单调递增,在区间π3,2π3单调递减.(2)证明 因为f (0)=f (π)=0,由(1)知,f (x )在区间[0,π]的最大值为f (π3)=3√38,最小值为f (2π3)=-3√38. 而f (x )是周期为π的周期函数,故|f (x )|≤3√38. (3)证明 由于(sin 2x sin 22x …sin 22nx )32=|sin 3x sin 32x …sin 32n x|=|sin x||sin 2x sin 32x …sin 32n -1x sin 2n x||sin 22n x| =|sin x||f (x )f (2x )…f (2n -1x )||sin 22n x| ≤|f (x )f (2x )…f (2n -1x )|, 所以sin 2x sin 22x …sin 22n x ≤(3√38)2n 3=3n4n .卷二文科 21.(12分)已知函数f (x )=2ln x+1.(1)若f (x )≤2x+c ,求c 的取值范围; (2)设a>0,讨论函数g (x )=f (x )-f (a )x -a的单调性. 21.解 设h (x )=f (x )-2x -c ,则h (x )=2ln x -2x+1-c , 其定义域为(0,+∞),h'(x )=2x-2.(1)当0<x<1时,h'(x )>0;当x>1时,h'(x )<0.所以h (x )在区间(0,1)单调递增,在区间(1,+∞)单调递减.从而当x=1时,h (x )取得最大值,最大值为h (1)=-1-c.故当且仅当-1-c ≤0,即c ≥-1时,f (x )≤2x+c. 所以c 的取值范围为[-1,+∞).(2)g (x )=f (x )-f (a )x -a=2(lnx -lna )x -a,x ∈(0,a )∪(a ,+∞). g'(x )=2(x -ax +lna -lnx )(x -a )2=2(1-a x +ln ax )(x -a )2.取c=-1得h (x )=2ln x -2x+2,h (1)=0,则由(1)知,当x ≠1时,h (x )<0,即1-x+ln x<0.故当x ∈(0,a )∪(a ,+∞)时,1-ax +ln ax <0,从而g'(x )<0.所以g (x )在区间(0,a ),(a ,+∞)单调递减. 卷三理科 21.(12分)设函数f (x )=x 3+bx+c ,曲线y=f (x )在点12,f (12)处的切线与y 轴垂直.(1)求b ;(2)若f (x )有一个绝对值不大于1的零点,证明:f (x )所有零点的绝对值都不大于1.21.(1)解 f'(x )=3x 2+b ,依题意得f'(12)=0,即34+b=0. 故b=-34.(2)证明 由(1)知f (x )=x 3-34x+c ,f'(x )=3x 2-34. 令f'(x )=0,解得x=-12或x=12. f'(x )与f (x )-∞,-12-12,1212,+∞ 因为f (1)=f (-12)=c+14,所以当c<-14时,f (x )只有大于1的零点.因为f (-1)=f (12)=c -14,所以当c>14时,f (x )只有小于-1的零点. 由题设可知-14≤c ≤14.当c=-14时,f (x )只有两个零点-12和1. 当c=14时,f (x )只有两个零点-1和12.当-14<c<14时,f (x )有三个零点x 1,x 2,x 3,且x 1∈-1,-12,x 2∈-12,12,x 3∈12,1.综上,若f (x )有一个绝对值不大于1的零点,则f (x )所有零点的绝对值都不大于1. 卷三文科 20.(12分)已知函数f (x )=x 3-kx+k 2. (1)讨论f (x )的单调性;(2)若f (x )有三个零点,求k 的取值范围.20.解 (1)f'(x )=3x 2-k.当k=0时,f (x )=x 3,故f (x )在(-∞,+∞)单调递增;当k<0时,f'(x )=3x 2-k>0,故f (x )在(-∞,+∞)单调递增.当k>0时,令f'(x )=0,得x=±√3k3.当x ∈-∞,-√3k3时,f'(x )>0; 当x ∈-√3k 3,√3k3时,f'(x )<0;当x ∈√3k3,+∞时,f'(x )>0.故f (x )在-∞,-√3k3,√3k3,+∞单调递增,在-√3k 3,√3k3单调递减.(2)由(1)知,当k ≤0时,f (x )在(-∞,+∞)单调递增,f (x )不可能有三个零点. 当k>0时,x=-√3k3为f (x )的极大值点,x=√3k3为f (x )的极小值点.此时,-k -1<-√3k3<√3k3<k+1且f (-k -1)<0,f (k+1)>0,f (-√3k3)>0.根据f (x )的单调性,当且仅当f (√3k3)<0,即k 2-2k √3k9<0时,f (x )有三个零点,解得k<427.因此k 的取值范围为0,427.山东卷 21.(12分)已知函数f (x )=a e x -1-ln x+ln a.(1)当a=e 时,求曲线y=f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.21.解f (x )的定义域为(0,+∞),f'(x )=a e x -1-1x .(1)当a=e 时,f (x )=e x -ln x+1,f'(1)=e -1,曲线y=f (x )在点(1,f (1))处的切线方程为y -(e +1)=(e -1)(x -1),即y=(e -1)x+2.直线y=(e -1)x+2在x 轴,y 轴上的截距分别为-2e -1,2.因此所求三角形的面积为2e -1. (2)由题意a>0,当0<a<1时,f (1)=a+ln a<1. 当a=1时,f (x )=e x -1-ln x ,f'(x )=e x -1-1x .当x ∈(0,1)时,f'(x )<0;当x ∈(1,+∞)时,f'(x )>0.所以当x=1时,f (x )取得最小值,最小值为f (1)=1,从而f (x )≥1. 当a>1时,f (x )=a e x -1-ln x+ln a ≥e x -1-ln x ≥1. 综上,a 的取值范围是[1,+∞). 天津卷 20.(16分)已知函数f (x )=x 3+k ln x (k ∈R ),f'(x )为f (x )的导函数. (1)当k=6时,①求曲线y=f (x )在点(1,f (1))处的切线方程;②求函数g (x )=f (x )-f'(x )+9x 的单调区间和极值;(2)当k ≥-3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f '(x 1)+f '(x 2)2>f (x 1)-f (x 2)x 1-x 2. 20.(1)解①当k=6时,f (x )=x 3+6ln x ,故f'(x )=3x 2+6x.可得f (1)=1,f'(1)=9,所以曲线y=f (x )在点(1,f (1))处的切线方程为y -1=9(x -1),即y=9x -8.②依题意,g (x )=x 3-3x 2+6lnx+3x ,x ∈(0,+∞).从而可得g'(x )=3x2-6x+6x −3x 2,整理可得g'(x )=3(x -1)3(x+1)x 2.令g'(x )=0,解得x=1.当x 变化时,g'(x ),g (x )所以,函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);g (x )的极小值为g (1)=1,无极大值.(2)证明由f (x )=x 3+k ln x ,得f'(x )=3x 2+kx . 对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x1x 2=t (t>1),则(x 1-x 2)[f'(x 1)+f'(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)3x 12+k x 1+3x 22+kx2-2x 13−x 23+k ln x1x 2=x 13−x 23-3x 12x 2+3x 1x 22+kx 1x 2−x 2x 1-2k ln x1x 2=x 23(t 3-3t 2+3t -1)+k t -1t -2ln t .①令h (x )=x -1x -2ln x ,x ∈[1,+∞). 当x>1时,h'(x )=1+1x 2−2x=(1-1x )2>0,由此可得h (x )在[1,+∞)单调递增,所以当t>1时,h (t )>h (1),即t -1t-2ln t>0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3,所以,x 23(t 3-3t 2+3t -1)+k t -1t -2ln t ≥(t 3-3t 2+3t -1)-3t -1t -2ln t =t 3-3t 2+6ln t+3t -1.② 由(1)②可知,当t>1时,g (t )>g (1),即t 3-3t 2+6ln t+3t >1,故t 3-3t 2+6ln t+3t -1>0. ③由①②③可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2[f (x 1)-f (x 2)]>0. 所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f '(x 1)+f '(x 2)2>f (x 1)-f (x 2)x 1-x 2.。
2020年高考数学一轮复习专题2.12导数的切线方程练习(含解析)
第十二讲 导数的切线方程1. 导数的几何意义:切线的斜率2. 求斜率的方法 (1)公式:/12012tan ()y y k f x x x α-===-0απ为直线的倾斜角,范围[0,),x 是切点的横坐标(2)当直线l 1、l 2的斜率都存在时:1212l l k k ⇔=,12120l l k k ⊥⇔•= 3. 切线方程的求法 (1)求出直线的斜率 (2)求出直线上的一点或切点(3)利用点斜式00()y y k x x -=-写出直线方程。
考向一斜率(或倾斜角)与切点互求【例1】(1)曲线y =13x 3在x =1处切线的倾斜角为。
(2)设函数()ln f x x x =,若0()2f x '=,则0x =______________. 【答案】(1)π4.(2)e【解析】(1)∵y ′=x 2,∴y ′|x =1=1,∴切线的倾斜角α满足tan α=1,∵0≤α<π,∴α=π4.(3)由题意得()ln 1f x x '=+,又00()ln 12f x x '=+=,解得0e x =.【举一反三】1.已知在曲线2y x =上过点00(),P x y 的切线为l . (1)若切线l 平行于直线45y x =-,求点P 的坐标; (2)若切线l 垂直于直线2650x y -+=,求点P 的坐标; (3)若切线l 的倾斜角为135︒,求点P 的坐标. 【答案】(1)(2,4);(2)39(,)24-;(3)11(,)24-.【解析】(1)两条直线平行斜率相等,2x 0=4,x 0=2,代入曲线y 0=4,切点P (2,4) (2)直线直线垂直,斜率相乘等于-1.0000139392x =-1,x =-,将x 代入曲线y =,故P (-,)32424(3)因为切线l 的倾斜角为135︒,所以其斜率为1-.即021x =-,得012x =-,014y =,故11(,)24P -.考向二在某点处求切线方程【例2】设函数f (x )=x ln x ,则点(1,0)处的切线方程是________.【解析】因为f ′(x )=ln x +1,所以f ′(1)=1,所以切线方程为x -y -1=0. 【答案】x -y -1=0【举一反三】1.函数f (x )=e xcos x 在点(0,f (0))处的切线方程为。
2020年高考数学一轮复习考点与题型总结:第三章 导数及其应用含答案
第三章 导数及其应用第一节 导数的概念及运算、定积分1.导数的概念(1)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率li mΔx →0 ΔyΔx=li mΔx →0 f (x 0+Δx )-f (x 0)Δx ❶为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.(2)导数的几何意义:函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)❷处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).❷曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线. (3)函数f (x )的导函数:称函数f ′(x )=li mΔx →0 f (x +Δx )-f (x )Δx为f (x )的导函数.(4)f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 2.基本初等函数的导数公式原函数 导函数 f (x )=x n (n ∈Q *) f ′(x )=n ·x n -1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.5.定积分的概念在∫b a f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.6.定积分的性质(1)∫b a kf (x )d x =k ∫b a f (x )d x (k 为常数); (2)∫b a [f 1(x )±f 2(x )]d x =∫b a f 1(x )d x ±∫b a f 2(x )d x ; (3)∫b a f (x )d x =∫c a f (x )d x +∫b c f (x )d x (其中a <c <b ).求分段函数的定积分,可以先确定不同区间上的函数解析式,然后根据定积分的性质(3)进行计算. 7.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ),常把F (b )-F (a )记作F (x )|b a ,即∫b a f (x )d x =F (x )|ba =F (b )-F (a ).8.定积分的几何意义定积分∫b a f (x )d x 的几何意义是介于x 轴、曲线y =f (x )及直线x =a ,x =b 之间的曲边梯形的面积的代数和,其值可正可负,具体来说,如图,设阴影部分的面积为S .①S =∫b a f (x )d x ;②S =-∫b a f (x )d x ;③S =∫c a f (x )d x -∫bc f (x )d x ; ④S =∫b a f (x )d x -∫b a g (x )d x =∫b a [f (x )-g (x )]d x .(1)定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可正可负.(2)当曲边梯形位于x 轴上方时,定积分的值为正;当曲边梯形位于x 轴下方时,定积分的值为负;当位于x 轴上方的曲边梯形与位于x 轴下方的曲边梯形面积相等时,定积分的值为零.二、常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.熟记以下结论:(1)⎝⎛⎭⎫1x ′=-1x 2;(2)(ln|x |)′=1x ; (3)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (4)[af (x )±bg (x )]′=af ′(x )±bg ′(x ). 3.常见被积函数的原函数(1)∫b a c d x =cx |b a ;(2)∫b a x n d x =x n +1n +1|ba(n ≠-1);(3)∫b a sin x d x =-cos x |b a ;(4)∫b a cos x d x =sin x |ba ;(5)∫b a 1x d x =ln|x ||b a ;(6)∫b a e x d x =e x |b a . 考点一 导数的运算1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则lnx 0=0,解得x 0=1.2.(2019·宜昌联考)已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2 B.21-2ln 2 C.41-2ln 2D .-2解析:选C 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 解析:f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 答案:-24.求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ;(3)y =cos x ex ;(4)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x)′(e x )2=-sin x +cos x e x .(4)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π) =-12x sin 4x ,∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .考点二 导数的几何意义及其应用考法(一) 求切线方程[例1] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] 法一:∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 法二:∵f (x )=x 3+(a -1)x 2+ax 为奇函数, ∴f ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D考法(二) 求切点坐标[例2] 已知函数f (x )=x ln x 在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为________.[解析] ∵f (x )=x ln x ,∴f ′(x )=ln x +1,由题意得f ′(x 0)·(-1)=-1,即f ′(x 0)=1,∴ln x 0+1=1,ln x 0=0,∴x 0=1,∴f (x 0)=0,即P (1,0).[答案] (1,0)考法(三) 由曲线的切线(斜率)求参数的值(范围)[例3] (1)(2018·商丘二模)设曲线f (x )=-e x -x (e 为自然对数的底数)上任意一点处的切线为l 1,总存在曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围是( )A .[-1,2]B .(3,+∞)C.⎣⎡⎦⎤-23,13D.⎣⎡⎦⎤-13,23 (2)(2018·全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________. [解析] (1)由f (x )=-e x -x ,得f ′(x )=-e x -1,∵e x +1>1,∴1e x +1∈(0,1).由g (x )=3ax +2cos x ,得g ′(x )=3a -2sin x ,又-2sin x ∈[-2,2],∴3a -2sin x ∈[-2+3a ,2+3a ].要使过曲线f (x )=-e x -x 上任意一点的切线l 1,总存在过曲线g (x )=3ax +2cos x上某点处的切线l 2,使得l 1⊥l 2,则⎩⎪⎨⎪⎧-2+3a ≤0,2+3a ≥1,解得-13≤a ≤23.(2)∵y ′=(ax +a +1)e x , ∴当x =0时,y ′=a +1, ∴a +1=-2,解得a =-3. [答案] (1)D (2)-3考法(四) 两曲线的公切线问题[例4] 已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.[解析] 由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎪⎨⎪⎧-ln x 0-14=ax 0, ①a =-1x, ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e 34=-e -34.[答案] -e -34[题组训练]1.曲线y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( )A.18B.14C.12D .1 解析:选B 因为y ′=2(x +1)2,所以y ′x =0=2,所以曲线在点(0,-1)处的切线方程为y +1=2x ,即y=2x -1,与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,所以与两坐标轴围成的三角形的面积S =12×|-1|×12=14. 2.已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值为________. 解析:由题意知y ′=a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.答案:13.若一直线与曲线y =ln x 和曲线x 2=ay (a >0)相切于同一点P ,则a 的值为________. 解析:设切点P (x 0,y 0),则由y =ln x ,得y ′=1x,由x 2=ay ,得y ′=2ax ,则有⎩⎪⎨⎪⎧1x 0=2a x 0,y 0=ln x 0,x 20=ay 0,解得a =2e.答案:2e考点三 定积分的运算及应用[题组训练]1. ⎠⎛0π(sin x -cos x )d x =________.解析:⎠⎛0π (sin x -cos x )d x=⎠⎛πsin x d x -⎠⎛0πcos x d x =-cos x⎪⎪⎪π0-sin x ⎪⎪⎪π=2. 答案:2 2. ⎠⎛1e 1x d x +⎠⎛-224-x 2d x =________.解析:⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=1-0=1,因为⎠⎛-224-x 2d x 表示的是圆x 2+y 2=4在x 轴及其上方的面积,故⎠⎛-224-x 2d x =12π×22=2π,故答案为2π+1.答案:2π+13.由曲线y =x ,y =2-x ,y =-13x 所围成图形的面积为____________.解析:法一:画出草图,如图所示.解方程组⎩⎨⎧y =x ,x +y =2,⎩⎪⎨⎪⎧ y =x ,y =-13x及⎩⎪⎨⎪⎧x +y =2,y =-13x ,得交点分别为(1,1),(0,0),(3,-1), 所以所求图形的面积S =⎠⎛01⎣⎡⎦⎤ x -⎝⎛⎭⎫-13x d x +⎠⎛13⎣⎡⎦⎤(2-x )-⎝⎛⎭⎫-13x d x =⎠⎛01⎝⎛⎭⎫ x +13x d x +⎠⎛13⎝⎛⎭⎫2-23x d x =⎝⎛⎭⎫23x 32+16x 2⎪⎪⎪10+⎝⎛⎭⎫2x -13x 2⎪⎪⎪31 =56+6-13×9-2+13=136. 法二:如图所求阴影的面积就是三角形OAB 的面积减去由y 轴,y =x ,y =2-x 围成的曲边三角形的面积,即S =12×2×3-⎠⎛01 (2-x -x )d x =3-⎝⎛⎭⎫2x -12x 2-23x 32⎪⎪⎪1=3-⎝⎛⎭⎫2-12-23=136. 答案:1364.一物体在力F (x ) =⎩⎪⎨⎪⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.解析:由题意知,力F (x )所做的功为W =⎠⎛04F (x )d x =⎠⎛025d x +⎠⎛24(3x +4)d x =5×2+⎝⎛⎭⎫32x 2+4x ⎪⎪⎪42=10+⎣⎡⎦⎤32×42+4×4-⎝⎛⎭⎫32×22+4×2=36(J).答案:361.正确选用求定积分的4个常用方法 定理法 性质法 几何法 奇偶性法 2.定积分在物理中的2个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的路程s =⎠⎛ab v (t )d t .(2)变力做功,一物体在变力F (x )的作用下,沿着与F (x )相同的方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .[课时跟踪检测]A 级1.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e=(e -1)(x -1),即(e -1)x -y +1=0.2.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.3.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( ) A .-2 B .2 C .-94 D.94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x ,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.4.(2019·四川名校联考)已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选C 设f ′(3),f (3)-f (2),f ′(2)分别表示直线n ,m ,l 的斜率,数形结合知0<f ′(3)<f (3)-f (2)<f ′(2),故选C.5.(2019·玉林模拟)由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( )A.13B.310C.14D.15解析:选A 由⎩⎨⎧ y =x 2,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =1,y =1,所以阴影部分的面积为⎠⎛01 (x -x 2)d x =⎝⎛⎭⎫23x 32-13x 3⎪⎪⎪1=13.6.(2018·安庆模拟)设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( ) A .0 B .1 C .2D .3解析:选D ∵y =e ax -ln(x +1),∴y ′=a e ax -1x +1,∴当x =0时,y ′=a -1.∵曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,∴a -1=2,即a =3.7.(2018·延边期中)设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,故切线的斜率k ≥-3,所以切线的倾斜角α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π.8.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0 相互垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝⎛⎭⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以1×⎝⎛⎭⎫-a2=-1,解得a =2.答案:29.(2019·重庆质检)若曲线y =ln(x +a )的一条切线为y =e x +b ,其中a ,b 为正实数,则a +eb +2的取值范围为________.解析:由y =ln(x +a ),得y ′=1x +a.设切点为(x 0,y 0),则有⎩⎪⎨⎪⎧1x 0+a =e ,ln (x 0+a )=e x 0+b ⇒b =a e -2.∵b >0,∴a >2e, ∴a +e b +2=a +1a ≥2,当且仅当a =1时等号成立.答案:[2,+∞)10.(2018·烟台期中)设函数F (x )=ln x +a x (0<x ≤3)的图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,则实数a 的取值范围为________.解析:由F (x )=ln x +ax (0<x ≤3),得F ′(x )=x -a x 2(0<x ≤3 ),则有k =F ′(x 0)=x 0-a x 20≤12在(0,3]上恒成立,所以a ≥⎝⎛⎭⎫-12x 20+x 0max .当x 0=1时,-12x 20+x 0在(0,3]上取得最大值12,所以a ≥12. 答案:⎣⎡⎭⎫12,+∞B 级1.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B ∵f (x )=x 2+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =⎝ ⎛⎭⎪⎫13x 3+2x ⎠⎛01f (x )d x ⎪⎪⎪10=13+2⎠⎛01f (x )d x ,∴⎠⎛01f (x )d x =-13. 2.设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1],x 2-1,x ∈(1,2],则⎠⎛-12f (x )d x 的值为( )A.π2+43 B.π2+3 C.π4+43D.π4+3 解析:选A ⎠⎛-12f (x )d x =⎠⎛-111-x 2d x +⎠⎛12 (x 2-1)d x =12π×12+⎝⎛⎭⎫13x 3-x ⎪⎪⎪21=π2+43. 3.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)=( ) A .26 B .29C .212D .215解析:选C 因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列, 所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8, 所以f ′(0)=84=212.4.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7解析:选A 因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0.由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.5.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 019(x )=( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,…,∴f n (x )的解析式以4为周期重复出现,∵2 019=4×504+3,∴f 2 019(x )=f 3(x )=-sin x -cos x .6.曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是( ) A .2 5 B .2 C .2 3D. 3解析:选A 设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在点M 处的切线与直线2x -y +8=0平行时,点M 到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.∵y ′=22x -1,∴22x 0-1=2,解得x 0=1,∴M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=2 5.7.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,即f ′(3)=-13.又g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝⎛⎭⎫-13=0,则曲线g (x )在x =3处的切线方程为y -3=0.答案:y -3=08.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积是否为定值,若是,求此定值;若不是,说明理由.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx 2,所以⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)是定值,理由如下:设P (x 0,y 0)为曲线y =f (x )上任一点,由f ′(x )=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0·|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,且此定值为6. 9.已知函数f (x )=ln x -a (x +1)x -1,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1. (1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 图象上任意一点A (x 0,y 0)处的切线,问:在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x 也相切?若存在,满足条件的 x 0有几个?解:(1)∵函数f (x )=ln x -a (x +1)x -1(x >0且x ≠1),∴f ′(x )=1x +2a(x -1)2,∵曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1,∴f ′⎝⎛⎭⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x (x -1)2. ∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞),无单调递减区间. (2)在区间(1,+∞)上存在唯一一个满足条件的x 0. ∵g (x )=ln x ,∴g ′(x )=1x,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.①设直线l 与曲线h (x )=e x 相切于点(x 1,e x 1), ∵h ′(x )=e x ,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0.②由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0= x 0+1x 0-1.下证在区间(1,+∞)上存在唯一一个满足条件的x 0. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增,又∵f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,∴结合零点存在性定理,知方程f (x )=0在区间(e ,e 2)上有唯一的实数根,这个根就是所求的唯一满足条件的x 0.第二节 导数的简单应用一、基础知识1.函数的单调性与导数的关系在(a ,b )内可导函数f (x ),f ′(x )在(a ,b )任意子区间内都不恒等于0.f ′(x )≥0⇔f (x )在(a ,b )上为增函数.f ′(x )≤0⇔f (x )在❶(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a❷,f(a)叫做函数y=f(x)的极小值.附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点❸(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)开区间上的单调连续函数无最值.,(1)f′(x)>0(<0)是f(x)在区间(a,b)内单调递增(减)的充分不必要条件.(2)f′(x)≥0(≤0)是f(x)在区间(a,b)内单调递增(减)的必要不充分条件.(3)由f(x)在区间(a,b)内单调递增(减)可得f′(x)≥0(≤0)在该区间内恒成立,而不是f′(x)>0(<0)恒成立,“=”不能少,必要时还需对“=”进行检验.f′(x 0)=0是x0为f(x)的极值点的必要不充分条件.例如,f(x)=x3,f′(0)=0,但x=0不是极值点.(1)极值点不是点,若函数f(x)在x1处取得极大值,则x1为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小值点,极小值为f(x2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.二、常用结论(1)若所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.(2)若函数f(x)在开区间(a,b)内只有一个极值点,则相应的极值一定是函数的最值.(3)极值只能在定义域内取得(不包括端点),最值却可以在端点处取得,有极值的不一定有最值,有最值的也未必有极值;极值有可能成为最值,非常数可导函数最值只要不在端点处取,则必定在极值处取.第一课时导数与函数的单调性考点一求函数的单调区间1.已知函数f(x)=x ln x,则f(x)()A.在(0,+∞)上单调递增B .在(0,+∞)上单调递减C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 解析:选D 因为函数f (x )=x ln x 的定义域为(0,+∞), 所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数f (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时,解得0<x <1e,即函数f (x )的单调递减区间为⎝⎛⎭⎫0,1e ,故选D. 2.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________. 解析:设幂函数f (x )=x a ,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22a ,a =2,所以f (x )=x 2,故g (x )=e x x 2, 则g ′(x )=e x x 2+2e x x =e x (x 2+2x ), 令g ′(x )<0,得-2<x <0, 故函数g (x )的单调递减区间为(-2,0). 答案:(-2,0)3.(2018·开封调研)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是___________________________________________________________.解析:f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0(x ∈(-π,π)), 解得-π<x <-π2或0<x <π2,即函数f (x )的单调递增区间是⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 答案:⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 考点二 判断含参函数的单调性(2018·全国卷Ⅰ节选)已知函数f (x )=1x -x +a ln x ,讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①当a ≤2时,则f ′(x )≤0, 当且仅当a =2,x =1时,f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. ②当a >2时,令f ′(x )=0, 得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. 综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.[题组训练]已知函数g (x )=ln x +ax 2+bx ,其中g (x )的函数图象在点(1,g (1))处的切线平行于x 轴. (1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性. 解:(1)g ′(x )=1x+2ax +b (x >0).由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴, 得g ′(1)=1+2a +b =0,所以b =-2a -1. (2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x .因为函数g (x )的定义域为(0,+∞), 所以当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1, 即函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 当a >0时,令g ′(x )=0,得x =1或x =12a ,若12a <1,即a >12,由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a<x <1,即函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上单调递减; 若12a >1,即0<a <12,由g ′(x )>0,得x >12a或0<x <1, 由g ′(x )<0,得1<x <12a,即函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0, 即函数g (x )在(0,+∞)上单调递增.综上可得,当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <12时,函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增, 在⎝⎛⎭⎫12a ,1上单调递减.考点三 根据函数的单调性求参数[典例精析](1)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.(2)若函数h (x )=ln x -12ax 2-2x (a ≠0)在[1,4]上单调递减,则a 的取值范围为________.[解析] (1)函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0,所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 答案:(1)⎣⎡⎦⎤-13,13 (2)⎣⎡⎭⎫-716,0∪(0,+∞)[变式发散]1.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上单调递增”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上单调递增,所以当x ∈[1,4]时,h ′(x )≥0恒成立,即a ≤1x 2-2x 恒成立,又因为当 x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a ≤-1,即a 的取值范围是(-∞,-1]. 答案:(-∞,-1]2.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上存在单调递减区间”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上存在单调递减区间, 所以h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,而当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1), 所以a >-1,又因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞). 答案:(-1,0)∪(0,+∞)3.(变条件)若本例(2)条件变为“函数h (x )在[1,4]上不单调”,则a 的取值范围为________. 解析:因为h (x )在[1,4]上不单调,所以h ′(x )=0在(1,4)上有解,即a =1x 2-2x =⎝⎛⎭⎫1x -12-1在(1,4)上有解, 令m (x )=1x 2-2x ,x ∈(1,4),则-1<m (x )<-716.所以实数a 的取值范围是⎝⎛⎭⎫-1,-716. 答案:⎝⎛⎭⎫-1,-716[题组训练]1.(2019·渭南质检)已知函数f (x )=ax 3+bx 2的图象经过点M (1,4),曲线在点M 处的切线恰好与直线x +9y =0垂直.若函数f (x )在区间[m ,m +1]上单调递增,则m 的取值范围是________.解析:∵f (x )=ax 3+bx 2的图象经过点M (1,4), ∴a +b =4,①f ′(x )=3ax 2+2bx ,则f ′(1)=3a +2b .由题意可得f ′(1)·⎝⎛⎭⎫-19=-1,即3a +2b =9.② 联立①②两式解得a =1,b =3, ∴f (x )=x 3+3x 2,f ′(x )=3x 2+6x . 令f ′(x )=3x 2+6x ≥0,得x ≥0或x ≤-2. ∵函数f (x )在区间[m ,m +1]上单调递增, ∴[m ,m +1]⊆(-∞,-2]∪[0,+∞), ∴m ≥0或m +1≤-2,即m ≥0或m ≤-3. 答案:(-∞,-3]∪[0,+∞)2.已知函数f (x )=3xa -2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________.解析:f ′(x )=3a -4x +1x ,若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立. 令h (x )=4x -1x,则h (x )在[1,2]上单调递增, 所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,又a >0, 所以0<a ≤25或a ≥1.答案:⎝⎛⎦⎤0,25∪[1,+∞) [课时跟踪检测]A 级1.下列函数中,在(0,+∞)上为增函数的是( )A .f (x )=sin 2xB .f (x )=x e xC .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.2.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的大致图象是( )解析:选A 设g (x )=f ′(x )=2x -2sin x ,则g ′(x )2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,结合选项知选A.3.若函数f (x )=(x 2-cx +5)e x 在区间⎣⎡⎦⎤12,4上单调递增,则实数c 的取值范围是( ) A .(-∞,2] B .(-∞,4] C .(-∞,8]D .[-2,4]解析:选B f ′(x )=[x 2+(2-c )x -c +5]e x ,∵函数f (x )在区间⎣⎡⎦⎤12,4上单调递增,∴x 2+(2-c )x -c +5≥0对任意x ∈⎣⎡⎦⎤12,4恒成立,即(x +1)c ≤x 2+2x +5对任意x ∈⎣⎡⎦⎤12,4恒成立,∴c ≤x 2+2x +5x +1对任意x ∈⎣⎡⎦⎤12,4恒成立,∵x ∈⎣⎡⎦⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4. 4.(2019·咸宁联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]解析:选A ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),由x -9x ≤0,得0<x ≤3,∴f (x )在(0,3]上是减函数,则[a -1,a +1]⊆(0,3],∴a -1>0且a +1≤3,解得1<a ≤2.5.(2019·南昌联考)已知函数f (x +1)是偶函数,当x ∈(1,+∞)时,函数f (x )=sin x -x ,设a =f ⎝⎛⎭⎫-12,b =f (3),c =f (0),则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .b <c <aD .a <b <c解析:选A ∵函数f (x +1)是偶函数,∴函数f (x )的图象关于直线x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,b =f (3),c =f (0)=f (2).又∵当x ∈(1,+∞)时,函数f (x )=sin x -x ,∴当x ∈(1,+∞)时,f ′(x )=cos x -1≤0,即f (x )=sin x -x 在(1,+∞)上为减函数,∴b <a <c .6.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )≥0的解集为________________.解析:由f (x )图象特征可得,在⎝⎛⎦⎤-∞,12和[2,+∞)上f ′(x )≥0, 在 ⎝⎛⎭⎫12,2上f ′(x )<0,所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧ x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 答案:⎣⎡⎦⎤0,12∪[2,+∞) 7.(2019·岳阳模拟)若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 解析:∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间, ∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解. 设g (x )=2x -e x ,则g ′(x )=2-e x , 令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增, 当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2. 答案:(-∞,2ln 2-2)8.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间. 解:(1)因为f (x )=a (x -5)2+6ln x , 所以f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0;当2<x <3时,f ′(x )<0,故函数f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3).9.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x -ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)判断函数f (x )的单调性. 解:(1)∵a =e ,∴f (x )=e x -e x -1, ∴f ′(x )=e x -e ,f (1)=-1,f ′(1)=0.∴当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1. (2)∵f (x )=e x -ax -1,∴f ′(x )=e x -a . 易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增. 综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.B 级1.(2019·南昌模拟)已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x ,得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又∵f (-x )=-x sin(-x )=x sin x =f (x ),∴f (x )为偶函数,∴当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.2.函数f (x )=12x 2-ln x 的单调递减区间为________.解析:由题意知,函数f (x )的定义域为(0,+∞),由f (x )=x -1x <0,得0<x <1,所以函数f (x )的单调递减区间为(0,1).答案:(0,1)3.(2019·郴州模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)4.已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )解析:选C 当0<x <1时,xf ′(x )<0,∴f ′(x )<0,故y =f (x )在(0,1)上为减函数;当x >1时,xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此排除A 、B 、D ,故选C.5.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号, 所以f (x )在其定义域内单调递增. 因为f (a -1)+f (2a 2)≤0, 所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 6.已知f (x )=ax -1x ,g (x )=ln x ,x >0,a ∈R 是常数.(1)求函数y =g (x )的图象在点P (1,g (1))处的切线方程;(2)设F (x )=f (x )-g (x ),讨论函数F (x )的单调性. 解:(1)因为g (x )=ln x (x >0), 所以g (1)=0,g ′(x )=1x,g ′(1)=1,故函数g (x )的图象在P (1,g (1))处的切线方程是y =x -1. (2)因为F (x )=f (x )-g (x )=ax -1x -ln x (x >0),所以F ′(x )=a +1x 2-1x=a +⎝⎛⎭⎫1x -122-14. ①当a ≥14时,F ′(x )≥0,F (x )在(0,+∞)上单调递增;②当a =0时,F ′(x )=1-xx 2,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减;③当0<a <14时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a2a>0,且x 2>x 1, 故F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a ,⎝ ⎛⎭⎪⎫1+1-4a 2a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,1+1-4a 2a 上单调递减;④当a <0时,由F ′(x )=0,得 x 1=1-1-4a 2a >0,x 2=1+1-4a 2a<0, F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a 上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,+∞上单调递减.7.已知函数f (x )=ax -ln x ,g (x )=e ax +2x ,其中a ∈R. (1)当a =2时,求函数f (x )的极值;(2)若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上具有相同的单调性,求实数a 的取值范围. 解:(1)当a =2时,f (x )=2x -ln x ,定义域为(0,+∞),则f ′(x )=2-1x,故当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫12,+∞ 时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =12处取得极小值,且f ⎝⎛⎭⎫12=1+ln 2,无极大值. (2)由题意知,f ′(x )=a -1x,g ′(x )=a e ax +2,①当a >0时,g ′(x )>0,即g (x )在R 上单调递增,而f (x )在⎝⎛⎭⎫1a ,+∞上单调递增,故必存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上单调递增;②当a =0时,f ′(x )=-1x <0,故f (x )在(0,+∞)上单调递减,而g (x )在(0,+∞)上单调递增,故不存在满足条件的区间D ;③当a <0时,f ′(x )=a -1x <0,即f (x )在(0,+∞)上单调递减,而g (x )在⎝⎛⎭⎫-∞,1a ln ⎝⎛⎭⎫-2a 上单调递减,在⎝⎛⎭⎫1a ln ⎝⎛⎭⎫-2a ,+∞上单调递增,若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上有相同的单调性,则有1a ln ⎝⎛⎭⎫-2a >0,解得a <-2. 综上可知,实数a 的取值范围为(-∞,-2)∪(0,+∞).第二课时 导数与函数的极值、最值 考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由. [解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0, 函数f (x )单调递增.。
(通用版)2020版高考数学复习专题二函数与导数2.2幂函数、指数函数、对数函数及分段函数课件
的图象如图所示,由图可得 x1<x3<x2,故选 A.
-22-
高考真题体验
典题演练提能
5.已知函数 f(x)=ex-12(x<0)与 g(x)=ln(x+a)的图象上存在关于 y 轴对 称的点,则实数 a 的取值范围是( )
A.
-∞,
1 e
B. -∞, e
C.
-
1 e
,
e
D.
-
e,
1 e
答案:B
-23-
而lg 2-1<0,2lg 2-1<0,lg 3-1<0,lg 2>0,
∴a+b<0.
������+������ ������������
=
1 ������
+
1������=log0.32+log0.30.2=log0.30.4<log0.30.3=1.∴ab<a+b.故
选 B.
-4-
高考真题体验
项,y=(-x)3=-x3,其图象和B选项中y=x3的图象关于x轴对称,故C不正
确.D选项,y=log3(-x),其图象与y=log3x的图象关于y轴对称,故D选项 不正确.综上,可知选B.
-16-
高考真题体验
典题演练提能
1.在同一直角坐标系中,函数f(x)=2-ax,g(x)=loga(x+2)(a>0,且a≠1) 的图象大致为( )
������1 =log2(x1+1), 1
2
������2 =log3x2, 1
2
-21-
高考真题体验
典题演练提能
解析:x1,x2,x3 分别是函数 y=
2020高考数学复习-专题01 导数与函数的最(极)值(精讲篇)-用思维导图突破导数压轴题
金戈铁骑用思维导图突破导数压轴题解答数学题的“思维导图”:逛公园顺道看景,好风光驻足留影. 把条件翻成图式,关键处深挖搞清. 综合法由因导果,分析法执果索因. 两方法嫁接联姻,让难题无以遁形.这里把解题比作逛公园,沿路而行,顺道看景,既有活跃气氛,又有借景喻理之意,即理解题意后把已知条件“翻译”出来,如果能得到结论那是最好,如果不行就要转化,即从已知条件入手推出中间结论(可知),当中间结论能直接证明最终结论时,则解题成功.当中间结论不能直接证明最终结论时,可把最终结论等价转化为“需知”,再用中间结论证明“需知”从而达到解题目的.有时还要挖掘题目的隐含条件.从某种意义上说,解题就是“找关系”----找出已知与未知的联系,不断缩小以至消除二者之间的差距,从而达到解题目的.这个思维导图不仅是用来解答压轴题,其实,每个层次的学生都有相应的难题。
中等以下水平的学生高考基本不用做压轴题的,但他们做中档题会有困难,思维导图一样适用。
专题01 导数与函数的最(极)值问题否已知条件隐含条件中间结论(可知)已知条件的等价转化待求(证)的结论结论的等价转化(需知)能否 能利用导数求函数f (x )极值、最值的基本方法是先求f (x )的导数f 'x (),再求f 'x ()的零点i x ,i N ∈,根据f 'x ()在i x 两边的符号判断的单调性,最后确定i f x ()是极大值或极小值,再确定最值。
先求导数 再定零点 考查单调 极值来了思路点拨第(1)只要直接计算即可。
第(2)题先求出()f x 和()f x '的含参数零点(用a 、b 表示),再根据零点均在集合{3-,1,3}中确定a 、b 的值。
第(3)题求出()f x '的零点12,x x (设12x x <),根据单调性确定极大值为321111()(1)=-++f x x b x bx ,这里含有两个变量,最容易想到的方法就是转化为一元变量,但恒等变形能力要求较高,也可以挖掘隐含条件利用基本不等式整体消元。
2020高考数学之——导数
高三零模冲刺——导数1.(本题满分16分)已知函数()ln f x x =,2()g x x =.(1)求过原点(0,0),且与函数()f x 的图象相切的直线l 的方程;(2)若a >0,求函数2()()2()x g x a f x ϕ=-在区间[1,+∞)上的最小值.已知函数f(x)=2x3-3(a+1)x2+6ax,a∈R.(1)曲线y=f(x)在x=0处的切线的斜率为3,求a的值;(2)若对于任意x∈(0,+∞),f(x)+f(-x)≥12ln x恒成立,求a的取值范围;(3)若a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),记h(a)=M(a)-m(a),求h(a)的最小值.已知函数f(x)=ax2-bx+ln x,a,b∈R.(1)当a=b=1时,求曲线y=f(x)在x=1处的切线方程;(2)当b=2a+1时,讨论函数f(x)的单调性;(3)当a=1,b>3时,记函数f(x)的导函数f′(x)的两个零点是x1和x2(x1<x2).求证:f(x1)-f(x2)>34-ln2.已知函数f(x)=e x,g(x)=x-b,b∈R.(1)若函数f(x)的图象与函数g(x)的图象相切,求b的值;(2)设T(x)=f(x)+ag(x),a∈R,求函数T(x)的单调增区间;(3)设h(x)=|g(x)|·f(x),b<1.若存在x1,x2∈[0,1],使|h(x1)-h(x2)|>1成立,求b的取值范围.5.(本小题满分16分)已知函数f(x)=ax3+|x-a|,a∈R.(1)若a=-1,求函数y=f(x)(x∈[0,+∞))的图象在x=1处的切线方程;(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;(3)当a>0时,若对于任意的x1∈[a,a+2],都存在x2∈[a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.。
(完整版)高考数学导数部分知识点梳理
高考数学导数部分知识点梳理 一、导数的定义及其几何意义: 定义:xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/叫函数)(x f y =在0x x →处的导数,记作0|/x x y = 。
几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的斜率。
二、常用的求导公式:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln xxa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x ex '=。
三、常用的求导法则:若函数)(x f 与)(x g 的导数存在,则)(')(')]'()([x g x f x g x f ±=±,)(')]'([x f c x cf ⋅=,)()()()()]()([///x g x f x g x f x g x f +=,)()()()()())()((2///x g x g x f x g x f x g x f -=。
复合函数的导数:由)(u f y =与u =ϕ)(x 得到复合函数f y =][)(x ϕ,则'xy ='u y 。
'x u 。
四、利用导函数求函数的单调性: (一)一般地,设函数)(x f y =在某个区间可导,如果'f )(x 0>,则)(x f 为增函数;如果'f 0)(<x ,则)(x f 为减函数;如果在某区间内恒有'f 0)(=x ,则)(x f 为常数。
(二)求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的单调区间; ② 求)(x f ',令)(x f '=0,解此方程,求出它在定义区间内的一切实根;③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间;④ 确定)(x f '在各小开区间内的正负值,根据)(x f '的符号判定函数)(x f 在各个相应小开区间内的增减性.五、利用导函数求函数的极值:(一)曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;(二)求可导函数极值的步骤:① 求导数)(x f '; ② 求方程)(x f '=0的在定义区间内的一切实根;③检验)(xf'在方程)(xf'=0的根左右的符号,六、利用导函数求函数的最值:(一)一般地,在区间[a,b]上连续的函数f)(x在[a,b]上必有最大值与最小值。
2020年高考数学(理)高频考点 函数与导数 专题07 指数与指数函数(解析版)
函数与导数07 函数 指数与指数函数一、具体目标:指数函数(1) 了解指数函数模型的实际背景.(2) 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3) 理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.(4) 体会指数函数是一类重要的函数模型.二、知识概述: 根式和分数指数幂 1.根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(na )n=a (a 使n a 有意义);当n 为奇数时,na n=a ,当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.2.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1n a m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义. (2)有理指数幂的运算性质(注意逆用)【考点讲解】(1),(,,0)r s r sa a a r s Q a +⋅=∈>(2),(,,0)r s r s a a a r s Q a -÷=∈>(3)(),(,,0)r s rs a a r s Q a =∈>.(4)(),(,0,0)s s sab a b s Q a b =∈>> 2.指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质:a >1 0<a <1图象定义域 R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1; 当x <0时,0<y <1 当x <0时,y >1; 当x >0时,0<y <1 在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数3. 指数型函数有如下的性质: 形如. ()(0,1)f x y a a a >≠=一类函数,有如下结论:(1)()(0,1)f x y aa a >≠=的定义域、奇偶性与()f x 的定义域、奇偶性相同;(2)先确定()f x 的值域,再利用指数函数的单调性,确定()(0,1)f x y a a a >≠=的值域;(3)()(0,1)f x y aa a >≠=的单调性具有规律“同增异减”,即(),u u f x y a ==的单调性相同时,()(0,1)f x y a a a >≠=是增函数,(),u u f x y a ==的单调性不同时,()(0,1)f x y a a a >≠=是减函数.1.【2019优选题】若4a 2-4a +1=3(1-2a )3,则实数a 的取值范围是________.【解析】左边=(2a -1)2=||2a -1,右边=1-2a, 即||2a -1=1-2a, ∴2a -1≤0,解得a ≤12.【答案】⎩⎨⎧a ⎪⎪⎭⎬⎫a ≤122.【2019优选题】计算14030.75333264()(2)162---⎡⎤--++⎣⎦= . 【解析】化简:4164164331==-,1612])2[(4343==--,81161161161643434375.0====--,原式=11191416816-++=-.【答案】916-3.【2019优选题】若x ,x-1122为方程x 2-3x +a =0的两根,则-33222232x x x x -+-=+-________.【解析】因为-1122x ,x 为方程x 2-3x +a =0的两根,所以-11223x x,+=所以3322x x-+=()111221x x x x --⎛⎫+⋅+- ⎪⎝⎭2111122223x x x x --⎡⎤⎛⎫⎛⎫⎢⎥=+⋅+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=3×(32-3)=18,x 2+x -2=()212x x-+-x x -⎡⎤⎛⎫⎢⎥=+-- ⎪⎢⎥⎝⎭⎣⎦22112222=(32-2)2-2=47,【真题分析】所以33222232x x x x --+-=+-18314723-=-. 【答案】134.【2018优选题】函数y =(a 2-5a +5)a x 是指数函数,则a 的值为________.【解析】∵函数y =(a 2-5a +5)a x 是指数函数,∴a 2-5a +5=1,解得a =1或a =4.又∵指数函数y =a x 的底数a 需满足a >0且a ≠1,∴a =4. 【答案】45.【2018优选题】函数y =a x +2-2(a >0,且a ≠1)的图像恒过点(m ,n ),则2m n a -=_______.【解析】令x +2=0,则x =-2, y =a x +2-2=a 0-2=-1,∴函数y =a x +2-2的图像恒过点(-2,-1),即m =-2,n =-1,∴m-n-a a a +===22201.【答案】16. 【2015山东,5分】已知函数f (x )=a x +b (a >0,且a ≠1) 的定义域和值域都是[]-1,0,则a +b =________. 【解析】当a >1时,函数f (x )=a x +b 在定义域上是增函数,∴f (0)为函数最大值,f (-1)为函数最小值,∴1110b a b -+=-⎧⎨+=⎩,,无解,不符合题意,舍去;当0<a <1时,函数f (x )=a x +b 在定义域上是减函数,∴f (-1)为函数最大值,f (0)为函数最小值,∴1110b a b -+=-⎧⎨+=⎩,,解得b =-2,a =12,∴a +b =-32. 【答案】-327.【2019优选题】若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)【解析】∵2x (x -a )<1,∴x -a <12x .∵存在正数x 使2x (x -a )<1成立,即存在正数x 使x -a <12x 成立,即存在正数x 使函数y =x -a 的图像在函数y =12x 的图像的下方.在坐标系中画出图像,如下图:由图像可知当-a <1,即a >-1时,存在正数x 使2x (x -a )<1成立. 【答案】D8. 【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<.故选B . 【答案】B9.【2019年高考全国Ⅱ卷理数】若a >b ,则( ) A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │【解析】取2,1a b ==,满足a b >,但ln()0a b -=,则A 错,排除A ;由219333=>=,知B 错,排除B ;取1,2a b ==-,满足a b >,但|1||2|<-,则D 错,排除D ;因为幂函数3y x =是增函数,a b >,所以33a b >,即a 3−b 3>0,C 正确.故选C . 【答案】C10.【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )a y x =+(a >0,且a ≠1)的图象可能是【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1x y a=的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合.综上,选D. 【答案】D11.【2019优选题】比较大小:(Ⅰ)a =1335-⎛⎫ ⎪⎝⎭,b =1435-⎛⎫ ⎪⎝⎭,c =1434-⎛⎫⎪⎝⎭,则它们的大小关系是________.(Ⅱ)a =(-3)3,b =-125,c =.π03,则它们的大小关系是________.(Ⅲ) 53532a ,b ,c ===,则它们的大小关系为________.【解析】:(Ⅰ) 113433,55a b --⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭Q , 函数y =⎝⎛⎭⎫35x为减函数,11433355--⎛⎫⎛⎫∴>> ⎪ ⎪⎝⎭⎝⎭0315⎛⎫= ⎪⎝⎭,∴a >b >1.14110441434555154434b c ---⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭===>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎝⎭∵, ∴b >c ,∴a >b >c .(Ⅱ)∵a =(-3)3<0,0<b =125-<50=1, c =π0.3>π0=1,∴a <b <c .(Ⅲ)∵53532a ,b ,c ===,∴101021055525a (),c ====(2)10=25=32,∴a 10<c 10,∴a <c .∵b 6=(33)6=32=9,c 6=(2)6=23=8,∴b 6>c 6,∴b >c .综上,a <c <b . 【答案】(Ⅰ)a >b >c (Ⅱ)a <b <c (Ⅲ)a <c <b12.【2016高考江苏卷】已知函数()(0,0,1,1)x xf x a b a b a b =+>>≠≠. 设12,2a b ==.(1)求方程()2f x =的根; (2)若对任意x R ∈,不等式(2)f()6f x m x ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-22xyO 1-1-112020高考虽然延迟,但是练习一定要跟上,加油,孩子们! 1、(广东卷)函数32()31f x x x =-+是减函数的区间为(D) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)2.(全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =(B ) (A )2 (B )3 (C )4(D )53. (湖北卷)在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( D ) A .3B .2C .1D .04.(江西)已知函数()y xf x '=的图象如右图所示(中'()f x 是函数()f x 的导函数)象中()y f x =的图象大致是(C )5.(浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( B ) (A)18 (B)41 (C) 21(D)1 6. (重庆卷)曲线y x 3在点(1,1)处的切线与x 轴、直线x 2所围成的三角形的面积为______8/3____。
7.(江苏卷)(14)曲线31y x x =++在点(1,3)处的切线方程是41y x =-O-2 2 xy1 -1-212O x y-2-2 21-112O-2 4 x y1-1 -212 O-22xy-124 A8. ( 全国卷III)曲线32y x x =-在点(1,1)处的切线方程为x+y-2=0 9. (北京卷)过原点作曲线y =e x 的切线,则切点的坐标为 (1,e ); ,切线的斜率为e .10.(全国卷Ⅱ)设a 为实数,函数.)(23a x x x x f +--= (Ⅰ)求)(x f 的极值.(Ⅱ)当a 在什么范围内取值时,曲线x x f y 与)(=轴仅有一个交点.解:(I)'()f x =32x -2x -1 若'()f x =0,则x ==-13,x =1当x 变化时,'()f x ,()f x 变化情况如下表:∴()f x 的极大值是()327f a -=+,极小值是(1)1f a =- (II)函数322()(1)(1)1f x x x x a x x a =--+=-++-由此可知,取足够大的正数时,有()f x >0,取足够小的负数时有()f x <0,所以曲线y =()f x 与x 轴至少有一个交点结合()f x 的单调性可知: 当()f x 的极大值527a +<0,即5(,)27a ∈-∞-时,它的极小值也小于0,因此曲线y =()f x 与x 轴仅有一个交点,它在(1,+∞)上。
当()f x 的极小值a -1>0即a ∈(1,+∞)时,它的极大值也大于0,因此曲线y =()f x 与x 轴仅有一个交点,它在(-∞,-13)上。
∴当5(,)27a ∈-∞-∪(1,+∞)时,曲线y =()f x 与x 轴仅有一个交点。
11. (全国卷Ⅱ)已知a≥ 0 ,函数f(x) = ( 2x -2ax )x e(1) 当X 为何值时,f(x)取得最小值?证明你的结论; (2)设 f(x)在[ -1,1]上是单调函数,求a 的取值范围.解:(I )对函数()f x 求导数得x e a ax x x x f )222()(2--+=' 令,0)(='x f 得[2x +2(1-a )x -2a ]x e =0从而2x +2(1-a )x -2a =0解得 11,112221++-=+--=a a x a a x 当x 变化时,()f x 、'()f x 的变化如下表∴()f x 在x =1x 处取得极大值,在x =2x 处取得极小值。
当a ≥0时,1x <-1,2x )(,0x f ≥在()21,x x 上为减函数,在),(2+∞x 上为增函数而当0<x 时)(x f =0)2(>-x e a x x ,当x=0时,0)(=x f 所以当112++-=a a x 时,)(x f 取得最小值(II )当a ≥0时,)(x f 在[]1,1-上为单调函数的充要条件是12≥x 即1112≥++-a a ,解得a 43≥于是)(x f 在[-1,1]上为单调函数的充要条件是43≥a 即a 的取值范围是3[,)4+∞12. ( 全国卷III)用长为90cm,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?解:设容器的高为x ,容器的体积为V ,1分则V=(90-2x )(48-2x )x,(0<V<24)5分 =4x 3-276x 2+4320x ∵V ′=12 x 2-552x+4320……7分由V ′=12 x 2-552x+4320=0得x 1=10,x 2=36 ∵x<10 时,V ′>0, 10<x<36时,V ′<0, x>36时,V ′>0, 所以,当x=10,V有极大值V(10)=1960……………………………………………………10分 又V(0)=0,V(24)=0,…………………………………………………………………………11分 所以当x=10,V有最大值V(10)=1960………………………………………………………12分13. ( 全国卷III)已知函数()2472x f x x-=-,[]01x ∈,(Ⅰ)求()f x 的单调区间和值域;(Ⅱ)设1a ≥,函数()[]223201g x x a x a x =--∈,,,若对于任意[]101x ∈,,总存在[]001x ∈,,使得()()01g x f x =成立,求a 的取值范围 解:对函数()f x 求导,得()()2241672x x fx x -+-=-,()()()221272x x x --=--令()0f x =,解得 112x =或272x =当x 变化时,()f x ,、()f x 的变化情况如下表:所以,当102x ⎛⎫∈ ⎪⎝⎭,时,()f x 是减函数;当112x ⎛⎫∈ ⎪⎝⎭,时,()f x 是增函数;当()01x ∈,时,()f x 的值域为[]43--, (Ⅱ)对函数()g x 求导,得 ()()223g x x a =-,因此1a ≥,当()01x ∈,时, ()()2310g x a -≤p ,因此当()01x ∈,时,()g x 为减函数,从而当[]01x ∈,时有 ()()()10g x g g ∈⎡⎤⎣⎦,又()21123g a a =--,()02g a =-,即当[]1x ∈0,时有()21232g x a a a ⎡⎤∈---⎣⎦,任给[]11x ∈0,,()[]143f x ∈--,,存在[]001x ∈,使得()()01g x f x =,则[]2123243a a a ⎡⎤---⊃--⎣⎦,,即212341232a a a ⎧--≤-⎨-≥-⎩()()解1()式得 1a ≥或53a ≤-解2()式得 32a ≤ 又1a ≥,故:a 的取值范围为312a ≤≤14. (北京卷)已知函数f (x )=-x 3+3x 2+9x +a , (I )求f (x )的单调递减区间;(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.解:(I ) f ’(x )=-3x 2+6x +9.令f ‘(x )<0,解得x <-1或x >3,所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞). (II )因为f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a ,所以f (2)>f (-2).因为在(-1,3)上f ‘(x )>0,所以f (x )在[-1, 2]上单调递增,又由于f (x )在[-2,-1]上单调递减,因此f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值,于是有 22+a =20,解得 a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=1+3-9-2=-7, 即函数f (x )在区间[-2,2]上的最小值为-7.15.(福建卷)已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x . (Ⅰ)求函数)(x f y =的解析式; (Ⅱ)求函数)(x f y =的单调区间.解:(Ⅰ)由)(x f 的图象经过P (0,2),知d=2,所以,2)(23+++=cx bx x x f.23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x ,知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即 .3,0,32.121,623-==⎩⎨⎧=-=-⎩⎨⎧=+-+-=+-∴c b c b c b c b c b 解得即 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ).012,0363.363)(222=--=----='x x x x x x x f 即令解得 .21,2121+=-=x x 当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时 故)21,(233)(23--∞+--=在x x x x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数. 16.(福建卷)已知函数bx ax x f +-=26)(的图象在点M (-1,f (x ))处的切线方程为x +2y+5=0.(Ⅰ)求函数y=f (x )的解析式; (Ⅱ)求函数y=f (x )的单调区间.解:(1)由函数f (x )的图象在点M (-1f (-1))处的 切线方程为x +2y+5=0,知.)()6(2)()(.21)1(,2)1(,05)1(21222b x ax x b x a x f f f f +--+='-=-'-=-=+-+-Θ即.),323(;)323,323(;)323,(362)(.0)(,323323;0)(,323,323,323,323,06122.)3(6122)()(.362)().1,01(3,222122222内是减函数在内是增函数在内是减函数在所以时当时或当解得令是所以所求的函数解析式舍去解得+∞++---∞+-=>'+<<-<'+>-<+=-==++-+++-='+-=-=≠+==x x x f x f x x f x x x x x x x x x x f II x x x f b b b a Θ17. (湖北卷) 已知向量x f t x x x ⋅=-=+=)(),,1(),1,(2若函数在区间(-1,1)上是增函数,求t 的取值范围.解法1:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.23)(2t x x x f ++-='则.0)()1,1(,)1,1()(≥'--x f x f 上可设则在上是增函数在若,23)(,)1,1(,230)(22x x x g x x t x f -=--≥⇔≥'∴考虑函数上恒成立在区间,31)(=x x g 的图象是对称轴为由于开口向上的抛物线,故要使x x t 232-≥在区间(-1,1)上恒成立⇔.5),1(≥-≥t g t 即.)1,1()(,0)()1,1()(,5上是增函数在即上满足在时而当->'-'≥x f x f x f t5≥t t 的取值范围是故.解法2:依定义,)1()1()(232t tx x x x t x x x f +++-=++-=.0)()1,1(,)1,1()(.23)(2≥'--++-='x f x f t x x x f 上可设则在上是增函数在若)(x f 'Θ的图象是开口向下的抛物线,时且当且仅当05)1(,01)1(≥-=-'≥-='∴t f t f.5.)1,1()(,0)()1,1()(≥->'-'t t x f x f x f 的取值范围是故上是增函数在即上满足在18.(湖南卷)设0≠t ,点P (t ,0)是函数cbx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线. (Ⅰ)用t 表示a ,b ,c ;(Ⅱ)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围.解:(I )因为函数)(x f ,)(x g 的图象都过点(t ,0),所以0)(=t f , 即03=+at t .因为,0≠t 所以2t a -=..,0,0)(2ab c c bt t g ==+=所以即又因为)(x f ,)(x g 在点(t ,0)处有相同的切线,所以).()(t g t f '=' 而.23,2)(,3)(22bt a t bx x g a x x f =+='+='所以将2t a -=代入上式得.t b = 因此.3t ab c -==故2t a -=,t b =,.3t c -= (II)解法一))(3(23,)()(223223t x t x t tx x y t tx x t x x g x f y -+=--='+--=-=.当0))(3(<-+='t x t x y 时,函数)()(x g x f y -=单调递减. 由0<'y ,若t x t t <<->3,0则;若.3,0t x t t -<<<则 由题意,函数)()(x g x f y -=在(-1,3)上单调递减,则).3,()3,1(),3()3,1(tt t t -⊂--⊂-或所以.39.333≥-≤≥-≥t t tt 或即或又当39<<-t 时,函数)()(x g x f y -=在(-1,3)上单调递减. 所以t 的取值范围为).,3[]9,(+∞⋃--∞解法二:))(3(23,)()(223223t x t x t tx x y t tx x t x x g x f y -+=--='+--=-=因为函数)()(x g x f y -=在(-1,3)上单调递减,且))(3(t x t x y -+='是(-1,3)上的抛物线, 所以⎩⎨⎧≤'≤'=-=.0|,0|31x x y y 即⎩⎨⎧≤-+≤--+-.0)3)(9(.0)1)(3(t t t t 解得.39≥-≤t t 或所以t 的取值范围为).,3[]9,(+∞⋃--∞19.(湖南卷)已知函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0. (Ⅰ)若b =2,且h (x )=f (x )-g(x )存在单调递减区间,求a 的取值范围;(Ⅱ)设函数f (x )的图象C 1与函数g(x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行. 解:(I )x ax x x h b 221ln )(,22--==时,则.1221)(2xx ax ax x x h -+-=--=' 因为函数h (x )存在单调递减区间,所以)(x h '<0有解. 又因为x >0时,则ax 2+2x -1>0有x >0的解.①当a >0时,y=ax 2+2x -1为开口向上的抛物线,ax 2+2x -1>0总有x >0的解;②当a <0时,y=ax 2+2x -1为开口向下的抛物线,而ax 2+2x -1>0总有x >0的解;则△=4+4a >0,且方程ax 2+2x -1=0至少有一正根.此时,-1<a <0.综上所述,a 的取值范围为(-1,0)∪(0,+∞). (II )证法一 设点P 、Q 的坐标分别是(x 1, y 1),(x 2, y 2),0<x 1<x 2. 则点M 、N 的横坐标为,221x x x +=C 1在点M 处的切线斜率为,2|1212121x x xk x x x +==+=C 2在点N 处的切线斜率为.2)(|212221b x x a b ax k x x x ++=+=+=假设C 1在点M 处的切线与C 2在点N 处的切线平行,则k 1=k 2. 即b x x a x x ++=+2)(22121,则 )2()(2)()(2)(21212221221222112bx x a bx x a x x b x x a x x x x +-+=-+-=+-=.ln ln 1212x x y y -=-所以.1)1(2ln 121212x x x x x x +-= 设,12x x t =则.1,1)1(2ln >+-=t t t t ① 令.1,1)1(2ln )(>+--=t t t t t r 则.)1()1()1(41)(222+-=+-='t t t t t t r因为1>t 时,0)(>'t r ,所以)(t r 在+∞,1[)上单调递增. 故.0)1()(=>r t r 则tt t +->1)1(2ln . 这与①矛盾,假设不成立.故C 1在点M 处的切线与C 2在点N 处的切线不平行.证法二:同证法一得).(2)ln )(ln (121212x x x x x x -=-+因为01>x ,所以).1(2ln )1(121212-=+x xx x x x 令12x x t =,得.1),1(2ln )1(>-=+t t t t ② 令.11ln )(,1),1(2ln )1()(-+='>--+=tt t r t t t t t r 则因为22111)1(ln tt t t tt -=-='+,所以1>t 时,.0)1(ln >'+t t 故t t 1ln +在[1,+)∞上单调递增.从而011ln >-+tt ,即.0)(>'t r于是)(t r 在[1,+)∞上单调递增.故.0)1()(=>r t r 即).1(2ln )1(->+t t t 这与②矛盾,假设不成立.故C 1在点M 处的切线与C 2在点N 处的切线不平行.20.(辽宁卷)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g += (Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.解:(Ⅰ)).()(000x f x x f m '-=…………………………………………2分 (Ⅱ)证明:令.0)(),()()(),()()(00=''-'='-=x h x f x f x h x f x g x h 则 因为)(x f '递减,所以)(x h '递增,因此,当0)(,0>'>x h x x 时; 当0)(,0<'<x h x x 时.所以0x 是)(x h 唯一的极值点,且是极小值点,可知)(x h 的最小值为0,因此,0)(≥x h 即).()(x f x g ≥ (6)分(Ⅲ)解法一:10≤≤b ,0>a 是不等式成立的必要条件,以下讨论设此条件成立.0)1(,122≥-+-+≥+b ax x b ax x 即对任意),0[+∞∈x 成立的充要条件是 .)1(221b a -≤另一方面,由于3223)(x x f =满足前述题设中关于函数)(x f y =的条件,利用(II )的结果可知,3223x b ax =+的充要条件是:过点(0,b )与曲线3223x y =相切的直线的斜率大于a ,该切线的方程为.)2(21b x b y +=-于是3223x b ax ≥+的充要条件是.)2(21b a ≥ (10)分综上,不等式322231x b ax x ≥+≥+对任意),0[+∞∈x 成立的充要条件是.)1(2)2(2121b a b -≤≤-① 显然,存在a 、b 使①式成立的充要条件是:不等式.)1(2)2(2121b b -≤-② 有解、解不等式②得.422422+≤≤-b ③因此,③式即为b 的取值范围,①式即为实数在a 与b 所满足的关系.…………12分(Ⅲ)解法二:0,10>≤≤a b 是不等式成立的必要条件,以下讨论设此条件成立.0)1(,122≥-+-+≥+b ax x b ax x 即对任意),0[+∞∈x 成立的充要条件是 .)1(221b a -≤ (8)分令3223)(x b ax x -+=φ,于是3223x b ax ≥+对任意),0[+∞∈x 成立的充要条件是 .0)(≥x φ 由.0)(331--==-='a x xa x 得φ当30-<<a x 时;0)(<'x φ当3->a x 时,0)(>'x φ,所以,当3-=a x 时,)(x φ取最小值.因此0)(≥x φ成立的充要条件是0)(3≥-a φ,即.)2(21-≥b a ………………10分综上,不等式322231x b ax x ≥+≥+对任意),0[+∞∈x 成立的充要条件是.)1(2)2(2121b a b -≤≤-①显然,存在a 、b 使①式成立的充要条件是:不等式2121)1(2)2(b b -≤-② 有解、解不等式②得.422422+≤≤-b因此,③式即为b 的取值范围,①式即为实数在a 与b 所满足的关系.…………12分21. (山东卷)已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<, (I )求m 与n 的关系式; (II )求()f x 的单调区间;(III )当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.解(I)2()36(1)f x mx m x n '=-++因为1x =是函数()f x 的一个极值点,所以(1)0f '=,即36(1)0m m n -++=,所以36n m =+(II )由(I )知,2()36(1)36f x mx m x m '=-+++=23(1)1m x x m ⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦当0m <时,有211m>+,当x 变化时,()f x 与()f x '的变化如下表: x 2,1m ⎛⎫-∞+ ⎪⎝⎭ 21m +21,1m ⎛⎫+⎪⎝⎭1 ()1,+∞()f x '0<0 0>0 0<()f x调调递减极小值单调递增极大值单调递减故有上表知,当0m <时,()f x 在2,1m ⎛⎫-∞+ ⎪⎝⎭单调递减,在2(1,1)m+单调递增,在(1,)+∞上单调递减.(III )由已知得()3f x m '>,即22(1)20mx m x -++>又0m <所以222(1)0x m x m m -++<即[]222(1)0,1,1x m x x m m -++<∈-①设212()2(1)g x x x m m=-++,其函数开口向上,由题意知①式恒成立,所以22(1)0120(1)010g m mg ⎧-<+++<⎧⎪⇒⎨⎨<⎩⎪-<⎩解之得43m -<又0m <所以403m -<< 即m 的取值范围为4,03⎛⎫- ⎪⎝⎭ 22.(重庆卷)设函数f (x )2x 33(a 1)x 26ax 8,其中a ∈R 。