第2章-逻辑门与逻辑代数基础-习题与参考答案3-12
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章逻辑门与逻辑代数基础习题与参考答案【题2-1】试画岀图题2-1 (a)所示电路在输入图题2-1 (b)波形时的输岀端B、C的波形。
解:
B C
【题2-2】试画岀图题2-2 (a)所示电路在输入图题2-2 ( b)波形时的输岀端X、丫的波形。
冲_ru I_TL 丧―I_n 一i i_
图题2-2
解:
MLTLJ I ___ n
口_n_ i_.
.x 口n 口n
丫uU"
【题2-3】试画岀图题2-3 (a)所示电路在输入图题2-3 (b)波形时的输岀端X、丫的波形。
<■) ⑹ 图题2-3
解:
B
【题2-9】 如果如下乘积项的值为 1,试写岀该乘积项中每个逻辑变量的取值。
【题2-4】 试画岀图题2-4 (a )所示电路在输入图题 2-4 ( b )波形时的输岀端 X 、丫的波 形。
解:
A J ~I _n ___ rvL
B X
.
丫
【题2-5】 试设计一逻辑电路,其信号 A 可以控制信号 B ,使输岀丫根据需要为 Y=B 或
Y= B 。
解:可采用异或门实现,
Y AB AB ,逻辑电路如下:
【题2-6】某温度与压力检测装置在压力信号 A 或温度信号B 中有一个岀现高电平时, 输
岀低电平的报警信号,试用门电路实现该检测装置。
解:压力信号、温度信号与报警信号之间的关系为: Y 「B ,有如下逻辑图。
【题2-7】某印刷裁纸机,只有操作工人的左右手同时按下开关 A 与B 时,才能进行裁纸
操作,试用逻辑门实现该控制。
解:开关A 、B 与裁纸操作之间的关系为 丫 A B ,逻辑图如下:
【题2-8】 某生产设备上有水压信号 A 与重量信号B ,当两信号同时为低电平时,检测电 路输出高电平信号报警,试用逻辑门实现该报警装置。
解:水压信号A 、重量信号B 与报警信号之间的关系为 Y 厂B ,逻辑图如下:
A 「> 1
(1) AB ; (2) ABC ; (3) ABC ; (4) ABC
解:(1) A=1 , B=1
(2)A=1、B=1、C=0
(3)A=0, B=1, C=0
(4)A=1, B=0 或C=1
【题2-10】如果如下和项的值为0,试写岀该和项中每个逻辑变量的取值。
(1) A B ; (2) A B C ; (3) A B C ; (4) ABC
解:(1) A=0,B=0
(2)A=0,B=1 或C=1
(3)A=1,B=0,C=1
(4)A=0,B=1 或C=0
【题2-11】对于如下逻辑函数式中变量的所有取值,写岀对应Y的值。
(1) Y ABC AB ; (2) Y (A B)(A B)
解:(1) Y ABC AB A (C B)
(2) Y (A B)(A B) A
当A取1时,输出Y为1,其他情况Y=0。
【题2-12】试证明如下逻辑函数等式。
(1) AB ABC AB ; (2) AB(C C AC AB AC ;
(3)A(BC BC) AC A(BC) AC
解:(1)左边AB ABC A(1 C)AB 右边
(2)左边= AB (C C) AC AB AC 右边
(3)左边=A (BC BC) AC A (BC) AC 右边
【题2-13】对如下逻辑函数式实行摩根定理变换。
(1) £ A B; (2) 丫2 AB ; (3) Y3 AB( C D); (4) Y4 (A BC CD) BC
解:(1) Y1 A B AB (2) Y2 AB A B
(3) 丫3 A ( C D ) AB (C D ) B CD Y4 (A BC CD ) BC (ABC(C D ) BC ABC ABCD BC ABC BC
【题 2-14】试用代数法化简如下逻辑函数式。
(1) Y 1 A(A B) ; (2) 丫2 BC BC ; (3) 丫3 A(A
AB)
解:
(1 )丫 A(A B)=A
(2 )丫2 BC BC =C
(3) 丫
3
A(A AB) =A
【
题
2-15】试用代数法将如下逻辑函数式化简成最简与或式。
(1) 丫1 AB ABC ABCD ABC DE ; (2) Y 2 AB ABC
A ;
(3) 丫3 AB (ABC AB
解:
(1) 丫 AB ABC ABCD ABC DE AB
(2) AB ABC A = A C
(3) 丫3
AB (A B C AB = AB C
【题 2-16】试用代数法将如下逻辑函数式化简成最简与或式。
(1) 丫1 ABC (A B C) ABCD ; (2) 丫2 ABCD ABCD ABCD ; (3) 丫3 ABC (AB C(BC AC)) 解: (1) 丫1 ABC (A B C) ABCD = AB
(2) 丫2
ABCD ABCD ABCD = AB CD
(3) 丫3 ABC (AB C(BC AC))=ABC
【
题 2-17】将如下逻辑函数式转换成最小项之和形式。
(1) 丫1 (A B)(C B) ; (2) 丫2 (A BC)C ; (3) Y 3
AB CD(AB CD);
(4) 丫4 AB(BC BD)
解: (1) 丫1 (A B)(C B) = m (1,5,6,7)
(4) AB BC