狭义相对论简介
详细解释狭义相对论的概念
详细解释狭义相对论的概念狭义相对论(Special Theory of Relativity)是由爱因斯坦在1905年提出的物理理论,用于描述高速运动物体的物理现象。
狭义相对论的核心思想是“相对性原理”和“光速不变原理”。
相对性原理是狭义相对论的基础,它指出物理规律在任何惯性参考系中都具有相同的形式和特性。
也就是说,物质的物理现象与观察者的速度无关,只与其运动状态有关。
因此,没有绝对的参考系存在,每个观察者都可以选择自己合适的参考系进行观察和解释现象。
光速不变原理是狭义相对论的核心概念,它指出在任何惯性参考系中,光在真空中的传播速度是一个恒定值,即光速是不变的。
这意味着无论观察者的速度如何,他们都会测量到光以相同的速度传播。
光速不变原理颠覆了牛顿时代的绝对时间和空间观念,使得时间和空间也成为相对的概念。
由相对性原理和光速不变原理推导出的狭义相对论有几个重要的结论:1. 时间膨胀(time dilation):根据相对性原理,运动观察者测量到的时间会比静止观察者慢。
这是因为当物体以接近光速的速度运动时,它的时间似乎变慢了。
这个现象在日常生活中并不明显,只有当物体的速度接近光速时才会产生显著的效应。
2. 长度收缩(length contraction):根据相对性原理,运动观察者测量到的物体长度会比静止观察者测量到的长度更短。
也就是说,物体在运动方向上会发生收缩。
这个现象同样只在物体的速度接近光速时才会显著地出现。
3. 同步性相对性(relativity of simultaneity):观察者的运动状态会影响他们对事件的同时性的判断。
在相对论中,不同观察者可能会对同一事件的发生顺序产生争议,这是由于光速的有限传播速度和观察者速度的影响导致的。
4. 质能等价(mass-energy equivalence):根据爱因斯坦的著名公式E=mc²,能量和质量是等价的,它们之间存在一种本质相互转化的关系。
简述狭义相对论
简述狭义相对论
狭义相对论是一门研究物质、能量和时间的相互关系的科学理论,它的主要观点是:物质、能量和时间是三者之间相互交互关系的不可分割的统一体,相互交互关系下物质、能量和时间具有相应的绝对不变性。
狭义相对论最早是由爱因斯坦提出的,他在广义相对论的基础上提出了更加严格的假设,也就是狭义相对论的基本思想。
该理论的主要特点是:一、物质、能量和时间之间的绝对不变性:它们相互间不存在绝对的关系,只有相对的关系;二、时空的柔性:时空的概念完全取决于观测者,时空可以任意弯曲,它是可变的;三、光速的绝对不变性:光速是一个绝对不变的常量,它是物质运动的最大速度。
这些特性对物质和能量在空间和时间中的运动分布起到了以下作用:空间中,物质和能量分布存在无限远和无限近两个极限,它们不处于有限空间;时间方面,物质和能量的变化是无法被看见的,只能通过构建相对时间来进行精确测量。
狭义相对论的发展与科学研究有着千丝万缕的联系,它曾经极大地影响着物理学、宇宙学以及现代天文学的发展。
它被物理学家用于研究宇宙的大尺度,以及原子核的小尺度,例如普朗克的统一场论,广义相对论和量子力学等。
它也影响到宇宙学,宇宙的形成和演化,宇宙中的物质和能量等;它还影响到了现代天文学,如黑洞、重力波和宇宙学家的一些研究等。
显然,狭义相对论是科学发展进程中的一个重要的里程碑,它提
出的观点对现代科学的发展起到了非常重要的作用。
它推翻了传统物理学的一些观念,提出了对物质、能量和时间的全新理解,为科学家在解释物质世界提供了更加完善和准确的理论框架。
狭义相对论简介
狭义相对论简介狭义相对论是一种描述物理学中时间、空间和引力的理论,由爱因斯坦于1905年发表。
它是现代物理学中最重要的理论之一,也是人类文明史上最伟大的科学成就之一时间与空间狭义相对论基本假设是:光速在真空中的传播速度是不变的,在任何惯性参考系中都是相同的,为c。
这导致了一些非常奇怪的结论。
首先,时间和空间不再是绝对的概念。
它们取决于观察者的运动状态。
例如,如果有两个事件在同一地点发生,一个静止观察者会认为它们发生在同一时间,但是一个以高速运动的观察者会认为它们发生的时间是不同的。
这就是所谓的时间相对论效应。
同样地,空间也会受到相对论效应的影响。
一个静止观察者看到的长度可能与一个运动观察者看到的长度不同。
这称为长度收缩。
质量与能量狭义相对论还改变了我们对质量和能量的理解。
根据经典物理学,物体的质量是恒定的,而能量是可以转化的。
但是,在相对论中,质量和能量是等价的。
这就是著名的E=mc2公式,其中E是能量,m 是物体的质量。
在高速运动中,物体的质量会增加(称为质量增加效应),因此需要更多的能量才能使其达到光速。
实际上,物体永远无法达到或超过光速,因为它需要无限的能量来达到这个极限。
引力最后,狭义相对论还改变了我们对引力的理解。
根据牛顿万有引力定律,物体之间产生引力的原因是它们的质量。
但是,在相对论中,引力被视为时空弯曲的结果。
这就是所谓的广义相对论,是爱因斯坦于1915年发表的。
通过将时间和空间视为弯曲的四维时空,物体的运动路径就不再是直线,而是遵循弯曲时空的规则。
这也导致了一些非常奇怪的现象,例如黑洞和引力透镜等。
光速不变原理狭义相对论的一个基本假设是光速不变原理,即在任何惯性参考系中,光速都是恒定且一致的。
这个假设经过了许多实验的验证,例如米歇尔逊-莫雷实验。
因为光速不变原理,在高速运动中,时间和空间会发生相对论效应,例如时间膨胀和长度收缩。
这些效应是非常微小的,只有在物体接近光速时才会显著影响其运动状态。
狭义相对论的两个基本原理
狭义相对论(Special Relativity) 是爱因斯坦于1905年提出的一种物理理论, 它对时间和空间的描述和传统牛顿引力理论有着显著的不同。
狭义相对论的两个基本原理如下:
1.光速不变原理: 任何一个参考系中,光的速度都是相同的,并且不受物质运动的影响。
这个原理揭示了空间和时间之间的相互关系,即时间和空间是紧密相关的。
2.相对性原理: 物理定律在任何一个参考系中都是相同的,并且不受物质运动的影响。
这
个原理表明物理定律是相对性的,而不是绝对性的。
这两个原理共同构成了狭义相对论的理论框架, 它揭示了物质、能量、时间和空间之间的相互关系, 对物理学和其他科学领域产生了重要的影响。
爱因斯坦狭义相对论时空观的主要内容
爱因斯坦狭义相对论时空观的主要内容相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。
相对论的基本假设是光速不变原理,相对性原理和等效原理。
相对论和量子力学是现代物理学的两大基本支柱。
奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。
相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。
相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。
狭义相对论,是只限于讨论惯性系情况的相对论。
牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间,时间是独立于空间的单独一维(因而也是绝对的)。
相对于一个惯性系来说,在不同的地点、同时发生的两个事件,相对于另一个与之作相对运动的惯性系来说,也是同时发生的。
狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。
同时性问题是相对的,不是绝对的。
在某个惯性系中在不同地点同时发生的两个事件,到了另一个惯性系中,就不一定是同时的了。
在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。
宇宙的概念: 宇宙是由空间、时间、物质和能量,所构成的统一体。
是一切空间和时间的综合。
宇宙的标准模型概念: 大爆炸模型,宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的,并经过不断的膨胀到达今天的状态。
赫罗图的概念: 这张图是研究恒星演化的重要工具,赫罗图是恒星的光谱类型与光度之关系图,赫罗图的纵轴是光度与绝对星等,而横轴则是光谱类型及恒星的表面温度,从左向右递减。
黑洞的概念: 黑洞是一种引力极强的天体,就连光也不能逃脱。
当恒星的史瓦西半径小到一定程度时,就连垂直表面发射的光都无法逃逸了。
这时恒星就变成了黑洞。
虫洞的概念:“虫洞”就是连接宇宙遥远区域间的时空细管。
爱因斯坦狭义相对论的两个基本内容
爱因斯坦狭义相对论的两个基本内容
爱因斯坦狭义相对论的两个基本内容包括:
1. 相对性原理:狭义相对论的核心概念之一是相对性原理,它指出物理定律在一切惯性参考系中都具有相同的形式。
换句话说,物理现象的规律在不同的相对参考系中是相同的,不论这些参考系相对于其它参考系是以恒定速度运动、匀速运动还是静止。
2. 光速不变原理:狭义相对论的另一个基本概念是光速不变原理,它指出光在真空中的速度是一个恒定的常数,与光源运动的状态无关。
换句话说,无论观察者的运动速度如何,光在真空中的速度都是恒定的,它在所有参考系中都是相同的。
这两个基本内容共同构成了爱因斯坦狭义相对论的核心思想,它们颠覆了牛顿力学中关于时间和空间的观念,提出了新的时空观和运动学关系,对后续的物理研究产生了重大影响。
狭义相对论的两条基本原理
狭义相对论的两条基本原理狭义相对论是由爱因斯坦在1905年提出的一种描述运动速度接近光速时的物理理论。
它基于两条基本原理,即等效性原理和光速不变原理。
第一条基本原理是等效性原理。
它表明,所有的惯性参考系之间在物理定律的描述和物理现象的解释上都是等效的。
换句话说,无论在哪个匀速直线运动的参考系中观察,物理定律都是相同的。
这意味着没有一个绝对的参考系,所有的参考系都可以被视作等效的。
等效性原理的重要性在于它消除了绝对运动的概念。
在牛顿力学中,绝对运动是可以被测量和区分的,而在狭义相对论中,等效性原理指出无论我们选择什么样的参考系,运动的物体都没有绝对的速度。
这种思想挑战了牛顿力学的观点,使得狭义相对论成为一种更为普遍的物理理论。
第二条基本原理是光速不变原理。
它指出,在真空中,光速是以恒定的速度传播的,不论光的发出者和接收者的运动状态如何。
这意味着光速在任何惯性参考系中都是相同的,并且是一个绝对的极限速度。
光速不变原理是狭义相对论的核心概念,它打破了牛顿时空观念的对称。
根据牛顿时空观念,时间和空间是独立且绝对的,而在狭义相对论中,时间和空间是相互关联的,而且取决于观察者的运动状态。
光速不变原理使得量测和测量的过程取决于运动的参考系,时间和空间的间隔在不同的参考系中会发生变化,即所谓的“相对论效应”。
利用这两条基本原理,狭义相对论推导出了很多引人注目的结果。
其中最著名的是狭义相对论中的“时间膨胀”和“长度收缩”效应。
由于光速不变原理的存在,运动的物体相对于静止的物体的时间会变慢,长度会缩短。
这两种效应在相对论中起到了关键作用,改变了我们对时间和空间的理解。
此外,狭义相对论还提供了解释包括爱因斯坦著名的质能关系(E=mc²)在内的一系列物理现象。
相对论性质能关系改变了我们对能量和质量之间的联系的认识,揭示了质量和能量的互换关系,并为后来的核能、粒子加速器和宇宙学研究提供了重要的理论基础。
总之,狭义相对论的两条基本原理,等效性原理和光速不变原理,改变了我们对时间、空间和运动的理解,推翻了牛顿力学的观点,在物理学领域产生了深远的影响。
爱因斯坦 狭义相对论
狭义相对论粗略地说是区别于牛顿时空观的一种新的时空理论,是A.爱因斯坦于1905年建立的,“狭义”(或“特殊”)表示它只适用于惯性参照系。
只有在观察高速运动现象时才能觉察出这个理论同经典物理学对同一物理现象的预言之间的差别。
现在,狭义相对论在许多学科中有着广泛的应用,它和量子力学一起,已成为近代物理学的两大基础理论。
狭义相对论的产生狭义相对论是在光学和电动力学实验同经典物理学理论相矛盾的激励下产生的。
19世纪末到20世纪初,人们发现了不少同经典物理学理论相抵触的事实。
①运动物体的电磁感应现象。
例如一个磁体和一个导体之间的电动力的相互作用现象,表现出运动的相对性──无论是磁体运动导体不动,还是导体运动磁体不动,其效果一样,只同两者的相对运动有关。
然而,经典的麦克斯韦电磁场理论并不能解释这种电磁感应的相对性。
②真空中的麦克斯韦方程组在伽利略变换下不是协变的,从而违反了经典物理学理论所要求的伽利略变换下的不变性。
③测定地球相对于“光媒质”运动的实验得到否定结果,同经典物理学理论的“绝对时空”概念以及“光媒质”概念产生严重抵触。
爱因斯坦在青年时代深入思考了这些实验现象所提出的问题,形成了一些重要的新的物理思想。
他认为"光媒质"或“光以太”的引入是多余的,电磁场是独立的实体;猜想到电动力学和光学的定律同力学的定律一样,应该适用于一切惯性坐标系。
他还认为,同时性概念没有绝对的意义。
两个事件从一个坐标系看来是同时的,而从另一个相对于这个坐标系运动着的坐标系看来,它们就不能再被认为是同时的。
在这些物理思想的推动下,爱因斯坦提出了两个公设:①凡是对力学方程适用的一切坐标系,对于电动力学和光学的定律也一样适用;②光在真空中的速度同发射体的运动状态无关。
爱因斯坦在这两个公设的基础上建立了狭义相对论。
惯性参照系要描写物体的运动,就得选取一个参照系,或坐标系。
例如,可以用三根无限长的理想刚性杆(没有重量、不会因外界的影响而变形等)做成互相垂直的标架,叫做笛卡儿坐标架,用以描写空间任意点的位置,任意点到原点的距离由标准尺子度量。
狭义相对论和广义相对论的主要内容
狭义相对论和广义相对论的主要内容下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
此文下载后可定制随意修改,请根据实际需要进行相应的调整和使用。
并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documents can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!狭义相对论和广义相对论是爱因斯坦相对论的两个基本分支,是现代物理学中的两大重要理论。
狭义相对论的简单解释
狭义相对论的简单解释1. 简介狭义相对论是由爱因斯坦于1905年提出的一种物理学理论,用于描述高速运动物体之间的时空关系。
相对论是现代物理学中最重要的理论之一,它在解释宇宙和微观领域中的现象中起着关键作用。
2. 相对性原理狭义相对论基于两个基本原理:相对性原理和光速不变原理。
相对性原理指出,所有惯性参考系下的物理定律都具有相同的形式。
简而言之,无论我们处于任何匀速运动状态下,物理定律都应该保持不变。
这意味着没有绝对静止参照物,只有相对运动。
光速不变原理是狭义相对论的核心概念之一。
它指出,在真空中光速是一个恒定值,与光源和观察者的运动状态无关。
这个恒定值被称为光速常数,通常表示为”c”。
根据这个原理,无论观察者如何移动,他们测量到的光速都将保持不变。
3. 时空观念狭义相对论引入了一种新的时空观念。
传统的牛顿物理学中,时间和空间是绝对独立的,而在相对论中,它们却是相互关联的。
根据狭义相对论,时间和空间不再是绝对的,而是取决于观察者的运动状态。
当一个物体以接近光速运动时,时间会变得更慢,并且长度会在运动方向上收缩。
这种时空关系被称为洛伦兹变换,它描述了不同惯性参考系之间的时空转换规则。
洛伦兹变换包括时间膨胀效应和长度收缩效应。
4. 时间膨胀根据狭义相对论,当一个物体以接近光速运动时,时间会相对于静止参考系变慢。
这被称为时间膨胀。
假设有两个人:A在地球上静止不动,B乘坐一艘以接近光速运行的太空船。
当B返回地球后,他会发现自己的时间比A慢了一些。
这意味着B在太空中度过的时间更少。
这个效应已经通过实验证实,并且与爱因斯坦的理论预测非常吻合。
时间膨胀是狭义相对论中最重要的结果之一,它改变了我们对时间的理解。
5. 长度收缩与时间膨胀类似,根据狭义相对论,当一个物体以接近光速运动时,它在运动方向上的长度会收缩。
这被称为长度收缩。
假设有一艘太空船以接近光速运动,船长为100米。
根据相对论,当我们以地面上的观察者的角度来看这艘太空船时,它的长度将会变得更短。
狭义相对论简介
1 m0 v 2 2
1 2 Ek m0 v 2
这就是我们过去熟悉
的动能表达式,这也能让 我们看出,牛顿力学是相 对论力学在低速情况下的 特例.
补充:相对论中动量和能量的关系
E mc 2
消去速度v
m0c 2 1 v / c
2 2
p mv
m0 v 1 v2 / c2
• 19世纪末的经典物理
– 牛顿力学——17世纪后期建立(牛顿、哈密顿、 拉格朗日等) – 电磁学理论——19世纪中期建立(法拉第、麦 克斯韦) – 热力学与统计物理——18世纪末到19世纪末建 立(卡诺、焦耳、克劳修斯、麦克斯韦等)
一、矛盾的出现:
经典的相对性原理(伽利略相对性原理):
相对于一个惯性系作匀速直线运动的一切参考系 都是惯性系,即:对于物理学规律来说,一切惯性系 都是等价的。
Ek E E0
Ek m0 c 2 v 1 c
2
E mc
2
m0 c
2
2
E0 m0c 2
v 1 c
v 1 c
1v 1 2c
2
2
Ek
1 v m0 c 2 m0 c 2 m0 c 2 2 c 1v 1 2c
2
∆t
∆ t'
1 v / c
2
更严格的推导表明, 此式子具有普遍的意义。
由于运动,火车上的时间进程变慢了,即其中一切 物理化学进程,乃至观察者自己的生命节奏都变缓了, 但车上的人没有感觉,反而认为地面上的进程慢了。
一个惯性系中,运动的钟比静止的钟走 的慢,这种效应叫爱因斯坦时间延缓或时 间膨胀,又叫钟慢效应。
简述爱因斯坦狭义相对论
简述爱因斯坦狭义相对论
爱因斯坦狭义相对论是物理学上一种里程碑式的成果,它是20世纪初期由阿尔伯特·爱因斯坦提出的一种新观念,是继牛顿力学之后革命性的理论。
爱因斯坦狭义相对论的核心是坚持宇宙的客观性,承认其是独立的,不受个体的观点的影响。
它提出了宇宙的统称概念,即个体只能看到其中的一小部分,而并不能通过个体的观点来理解整体宇宙,虽然每个人的经验不同,但是宇宙的行为却是相同的,它坚持宇宙中存在着相对性,这种相对性表现在“棱镜效应”和“相对运动效应”上。
爱因斯坦狭义相对论摆脱了物理学观念中传统的概念,明确提出,宇宙是相对的,不是绝对的;明确提出,时间和空间是有相互联系的,并且可以受到质量的影响。
这个理论也宣扬“能量和质量之间的相互转换”的定律,以及“光总是以恒定的速度传播”的定律。
爱因斯坦狭义相对论是物理学中一个里程碑式的理论,它改变了人们了解宇宙行为的方式,并为后继理论如量子力学等奠定基础。
尽管现在很多理论依赖于它,但却不能完全取代它,因为它提供了关于物理学规律的基础性见解。
狭义相对论简介
狭义相对论简介狭义相对论是由著名的物理学家阿尔伯特·爱因斯坦在1905年提出的一种物理理论,它革命性地改变了我们对时间、空间和物质的观念。
以下是狭义相对论的简要介绍:1. 物质与能量的等价性:狭义相对论的一个核心思想是质能等价原理,即质量和能量之间存在等价关系,由著名的公式E=mc^2表示。
这意味着质量可以被转化成能量,反之亦然。
这一概念在核物理和核能的理解中具有重要意义。
2. 相对性原理:狭义相对论的另一个基本原理是相对性原理。
它分为两部分:狭义相对性原理:物理定律在所有惯性参考系中都具有相同的形式,无论观察者的速度如何,物理规律都是相同的。
这意味着没有绝对的静止参考系。
光速不变原理:光在真空中的速度(光速)对于所有观察者都是相同的,无论他们自己的速度如何。
这一原理导致了相对性原理的形成。
3. 时间与空间的相对性:狭义相对论改变了我们对时间和空间的观念。
根据理论,时间和空间是相对的,不同的观察者可能会测量到不同的时间间隔和长度。
这一效应在高速运动物体的情况下更为明显,被称为时间膨胀和长度收缩。
4. 狭义相对论的实验证实:狭义相对论的预测在众多实验证实中得到了验证,其中最著名的是哈特温实验、双生子佯谬、和质子和其他高能粒子的行为。
这些实验证明了爱因斯坦的理论的准确性。
5. 应用领域:a. 全球定位系统(GPS):GPS是一种卫星导航系统,它利用多颗卫星围绕地球轨道运行,通过接收卫星发射的信号来确定地球上任何地点的精确位置。
狭义相对论的时间膨胀效应和特殊相对论修正对GPS的精确性至关重要,因为卫星的高速飞行和地球上的引力场会导致时间的变化。
b. 核物理和核能:狭义相对论的质能等价性原理(E=mc^2)对核物理和核能产生了深远影响。
它解释了核反应中质量和能量之间的相互转化,这是核武器和核能反应的基础。
c. 高能物理:在高能粒子加速器中,如大型强子对撞机(LHC),粒子的速度接近光速,因此需要考虑狭义相对论效应。
大学物理 -- 狭义相对论简介
二,间隔和间隔不变性
1,相对性原理对时空变 换的要求: 线性变换
x′ = a11 x + a12 ct y′ = y z′ = z ct ′ = a21 x + a22 ct
凡遇t加c
10
2,光速不变原理对时空变换的要求:间隔是不变的
∑ y ∑ ′ y′ →υ
o o′ z′
P
x′
x
z
∑和 ∑′系重合时,定为计时起 点,且此时在 o点发出 一光信号,则第一事件 在两坐标系中的空时坐 标都 为(0, 0, 0, 0 ).
∵同地, x1 = x2 ∴
′ ′ 得:t 2 = t1
28
第二种情况: 第二种情况:异地事件 1结论:对于没有因果关系(类空事件)在异地发生 结论: 类空事件) 结论
的两个同时事件,时间顺序有可能颠倒. 的两个同时事件,时间顺序有可能颠倒.在一个惯性系 中观察是同时事件, 中观察是同时事件,在另一个惯性系中观察则不一定同 时.即异地事件的同时性与惯性系选择有关,是相对的. 即异地事件的同时性与惯性系选择有关,是相对的.
11
定义:(相对论时空) 间隔:s 2 不能说成是 空间间隔
∑系:s = c t ( x + y + z )
2 2 2 2 2 2 2
∑ ′系:s′ = c t ′ ( x′ + y′ + z ′ )
2 2 2 2 2
由光速不变性:
s = s′ 间隔不变性
2 2
间隔不变性是相对论的一个重要特点, 是由二假设得出的结论!
υ
υ2
c2
′ ′ 若使变换保证因果关系 的绝对性,应 t 2 > t1
∴ t 2 t1 > 2(x2 x1 ) ( ) c x2 x1 c 2 < υ t 2 t1
狭义相对论
狭义相对论狭义相对论(Special Relativity)是主要由爱因斯坦创立的时空理论,是对牛顿时空观的改造。
伽利略变换与电磁学理论的不自洽到 19 世纪末,以麦克斯韦方程组为核心的经典电磁理论的正确性已被大量实验所证实,但麦克斯韦方程组 在经典力学的伽利略变换下不具有协变性。
而经典力学中的相对性原理则要求一切物理规律在伽利略变换下都具有协变性。
迈克尔孙寻找以太的实验 为解决这一矛盾,物理学家提出了“以太假说”,即放弃相对性原理,认为麦克斯韦方程组只对一个绝对参 考系(以太)成立。
根据这一假说,由麦克斯韦方程组计算得到的真空光速是相对于绝对参考系(以太) 的速度;在相对于“以太”运动的参考系中,光速具有不同的数值。
实验的结果——零结果 但斐索实验和迈克耳逊-莫雷实验表明光速与参考系的运动无关。
洛仑兹坐标变换 洛仑兹变换是描述狭义相对论空间中各参考系间关系的变换。
它最早由洛仑兹从以太说推出,用以解决经典力学与经典电磁学间的矛盾(即迈克尔孙-莫雷实验的零结果)。
后被爱因斯坦用于狭义相对论。
1632 年,伽利略出版了他的名著《关于托勒密和哥白尼两大世界体系的对话》。
书中那位地动派的“萨尔维阿蒂”对上述问题给了一个彻底的回答。
他说:“把你和一些朋友关在一条大船甲板下的主舱里,让你们 带着几只苍蝇、蝴蝶和其他小飞虫,舱内放一只大水碗,其中有几条鱼。
然后,挂上一个水瓶,让水一滴 一滴地滴到下面的一个宽口罐里。
船鱼向各个方向随便游动,水滴滴进下面的罐口,你把任何东西扔给你 的朋友时,只要距离相等,向这一方向不必比另一方向用更多的力。
你双脚齐跳,无论向哪个方向跳 过的 距离都相等。
当你仔细地观察这些事情之后,再使船以任何速度前进,只要运动是匀速,也不忽左忽右地 摆动,你将发现,所有上述现象丝毫没有变化。
你也无法从其中任何一个现象来确定,船是在运动还是停 着不动。
即使船运动得相当快,你跳向船尾也不会比跳向船头来得远。
狭义相对论的原理
狭义相对论的基本原理引言狭义相对论是由阿尔伯特·爱因斯坦在1905年提出的一种物理理论,它革命性地改变了人们对时空和物质运动的观念。
狭义相对论建立在两个基本原理之上,即“等效性原理”和“光速不变原理”。
这两个基本原理推动了爱因斯坦提出了新的时空观念和运动规律,开启了现代物理学的新纪元。
1. 等效性原理等效性原理是狭义相对论的第一个基本原理,它表明在惯性参考系中,物理定律在形式上应该是相同的。
换句话说,无论我们选择哪个惯性参考系来观察自然现象,我们得到的物理规律应该是一样的。
这意味着无法通过实验来区分不同的惯性参考系。
例如,在一个以恒定速度匀速运动的火车内部进行实验时,我们无法通过实验来判断自己是否处于静止状态或者以恒定速度匀速运动。
所有物理定律都适用于火车内部。
等效性原理进一步推广了牛顿力学中的相对运动概念。
在牛顿力学中,物体的运动状态相对于参考系是绝对的,而在狭义相对论中,物体的运动状态是相对的,它取决于观察者所处的参考系。
2. 光速不变原理光速不变原理是狭义相对论的第二个基本原理,它表明光在真空中的传播速度是恒定不变的,与光源或观察者的运动状态无关。
这意味着无论光源或观察者以多快的速度相对于某个参考系运动,他们都会观察到光以同样的速度传播。
这个原理与牛顿力学中常见的加法速度规则不同。
根据牛顿力学,在两个参考系中以速度v1和v2相对某个参考系A匀速运动的物体,在另一个参考系B中它们之间的相对速度应该是v1+v2。
然而,根据光速不变原理,在两个以接近光速运动的参考系中观察到光传播时,无论它们之间有多大的相对速度差异,它们都会得到同样测量到光传播的速度,即光速。
这个原理的重要性体现在它对时空观念的改变上。
由于光速是一个恒定不变的极限速度,物体在接近光速时会经历时间和空间上的奇特效应,这些效应将在下面的内容中进行讨论。
3. 时空相对性根据狭义相对论,时空是一个统一的四维结构,被称为闵可夫斯基时空。
狭义相对论和广义相对论浅说
狭义相对论和广义相对论浅说
狭义相对论和广义相对论是两个相对论理论,都是由爱因斯坦发展而
来的。
它们的研究对象都是物理学中的时间和空间,但是它们的研究范围
不一样。
狭义相对论主要研究时间和空间的变化,而这些变化受到速度的影响。
例如,当物体以很高的速度运动时,它的时间会变慢,同时空间也会收缩。
这些变化导致了一些奇异的物理现象,如孪生效应。
广义相对论则研究物质和能量如何影响时间和空间。
例如,当物体的
质量很大时,它产生了一个巨大的重力场,这个重力场会影响周围的时间
和空间。
在广义相对论中,时间和空间不再是坚固不可摧的,它们会随着
重力场的变化而弯曲和扭曲。
总之,狭义相对论和广义相对论都是非常重要的相对论理论,它们深
刻地改变了我们对时间和空间的理解,并为物理学研究提供了深层次的思
考和探讨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“追光实验”
按照伽利略变换
v c u
光的传播速度,真的与参考系有关吗?
7
一、光速不变原理 电磁学理论给出真空中电磁波的传播速度为
c 1 00 其中 0 和0 都是与参考系无关的常数。
真空中光速与参考系无关(即与光源的运动 和观察者的运动无关),不服从伽利略变换。
1983年国际规定:真空中的光速为物理常数
t
t PBP
tPAP
2 c
L2 1 u2
c2
L1 1 u2
c2
干涉仪转90°后 ,时间间隔变成
t
t PBP
tPAP
2 L2 c 1 u2
c2
L1
1 u2 c2
10
干涉仪转90°引起时间差的变化为
t
t
L1
c
L2
u2 c2
由干涉理论,时间差的变化引起的移动条纹数
N
c( t t)
在讨论时空的性质时,我们总是用事件的时 空坐标,或用事件的时空点来代表事件,而不 去关心事件的具体物理内容,即不去关心到底 发生了什么事情。
23
时空变换:同一事件在两个惯性系中的时空 坐标和之间的变换关系。
y y u P( x, y, z, t)
(x, y, z, t)
O O
x
z z
x
时空变换:( x, y, z, t)和( x, y, z, t)的关系
t2
如果光速与光源运动有关
t1
c
L v
t2
c
L v
T 2
因此可能出现 t1 t2 ,同一
时刻观测到同一颗星处于
不同位置 — 从未观测到。
可见光速与光源运动无
关。发射理论是不对的。
12
还 有 其 他 实 验 否 定 发 射 理 论 , 例 如 Phys. Lett., T. Alvager at al, 12(1964)260 :
在对称情况下,时间延缓是相对的。 40
在求解涉及同地发生的事件的问题时,为了 计算方便一般应该:先确定哪个是原时(同地时 ),然后再找出对应的测时。
4
狭义相对论动力学 §8 四维动量 质量 §9 质能关系 能量—动量关系 §10 相对论粒子动力学方程 §11 四维动量守恒和不变量的应用 §12 力的相对论变换 §13 广义相对论简介
5
狭义相对论(一) 相对论运动学
陈信义 编 2005.1
§1 光速不变和爱因斯坦相对性原理 S S' 火车 u
1905年爱因斯坦 «论动体的电动力学»给出相 对论的物理基础。爱因斯坦的预言,其它人甚 至都没想象过。
33
34
§3 同时性的相对性和时间延缓 relativity of simultaneity and time dilation
一、同时性的相对性
时间的概念与同时性相连系。
1、用洛仑兹变换推导同时性的相对性
tg
uΔt cΔt
u c
3 104 3 108
光行差角: 20.5
如果“以太”被地球拖曳,
ct
u 光到地球附近要附加速度u,观
地球公转 察恒星时望远镜不必倾斜。
ut
以太拖曳假说也不对!
14
爱因斯坦对麦克尔逊-莫雷实验的评价:
“还在学生时代,我就在想这个问题了。 我知道迈克耳逊实验的奇怪结果。我很快得 出结论:如果我们承认麦克尔逊的零结果是 事实,那么地球相对以太运动的想法就是错 误的。这是引导我走向狭义相对论的最早的 想法。”
39
在一个惯性系中观测,另一个做匀速直线运 动的惯性系中同地发生的两个事件的时间间隔 变大。这称为时间延缓效应。
因为任何过程都是由一系列相继发生的事件 构成的,所以时间延缓效应表明:
在一个惯性系中观测,运动惯性系中的任何 过程(包括物理、化学和生命过程)的节奏变 慢。
例如,与S系中一系列静止同步钟的“1秒” 相比,运动钟的“1秒”长 动钟变慢。
SS u
O x1 , t
O
x1 , t1
同时发生
还同时发生吗?
t1 ? t2
x2 , t x2 , t2
x
x
35
SS
u
先发生
O x1 , t
同时发生
后发生
x2 , t x
O
x1 , t1
不同时发生 t1 t2
x2 , t2
x
在S系:t1 (t x1 u c2) , t2 (t x2 u c2)
狭义相对论 运动学和动力学
在上世纪初,发生了三次概念上 的革命,它们深刻地改变了人们对 物理世界的了解,这就是狭义相对 论(1905)、广义相对论(1916) 和量子力学(1925)。
2
Albert Einstein
1879 –1955
3
狭义相对论运动学
§1 光速不变和爱因斯坦相对性原理 §2 洛仑兹变换 §3 同时性的相对性和时间延缓 §4 长度收缩 §5 因果性的绝对性 §6 洛仑兹协变矢量(补充) §7 相对论速度变换
实验目的:干涉仪转 90° , 观 测 干 涉 条 纹 是 否移动?
实验结果:条纹无移动 (零结果)。以太不存在 ,光速与参考系无关。
9
B L2
S P
地球公转
u
A
L1
按照伽利略速度变换
t PAP
L1 L1 cu cu
2L1 c (1 u2
c2)
v c2 u2
tPBP
2L2 2L2 c2 u2 c 1 u2 c2
在相对观察者静止的惯性系中,同一地点先后
发生的两个事件的时间间隔称为原时,或同地
时,用t 代表。 在另一相对观察者运动的惯性系中观测的这两
个事件的时间间隔,称为测时,用t 代表。
按照洛仑兹变换,有 零
t t ( x x) t t
c
测时 t t t
原时
1u2 / c2
—测时比原时长 时间延缓效应
x x-ut
y y
u c
z z
t t
32
三、关于狭义相对论的主要的工作
1892年G.F.Fitzgerald 和 H.A.Lorentz 独立 提出运动长度收缩的概念。
1899年H.A.Lorentz 从“以太”论出发,导 出了 Lorentz 变换。
1904年庞加莱提出物体质量随运动速度增加 而增加,极限速度为光速 c。
u
1
2
1x
ut
t
t
u c2
x
29
因S 系和S系只是在x (x)轴方向上做相对运 动,则有
y y, z z
设 u c, 1 1 2 ,洛仑兹变换可写成
x xct
x x+ct
y y z z
y y z z
t
t
c
x
u u
t
t+c
x
30
或写成
x
xut 1u2 / c 2
不同形式的时空变换,涉及在不同参考系中 对时间和空间的测量,代表不同的时空性质, 反映不同的时空观。
24
二、 洛仑兹变换
按照狭义相对论时空观,时空的变换关系应 该用洛仑兹变换代替伽利略变换,而伽利略变 换是洛仑兹变换在低速情况下的近似。
相对性原理+光速不变 狭义相对论
实际上,相对论不应依赖于光速不变这一电 磁学规律。
zyzy
t
t u x c2
1u2 / c 2
x
xut 1u2 / c2
zyzy
t
t u x c2
1u2 / c2
31
伽利略变换是洛仑兹变换的低速近似:
洛仑兹变换 (相对论时空 )
x x ut 1 u2 / c2
y y
z z
t
t
u c2
x
1 u2 / c2
伽利略变换 (绝对时空)
相对论可直接由相对性原理、空间的均匀和 各向同性得到。但推导比较复杂。
25
S S 同一事件:( x, t), ( x, t)
u
x, t
O
x, t
x
O
x
当u<<c,伽利略变换
x x ut
x x ut
为什么?
一般情况,时空变换(线性变换)的最简单
形式为
x ( x ut) S系
x ( x ut) S系
c 299 792 458 ms 1
1m是光在真空中1/299792458秒内所经过的 距离。
8
二、光速不变原理的实验验证 1、Michelson-Morlay 实验(1881–1887)
当时认为光在“以太”(ether)中以速度c 传播设。“以太”相对太阳静止。
B L2
S P
地球公转
u
A
L1
干涉条纹
同步加速器产生速度为0.99975 c 的 0
0 +
沿0 运动方向测得的运动速度,与用静止辐 射源测得的速度(光速c) 极其一致!
结果表明,光速与光源运动无关。
下面的恒星光行差现象,可以否定“以太拖 曳”假说。
13
3、恒星的光行差(J.Bradley,1727)
观察恒星时,望远镜必须倾斜。
恒星
1905年,爱因斯坦则在全新的物理基础上得 到这一变换关系。
22
一、事件和时空变换
事件:任意一个具有确定的发生时间和确定 的发生地点的物理现象。
一个事件发生的时间和地点,称为该事件的 时空坐标。
如,“一个粒子在某一时刻出现在某一位置 ”就是一个事件,粒子出现的时刻和位置就构 成了该事件的时空坐标。
基本物理规律(包括力学规律)的方程,是 洛仑兹变换下的协变式: 在 洛 仑 兹 变 换 下 , 方 程的形式不变。