北师大版九年级上册数学第五章反比例函数复习题及答案

合集下载

北师大初三数学上册反比例函数难题带答案解析

北师大初三数学上册反比例函数难题带答案解析

初三数学上册反比例函数一.选择题(共20小题)1.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣62.如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条3.如图,正方形ABCO和正方形CDEF的顶点B、E在双曲线y=(x>0)上,连接OB、OE、BE,则S△OBE的值为()A.2B.2.5C.3D.3.54.如图,点A是函数y=的图象上的点,点B,C的坐标分别为B(﹣,﹣),C(,).试利用性质:“函数y=的图象上任意一点A都满足|AB﹣AC|=2”求解下面问题:作∠BAC的内角平分线AE,过B作AE的垂线交AE于F,已知当点A在函数y=的图象上运动时,点F总在一条曲线上运动,则这条曲线为()A.直线B.抛物线C.圆D.反比例函数的曲线5.如图,在平面直角坐标系中,△ABO的顶点A在x轴上,反比例函数y=(x<0)的图象与△OAB的边OB、AB 分别交于点C,点D.若BC:BO=2:3,BD:BA=3:4,S△ABO=,则k的值为()A.﹣8B.﹣6C.D.﹣6.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△ADC=.则k的值为()A.B.16C.D.107.如图,点A是双曲线y=上一点,过A作AB∥x轴,交直线y=﹣x于点B,点D是x轴上一点,连接BD交双曲线于点C,连接AD,若BC:CD=3:2,△ABD的面积为,tan∠ABD=,则k的值为()A.﹣2B.﹣3C.﹣D.8.如图所示,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△ABC=6,=,则k=()A.﹣6B.﹣4C.6D.49.如图,已知A,B为反比例函数y1=图象上两点,连接AB,线段AB经过点O,C是反比例函数y2=(k<0)在第二象限内的图象上一点,当△CAB是以AB为底的等腰三角形,且=时,k的值为()A.﹣B.﹣3C.﹣4D.﹣10.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,则CE的长为()A.B.C.3.5D.511.如图,已知A1,A2,A3,…A n,…是x轴上的点,且OA1=A1A2=A2A3=…=A n﹣1A n…=1,分别过点A1,A2,A3,…,A n,…作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…,B n,…,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n等于()A.B.C.D.12.如图,O为坐标原点,点C在x轴上.四边形OABC为菱形,D为菱形对角线AC与OB的交点,反比例函数y=在第一象限内的图象经过点A与点D,若菱形OABC的面积为24,则点A的坐标为()A.(1,6)B.(,5)C.(2,4)D.(3,3)13.如图,点A,B分别在y轴正半轴、x轴正半轴上,以AB为边构造正方形ABCD,点C,D恰好都落在反比例函数y=(k≠0)的图象上,点E在BC延长线上,CE=BC,EF⊥BE,交x轴于点F,边EF交反比例函数y=(k ≠0)的图象于点P,记△BEF的面积为S,若S=+12,则△CEP的面积是()A.2+2B.2﹣2C.+2D.﹣214.如图,平面直角坐标系中,矩形OABC的边与函数y=(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定15.如图,直线AD分别与x轴,y轴交于A,D两点,与反比例函数y=的图象交于B,C两点,连接OB,OC,若AB=BC,S△BOC=4,则k的值为()A.4B.C.D.16.如图,以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C分别在x轴、y轴的正半轴上,双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E.过OC边上一点F,把△BCF沿直线BF翻折,使点C 落在点C′处(点C′在矩形OABC内部),且C′E∥BC,若点C′的坐标为(2,3),则k的值为()A.B.C.D.17.如图,点A是反比例函数y=(x>0)的图象上一点,过点A作直线y=﹣x的垂线,垂足为点B,再过点A作AC⊥AB交y=(x>0)的图象于点C,若△ABC是等腰三角形,则点B的坐标是()A.(﹣,)B.(﹣,)C.(﹣2,2)D.(﹣3,3)18.如图,菱形四边形ABCD的四个顶点分别在反比例函数y=,y=﹣的图象上,若该菱形的面积为78,则这个菱形的边长为()A.B.C.13D.1319.反比例函数y=的图象向右平移个单位长度得到一个新的函数,当自变量x取1,2,3,4,5,…,(正整数)时,新的函数值分别为y1,y2,y3,y4,y5,…,其中最小值和最大值分别为()A.y1,y2B.y43,y44C.y44,y45D.y2014,y201520.如图,△ABC是等边三角形,顶点C在y轴的负半轴上,点A(1,),点B在第一象限,经过点A的反比例函数y=(x>0)的图象恰好经过顶点B,则△ABC的边长为()A.3B.2C.4D.3二.填空题(共10小题)21.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为.22.如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是.(只填序号)23.已知如图,直线y=x分别与双曲线y=(m>0,x>0)、双曲线y=(n>0,x>0)交于点A,点B,且=,将直线y=x向左平移6个单位长度后,与双曲线y=交于点C,若S△ABC=4,则mn的值为.24.如图,等边△OBA和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过OB的中点C和AE的中点D,已知OB=16,则点F的坐标为.25.如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若,则CD的长为.26.如图,直线y=x﹣8交x轴于点A,交y轴于点B,点C是反比例函数y=的图象上位于直线AB上方的一点,CD∥/x轴交AB于点D,CE⊥CD交AB于点E,若AD•BE=4,则k的值为.27.如图,△OBC的边BC∥x轴,过点C的双曲线y=(k≠0)与△OBC的边OB交于点D,且OD:DB=1:2,若△OBC的面积等于8,则k的值为.28.如图,一次函数y=x与反比例函数y=(k>0)的图象在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为.29.如图,C、D是双曲线y=(x>0,k>0)上两点,延长CD交x轴于点E,DB⊥x轴于点B,点F是线段DE的中点,延长FB交y轴于点S,连接SE,若S△SBE=,则k=30.如图,已知动点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD =AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点P,Q,当QE:DP=9:25时,图中的阴影部分的面积等于.三.解答题(共10小题)31.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.32.如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△P AB的面积;(2)设直线P A、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠P AQ与∠PBQ 的大小,并说明理由.33.如图1,已知点A(a,0),B(0,b),且a、b满足,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线经过C、D两点.(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.34.平面直角坐标系xOy中,点A、B分别在函数y1=(x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD 边与函数y1=(x>0)的图象都有交点,请说明理由.35.如图1所示,已知y=(x>0)图象上一点P,P A⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M 是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连接AQ,取AQ的中点为C.(1)如图2,连接BP,求△P AB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.36.如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.37.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.38.如图,直线y=k1x(x≥0)与双曲线y=(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积.39.如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x >0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b﹣>0的解集.40.如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.参考答案与试题解析一.选择题(共20小题)1.【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y =上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.2.【分析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.【解答】解:如解答图所示,满足条件的直线有4条,故选:A.3.【分析】连接CE.只要证明CE∥OB,推出S△OBE=S△OBC,即可解决问题;【解答】解:连接CE.∵四边形ABCO,四边形DEFC都是正方形,∴∠ECF=∠BOC=45°,∴CE∥OB,∴S△OBE=S△OBC,∵BC=OC,点B在y=上,∴BC=OC=2,∴S△OBE=×2×2=2,故选:A.4.【分析】如图:延长AC交BF的延长线于G,连接OF.只要证明OF是△BCG的中位线,可得OF=CG=,即可解决问题.【解答】解:如图:延长AC交BF的延长线于G,连接OF.∵AF⊥BG,∴∠AFB=∠AFG=90°,∴∠BAF+∠ABF=90°,∠G+∠GAF=90°,∵∠BAF=∠F AG,∴∠ABF=∠G,∴AB=AG,∵AF⊥BG,∴BF=FG,∵B(﹣,﹣),C(,),∴OB=OC,∴OF=CG,∵|AB﹣AC|=2,AB=AG,∴CG=2,∴OF=,∴点F在以O为圆心为半径的圆上运动.故选:C.5.【分析】设B(m,n),想办法求出A,D,C的坐标,构建方程求出mn的值即可解决问题.【解答】解:设B(m,n),∵BC:BO=2:3,∴C(m,n),∵BD:AB=3:4,∴点D的纵坐标为n,∵C,D在y=的图象上,∴D(m,),∴直线BD的解析式为y=x﹣n,令y=0,得到x=m,∴A(m,0),∵S△ABO=,∴×(﹣m)×n=,∴mn=﹣,∴k==﹣×=﹣,故选:C.6.【分析】作AE⊥OD于E,CF⊥OD于F.首先证明S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,由此构建方程即可解决问题;【解答】解:作AE⊥OD于E,CF⊥OD于F.连接AC,AD.∵BC:CD=2:1,S△ADC=,∴S△ACB=,∵OA=AB,∴B(2m,2n),S△AOC=S△ACB=,∵A、C在y=上,BC=2CD,∴C(m,n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴•(n+n)×m=,∴mn=16,故选:B.7.【分析】如图作BH⊥OD于H.延长BA交y轴于E.由tan∠ABD=tan∠BDH=,设DH=5m,BH=9m,则BH =BE=9m,OD=4m,推出C(﹣6m,m),推出A(﹣m,9m),由△ABD的面积为,推出×m×9m=,可得m2=,推出k=﹣6m×m=﹣2;【解答】解:如图作BH⊥OD于H.延长BA交y轴于E.∵AB∥DH,∴∠ABD=∠BDH,∴tan∠ABD=tan∠BDH=,设DH=5m,BH=9m,则BH=BE=9m,OD=4m,∴C(﹣6m,m),∴A(﹣m,9m),∵△ABD的面积为,∴×m×9m=,∴m2=,∴k=﹣6m×m=﹣2,故选:A.8.【分析】设A(x a,y a),B(x b,y b),C(x c,y c),则有x a y a=x b y b=5,x c y c=k,由OA∥BC可得:=,过点A作AF⊥x轴于点F,BE⊥x轴于点E,CD⊥x轴于点D,由图可得:S△ABC=S梯形AFEB+S梯形BEDC﹣S梯形AFDC,代入坐标可得到:(y a+y b)(x b﹣x a)+(y b+y c)(x c﹣x b)﹣(y a+y c)(x c﹣x a)=6,整理得到:y a x b﹣x a y b+y b x c ﹣y c x b﹣y a x c+x a y c=6,综上得到y b x c﹣y c x b=12,已知=,可得=,y b==,综合以上式子可得:10+x c y c=12,所以x c y c=4,即k=4.【解答】解:设A(x a,y a),B(x b,y b),C(x c,y c),则有x a y a=x b y b=5,x c y c=k,∵OA∥BC∴=,整理得到:y a x b﹣y a x c=x a y b﹣x a y c①过点A作AF⊥x轴于点F,BE⊥x轴于点E,CD⊥x轴于点D,∵S△ABC=S梯形AFEB+S梯形BEDC﹣S梯形AFDC=6∴(AF+BE)×EF+(BE+CD)×DE﹣(AF+CD)×DF=6代入坐标可得到:(y a+y b)(x b﹣x a)+(y b+y c)(x c﹣x b)﹣(y a+y c)(x c﹣x a)=6,整理得:y a x b﹣x a y b+y b x c﹣y c x b﹣y a x c+x a y c=6,②①②联立得:y b x c﹣y c x b=12,③由=,可得:=,即x b=x c,∴y b==,代入③得:10+x c y c=12,解得:x c y c=4,即k=﹣4.解法二:如图连接OB,OC,作BE⊥OP于E,CF⊥OP于F.∵OA∥BC,∴S△OBC=S△ABC=6,∵PB:PC=1:2,∴S△OPB=2,S△OPC=4,∵S△OBE=,∴S△PBE=,∵△BEP∽△CFP,∴S△CFP=4×=2,∴S△OCF=2,∴k=﹣4.故选:B.9.【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出=()2,因为CA:AB=5:8,AO=OB,推出CA:OA=5:4,推出CO:OA=3:4,可得=()2=,因为S△AOE =2,可得S△COF=,延长即可解决问题;【解答】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∵∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴=()2,∵CA:AB=5:8,AO=OB,∴CA:OA=5:4,∴CO:OA=3:4,∴=()2=,∵S△AOE=2,∴S△COF=,∴=,∵k<0,∴k=﹣,故选:A.10.【分析】证明△DHA≌△CGD(AAS)、△ANB≌△DGC(AAS)得到:AN=DG=1=AH,而AH=﹣1﹣m=1,解得:m=﹣2,即可求解.【解答】解:设点D(m,),如图所示,过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣,﹣5),GE=,CE=CG﹣GE=DH﹣GE=5﹣=,故选:B.11.【分析】由OA1=A1A2=A2A3=…=A n﹣1A n=1可知B1点的坐标为(1,y1),B2点的坐标为(2,y2),B3点的坐标为(3,y3)…B n点的坐标为(n,y n),把x=1,x=2,x=3代入反比例函数的解析式即可求出y1、y2、y3的值,再由三角形的面积公式可得出S1、S2、S3…S n的值,故可得出结论.【解答】解:∵OA1=A1A2=A2A3=…=A n﹣1A n=1,∴设B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n),∵B1,B2,B3…Bn在反比例函数y=(x>0)的图象上,∴y1=1,y2=,y3=…y n=,∴S1=×1×(y1﹣y2)=×1×(1﹣)=(1﹣);S2=×1×(y2﹣y3)=×(﹣);S3=×1×(y3﹣y4)=×(﹣);…S n=(﹣),∴S1+S2+S3+…+S n=(1﹣+﹣+﹣+…+﹣)=.故选:C.12.【分析】作AE⊥OC于E,DF⊥OC于F.设A(a,b).想办法证明OE=EF=CF即可解决问题;【解答】解:作AE⊥OC于E,DF⊥OC于F.设A(a,b).∵四边形ABCO是菱形,∴AD=DC,∵AE∥DF,∴EF=FC,∴DF=AE=b∵反比例函数y=在第一象限内的图象经过点A与点D,∴D(2a,b),∴OE=EF=FC=a,∴OA=OC=3a,∴AE==2a,∵OC•AE=24,∴3a•2a=24,∴a2=4,∵a>0,∴a=2,∴A(2,4),故选:C.13.【分析】如图作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.首先利用全等三角形的性质求出D、C两点坐标,再证明a=b,再构建方程求出a、k,再求出直线EF的解析式,利用方程组确定点P坐标即可解决问题;【解答】解:如图作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.∵四边形ABCD是正方形,∵AD=AB=BC,∠DAB=∠ABC=90°,易证△AOB≌△BNC≌△DMA,∴DM=OA=BN=b,AM=OB=CN=a,∴D(b,a+b),C(a+b,a),∵点C,D恰好都落在反比例函数y=(k≠0)的图象上,∴b(a+b)=a(a+b),∵a+b≠0,∴a=b,∴OA=OB,∴∠ABO=45°,∠EBF=45°,∵BE⊥EF,∴△BEF是等腰直角三角形,∵BC=EC,∴可得E(3a,2a),F(5a,0),∴×4a×2a=+12,∵D(a,2a),∴2a2=k,∴a=2,k=8,∴E(6,4),F(10,0),∴直线EF的解析式为y=﹣x+10,由,解得或,∴p(5+,5﹣),∴PE=﹣,∴S△ECP=•EC•EP=•(﹣)×2=2﹣2,故选:B.14.【分析】连接OF、OB、OE.首先证明EF是△BAC的中位线,利用相似三角形的性质即可解决问题.【解答】解:连接OF、OB、OE.∵四边形ABCO是矩形,∴S△ABO=S△BCO,∵BF=CF,∴S△CFO=S△BFO,∵E、F在y=(x>0)上,∴S△AEO=S△FCO=S△ABO,∴AE=EB,∵BF=CF,∴EF∥AC,∴△BEF∽△BAC,∴=,∵S矩形ABCO=16,∴S△BEF=×8=2,∴S四边形ACFE=8﹣2=6,故选:B.15.【分析】首先证明CD=BC=AB,设C的横坐标为x,则B的横坐标为2x,根据S△OBC=S△OBD﹣S△OCD,构建方程,即可求得k的值;【解答】解:作BE⊥x轴于E,CF⊥x轴于F,∴BE∥CF,∴=,∵AC=BC,∴CF=2BE,∵S△COF=S△OBE,∴CF•OF=OE•BE,∴OE=2OF,∵OD∥CF∥BE,∴DC=BC=AB,∴设C的横坐标为x,则B的横坐标为2x,∴C的纵坐标为,B的纵坐标为,∴CF=,BE=,OA=3x∵S△OBC=S△OAC﹣S△OAB,△OBC的面积为4,∴OA•CF﹣OA•C=4,∴•3x•﹣•3x•=4,∴k=故选:B.16.【分析】首先证明点E是线段AB的中点,设BC=BC′=m,则EC′=m﹣2.在Rt△BEC′中,根据BC′2=BE2+EC′2,构建方程求出m即可解决问题;【解答】解:连接OD、OE.设BC=BC′=m,则EC′=m﹣2.∵CD=BD,∴S△CDO==S矩形ABCD,∵S△AOE==S△CDO=S矩形ABCD,∴AE=EB,∵C′(2,3),∴AE=EB=3,在Rt△BEC′中,∵BC′2=BE2+EC′2,∴m2=32+(m﹣2)2,∴m=,∴E(,3),∵点E在y=上,∴k=,故选:D.17.【分析】由题意,△ABC是等腰直角三角形,BC∥x轴,设B(a,﹣a),想办法证明A(﹣a,﹣3a),利用待定系数法求出a即可.【解答】解:由题意,△ABC是等腰直角三角形,BC∥x轴,设B(a,﹣a),∵AC∥OB,∴AC⊥直线y=x,∴A、C关于直线y=x对称,作OH⊥AC于H,则四边形ABOH是矩形,∴AH=HC=OB,AB=2OB,∴A(﹣a,﹣3a),∴3a2=6,∴a2=2,∵a<0,∴a=﹣,∴B(﹣,),故选:A.18.【分析】据对称性可知,反比例函数y=,y=﹣的图象是中心对称图形,菱形是中心对称图形,推出菱形ABCD 的对角线AC与BD的交点即为原点O.如图:作DM⊥x轴于M,CN⊥x轴于N.连接OD,OC.由△DOM∽△OCN,S△DOM=2,S△OCN=,推出()2=,可以假设OD=2k,OC=3k,根据菱形的面积公式构建方程即可解决问题;【解答】解:根据对称性可知,反比例函数y=,y=﹣的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O.如图:作DM⊥x轴于M,CN⊥x轴于N.连接OD,OC.∵DO⊥OC,∴∠DOM+∠CON=90°,∠CON+∠OCN=90°,∴∠DOM=∠OCN,∵∠DMO=∠CNO=90°,∴△DOM∽△OCN,∵S△DOM=2,S△OCN=,∴()2=,∴可以假设OD=2k,OC=3k,∵S菱形ABCD=4••2k•3k=78,∴k=,∴CD==k=,故选:B.19.【分析】图象y=向右平移个单位长度得到一个新的函y=,因为44<<45,结合图形可知:当x<44时,y<0,y随x的增大而减小,x=44时,得到y的最小值y44,当x>45时,y>0,y随x的增大而增大,x=45时,得到y的最大值y45;【解答】解:图象y=向右平移个单位长度得到一个新的函y=,∵44<<45,∴当x<44时,y<0,y随x的增大而减小,x=44时,得到y的最小值y44,当x>45时,y>0,y随x的增大而增大,x=45时,得到y的最大值y45,故选:C.20.【分析】如图延长AB到D,使得AB=BD,连接CD,作AH⊥y轴于H,DE⊥y轴于E.设C(0,c).由△ACH ∽△CDE,推出===,由A(1,),推出AH=1,CH=﹣c,推出EC=,DE=﹣c,推出D(﹣c,c﹣),根据BA=BD,可得B(,),因为A、B在y=上,可得=×,解方程求出点C坐标即可解决问题;【解答】解:如图延长AB到D,使得AB=BD,连接CD,作AH⊥y轴于H,DE⊥y轴于E.设C(0,c).∵△ABC是等边三角形,∴AB=AC=BC,∵AB=BD,∴BA=BC=BD,∴△ACD是直角三角形,∵∠CAD=60°,∴DC=AC,∵∠ACD=∠AHC=∠DEC=90°,∴∠ACH+∠DCE=90°,∵∠ECD+∠CDE=90°,∴∠ACH=∠CDE,∴△ACH∽△CDE,∴===,∵A(1,),∴AH=1,CH=﹣c,∴EC=,DE=﹣c,∴D(﹣c,c﹣),∵BA=BD,∴B(,),∵A、B在y=上,∴=×,整理得:4c2﹣16c﹣11=0,解得c=﹣或(舍弃),∴C(0,﹣),∴AC==2,故选:B.二.填空题(共10小题)21.【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN,OM=AN,即可得到求出B的坐标,代入反比例函数即可得出一元二次方程,解方程即可得到k的值.【解答】解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵双曲线y=(x>0)经过点B,∴(1+k)•(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(负值已舍去),故答案为:.22.【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.【解答】解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(m﹣n),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∵m>0,k>0,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∵m>1,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.23.【分析】先求出直线y=x向左平移6个单位长度后的解析式为y=x+4,那么直线y=x+4交y轴于E(0,4),作EF⊥OB于F.根据互相垂直的两直线斜率之积为﹣1得出直线EF的解析式为y=﹣x+4,再求出F(,),EF==,根据S△ABC=4,求出AB=,那么OA=AB=,进而求出A、B 两点坐标,求出m、n即可解决问题.【解答】解:直线y=x向左平移6个单位长度后的解析式为y=(x+6),即y=x+4,∴直线y=x+4交y轴于E(0,4),作EF⊥OB于F.可得直线EF的解析式为y=﹣x+4,由,解得,即F(,).∴EF==,∵S△ABC=4,∴•AB•EF=4,∴AB=,∵=,∴OA=AB=,∴A(3,2),B(5,),∴m=6,n=,∴mn=100.故答案为100.24.【分析】过点C作CG⊥OA于点G,根据等边三角形的性质求出OG、CG的长度,从而得到点C的坐标,再利用待定系数法求反比例函数解析式;过点D作DH⊥AF于点H,设AH=a,根据等边三角形的性质表示出DH的长度,然后表示出点D的坐标,再把点D的坐标代入反比例函数解析式,解方程得到a的值,从而得解.【解答】解:过点C作CG⊥OA于点G,过点D作DH⊥AF于点H,∵点C是等边△OAB的边OB的中点,∴OC=8,∠AOB=60°,∴OG=4,CG=OG•tan60°=4,∴点C的坐标是(4,4),∴k=4×4=16,∴该双曲线所表示的函数解析式为y=,设AH=a,则DH=a.∴点D的坐标为(16+a,a),∵点D是双曲线y=上的点,∴a×(16+a)=16,即:a2+16a﹣16=0,解得:a1=﹣8+4,a2=﹣8﹣4(舍去),∴AD=2AH=﹣16+8,∴AF=2AD=﹣32+16,∴OF=AO+AF=16﹣32+16=16﹣16,即点F的坐标为(16﹣16,0).故答案为:(16﹣16,0).25.【分析】由题意B(0,b),A(b,0),推出OA=OB=b,因为直线y=﹣x+b关于直线y=x对称,反比例函数y =﹣关于y=x对称,推出BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),想办法构建方程求出a、b的关系,求出点D的坐标(用b表示),再利用待定系数法即可解决问题;【解答】解:由题意B(0,b),A(b,0),∴OA=OB=b,∵直线y=﹣x+b关于直线y=x对称,反比例函数y=﹣关于y=x对称,∴BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),∵,∴=,整理得:12a2+17ab﹣14b2=0,解得a=b或a=﹣b(舍弃),∴D(b,﹣b),∵D在y=﹣的图象上,∴b×(﹣b)=﹣4,解得b=3或﹣3(舍弃),∴D(4,﹣1),C(﹣1,4),∴CD==5,故答案为5.26.【分析】过D作DF⊥AO于F,过EG⊥OB于G,则DF∥OB,GE∥AO,设C(x,y),则GE=x,DF=﹣y,由△ADF∽△ABO,可得AD=﹣y,由△BEG∽△BAO,可得BE=2x,再根据AD•BE=4,即可得到k=xy=.【解答】解:如图,过D作DF⊥AO于F,过EG⊥OB于G,则DF∥OB,GE∥AO,由直线y=x﹣8,可得A(,0),B(0,﹣8),∴AO=,BO=8,AB=,设C(x,y),则GE=x,DF=﹣y,由△ADF∽△ABO,可得,即=,∴AD=﹣y,由△BEG∽△BAO,可得,即=,∴BE=2x,∵AD•BE=4,∴﹣y×2x=4,∴xy=﹣,∴k=xy=﹣,故答案为:﹣.27.【分析】延长BC交y轴于点E,过点D作DF⊥x轴于点FBA⊥x轴于A.由矩形与反比例函数的性质,可得S四边=S△OBC=8,易证得△ODF∽△OBA,又由OD:DB=1:2,即可得S△ODF=S四边形ABDF=×4=,则形ABDF可求得答案.【解答】解:延长BC交y轴于点E,过点D作DF⊥x轴于点F,BA⊥x轴于A.∵梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,∴四边形OABE是矩形,∴S△OBE=S△OAB,∵过点C的双曲线y=交OB于点D,∴S△OCE=S△ODF,∴S四边形ABDF=S△OBC=8,∵DF∥AB,∴△ODF∽△OBA,∵OD:DB=1:2,∴OD:OB=1:3,∴S△ODF:S△OAB=1:9,∴S△ODF:S四边形ABDF=1:8,∴S△ODF=S四边形ABDF=×8=1,∴k=2.故答案为:2.28.【分析】设A(m,m),因为点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,可得AB =5,由此构建方程即可解决问题.【解答】解:设A(m,m),∵点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,∴AB=5,∴m2+(7﹣m)2=25,解得m=3或4,∴A(3,3)或(4,4),∵点A在y=上,∴k=9或16,∴反比例函数的解析式为y=或y=,故答案为y=或y=.29.【分析】连接OD.设D(m,n),只要证明△SBO∽△DEB,可得=,推出DB•OB=OS•BE,因为S△SBE =,可得•BE•SO=,推出BE•SO=,推出DB•OB=,即可解决问题;【解答】解:连接OD.设D(m,n)∵DB⊥OE,∴∠DBE=90°,∵DF=FE,∴BF=FE,∴∠FEB=∠FBE,∵∠FBE=∠SBO,∴∠SBO=∠DEB,∵∠SOB=∠DBE=90°,∴△SBO∽△DEB,∴=,∴DB•OB=OS•BE,∵S△SBE=,∴•BE•SO=,∴BE•SO=,∴DB•OB=,∵D(m,n)在y=上,∴k=mn=DB•OB=,故答案为.30.【分析】作DF⊥x轴于点F,EG⊥y轴于G,得到△QEG∽△PDF,于是得到,设EG=9t,则PF=25t,然后根据△ADE∽△FPD,据此即可得到关于t的方程,求得t的值,进而求解.【解答】解:作DF⊥x轴于点F,EG⊥y轴于G,∴△QEG∽△DPF,∴,设EG=9t,则PF=25t,∴A(9t,),由AC=AEAD=AB,∴AE=9t,AD=,DF=,PF=25t,∵△ADE∽△FPD,∴AE:DF=AD:PF,9t:=:25t,即t2=,图中阴影部分的面积=×9t×9t+××=,故答案为:.三.解答题(共10小题)31.【分析】(1)把A、B的坐标代入反比例函数解析式求出m=﹣n,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,求出梯形BCAD的面积和△BDA的面积,即可得出关于n的方程,求出n的值,得出A、B 的坐标,代入反比例函数和一次函数的解析式,即可求出答案;(2)根据A、B的横坐标,结合图象即可得出答案;(3)分为两种情况:当点P在第三象限时和当点P在第一象限时,根据坐标和图象即可得出答案.【解答】解:(1)把A(2,m),B(n,﹣2)代入y=得:k2=2m=﹣2n,即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC=•BC•BD∴×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k2=6,即反比例函数的解析式是y=;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是p≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是p>0,即P的取值范围是p≤﹣2或p>0.32.【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△P AB=2S△AOP,要求△P AB的面积,只需求△P AO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠P AQ=∠PBQ.【解答】解:(1)k=4,S△P AB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y=x,得到点B的坐标为(4,1),把点B(4,1)代入y=,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△P AB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC=OC•AR+OC•PS=×3×4+×3×1=,∴S△P AB=2S△AOP=15;(2)过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y=,设P(m,),直线P A的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线P A的方程为y=x+﹣1,联立,解得直线PB的方程为y=﹣x++1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)∠P AQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y=x+﹣1.当y=0时,x+﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠P AQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠P AQ=∠PBQ.33.【分析】(1)先根据非负数的性质求出a、b的值,故可得出A、B两点的坐标,设D(1,t),由DC∥AB,可知C (2,t﹣2),再根据反比例函数的性质求出t的值即可;(2)由(1)知k=4可知反比例函数的解析式为y=,再由点P在双曲线上,点Q在y轴上,设Q(0,y),P(x,),再分以AB为边和以AB为对角线两种情况求出x的值,故可得出P、Q的坐标;(3)连NH、NT、NF,易证NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH=90°,MN=HT,由此即可得出结论.【解答】解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:,∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵四边形ABCD是平行四边形,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1所示:若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2所示;若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3所示;当AB为对角线时:AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.∴MN=HT,∴=.34.【分析】(1)如图1,AB交y轴于C,由于AB∥x轴,根据k的几何意义得到S△OAC=2,S△OBC=2,所以S△OAB =S△OAC+S△OBC=4;(2)根据函数图象上点的坐标特征得A、B的纵坐标分别为、﹣,根据两点间的距离公式得到OA2=a2+()2,OB2=b2+(﹣)2,则利用等腰三角形的性质得到a2+()2=b2+(﹣)2,变形得到(a+b)(a﹣b)(1﹣)=0,由于a+b≠0,a>0,b<0,所以1﹣=0,易得ab=﹣4;(3)由于a≥4,AC=3,则可判断直线CD在y轴的右侧,直线CD与函数y1=(x>0)的图象一定有交点,设直线CD与函数y1=(x>0)的图象交点为F,由于A点坐标为(a,),正方形ACDE的边长为3,则得到C 点坐标为(a﹣3,),F点的坐标为(a﹣3,),所以FC=﹣,然后比较FC与3的大小,由于3﹣FC =3﹣(﹣)=,而a≥4,所以3﹣FC≥0,于是可判断点F在线段DC上.【解答】解:(1)如图1,AB交y轴于C,∵AB∥x轴,∴S△OAC=×|4|=2,S△OBC=×|﹣4|=2,∴S△OAB=S△OAC+S△OBC=4;(2)∵A、B的横坐标分别为a、b,∴A、B的纵坐标分别为、﹣,∴OA2=a2+()2,OB2=b2+(﹣)2,∵△OAB是以AB为底边的等腰三角形,∴OA=OB,∴a2+()2=b2+(﹣)2,∴a2﹣b2+()2﹣()2=0,∴a2﹣b2+=0,∴(a+b)(a﹣b)(1﹣)=0,∵a+b≠0,a>0,b<0,∴1﹣=0,∴ab=﹣4;(3)∵a≥4,而AC=3,∴直线CD在y轴的右侧,直线CD与函数y1=(x>0)的图象一定有交点,设直线CD与函数y1=(x>0)的图象交点为F,如图2,∵A点坐标为(a,),正方形ACDE的边长为3,∴C点坐标为(a﹣3,),∴F点的坐标为(a﹣3,),。

北师大版数学九年级上册第五章反比例函数测试卷

北师大版数学九年级上册第五章反比例函数测试卷

2012—2013学年度第一学期炉山二中九年级数学单元测试卷第五章反比例函数2、(2007•宁夏)某农场的粮食总产量为1500吨,设该农场人数为x人,平均每人占有粮食数为y吨,则y与x之间的函数图象大致是()A、B、C、D、3、(2008•锡林郭勒盟)当x<0时,反比例函数y=−1()3xA、图象在第二象限内,y随x的增大而减小B、图象在第二象限内,y随x的增大而增大C、图象在第三象限内,y随x的增大而减小D、图象在第三象限内,y随x的增大而增大的图象中,阴影部分的面积不等于4的是()4、在反比例函数y=4xA、B、C、D、,下列判断正确的是()5、(2005双柏县)对于函数y=3xA、图象经过点(-1,3)B、图象在第二、四象限C、图象所在的每个象限内,y随x的增大而减小D、不论x为何值时,总有y>06、(2006•威海)如图,过原点的一条直线与反比例函数y=k(k≠0)的图象分别交于A,B两点.若xA点的坐标为(a,b),则B点的坐标为()A、(a,b)B、(b,a)C、(-b,-a)D、(-a,-b)的图象相交于A,C两点,过7、(2008•南平)如图,正比例函数y=kx(k>0)与反比例函数y=4x点A 作x 轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A、2B、4C、6D、8第6题图第7题图第8题图的图象如图,当x≥-1时,y的取值范围是()8、(2010•黑河)已知函数y=1xA、y<-1B、y≤-1C、y≤-1或y>0D、y<-1或y≥0的图象上,则a,9、(2006•聊城)已知点A(-3,a),B(-1,b),C(3,c)都在函数y=−3xb,c的大小关系是()A、c>b>aB、a>b>cC、b>a>cD、c>a>b的图象在每个象限内,y随x的增大而减小,则k的值可为()10、(2006•泰州)反比例函数y=k−1xA、-1B、0C、1D、2在同一坐标系中的大致图象是()11、(2003•宜昌)函数y=kx+1与函数y=kxA、B、C、D、二、填空题:(5×8=40分)12、(2012广西)请写出一个图象在第二、第四象限的反比例函数解析式,你所写的函数解析式是。

【数学九年级上册】北师大版 反比例函数 同步练习(答案)

【数学九年级上册】北师大版 反比例函数 同步练习(答案)

14. 若 蔠 ለ 1是关于 x 的反比例函数,则 m 必须满足______________.
1ለ. 下列函数: 蔠 ለ 2
1; 蔠 ለ ለ; 蔠 ለ 2 8
2;
蔠 ለ 33;


1 2

蔠 ለ .其中 y 是 x 的反比例函数的有________. 填序号
16. 已知 蔠 ለ 蔠1 蔠2,蔠1与 x 成正比例、蔠2与 x 成反比例,且当 ለ 1 时,蔠 ለ 4,当 ለ 2 时,蔠 ለ ለ,则当 ለ 4 时,y 的值是_______.
2.【答案】C
【解析】解:A、B、D 选项都符合反比例函数的定义;
C 选项不是反比例函数.
3.【答案】B
【解析】解:A、圆面积公式 ለ 2中,S 与 2成正比例关系,故原题说法错误;
B、三角形面积公式

1 2
确;
中,当 S 是常量时,a 与 h 成反比例关系,故原题说法正
C、蔠 ለ 2 2 中,y 与 x 不成反比例关系,故原题说法错误;
1 写出 y 关于 x 的函数解析式;
2 当 ለ ለ 时,求 y 的值.
第 4页,共 13页
答案和解析
1.【答案】C
【解答】 解: .等边三角形面积 S 与边长 a 的关系,不是反比例函数的关系,不符合题意 B.直角三角形两锐角 与 的关系,不是反比例函数的关系,不符合题意 C.长方形面积一定时,长 y 与宽 x 的关系,是反比例函数的关系,符合题意 D.等腰三角形的顶角度数与底角度数的关系,不是反比例函数的关系,不符合题意. 故选 C.
第 6页,共 13页
反比例函数解析式的一般式 蔠 ለ
12.【答案】 9
中,特别注意不要忽略

北师大版九年级上数学第五章反比例函数单元测试题

北师大版九年级上数学第五章反比例函数单元测试题

九年级上数学第五章《反比例函数》测试题(一)一、精心选一选,相信自己的判断!(每题2分共20分)1、下列函数中,反比例函数是( )A 、1)1(=-y xB 、11+=x y C 、21xy = D 、x y 31= 2、函数x k y =的图象经过点(-4,6),则下列各点中在xky =图象上的是( )A 、(3,8)B 、(3,-8)C 、(-8,-3)D 、(-4,-6) 3、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的( ) A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定 4、如果反比例函数xky =的图像经过点(-3,-4),那么函数的图像应在( ) A 、第一、三象限 B 、第一、二象限 C 、第二、四象限 D 、第三、四象限5、在同一坐标系中,函数ky =和3+=kxy 的图像大致是 ()6、正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2B .2-C .4D .4-7、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) A 、 (-a ,-b ) B 、 (a ,-b ) C 、 (-a ,b ) D 、 (0,0) 8、如上图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( ) A 、6B 、3C 、23D 、不能确定9、若反比例函数22)12(--=m xm y 的图像在第二、四象限,则m 的值是( A 、-1或1 B 、小于21的任意实数 C 、-1 D、不能确定10、在同一直角坐标平面内,如果直线x k y 1=与双曲线xky 2=没有交点,那么1k 和2k 的关系一定是( )A 、1k <0,2k >0B 、1k >0,2k <0C 、1k 、2k 同号D 、1k 、2k 异号二、耐心填一填:(30分) 1、函数1y x a=-,当2x =时没有意义,则a 的值为 2、某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (㎡)之间的函数关系如图所示.这一函数表达式为p=________3、反比例函数xky =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;4、已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ;5、反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果 △MOP 的面积为1,那么k 的值是 ;6.在下列函数表达式中,表示y 是x 的反比例函数的有 。

初中数学 北师大版 九年级上学期期末备考压轴题专项习题:反比例函数(含答案)

初中数学 北师大版 九年级上学期期末备考压轴题专项习题:反比例函数(含答案)

数学九年级(北师大版)上学期期末备考压轴题专项习题:反比例函数1.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,OA=10,sin∠AOB=,反比例函数y=kx﹣1(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)求反比例函数的表达式;(2)若点F为BC的中点,求△OBF的面积.2.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出使一次函数值大于反比例函数值的x的范围.3.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求△OAP的面积.4.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B'、D'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B'、D'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.5.如图,直线y=x与反比例函数y=(x>0)的图象相交于点D,点A为直线y=x上一点,过点A作AC⊥x轴于点C,交反比例函数y=(x>0)的图象于点B,连接BD.(1)若点B的坐标为(8,2),则k=,点D的坐标为;(2)若AB=2BC,且△OAC的面积为18,求k的值及△ABD的面积.6.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求△AOB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.7.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y于点D,A(﹣6,0),C(6,0),tan∠ACB =2,∠BAC=45°(1)则AC=;(2)反比例函数y=的图象经过点B,求k的值;(3)在线段OD上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请直接写出满足条件的点P的坐标(不用写过程);若不存在,请说明理由.8.“凡此变数中函彼变数者,则此为彼之函数”这是我国著名数学家李善兰给出的“(function)函数”翻译,一次函数、二次函数、反比例函数是初中阶段必须掌握的三大初等函数.(1)已知一次函数y=kx+b与反比例函数相交于A(1,6),B(n,2)两点,求这两个函数的解析式及由坐标系原点O,A,B围成的三角形的面积;(2)已知实数m,n(m<n)在二次函数y=x2+3x﹣4对称轴的同一侧,当m≤x≤n时,y的取值范围为,求出m,n的值;(3)已知直线y=2tx﹣2和抛物线y=(t2﹣1)x2﹣1在y轴左边相交于A,B两点,点C是线段AB的中点,经过C,D(﹣2,0)的直线交y轴于点H(0,h),求h取值范围.9.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)求△AOB的面积;(3)在坐标轴上是否存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P的坐标:若不存在,简述你的理由.10.如图,点A(a,b)是双曲线y=(x>0)上的一点,点P是x轴负半轴上的一动点,AC⊥y轴于C点,过A作AD⊥x轴于D点,连接AP交y轴于B点.(1)△P AC的面积是;(2)当a=2,P点的坐标为(﹣2,0)时,求△ACB的面积;(3)当a=2,P点的坐标为(x,0)时,设△ACB的面积为S,试求S与x之间的函数关系.11.直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.12.已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S=.△OAB(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.13.如图,双曲线y=(x>0)经过△AOB的点顶A(2,3),AB∥x轴,OB交双曲线于点C,且OB=3OC(1)求k的值;(2)连接AC,求点C的坐标和△ABC的面积.14.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.15.如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.参考答案1.解:(1)如图,过点A 作AH ⊥OB 于H , ∵sin ∠AOB =,OA =10, ∴AH =8,OH =6, ∴A 点坐标为(6,8),代入反比例函数y =kx ﹣1(k >0)可得:k =6×8=48, ∴反比例函数解析式:y =;(2)如图,过点F 作FM ⊥x 轴于M , ∵四边形AOBC 是平行四边形, ∴AO ∥BC ,AO =CB =10, ∴∠AOB =∠FBM , ∵sin ∠AOB =, ∴sin ∠FBM =, ∵点F 为BC 的中点, ∴BF =5,∵AH =8,OH =6, ∴FM =4,BM =3, ∴S △BFM =6,∵F 在反比例函数图象上, ∴S △OFM =24,∴S △OBF =S △OFM ﹣S △BFM =18.2.解:(1)把A(2,﹣4)的坐标代入得:,∴4﹣2m=﹣8,反比例函数的表达式是;把B(n,﹣2)的坐标代入得,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,一次函数值大于反比例函数值的x的范围为0<x<2或x>4.3.解:(1)将点A(4,3)代入y=(k≠0),得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);设OB所在直线解析式为y=mx(m≠0),将点B(9,3)代入得m=,∴OB所在直线解析式为y=x;(3)联立解析式:解得:,可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,连接AP,则点E坐标为(6,3),∴AE=2,PE=1,PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.4.解:(1)如图,过点B、D分别作BH⊥x轴、DG⊥x轴交于点H、G,∵点A(﹣6,0)、D(﹣7,3),∴OA=6,OG=7,DG=3,∴AG=OG﹣OA=1,∵∠DAG+∠BAH=90°,∠DAG+∠GDA=90°,∴∠GDA=∠BAH,又∠DGA=∠AHB=90°,AD=AB,∴△DGA≌△AHB(AAS),∴DG=AH=3,BH=AG=1,∴点B坐标为(﹣3,1);(2)由(1)知,B(﹣3,1),∵D(﹣7,3)∴运动t秒时,点D'(﹣7+2t,3)、B'(﹣3+2t,1),设反比例函数解析式为y=,∵点B',D'在反比例函数图象上,∴k=(﹣7+2t)×3=(﹣3+2t)×1,∴,k=6,∴反比例函数解析式为;(3)存在,理由:由(2)知,点D'(﹣7+2t,3)、B'(﹣3+2t,1),t=,∴D'(2,3)、B'(6,1),由(2)知,反比例函数解析式为y=,设点Q(m,),点P(0,s),以P、Q、B'、D'四个点为顶点的四边形是平行四边形,∴①当PQ与B'D'是对角线时,∴(0+m)=(2+6),(s+)=(3+1),∴m=8,s=,∴Q(8,),P(0,),②当PB'与QD'是对角线时,∴(0+6)=(2+m),(s+1)=(+3),∴m=4,s=,∴Q(4,),P(0,).③当PD'与QB'是对角线时,∴(0+2)=(m+6),(s+3)=(+1),∴m=﹣4,s=﹣,∴Q(﹣4,﹣),P(0,﹣),综上:Q(8,),P(0,)或Q(4,),P(0,)或Q(﹣4,﹣),P(0,﹣).5.解:(1)把B(8,2)代入y=得:k=2×8=16,∴反比例函数的关系式为y=,由题意得:解得:,(舍去)∴点D的坐标为(4,4)故答案为:16,(4,4)(2)过点D作DE⊥OC,DF⊥AC,垂足为E、F,如图所示:∵点A在第一象限y=x上,∴AC=OC,又∵△OAC的面积为18,∴AC=OC=6,∵AB=2BC,∴AB=4,BC=2,∴点B(6,2),代入y=得,k=12;设点D(a,a)代入y=得,a=(a>0)∴D (,),即OE =DE =,∴DF =EC =OC ﹣OE =6﹣,∴△ABD 的面积=AB •DF =×4×(6﹣)=12﹣;因此k 的值为12,∴△ABD 的面积为12﹣.6.解:(1)∵已知反比例函数y =与一次函数y =x +b 的图象在第一象限相交于点A (1,﹣k +4), ∴﹣k +4=k , 解得k =2,故反比例函数的解析式为y =,又知A (1,2)在一次函数y =x +b 的图象上, 故2=1+b , 解得b =1,故一次函数的解析式为y =x +1; (2)由题意得:,解得x =﹣2或1, ∴B (﹣2,﹣1),令y =0,得x +1=0,解得x =﹣1, ∴C (﹣1,0), ∴S △AOB =S △AOC +S △COB =×1×2+×1×1 =1+ =1.5;(3)由图象可知,当一次函数的值大于反比例函数值时,x的取值范围是x>1或﹣2<x <0.7.解:(1)6﹣(﹣6)=12.故答案为:12.(2)过点B作BE⊥x轴,如图1所示.设BE=m,则CE==m,AE==m.∵AE+CE=12,∴m+m=12,∴m=8,∴OE=OC﹣CE=6﹣×8=2.∴点B的坐标为(2,8).(3)∵点B的坐标为(2,8),BD⊥y于点D,∴点D的坐标为(0,8),∴BD=2.∵点A的坐标为(﹣6,0),∴OA=6.设点P的坐标为(0,n)(0<n<8),则OP=n,DP=8﹣n.∵∠AOP=∠BDP=90°,以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似,∴=或=,即=或=,解得:n=2或n=6,∴在线段OD上存在点P(0,2)或(0,6),使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似.8.解:(1)∵A(1,6),B(n,2)在反比例函数的图象上,∴m=6,∴反比例函数的解析式是y=,∴2n=6,解得n=3,∴B(3,2),∵一次函数y=kx+b与反比例函数y=的图象交于A、B两点.∴,解得,∴一次函数解析式为y=﹣2x+8;设直线y=﹣2x+8与x轴相交于点C,C的坐标是(4,0).S△AOB =S△AOC﹣S△BOC=OC|y A|﹣OC|y B)=8;(2)分两种情况讨论:①当m<n<﹣,即m、n在对称轴的左侧时,二次函数y的值随x增大而减小,∵,∴方程组中的第一个方程×n得,n3+3n2﹣4n=12∴(n+2)(n﹣2)(n+3)=0解得n=﹣2或2或﹣3,同理由方程组中的第二个方程×m得m=﹣2或2或3,∵m<n<﹣,∴m=﹣3,n=﹣2;②当﹣<m<n,即m、n在对称轴的右侧时,二次函数y的值随x增大而增大,∵,,方程①×n﹣2×m,得m2n﹣n2m+4(m﹣n)=0,∴(mn+4)(m﹣n)=0,∵m﹣n≠0,∴mn+4=0,m=﹣,将m=﹣代入方程②得,n2+3n﹣4=﹣3n,∴n=﹣3±∵n>﹣n=﹣3+∴m=﹣3﹣<﹣,与上述﹣<m<n矛盾,∴没有满足的m、n.综上,在对称轴的左侧存在实数m、n,当m≤x≤n时,y的取值范围为,此时m=﹣3,n=﹣2;(3)设点A(x1,y1)、B(x2,y2),则x1、x2是方程2tx﹣2=(t2﹣1)x2﹣1即(t2﹣1)x2﹣2tx+1=0,解得x1=,x2=,∴x1+x2=,y1+y2=2tx1﹣2+2tx2﹣2=2t(x1+x2)﹣4=.∵点C是AB的中点,∴点C的坐标为(,)即(,).设直线DC的解析式为y=mx+n,则有,解得.∴直线与y轴的交点纵坐标h=n=.∵点A、B在y轴的左侧,∴x1=<0且x2=<0,解得t<﹣1.设k=2t2+t﹣1,则有h=,k=2(t+)2﹣,∵2>0,∴当t<﹣1时k随着t的增大而减小,∴k>2(﹣1+)2﹣即k>﹣1,对于h=,①当﹣1<k<0时,h<﹣4;②当k>0时,h>0,∴直线与y轴的交点纵坐标h的取值范围是h<﹣4或h>0.9.解:(1)将A(,1)代入y=,得:1=,解得:k=,∴反比例函数的表达式为y=.(2)∵点A的坐标为(,1),AB⊥x轴于点C,∴OC=,AC=1,∴OA==2=2AC,∴∠AOC=30°.∵OA⊥OB,∴∠AOB=90°,∴∠B=∠AOC=30°,∴AB=2OA=4,=AB•OC=×4×=2.∴S△AOB(3)在Rt△AOB中,OA=2,∠AOB=90°,∠ABO=30°,∴OB==2.分三种情况考虑:①当OP=OB时,如图2所示,∵OB=2,∴OP=2,∴点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2);②当BP=BO时,如图3,过点B做BD⊥y轴于点D,则OD=BC=AB﹣AC=3,∵BP=BO,∴OP=2OC=2或OP=2OD=6,∴点P的坐标为(2,0),(0,﹣6);③当PO=PB时,如图4所示.若点P在x轴上,∵PO=PB,∠BOP=60°,∴△BOP为等边三角形,∴OP=OB=2,∴点P的坐标为(2,0);若点P在y轴上,设OP=a,则PD=3﹣a,∵PO=PB,∴PB2=PD2+BD2,即a2=(3﹣a)2+12,解得:a=2,∴点P的坐标为(0,﹣2).综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形,点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2),(0,﹣6),(0,﹣2).10.解:(1)∵点A(a,b)是双曲线y=(x>0)上,∴ab=8,∵AC⊥y轴于C点,AD⊥x轴于D点,∴AC=a,AD=b,∴△P AC的面积=AD•AC=ab=4;故答案为:4;(2)∵a=2,∴b=4,∴AC=2,AD=4,A(2,4),设直线AP的解析式为y=kx+b,∴,∴,∴直线AP的解析式为y=x+2,∴B(0,2),∴S=AC•BC==2;△ABC(3)同理直线AP的解析式为y=﹣,∴B(0,﹣),∴BC=4+=∴S=×2×=.11.解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=﹣x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10﹣a 由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△P AD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.12.解:(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S=,△OAB∴×5×AD=,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD==4,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=中得,m=9×3=27,∴反比例函数的解析式为y=,将点A(9,3),B(5,0)代入直线y=kx+b中,,∴,∴直线AB的解析式为y=x﹣;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2∴a=,∴P(,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).13.解:(1)把A (2,3)代入y =得:k =2×3=6, 答:k 的值为:6.(2)过点A 、C 、B 分别作AF ⊥x 轴,CD ⊥x 轴,BE ⊥x 轴,垂足为F 、D 、E , ∵A (2,3) ∴OF =2,AF =3, 由△OCD ∽△OBE 得:,∴CD =1,把y =1代入y =得:x =6, ∴C (6,1), ∴OE =18,∴S △OAB =S 梯形OABE ﹣S △OBE =(18+16)×3﹣×18×3=24, ∵OB =3OC , ∴S △ABC =S △AOB ==16.答:点C 的坐标为(6,1),△ABC 的面积为16.14.(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.15.解:(1)∵点A是一次函数y=mx﹣4的图象上,∴﹣4m﹣4=0,∴m=﹣1,∴一次函数的解析式为y=﹣x﹣4,∵点C(﹣5,n)是直线y=﹣x﹣4上,∴n=﹣(﹣5)﹣4=1,∴C(﹣5,1),∵点C(﹣5,1)是反比例函数y=(k≠0)的图象上,∴k=﹣5×1=﹣5,∴反比例函数的解析式为y=﹣;(2)由(1)知,C(﹣5,1),直线AB的解析式为y=﹣x﹣4,∴B(0,﹣4),设点Q(q,0),P(p,﹣),∵以B,C,P,Q为顶点的四边形是平行四边形,且P,Q两点在直线AB的同侧,∴①当BP与CQ是对角线时,∴BP与CQ互相平分,∴,∴,∴P(﹣1,5),Q(4,0)②当BQ与CP是对角线时,∴BQ与CP互相平分,∴,∴,∴P(﹣1,5),Q(﹣4,0),此时,点C,Q,B,P在同一条线上,不符合题意,舍去,即以B,C,P,Q为顶点的四边形是平行四边形,点P(﹣1,5),点Q(4,0).。

数学北师大版九年级上册反比例函数练习题及答案.1反比例函数练习题及答案

数学北师大版九年级上册反比例函数练习题及答案.1反比例函数练习题及答案

一、判断题1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ___; 6.如果函数222-+=k k kxy 是反比例函数,那么k =________,此函数的解析式是____ ____; 7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是______________ 三、选择题:8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A 1-B 0C 21D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( ) (A ) 12+=x y (B )22xy =(C )x y 51=(D )x y =2 四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗?(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系. ②这是一个反比例函数吗?③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.五.已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=x ,DE 延长线交CB 的延长线于F ,设CF =y ,求y 与x 之间的函数关系。

第一学期北师大九年级数学上册:第五章反比例函数单元测试卷及答案

第一学期北师大九年级数学上册:第五章反比例函数单元测试卷及答案

第一学期北师大九年级数学上册:第五章反比例函数单元测试卷及答案考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.当长方形面积一定时,长y与宽y之间的函数关系是()A.正比例函数B.反比例函数C.一次函数D.以上都不是2.圆柱的侧面积是10yyy2,则该圆柱的底面半径y(yy)关于高y(yy)的函数解析式的图象大致是()A. B.C. D.(y≠0)的图象的交点个数是()3.函数y=−yy与y=yyA.2B.1C.0D.不确定4.反比例函数y=6与一次函数y=y+1的图象交于点y(2, 3),利y用图象的对称性可知它们的另一个交点是()A.(3, 2)B.(−3, −2)C.(−2.−3)D.(−2, 3)5.三角形的面积为8yy2,这时底边上的高y(yy)与底边y(yy)之间的函数关系的图象大致是()第1页/共10页A.B.C.D.6.如图,矩形yyyy 的边分别与两坐标轴平行,对角线yy 经过坐标原点,点y 在反比例函数y =y 2−5y +10y(y >0)的图象上.若点y 的坐标为(−4, −4),则y 的值为( ) A.2B.6C.2或3D.−1或67.一个矩形面积为9,则这个矩形的一组邻边长y 与y 的函数关系的大致图象是( ) A.B.C.D.8.如图,在直角坐标系中,正方形的中心在原点y ,且正方形的一组对边与y 轴平行,点y (4y , y )是反比例函数y =yy (y >0)的图象上与正方形的一个交点,若图中阴影部分的面积等于16,则y 的值为( ) A.16 B.1 C.4D.−169.若函数y =y +1y是反比例函数,则y 的取值范围是( )A.y >−1B.y ≠−1C.y <−1D.y ≠010.如图.直线y =−y +y (y >0)与双曲线y =yy (y >0)交于y 、y 两点,连接yy 、yy ,yy ⊥y 轴于点y . yy ⊥y 轴于点y,以下结论错误的是()A.yy=yyB.△yyy≅△yyyC.当yy=√2时,yy=yy=yD.若yyyy=45∘,则y△yyy=y二、填空题(共 10 小题,每小题 3 分,共 30 分)11.函数y=12y的图象,在每一个象限内,y随y的值增大而________.12.反比例函数的图象是________.13.对于反比例函数y=15y,下列说法:①点(−3, −5)在它的图象上;②它的图象在第二、四象限;③当y>0时,y随y的增大而减小;④当y<0时,y随y的增大而增大.⑤它的图象不可能与坐标轴相交.上述说法中,正确的结论是________.(填上所有你认为正确的序号,答案格式如:“①②③④⑤”).14.如图,两个反比例函数y1=5y 和y2=3y,在第一象限内的图象依次是y1和y2,设点y在y1上,yy⊥y轴于点y,交y2于点y,yy⊥y轴于点y,交y2于点y,则四边形yyyy的面积为________.15.如图,设直线y=yy(y<0)与双曲线y=−5y相交于y(y1, y1),y(y2, y2)两点,则5y1y2−3y2y1的值为________.16.如图,y是反比例函数y=yy图象上一点,点y与坐标轴围成的矩形面积为3,则解析式为________.第3页/共10页17.阅读理解:对于任意正实数y、y,∵(√y−√y)2≥0,∴y−2√yy+y≥0,∴y+y≥2√yy,只有当y=y时,等号成立.结论:在y+y≥2√yy(y、y均为正实数)中,若yy为定值y,则y+y≥2√y,只有当y=y时,y+y有最小值2√y.根据上述内容,回答下列问题:(1)若y>0,只有当y=________时,y+1有最小值________.y(2)若y>0,只有当y=________时,2y+8有最小值________.y18.点(−1, y1),(2, y2),(3, y3)均在函数y=6的图象上,则y1,yy2,y3的大小关系是________.19.反比例函数y=−1的图象位于________.2y20.若y(3, 1),y(y, 4)均为某双曲线上的点,那么y=________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.已知y与y成反比例,且当y=3时,y=4.(1)求函数的关系式;(2)当y=3时,y的值是多少?222.如图,点y(y, 6),y(y, 1)在反比例函数图象上,yy⊥y轴于点y,yy⊥y轴于点y,yy=5.(1)求y,y的值并写出反比例函数的表达式;(2)连接yy,在线段yy上是否存在一点y,使△yyy的面积等于5?若存在,求出点y的坐标;若不存在,请说明理由.23.如图,一次函数y=yy+4的图象与y轴相交于点y,与反比例(y>0)的图象相交于点y(1, 6).函数y=yy(1)求一次函数和反比例函数的解析式;(2)设点y是y轴上一点,若y△yyy=18,直接写出点y的坐标.24.已知变量y−2与y成反比例,且y=2时,y=−2,求y和y之间的函数关系式,判断点y(4, 0)是否在这个函数的图象上.25.如图,在等腰梯形yyyy中,yy // yy,对角线yy⊥yy于y 点,点y在y轴上,点y、y在y轴上.(1)若yy=10,y(0, 8),求点y的坐标;(2)若yy=13√2,yy+yy=34,求过y点的反比例函数的解析式;(3)如图,在yy上有一点y,连接yy,过y作yy⊥yy交yy于y,交yy于y,在yy上取yy=yy,过y作yy⊥yy交yy于y,交yy于y,当y在yy上运动时,(不与y、y重合),yy的值是否发生yy变化?若变化,求出变化范围;若不变,求出其值.(y>0)的图象26.如图,直线yy:y=−y+7与反比例函数y=yy交点为y和y.(1)求反比例函数的解析式;(2)根据图象回答下列问题:①当y为何值时,一次函数的值等于反比例函数的值;②当y为何值时,一次函数的值大于反比例函数的值.答案1.B第5页/共10页2.C3.C4.B5.C6.D7.D8.C9.B 10.C 11.减小 12.双曲线 13.①③⑤ 14.2 15.10 16.y =−3y17.122818.y 1<y 3<y 2 19.第二、第四象限 20.3421.解:(1)设解析式y =yy,把y =3,y =4代入得y =3×4=12, 所以函数解析式为y =12y ;(2)当y =32时,y =1232=8.第7页/共10页22.解:(1)由题意得:{6y =yy +5=y,解得:{y =1y =6,∴y (1, 6),y (6, 1),设反比例函数解析式为y =yy , 将y (1, 6)代入得:y =6, 则反比例解析式为y =6y ; (2)存在,设y (y , 0),则yy =y −1,yy =6−y , ∵yy ⊥y 轴,yy ⊥y 轴, ∴yyyy =yyyy =90∘, 连接yy ,yy ,则y △yyy =y 四边形yyyy −y △yyy −y △yyy =12(yy +yy )⋅yy −12yy ⋅yy −12yy ⋅yy =12×(1+6)×5−12(y −1)×6−12(6−y )×1 =352−52y =5,解得:y =5, 则y (5, 0).23.解:(1)把y (1, 6)代入y =yy +4得:6=y +4, y =2,即一次函数的解析式是y =2y +4, 把y (1, 6)代入y =yy 得:6=y1,即反比例函数的解析式是y=6;y(2)把y=0代入y=2y+4得:2y+4=0,y=−2,即y的坐标是(−2, 0),分为两种情况:①当y在y的右边时,∵y△yyy=18,×yy×6=18,∴12yy=6,∵y(−2, 0),∴y(4, 0);②当y在y的左边时,y的坐标是(−8, 0).即y的坐标是(4, 0)或(−8, 0).24.解:∵变量y−2与y成反比例,∴可设y−2=y,y∵y=2时,y=−2,∴y=−2×2=−8,+2,∴y与y之间的函数关系式是y=−8y+2=0,把y=4代入得,y=−84∴点y(4, 0)在此函数的图象上.25.解:(1)在等腰梯形yyyy中,yy=yy=10又∵y(0, 8)∴yy=√102−82=6∴y(−6, 0)(2)作yy⊥yy于y,过y点作yy // yy交y轴于点y,∵yy // yy,yy // yy,∴yyyy是平行四边形,∴yy=yy,yy=yy,又∵yyyy为等腰梯形,∴yy=yy,∴yy=yy,而yy⊥yy,yy // yy,∴yyyy=yyyy=90∘,∵yy⊥yy,∴y为yy的中点,即yy为直角三角形yyy斜边yy上的中线,∴yy=12yy=12(yy+yy)=12(yy+yy)=12×34=17∵yy=13√2∴yy=√yy2−yy2=7∴yy=yy=yy=yy−yy=17−7=10∴y(10, 17)∴过y点的反比例函数的解析式为:y=170y(3)过点y作yy // yy交yy的延长线于点y,交yy的延长线于点y,过点y作yy // yy交yy于点y第9页/共10页易证四边形yyyy和四边形yyyy是平行四边形∴yy=yy=yy,yy=yy又∵yyyy=yyyy,yyyy=yyyy=yyyy∴△yyy≅△yyy∴yy=yy∵yy⊥yy,yy // yy,∴yyyy=yyyy=90∘,yyyy=yyyy=90∘−yyyy 由(2)知:yyyy=45∘,而yyyy=90∘,∴yy=yy∴△yyy≅△yyy∴yy=yy=yy=1∴yyyy(y>0)的图象过点y(1, 6),26.解:(1)∵反比例函数y=yy∴y=6.∴反比例函数的解析式为:y=6.y(2)由图象可知:①y=1或y=6;②1<y<6.。

北师大版九年级上册数学期末复习:反比例函数综合 压轴题专项练习题(含答案)

北师大版九年级上册数学期末复习:反比例函数综合 压轴题专项练习题(含答案)

北师大版九年级上册数学期末复习:反比例函数综合压轴题专项练习题11.如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.(1)证明:△OCE与△OAD面积相等;(2)若CE:EB=1:3,求BD:BA的值;(3)若四边形ODBE面积为6,求反比例函数的解析式.2.如图,A、B两点在反比例函数y=(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1(1)若k=2,则AO的长为,△BOD的面积为;(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.3.如图,点A在函数y=(x>0)图象上,过点A作x轴和y轴的平行线分别交函数y=图象于点B、C,直线BC与坐标轴的交点为D、E.当点A在函数y=(x>0)图象上运动时,(1)设点A横坐标为a,则点B的坐标为,点C的坐标为(用含a的字母表示);(2)△ABC的面积是否发生变化?若不变,求出△ABC的面积,若变化,请说明理由;(3)请直接写出BD与CE满足的数量关系.4.如图,△AOB在平面直角坐标系xOy中,反比例函数y1=的图象经过点A,反比例函数y2=的图象经过点B,作直线x=1分别交y1,y2于C,D两点,已知A(2,3),B(3,1).(1)求反比例函数y1,y2的解析式;(2)求△COD的面积.5.如图,在平面直角坐标系中,四边形ABCD为矩形,已知点A(﹣2,0)、B(﹣1,1),=,点C、D在第二象限内.(1)点C的坐标;点D的坐标;(2)将矩形ABCD向右平移m个单位,得到矩形A′B′C′D′,若B′、D′恰好落在反比例函数y=的图象上,求出此时m的值和反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B、D 四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点Q的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,点A(2,m)在正比例函数y=x(x>0)的图象上,反比例函数y=(x>0)的图象经过点A,点P是x轴正半轴上一动点,过点P作x轴的垂线,与正比例函数y=x(x>0)的图象交于点C,点B是线段CP与反比例函数的交点,连接AP、AB.(1)求该反比例函数的表达式;(2)观察图象,请直接写出当x>0时,x≤的解集;(3)若S△ABP=1,求B点坐标;(4)点Q是A点右侧双曲线上一动点,是否存在△APQ为以P为直角顶点的等腰直角三角形?若存在,求出点Q坐标;若不存在,请说明理由.。

北师大版数学九年级上学期期末备考压轴题培优:反比例函数(含答案)

北师大版数学九年级上学期期末备考压轴题培优:反比例函数(含答案)

期末备考压轴题培优:反比例函数1.如图,在直角坐标系xOy中,直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.(3)点P在双曲线上,且△POC的面积等于△ABC面积的,求点P的坐标.2.如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;并直接写出不等式≤﹣+的解集.(2)在x轴上求一点P,使|P A﹣PB|的值最大,并求出其最大值和P点坐标.(3)连接OB,求三角形AOB的面积.3.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)直接写出不等式﹣x+3<的解集.4.已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.5.如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x>的解集;(3)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.6.如图所示,双曲线y=(x>0,k>0)与直线y=ax+b(a≠0,b为常数)交于A(2,4),B(m,2)两点.(1)求m的值;(2)若C点坐标为(n,0),当AC+BC的值最小时,求出n的值;(3)求△AOB的面积.7.如图,在平面直角坐标系xOy内,点P在直线y=x上(点P在第一象限),过点P作P A⊥x轴,垂足为点A,且OP=2.(1)求点P的坐标;=6,求点Q的坐标;(2)如果点Q在直线OP上,且S△APQ(3)如果点M和点P都在反比例函数y=(k≠0)图象上,过点M作MN⊥x轴,垂足为点N,如果△MNA和△OAP全等(点M、N、A分别和点O、A、P对应),求点M 的坐标.8.如图,在平面直角坐标系xOy中,反比例函数y=(k≠0)的图象经过等边三角形BOC 的顶点B,OC=2,点A在反比例函数图象上,连接AC,OA.(1)求反比例函数y=(k≠0)的表达式;(2)若四边形ACBO的面积是3,求点A的坐标.9.如图,反比例函数y1=的图象与一次函数y2=ax+b的图象相交于点A(1,4)和B(﹣2,n).(1)求反比例函数与一次函数的解析式;(2)请根据图象直接写出y1<y2时,x的取值范围.10.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)当t=4时,求△BMA面积;(3)若MA⊥AB,求t的值.12(1)求A、B两点的坐标和反比例函数的解析式;(2)求△AOB的面积.12.如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.12两点.(1)求反比例函数的解析式;(2)观察图象,直接写出使一次函数值不大于反比例函数值的x的取值范围;(3)求△AOB的面积.14.如图,一次函数y=k1x﹣3(k1>0)的图象与x轴、y轴分别交于A,B两点,与反比例函y=(k2>0)的图象交于C,D两点,作CE⊥y轴,垂足为点E,作DF⊥y轴,垂足为点F,已知CE=1.(1)①直接写出点C的坐标(用k1来表示)②k2﹣k1=;(2)若B为AC的中点,求反比例函数的表达式;(3)在(2)的条件下,设点M是x轴负半轴上一点,将线段MF绕点M旋转90°,得到线段MN,当点M滑动时,点N能否在反比例函数的图象上?如果能,求出点N的坐标;如果不能,请说明理由.15.对于一个函数给出如下定义:对于函数y,当a≤x≤b,函数值y满足c≤y≤d,且满足k(b﹣a)=d﹣c,则称此函数为“k属函数”.例如:正比例函数y=﹣3x,当1≤x≤3,﹣9≤y≤﹣3,则k(3﹣1)=﹣3﹣(﹣9),求得:k=3,所以函数y=﹣3x为“3属函数”.(1)反比例函数y=(1≤x≤5)为“k属函数”,求k的值;(2)若一次函数y=ax﹣1(1≤x≤5)为“2属函数”,求a的值.16.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出使一次函数值大于反比例函数值的x的范围.17.如图,在平面直角坐标系中,直线y=k1x(x≥0)与双曲线y=(x>0)相交于P (2,4),已知点A、B的坐标分别为(4,0)、(0,3),连结AB.将Rt△AOB沿OP方向平移,得到△A′PB′,点O与点P是对应点.过点A′作A′C∥y轴交双曲线于点C.(1)求k1、k2的值;(2)求点C的坐标;(3)判断四边形PCA′B′是否为平行四边形,请说明理由.18.探索函数y=x+(x>0)的图象和性质.已知正比例函数y=x与反比例函数y=在第一象限内的图象如图所示.若P为函数y=x+(其中x>0)图象上任意一点,过P作PC垂直于x轴且与已知函数的图象、x轴分别交于点A、B、C,则PC=x+=AC+BC,从而发现下述结论:“点P可以看作点A沿竖直方向向上平移BC个长度单位(P A=BC)而得到”.(1)根据该结论,在图中作出函数y=x+(x>0)图象上的一些点,并画出该函数的图象;(2)观察图象,写出函数y=x+(x>0)两条不同类型的性质.19.如图,在平面直角坐标系xOy中,函数的图象经过点A(﹣1,6),直线y =mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx﹣2于点C,交函数的图象于点D.①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由;②若PD≥2PC,结合函数的图象,直接写出n的取值范围.参考答案1.解:(1)∵直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,∴B点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(﹣1,2),将A(﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;(2)设直线AC的解析式为y=kx+b,∵y=kx+b经过点A(﹣1,2)、C(1,0)∴,解得k=﹣1,b=1,∴直线AC的解析式为y=﹣x+1;(3)∵A(﹣1,2),C(1,0),∴B(1,﹣2),∴S=×2×2=2,△ABC∵△POC的面积等于△ABC面积的,=,∴S△POC=OC•|y P|,∵S△POC∴=•|y P|,解得y P=±1,∴P(﹣2,1)或(2,﹣1).2.解:(1)∵反比例函数y=(k>0)的图象过点A,过A点作x轴的垂线,垂足为M,△AOM面积为1,∴|k|=1,∵k>0,∴k=2,故反比例函数的解析式为:y=,由,解得或,∴A(1,2),B(4,),∴不等式≤﹣+的解集为1≤x≤4或x≤0;(2)一次函数y=﹣x+的图象与x轴的交点即为P点,此时|P A﹣PB|的值最大,最大值为AB的长.∵A(1,2),B(4,),∴AB==,∴|P A﹣PB|的最大值为;∵一次函数y=﹣x+,令y=0,则﹣x+=0,解得x=5,∴P点坐标为(5,0);(3)∵P (5,0),∴OP =5,∴S △AOB =S △AOP ﹣S △BOP =×5×2﹣=.3.解:(1)把点A (1,a )代入y =﹣x +3,得a =2,∴A (1,2)把A (1,2)代入反比例函数y =,∴k =1×2=2;∴反比例函数的表达式为y =;(2)∵一次函数y =﹣x +3的图象与x 轴交于点C ,∴C (3,0),设P (x ,0),∴PC =|3﹣x |,∴S △APC =|3﹣x |×2=5,∴x =﹣2或x =8,∴P 的坐标为(﹣2,0)或(8,0);(3)解得或,∴B (2,1),由图象可知:不等式﹣x +3<的解集是0<x <1或x >2.4.解:(1)∵A (a ,﹣2a )、B (﹣2,a )两点在反比例函数y =的图象上, ∴m =﹣2a •a =﹣2a ,解得a =1,m =﹣2,∴A (1,﹣2),B (﹣2,1),反比例函数的解析式为y =﹣.将点A (1,﹣2)、点B (﹣2,1)代入到y =kx +b 中, 得:,解得:,∴一次函数的解析式为y =﹣x ﹣1.(2)在直线y =﹣x ﹣1中,令y =0,则﹣x ﹣1=0,解得x =﹣1,∴C (﹣1,0),∴S △AOB =S △AOC +S △BOC =×1×2+×1=;(3)观察函数图象,发现:当x <﹣2或0<x <1时,反比例函数图象在一次函数图象的上方,∴不等式kx +b ﹣>0的解集为x <﹣2或0<x <1.5.解:(1)∵直线l 1:y =﹣x 经过点A ,A 点的纵坐标是2,∴当y =2时,x =﹣4,∴A (﹣4,2),∵反比例函数y =的图象经过点A ,∴k =﹣4×2=﹣8,∴反比例函数的表达式为y =﹣;(2)∵直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点, ∴B (4,﹣2),∴不等式﹣x >的解集为x <﹣4或0<x <4;(3)如图,设平移后的直线l 2与x 轴交于点D ,连接AD ,BD ,∵CD ∥AB ,∴△ABC 的面积与△ABD 的面积相等,∵△ABC 的面积为30,∴S △AOD +S △BOD =30,即OD (|y A |+|y B |)=30,∴×OD ×4=30,∴OD =15,∴D(15,0),设平移后的直线l2的函数表达式为y=﹣x+b,把D(15,0)代入,可得0=﹣×15+b,解得b=,∴平移后的直线l2的函数表达式为y=﹣x+.6.解:(1)把A(2,4)代入y=(x>0,k>0),∴k=2×4=8,∴反比例函数的解析式为y=,把B(m,2)代入y=得,2=,解得m=4;(2)由(1)可知:A(2,4),B(4,2),∴B点关于x轴的对称点B′(4,﹣2),连接AB′,交x轴与C,此时AC+BC=AB′,AC+BC的值最小,设直线AB′的解析式为y=mx+t,把A(2,4),B′(4,﹣2)代入得,解得:,∴直线AB′的解析式为y=﹣3x+10,把(n,0)代入得y=﹣3n+10,∴n=;(3)把A(2,4),B(4,2)代入y=ax+b得,解得,∴直线AB的解析式为y=﹣x+6,∴直线AB 与x 轴的交点C (6,0),∴S △AOB =S △AOC ﹣S △BOC =×6×4﹣×6×2=6.7.解:(1)设AP =h ,则OA =2h ,由勾股定理得,OP 2=AP 2+OA 2,即(2)2=h 2+(2h )2, 解得,h =2,∴AP =h =2,则OA =2h =4,∴点P 的坐标为(4,2);(2)设点Q 到AP 的距离为a ,由题意得,×2×a =6,解得,a =6,∴点Q 的横坐标为4﹣6或4+6,当x =4﹣6时,y =2﹣3,当x =4+6,y =2+3,综上所述,点Q 的坐标为(4﹣6,2﹣3)或(4+6,2+3);(3))∵点P (4,2)在反比例函数y =的图象上,∴2=,解得,k =8,∴y =,在Rt △P AO 中,∠P AO =90°,P A =2,AO =4,∵∠MNA =90°,∴当△MNA 和△APO 全等时,分以下两种情况:①点N 在点A 的左侧时,MN =AO =4,AN =AP =2,∴ON =OA ﹣AN =4﹣2=2,∴M(2,4),且点M在反比例函数y=的图象上.②点N在点A的右侧时,AO=MN=4,AN=AP=2,∴ON=AN+AO=4+2=6.∴M(6,4),但点M不在反比例函数y=的图象上,综合①②,满足条件的点M的坐标为(2,4).8.解:(1)作BD⊥OC于D,∵△BOC是等边三角形,∴OB=OC=2,OD=OC=1,∴BD==,=OD×BD=,∴S△OBDS=|k|,△OBD∴|k|=,∵反比例函数y=(k≠0)的图象在一三象限,∴k=,∴反比例函数的表达式为y=;=OC•BD==,(2)∵S△OBC∴S=3﹣=2,△AOC=OC•y A=2,∵S△AOC∴y A=2,把y=2代入y=,求得x=,∴点A的坐标为(,2).9.解:(1)∵反比例函数y1=的图过点A(1,4),∴4=,即k=4,∴反比例函数的解析式为:y1=,∵反比例函数y1=的图象过点B(﹣2,n),∴n==﹣2,∴B(﹣2,﹣2),∵一次函数y2=ax+b的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得:∴一次函数的解析式为:y2=2x+2;(2)由图象可知:当﹣2<x<0或x>1.10.解:(1)∵反比例函数(x>0)的图象经过点A,∴1=,解得k=8;(2)设直线AB 的解析式为y =kx +b ,把点A (8,1),B (0,﹣3)代入得, 解得,∴直线AB 的解析式为y =x ﹣3,当t =4时,则M (4,2),N (4,﹣1),∴MN =2﹣(﹣1)=3,∴S △BMA =×3×8=12;(3)由题意可知M (t ,),∵A (8,1),B (0,﹣3),∴MA 2=(t ﹣8)2+(﹣1)2,MB 2=t 2+(+3)2,AB 2=82+(1+3)2=80, ∵MA ⊥AB ,∴MB 2=MA 2+AB 2,即t 2+(+3)2=(t ﹣8)2+(﹣1)2+80,整理得:2t +=17,解得t =或t =8(舍去),故若MA ⊥AB ,t 的值为.11.解:(1)分别把A (1,m )、B (4,n )代入y 1=﹣x +5,得m =﹣1+5=4,n =﹣4+5=1,所以A 点坐标为(1,4),B 点坐标为(4,1),把A (1,4)代入y 2=,得k =1×4=4,所以反比例函数解析式为y 2=;(2)如图,设一次函数图象与x 轴交于点C ,当y =0时,﹣x +5=0,解得x =5,则C 点坐标为(5,0),所以S △AOB =S △AOC ﹣S △BOC=×5×4﹣×5×1=7.5.12.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)代入反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,);②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),∵△BCD是以BC为腰的等腰三形,当BC=CD时,BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,当BC=BD时,B(2,4),C(m,8),∴BC=,∴=m,∴m=5,当BD=AB时,m=AB==2,综上所述,△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5或2.13.解:(1)∵点A(2,4)在反比例函数y2=的图象上,∴k=2×4=8,∴反比例函数的解析式为y2=.(2)∵点B(﹣4,n)在反比例函数y2=的图象上,∴n==﹣2,∴点B的坐标为(﹣4,﹣2).观察函数图象,发现:使一次函数值不大于反比例函数值的x的取值范围为x≤﹣4或0<x≤2.(3)将点A(2,4)、B(﹣4,﹣2)代入到y1=ax+b中,得:解得:,∴一次函数的解析式为y=x+2,令y=0,求得x=﹣2,∴S△AOB=S△AOC+S△BOC=×2×2+2×4=6.14.解:(1)如图1,∵CE⊥y轴于点E且CE=1,∴C的横坐标为1,当x=﹣1时,y=﹣k1﹣3∴C(﹣1,﹣k1﹣3),∵C在反比例函数的图象上,∴﹣1×(﹣k1﹣3)=k2,∴k2﹣k1=3;故答案为(﹣1,﹣k1﹣3),3;(2)如图1,∵CE⊥y轴,DF⊥y轴,∴CE∥DF,∵B为AC的中点,∴AB=BC,∵∠AOB=∠BEC=90°,∠ABO=∠CBE,∴△ABO≌△CBE(AAS),∴AO=CE=1,∴A(1,0),当x=1时,y=k1+3=0,∴k1=3,由(1)得:k2﹣k1=3,∴k2=6;∴反比例函数的解析式:y=;(3)当点M滑动时,点N能在反比例函数的图象上如图2,MF=MN,∠FMN=90°过N作NH⊥x轴于H,易得:△MNH≌△FMO,∴FO=MH,OM=NH,由(2)知:反比例函数的解析式:y=;设D(m,),∵tan∠ABO===,∴=,解得:m=2,m=﹣1(舍去),∴N(2,3),∴OF=MH=3,设M(x,0),∴N(x+3,x),当点N落在反比例函数的图象上时,x(x+3)=6,x2+3x﹣6=0,解得x=(舍去),x=,∴点N的坐标为(,).15.解:(1)∵反比例函数y=中,k=5>0,∴y随x的增大而减小,当1≤x≤5时,1≤y≤5,∴k(5﹣1)=5﹣1,∴k=1;(2)①a>0时,对于一次函数y=ax﹣1,y随x增大而增大,当1≤x≤5时,a﹣1≤y≤5a﹣1,∴k(5﹣1)=4a,∵k=2,∴a=2;②当a<0时,y随x增大而减小,当1≤x≤5时,a﹣1≤y≤5a﹣1,∴k(5﹣1)=﹣4a,∵k=2,∴a=﹣2.16.解:(1)把A(2,﹣4)的坐标代入得:,∴4﹣2m=﹣8,反比例函数的表达式是;把B(n,﹣2)的坐标代入得,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,一次函数值大于反比例函数值的x的范围为0<x<2或x>4.17.解:(1)∵直线y=k1x过点P(2,4),∴4=2k1,∴k1=2,∵双曲线y=(x>0)过点P(2,4),∴k2=2×4=8;(2)由平移知,点O(0,2)向右平移2个单位,再向上平移4个单位得到点P(2,4),∴点A(4,0)也向右平移2个单位,再向上平移4个单位得到点A'(6,4),∵A'C∥y轴,∴点C的横坐标为6,由(1)知,k2=8,双曲线的解析式为y=,∵点C在双曲线y=上,∴y==,∴C(6,);(3)四边形PCA′B′不是平行四边形,理由:∵B(0,3),∴OB=3,由平移知,PB'=OB=3,PB'∥y轴,∵A'C∥y轴,∴PB'∥A'C,由(2)知,A'(6,4),C(6,),∴A'C=4﹣=≠PB',∴四边形PCA′B′不是平行四边形.18.解:(1)如图所示:(2)函数两条不同类型的性质是:①图象是轴对称图形:②当0<x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大;③当x=1时,函数y=x+(x>0)的最小值是2;19.解:(1)∵函数的图象经过点A(﹣1,6),∴k=﹣6.∵直线y=mx﹣2与x轴交于点B(﹣1,0),∴m=﹣2.(2)①判断:PD=2PC.理由如下:当n=﹣1时,点P的坐标为(﹣1,2),∵y=﹣2x﹣2交于于点C,且点P(﹣1,2)作平行于x轴的直线,∴点C的坐标为(﹣2,2),∵函数的图象于点D,且点P(﹣1,2)作平行于x轴的直线,点D的坐标为(﹣3,2).∴PC=1,PD=2.∴PD=2PC.②当PD=2PC时,有两种情况,分别为:y=2,或者y=6.若PD≥2PC,0<y≤2,或y≥6即0<﹣2n≤2,或﹣2n≤6解得﹣1≤n<0.或n≤﹣3。

北师大版九年级上册数学第五章 反比例函数练习题(带解析)

北师大版九年级上册数学第五章 反比例函数练习题(带解析)

北师大版九年级上册数学第五章 反比例函数练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释 一、单选题(注释)1、如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 。

C 分别在x 轴、y 轴上,反比例函数的图象与正方形的两边AB 、BC 分别交于点M 、N ,ND ⊥x 轴,垂足为D ,连接OM 、ON 、MN 。

下列结论:①△OCN ≌△OAM ; ②ON=MN ;③四边形DAMN 与△MON 面积相等; ④若∠MON=450,MN=2,则点C 的坐标为。

其中正确的个数是【 】A .1B .2C .3D .42、若ab >0,则一次函数y=ax+b 与反比例函数在同一坐标系数中的大致图象是A.B.C.D.3、若反比例函数的图象经过点(﹣2,m),则m的值是A.B.C.D.4、如图,A、B、C是反比例函数图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A.4条B.3条C.2条D.1条5、某地资源总量Q一定,该地人均资源享有量与人口数的函数关系图象是A.B.C.D.6、为了更好保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图象大致是A.B.C.D.7、反比例函数的图象如图所示,则k的值可能是()A .﹣1B .C .1D .28、已知反比例函数,当x <0时,y 随x 的增大而减小,则k 的范围( )A .B .C .D .9、下列函数中,y 是x 的反比例函数的是( ) A .y=﹣ B .y=﹣C .y=D .y=10、已知长方形的面积为10,则它的长y 与宽x 之间的关系用图象大致可表示为图中的( )A .B .C .D .11、一项市政工程,需运送土石方106米3,某运输公司承办了这项运送土石方的工程,则运送公司平均每天的工作量y (米3/天)与完成运送任务所需时间x (天)之间的函数关系图象大致是( )A .B .C .D .12、在函数y=中,自变量x 的取值范围是( )A .x >0B .x≠0C .x >1D .x≠113、已知反比例函数的图象经过点(1,2),则此函数图象所在的象限是( ) A .一、三 B .二、四 C .一、三 D .三、四14、反比例函数的图象如图所示,则当x >1时,函数值y 的取值范围是( )A .y >1B .0<y <1C .y <2D .0<y <215、若反比例函数图象经过点(﹣1,6),则下列点也在此函数上的是( ) A .(﹣3,2) B .(3,2) C .(2,3) D .(6,1)16、如果矩形的面积为6cm 2,那么它的长ycm 与宽xcm 之间的函数关系用图象表示大致是( )A .B .C .D .17、下列函数中,属于反比例函数的是( ) A .B .C .y=5﹣2xD .y=x 2+118、如图,直线l 和双曲线交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、0P ,设△AOC 的面积为S 1、△BOD 的面积为S 2、△POE 的面积为S 3,则( )A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3 D.S1=S2<S319、已知函数y=﹣x+5,y=,它们的共同点是:①函数y随x的增大而减少;②都有部分图象在第一象限;③都经过点(1,4),其中错误的有()A.0个B.1个C.2个D.3个20、在同一平面直角坐标系中,函数y=﹣x﹣k与(k<0)的大致图象是()A.B.C.D.分卷II二、填空题(注释)21、如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是.22、已知反比例函数的图象的一支位于第一象限,则常数m的取值范围是.23、函数y l=x(x≥0),(x>0)的图象如图所示,则结论:①两函数图象的交点A的坐标为(3,3);②当x>3时,y2>y1;③当x=1时,BC=8;④当x逐渐增大时,y l随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是.24、若函数是y关于x的反比例函数,则k=.25、反比例函数的图象在第二、四象限内,那么m的取值范围是.26、双曲线y=经过点(2,﹣3),则k=.27、如果我们把横坐标与纵坐标均为整数的点称为整点,那么反比例函数在第四28、已知某个反比例函数的图象经过点(3,6)和点(m ,﹣2),则m 的值是 .29、若点A (﹣2,a ),B (﹣1,b ),C (3,c )在双曲线(k >0)上,则a 、b 、c的大小关系为 (用“<”将a 、b 、c 连接起来).30、y=(m ﹣2)是反比例函数,则m 的值为 .三、计算题(注释)31、如图,是反比例函数的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m 的取值范围; (2)在这个函数图象的某一支上取点A (x 1,y 1)、B (x 2,y 2).如果y 1<y 2,那么x 1与x 2有怎样的大小关系?32、已知一次函数的图象与反比例函数图象交于点 P (4,n )。

北师大九年级数学上册第五章反比例函数单元测试题【精 2套】

北师大九年级数学上册第五章反比例函数单元测试题【精 2套】

九年级上册第五章 反比例函数 测试题_ 年级 __ 班学生___ 自评成绩__一.认真填一填:1、u 与t 成反比,且当u =6时,81=t ,这个函数解析式为 ;2、若反比列函数1232)12(---=k kx k y 的图像经过二、四象限,则k = _______3、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;4、已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ;5、已知反比例函数x m y 23-=,当_______m 时,其图象的两个分支在第一、三象限内;当_______m 时,其图象在每个象限内y 随x 的增大而增大;6、若点A(7,1y )、B(5,2y )在双曲线xy 2=上,则1y 和2y 的大小关系为_________; 7、已知一次函数n mx y +=与反比例函数23+=xy 的图像相交于点( 1 , 2 ),求该直线与双曲线的另一个交点坐标____________;8、已知函数xay ax y -==4和的图象有两个交点,其中一个交点的横坐标为1,则两个函数图象的交点坐标是 ;9、反比例函数xky =与一次函数m kx y +=的图象有一个交点是(-2,1),则它们的另一个交点的坐标是 .10、若函数x ky =的图象经过点(3,-4),则=k ,此图象在 象限,在每一个象限内y 随x 的减小而 ;二、仔细选一选:1、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) A 、(-a ,-b ) B 、(a ,-b ) C 、 (-a ,b ) D 、(0,0)2、函数x k y =的图象经过点(-4,6),则下列各点中不在xky =图象上的是( )A 、 (3,8)B 、(3,-8)C 、(-8,-3)D 、(-4,-6)3、在同一直角坐标平面内,直线x k y 1=与双曲线xk y 2=没交点,那么1k 和2k 的关系一定是( )A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号4、在同一坐标系中,函数x ky =和3+=kx y的图像大致是 ( )5、当k >0,x <0时,反比例函数xky =的图象在 ( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限6、若函数xky =的图象过点(3,-7),那么它一定还经过点 ( )A (3,7)B (-3,-7)C (-3,7)D (2,-7)7、如图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( ) A 、6 B 、3 C 、23D 、不能确定8、反比例函数xky =(k >0)在第一象限内图象如图,点M 是图象上一点,MP 垂直于x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( )A 、1B 、2C 、3D 、不能确定9、如图,点P 是反比例函数xy 1=的图象上任一点,PA 垂直在x 轴,垂足为A ,设OAP ∆的面积为S ,则S 的值为(A) 1 (B) 2 (C) 3 (D) 2110、下列函数中,y 是x 的反比例函数是 ( ) A 1)1(=-y x B 11+=x y C 21xy = D y =x三、用心算一算:1、已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=x ,DE 延长线交CB 的延长线于F ,设CF =y ,求y 与x 之间的函数关系。

北师大版九年级数学上第五章反比例函数 .docx

北师大版九年级数学上第五章反比例函数 .docx

初中数学试卷马鸣风萧萧北师大版九年级上册数学第五章反比例函数第一节反比例函数同步练习一、选择题1.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例答案:B解析:解答:设该直角三角形的两直角边是a 、b ,面积为S .则12S ab =.∵S 为定值,∴ab =2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例.故选:B .分析:直角三角形的面积一定,则该直角三角形的两直角边的乘积一定.2.下列函数中,是反比例函数的为( )A .21y x =+B .22y x =C .15y x =D .2y x =答案:C解析:解答:A 、是一次函数,错误;B 、不是反比例函数,错误;C 、符合反比例函数的定义,正确;D 、是正比例函数,错误.故选C .分析:根据反比例函数的定义,解析式符合0k y k x ≠=()这一形式的为反比例函数.3.下列关于y 与x 的表达式中,反映y 是x 的反比例函数的是( )A .4y x =B .2x y=- C .4xy =D .43y x =-答案:C解析:解答:A 、4y x =是正比例函数,故A 错误;B 、2x y=-是正比例函数,故B 错误; C 、4xy =是反比例函数,故C 正确;D 、43y x =-是一次函数,故D 错误;故选:C .分析:根据反比例函数的定义,可得答案.4.下列函数中,不是反比例函数的是( )A .3y x =-B .32y x -=C .11y x =- D .32xy =答案:C解析:解答:A 、符合反比例函数的定义,y 是x 的反比例函数,错误;B 、符合反比例函数的定义,y 是x 的反比例函数,错误;C 、y 与x -1成反比例,y 不是x 的反比例函数,正确;D 、符合反比例函数的定义,y 是x 的反比例函数,错误.故选C . 分析:根据反比例函数的定义,反比例函数的一般式是0k y k x ≠=(),即可判定各函数的类型是否符合题意.5.若函数()221my m x --=为反比例函数,则m 的值为( )A .±1B .1C . 3D .-1答案:D解析:解答:根据题意得:221m -=-,且10m -≠解得:1m =-.故选D .分析:根据反比例函数的定义即可求出m 的值.6.若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A .正比例函数B .反比例函数C .一次函数D .不能确定答案:A解析:解答::∵y 与x 成反比例, ∴1k y x=, ∵x 与z 成反比例, ∴2k x z=, ∴12k z y k =, 故选:A .分析:根据反比例函数的定义分别写出相应的解析式,根据常见函数的一般形式判断y 与z 的关系即可. 7.下列关系中,两个量之间为反比例函数关系的是( )A .正方形的面积S 与边长a 的关系B .正方形的周长l 与边长a 的关系C .矩形的长为a ,宽为20,其面积S 与a 的关系D .矩形的面积为40,长a 与宽b 之间的关系答案:D解析:解答:A 、根据题意,得2S a =,所以正方形的面积S 与边长a 的关系是二次函数关系;故本选项错误;B 、根据题意,得4l a =,所以正方形的周长l 与边长a 的关系是正比例函数关系;故本选项错误;C 、根据题意,得20S a =,所以正方形的面积S 与边长a 的关系是正比例函数关系;故本选项错误;D 、根据题意,得40b a=,所以正方形的面积S 与边长a 的关系是反比例函数关系;故本选项正确. 故选D .分析:根据每一个选项的题意,列出方程,然后由反比例函数的定义进行一一验证即可.8.根据下表中,反比例函数的自变量x 与函数y 的对应值,可得p 的值为( )A .3B .1C .-2D .-6答案:D解析:解答:∵y 与x 成反比例关系,∴231p -⨯=⨯,解得6p =-.故选:D .分析:根据反比例函数的定义知,反比例函数横纵坐标坐标的乘积是定值k .9.若2m y x =+是反比例函数,则m 必须满足( ) A .m ≠0B .m =-2C .m =2D .m ≠-2答案:D解析:解答:依题意有m +2≠0,所以m ≠-2.故选D .分析:根据反比例函数的定义.即y =kx (k ≠0),只需令m +2≠0即可.10.若52m y x -=为反比例函数,则m =( )A .-4B .-5C .4D .5答案:C解析:解答:∵52m y x-=为反比例函数,∴51m -=-,解得4m =.故选C .分析:根据反比例函数的定义求出m 的值.11.下列函数中①3 2y x =,②31xy =.③12 y x -=,④2x y =,反比例函数有( ) A .1个B .2个C .3个D .4个答案:C解析:解答:①3 2y x=是反比例函数,故本小题正确; ②31xy =可化为13y x=是反比例函数,故本小题正确; ③12 y x -=是反比例函数,故本小题正确; ④2x y =是正比例函数,故本小题错误. 故选C .分析:根据反比例函数的定义对各小题进行逐一分析即可.12.下列函数中,y 是x 的反比例函数的是( )A .5x y =-B .53y x =-C .11y x =+ D .1y x π=答案:B解析:解答:A 、是正比例函数,故选项错误;B 、是反比例函数,故选项正确;C 、y 是1x +的反比例函数,故选项错误;D 、是正比例函数,故选项错误.故选:B .分析:根据反比例函数的定义,反比例函数的一般式0k y k x=≠(),即可判定各函数的类型是否符合题意.13.下列选项中,能写成反比例函数的是( )A .人的体重和身高B .正三角形的边长和面积C .速度一定,路程和时间的关系D .销售总价不变,销售单价与销售数量的关系答案:D解析:解答:A 、人的体重和身高,不是反比例函数关系;B 、正三角形面积S ,边长为a ,则234S a =,不是反比例函数关系; C 、路程=速度×时间,速度一定,路程和时间成正比例;D 、销售总价不变,销售单价与销售数量成反比例关系.故选:D .分析:根据题意先对每一问题列出函数关系式,再根据反比例函数的定义判断变量间是否为反比例函数关系.14.如果函数m y x =为反比例函数,则m 的值是( )A .1B .0C .12D .-1答案:D解析:解答:∵m y x =为反比例函数,∴1m =-.故选:D .分析:根据反比例函数的定义进行解答.15.下列问题中,两个变量间的函数关系式是反比例函数的是( )A .小颖每分钟可以制作2朵花,x 分钟可以制作y 朵花B .体积为310cm 的长方体,高为hcm ,底面积为2ScmC .用一根长50cm 的铁丝弯成一个矩形,一边长为xcm ,面积为2ScmD .汽车油箱中共有油50升,设平均每天用油5升,x 天后油箱中剩下的油量为y 升答案:B解析:解答:A 、根据题意可知,y 与x 之间的关系式为2y x =,故该选项错误,B 、根据题意可知,S 与h 之间的关系式为10S h=,故该选项正确, C 、根据题意可知,S 与x 之间的关系式为25S x x =-(),故该选项错误,D 、根据题意可知,y 与x 之间的关系式为505y x =-,故该选项错误,故选B . 分析:根据题意写出函数表达式再判断它们的关系则可,找到符合反比例函数解析式的一般形式0k y k x≠=() 的选项.二、填空题16.如果函数221ky k x -=+()是反比例函数,那么k =______. 答案:1解答:根据题意221k -=-,解得1k =±;又10k +≠,则1k ≠-;所以k =1.故答案为:1.解析:分析:根据反比例函数的定义.即0k y k x =≠(),只需令221k -=-、10k +≠即可. 17. 若函数141k y k x -=+()是反比例函数,则其表达式是______. 答案:1y x= 解析:解答:∵函数141k y k x -=+()是反比例函数, ∴11k -=-且410k +≠.解得0k =, 则该函数解析式为:1y x =. 故答案是:1y x=. 分析:根据反比例函数的定义得到11k -=-且410k +≠.由此求得k 的值,然后代入即可得到函数解析式.18.已知反比例函数的解析式为21k y x -=,则最小整数k =______. 答案:1 解答:反比例函数的解析式为21k y x -=, 得210k ->, 解得12k >,所以k 的最小整数值为1.故答案为:1.解析:分析:根据反比例函数的意义,可得2k -1>0,然后解不等式求出k 的取值范围,再找出此范围中的最小整数即可.19.已知1a y a x =-()是反比例函数,则a 的值是______.答案:-1解析:解答:∵1a y a x =-()是反比例函数, ∴10a -≠,且1a =-,解得1a =-,故答案为:-1.分析:根据反比例函数形式1y kx -=可得1a =-,10a -≠再解即可.20.如果函数21m y x -=为反比例函数,则m 的值是_____.答案:0解析:解答:∵21m y x-=是反比例函数, ∴211m -=-,解之得:0m =.故答案为0. 分析:根据反比例函数的定义.即0k y k x =≠(),只需令211m -=-即可.三、解答题21.已知反比例函数的解析式为23 a a y x -+=,确定a 的值,求这个函数关系式. 答案:3a =;6 y x= 解答:由反比例函数的解析式为23 a a y x -+=,得 21a -=和30a +≠,解得3a =,3a =-(不符合题意要舍去). 故2323336a a y x x x--++===; 故答案为:3a =;6 y x=. 解析:分析:根据0k y k x ≠=()是反比例函数,可得答案.22.如果函数222kk y kx +-=是反比例函数,求函数的解析式. 答案:12?y x =或1 y x=- 解答:∵222k k y kx +-=是反比例函数,∴2221k k +-=-,解得:112k =,21k =-, ∴函数的解析式为:12?y x =或1 y x =-. 解析:分析:利用反比例函数的定义得出2221k k +-=-,进而求出即可. 23.当m 取何值时,函数211 3m y x +=是反比例函数? 答案:0m =解答:∵函数211 3m y x +=是反比例函数, ∴211m +=,解得:0m =.解析:分析:根据反比例函数的定义.即0ky k x=≠(),只需令211m +=即可. 24. 已知变量x ,y 满足222210x y x y -=++()(),问:x ,y 是否成反比例关系?如果不是,请说明理由;如果是,请求出比例系数.答案:成反比例关系,54- 解答:∵222210x y x y -=++()(), ∴2222444410x xy y x xy y -+=+++,整理得出:810xy =-, ∴54y x-=, ∴x ,y 成反比例关系, 比例系数为:54-. 解析:分析:直接去括号,进而合并同类项得出y 与x 的函数关系式即可.25.已知函数21m y m x-=-()是反比例函数. (1)求m 的值;答案:1m =-解答:(1)21m -=-且10m -≠,解得:1m =±且1m ≠,∴1m =-.(2)求当3x =时,y 的值. 答案:23y =-(2)当1m =-时,原方程变为2y x =-, 当3x =时,23y =-. 故答案为:(1)1m =-|(2)23y =-. 解析:分析:(1)让x 的次数等于-1,系数不为0列式求值即可; (2)把3x =代入(1)中所得函数,求值即可.。

度第一学期北师大九年级数学上册:第五章反比例函数单元测试卷及答案

度第一学期北师大九年级数学上册:第五章反比例函数单元测试卷及答案

度第一学期北师大九年级数学上册:第五章反比例函数单元测试卷及答案考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题〔共 10 小题,每题 3 分,共 30 分〕1.当长方形面积一定时,长y与宽x之间的函数关系是〔〕A.正比例函数B.正比例函数C.一次函数D.以上都不是2.圆柱的正面积是10πcm2,那么该圆柱的底面半径r(cm)关于高ℎ(cm)的函数解析式的图象大致是〔〕A. B.C. D.(k≠0)的图象的交点个数是〔〕3.函数y=−kx与y=kxA.2B.1C.0D.不确定4.正比例函数y=6与一次函数y=x+1的图象交于点A(2, 3),应用图象的对称性可知它们x的另一个交点是〔〕A.(3, 2)B.(−3, −2)C.(−2.−3)D.(−2, 3)5.三角形的面积为8cm2,这时底边上的高y(cm)与底边x(cm)之间的函数关系的图象大致是〔〕A. B.C. D.6.如图,矩形ABCD的边区分与两坐标轴平行,对角线AC经过坐标原点,点D在正比例函数(x>0)的图象上.假定点B的坐标为(−4, −4),那么k的值为〔〕y=k2−5k+10xA.2B.6C.2或3D.−1或67.一个矩形面积为9,那么这个矩形的一组邻边长x与y的函数关系的大致图象是〔〕A. B.C. D.8.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a, a)是正比例函数y=kx(k>0)的图象上与正方形的一个交点,假定图中阴影局部的面积等于16,那么k的值为〔〕A.16B.1C.4D.−169.假定函数y=a+1x是正比例函数,那么a的取值范围是〔〕A.a>−1B.a≠−1C.a<−1D.a≠010.如图.直线y=−x+b(b>0)与双曲线y=kx(k>0)交于A、B两点,衔接OA、OB,AM⊥y轴于点M.BN⊥x轴于点N,以下结论错误的选项是〔〕A.OA=OBB.△AOM≅△BONC.事先AB=√2,ON=BN=lD.假定∠AOB=45∘,那么S△AOB=k二、填空题〔共 10 小题,每题 3 分,共 30 分〕11.函数y=12x的图象,在每一个象限内,y随x的值增大而________.12.正比例函数的图象是________.13.关于正比例函数y=15x,以下说法:①点(−3, −5)在它的图象上;②它的图象在第二、四象限;③事先x>0,y随x的增大而减小;④事先x<0,y随x的增大而增大.⑤它的图象不能够与坐标轴相交.上述说法中,正确的结论是________.〔填上一切你以为正确的序号,答案格式如:〝①②③④⑤〞〕.14.如图,两个正比例函数y1=5x 和y2=3x,在第一象限内的图象依次是c1和c2,设点P在c1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,那么四边形PAOB的面积为________.15.如图,设直线y=kx(k<0)与双曲线y=−5x相交于A(x1, y1),B(x2, y2)两点,那么5x1y2−3x2y1的值为________.16.如图,P是正比例函数y=kx图象上一点,点P与坐标轴围成的矩形面积为3,那么解析式为________.17.阅读了解:关于恣意正实数a、b,∵(√a−√b)2≥0,∴a−2√ab+b≥0,∴a+b≥2√ab,只要事先a=b,等号成立.结论:在a+b≥2√ab〔a、b均为正实数〕中,假定ab为定值p,那么a+b≥2√p,只要事先a=b,a+b有最小值2√p.依据上述内容,回答以下效果:(1)假定m>0,只要当m=________时,m+1有最小值________.m(2)假定m>0,只要当m=________时,2m+8有最小值________.m18.点(−1, y1),(2, y2),(3, y3)均在函数y=6的图象上,那么y1,y2,y3的大小关系是x________.19.正比例函数y=−1的图象位于________.2x20.假定A(3, 1),B(m, 4)均为某双曲线上的点,那么m=________.三、解答题〔共 6 小题,每题 10 分,共 60 分〕21.y与x成正比例,且事先x=3,y=4.(1)求函数的关系式;(2)事先x=3,y的值是多少?222.如图,点A(m, 6),B(n, 1)在正比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出正比例函数的表达式;(2)衔接AB,在线段DC上能否存在一点E,使△ABE的面积等于5?假定存在,求出点E的坐标;假定不存在,请说明理由.(x>0)的图象23.如图,一次函数y=mx+4的图象与x轴相交于点A,与正比例函数y=kx相交于点B(1, 6).(1)求一次函数和正比例函数的解析式;(2)设点P是x轴上一点,假定S△APB=18,直接写出点P的坐标.24.变量y−2与x成正比例,且x=2时,y=−2,求y和x之间的函数关系式,判别点P(4, 0)能否在这个函数的图象上.25.如图,在等腰梯形ABCD中,AB // CD,对角线AC⊥BD于P点,点A在y轴上,点C、D 在x轴上.(1)假定BC=10,A(0, 8),求点D的坐标;(2)假定BC=13√2,AB+CD=34,求过B点的正比例函数的解析式;(3)如图,在PD上有一点Q,衔接CQ,过P作PE⊥CQ交CQ于S,交DC于E,在DC上取EF=DE,过F作FH⊥CQ交CQ于T,交PC于H,当Q在PD上运动时,〔不与P、D重合〕,PQ的值能否发作变化?假定变化,求出变化范围;假定不变,求出其值.PH(x>0)的图象交点为A和B.26.如图,直线AB:y=−x+7与正比例函数y=kx(1)求正比例函数的解析式;(2)依据图象回答以下效果:①当x为何值时,一次函数的值等于正比例函数的值;②当x为何值时,一次函数的值大于正比例函数的值.答案 1.B 2.C 3.C 4.B 5.C 6.D 7.D 8.C 9.B 10.C 11.减小 12.双曲线 13.①③⑤ 14.2 15.10 16.y =−3x 17.122818.y 1<y 3<y 2 19.第二、第四象限 20.3421.解:(1)设解析式y =kx ,把x =3,y =4代入得k =3×4=12, 所以函数解析式为y =12x;(2)事先x =32,y =1232=8.22.解:(1)由题意得:{6m =nm +5=n,解得:{m =1n =6,∴A(1, 6),B(6, 1),设正比例函数解析式为y =kx , 将A(1, 6)代入得:k =6, 那么正比例解析式为y =6x ;(2)存在,设E(x, 0),那么DE =x −1,CE =6−x , ∵AD ⊥x 轴,BC ⊥x 轴, ∴∠ADE =∠BCE =90∘, 衔接AE ,BE ,那么S △ABE =S 四边形ABCD −S △ADE −S △BCE=12(BC+AD)⋅DC−12DE⋅AD−12CE⋅BC=12×(1+6)×5−12(x−1)×6−12(6−x)×1=352−52x=5,解得:x=5,那么E(5, 0).23.解:(1)把B(1, 6)代入y=mx+4得:6=m+4,m=2,即一次函数的解析式是y=2x+4,把B(1, 6)代入y=kx 得:6=k1,k=6,即正比例函数的解析式是y=6x;(2)把y=0代入y=2x+4得:2x+4=0,x=−2,即A的坐标是(−2, 0),分为两种状况:①当P在A的左边时,∵S△APB=18,∴12×AP×6=18,AP=6,∵A(−2, 0),∴P(4, 0);②当P在A的左边时,P的坐标是(−8, 0).即P的坐标是(4, 0)或(−8, 0).24.解:∵变量y−2与x成正比例,∴可设y−2=kx,∵x=2时,y=−2,∴k=−2×2=−8,∴y与x之间的函数关系式是y=−8x+2,把x=4代入得,y=−84+2=0,∴点P(4, 0)在此函数的图象上.25.解:(1)在等腰梯形ABCD中,AD=BC=10又∵A(0, 8)∴OA=8∴OD=√102−82=6∴D(−6, 0)(2)作BH⊥DE于H,过B点作BE // AC交x轴于点E,∵AB // CE,BE // AC,∴ABEC是平行四边形,∴AB=CE,BE=AC,又∵ABCD为等腰梯形,∴AC=BD,∴BE=BD,而AC⊥BD,AB // CE,∴∠DPC=∠DBE=90∘,∵BH⊥DE,∴H为DE的中点,即BH为直角三角形DBE斜边DE上的中线,∴BH=12DE=12(DC+CE)=12(DC+AB)=12×34=17∵BC=13√2∴CH=√BC2−BH2=7∴OH=AB=CE=HE−HC=17−7=10∴B(10, 17)∴过B点的正比例函数的解析式为:y=170x(3)过点D作DN // PC交PE的延伸线于点M,交HF的延伸线于点N,过点M作MI // EF交BN于点I易证四边形EFIM和四边形MNHP是平行四边形∴MI=EF=DE,MN=PH又∵∠EDM=∠IMN,∠DEM=∠EFI=∠MIN∴△EDM≅△IMN∴DM=MN∵AC⊥BD,DN // PC,∴∠PDM=∠CPQ=90∘,∠DPM=∠QCP=90∘−∠SPC由(2)知:∠BDC=45∘,而∠DPC=90∘,∴PD=PC∴△PDM≅△CPQ∴DM=PQ=PH∴PQPH=126.解:(1)∵正比例函数y=kx(x>0)的图象过点A(1, 6),∴k=6.∴正比例函数的解析式为:y=6x.(2)由图象可知:①x=1或x=6;②1<x<6.。

北师大版九年级数学上册反比例函数(含中考真题解析)

北师大版九年级数学上册反比例函数(含中考真题解析)

反比例函数知识点名师点晴反比例函数概念、图象和性质1.反比例函数概念会判断一个函数是否为反比例函数。

2.反比例函数图象知道反比例函数的图象是双曲线,。

3.反比例函数的性质会分象限利用增减性。

4.一次函数的解析式确定能用待定系数法确定函数解析式。

反比例函数的应用5.反比例函数中比例系数的几何意义会用数形结合思想解决此类问题.能根据图象信息,解决相应的实际问题.能解决与三角形、四边形等几何图形相关的计算和证明。

☞2年中考【2015年题组】1.(2015崇左)若反比例函数kyx=的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3 【答案】A.【解析】试题分析:∵反比例函数kyx=的图象经过点(2,﹣6),∴2(6)12k=⨯-=-,解得k=﹣12.故选A.考点:反比例函数图象上点的坐标特征.2.(2015苏州)若点A(a,b)在反比例函数2yx=的图象上,则代数式ab﹣4的值为()A.0 B.﹣2 C.2 D.﹣6 【答案】B.【解析】试题分析:∵点(a,b)反比例函数2yx=上,∴2ba=,即ab=2,∴原式=2﹣4=﹣2.故选B.考点:反比例函数图象上点的坐标特征.3.(2015来宾)已知矩形的面积为10,长和宽分别为x 和y ,则y 关于x 的函数图象大致是( )A .B .C .D .【答案】C .考点:1.反比例函数的应用;2.反比例函数的图象.4.(2015河池)反比例函数1my x =(0x >)的图象与一次函数2y x b =-+的图象交于A ,B 两点,其中A (1,2),当21y y >时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >2 【答案】B . 【解析】试题分析:根据双曲线关于直线y=x 对称易求B (2,1).依题意得:如图所示,当1<x <2时,21y y >.故选B .考点:反比例函数与一次函数的交点问题.5.(2015贺州)已知12k k<<,则函数1kyx=和21y k x=-的图象大致是()A.B.C.D.【答案】C.考点:1.反比例函数的图象;2.一次函数的图象.6.(2015宿迁)在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(3,0),点P在反比例函数xy2=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个B.4个C.5个D.6个【答案】D.【解析】试题分析:①当∠PAB=90°时,P点的横坐标为﹣3,把x=﹣3代入xy2=得23y=-,所以此时P点有1个;②当∠APB=90°,设P(x,2x),2PA=222(3)()xx++,2PB=222(3)()xx-+,2AB =2(33)+=36,因为222PA PB AB+=,所以222222(3)()(3)()x xx x+++-+=36,整理得42940x x-+=,所以2965x+=,或2965x-=,所以此时P点有4个;③当∠PBA=90°时,P点的横坐标为3,把x=3代入xy2=得23y=,所以此时P点有1个;综上所述,满足条件的P点有6个.故选D.考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2015自贡)若点(1x,1y),(2x,2y),(3x,3y),都是反比例函数xy1-=图象上的点,并且123y y y<<<,则下列各式中正确的是()A.123x x x<<B.132x x x<<C.213x x x<< D.231x x x<<【答案】D.【解析】试题分析:由题意得,点(1x,1y),(2x,2y),(3x,3y)都是反比例函数xy1-=上的点,且123y y y<<<,则(2x,2y),(3x,3y)位于第三象限,y随x的增大而增大,23x x<,(1x,1y)位于第一象限,1x最大,故1x、2x、3x的大小关系是231x x x<<.故选D.考点:反比例函数图象上点的坐标特征.8.(2015凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线3yx=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13【答案】C.考点:反比例函数系数k的几何意义.9.(2015眉山)如图,A、B是双曲线xky=上的两点,过A点作AC⊥x轴,交OB于D 点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.34B.38C.3 D.4【答案】B .考点:1.反比例函数系数k 的几何意义;2.相似三角形的判定与性质. 10.(2015内江)如图,正方形ABCD 位于第一象限,边长为3,点A 在直线y=x 上,点A的横坐标为1,正方形ABCD 的边分别平行于x 轴、y 轴.若双曲线ky x =与正方形ABCD有公共点,则k 的取值范围为( )A .1<k <9B .2≤k≤34C .1≤k≤16D .4≤k <16 【答案】C . 【解析】试题分析:点A 在直线y=x 上,其中A 点的横坐标为1,则把x=1代入y=x 解得y=1,则A的坐标是(1,1),∵AB=BC=3,∴C 点的坐标是(4,4),∴当双曲线ky x =经过点(1,1)时,k=1;当双曲线ky x =经过点(4,4)时,k=16,因而1≤k≤16.故选C .考点:1.反比例函数与一次函数的交点问题;2.综合题.11.(2015孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数1yx=的图象上.若点B在反比例函数kyx=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.12.(2015宜昌)如图,市煤气公司计划在地下修建一个容积为410m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()A .B .C .D .【答案】A .考点:1.反比例函数的应用;2.反比例函数的图象.13.(2015三明)如图,已知点A 是双曲线2y x =在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n ),则m ,n 满足的关系式为( )A .2n m =-B .2n m =-C .4n m =-D .4n m =-【答案】B . 【解析】试题分析:∵点C 的坐标为(m ,n ),∴点A 的纵坐标是n ,横坐标是:2n ,∴点A 的坐标为(2n,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:2m,∴点B的坐标为(m,2m),又∵22n mmn=,∴22mnm n=⋅,∴224m n=,又∵m<0,n>0,∴2mn=-,∴2nm=-,故选B.考点:反比例函数图象上点的坐标特征.14.(2015株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12 yx =图象上的概率是()A.12B.13C.14D.16【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.15.(2015乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,3 4OA OB =.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kyx=的图象过点C .当以CD 为边的正方形的面积为27时,k 的值是( )A .2B .3C .5D .7 【答案】D .考点:1.反比例函数综合题;2.综合题;3.压轴题. 16.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1.反比例函数3y x的图象经过A ,B 两点,则菱形ABCD 的面积为( )A .2B .4C .22D .2【答案】D . 【解析】试题分析:过点A 作x 轴的垂线,与CB 的延长线交于点E ,∵A ,B 两点在反比例函数3y x=的图象上且纵坐标分别为3,1,∴A ,B 横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S 菱形ABCD=底×高=22×2=42,故选D .考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2015临沂)在平面直角坐标系中,直线2y x =-+与反比例函数1y x =的图象有唯一公共点,若直线y x b =-+与反比例函数1y x =的图象有2个公共点,则b 的取值范围是( )A .b >2B .﹣2<b <2C .b >2或b <﹣2D .b <﹣2 【答案】C .考点:反比例函数与一次函数的交点问题. 18.(2015滨州)如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转,若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题.19.(2015扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(﹣1,﹣3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(﹣1,﹣3).故答案为:(﹣1,﹣3).考点:反比例函数图象的对称性.20.(2015泰州)点(a ﹣1,1y )、(a+1,2y)在反比例函数()0>=k x ky 的图象上,若21y y <,则a 的范围是 . 【答案】﹣1<a <1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.21.(2015南宁)如图,点A 在双曲线23y x =(0x >)上,点B 在双曲线ky x =(0x >)上(点B 在点A 的右侧),且AB ∥x 轴.若四边形OABC 是菱形,且∠AOC=60°,则k= .【答案】63 【解析】试题分析:因为点A 在双曲线23y =0x >)上,设A 点坐标为(a 23,因为四边形OABC 是菱形,且∠AOC=60°,所以OA=2a ,可得B 点坐标为(3a 23),可得:k=233a 63,故答案为:63考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2015桂林)如图,以▱ABCO 的顶点O 为原点,边OC 所在直线为x 轴,建立平面直角坐标系,顶点A 、C 的坐标分别是(2,4)、(3,0),过点A 的反比例函数ky x =的图象交BC 于D ,连接AD ,则四边形AOCD 的面积是 .【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k 的几何意义;3.综合题;4.压轴题. 23.(2015贵港)如图,已知点A1,A2,…,An 均在直线1y x =-上,点B1,B2,…,Bn 均在双曲线1y x =-上,并且满足:A1B1⊥x 轴,B1A2⊥y 轴,A2B2⊥x 轴,B2A3⊥y轴,…,AnBn ⊥x 轴,BnAn+1⊥y 轴,…,记点An 的横坐标为an (n 为正整数).若11a =-,则a2015= .【答案】2.考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2015南京)如图,过原点O 的直线与反比例函数1y ,2y 的图象在第一象限内分别交于点A ,B ,且A 为OB 的中点,若函数11y x =,则2y 与x 的函数表达式是 .【答案】24y x =.【解析】试题分析:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,∵点A 在反比例函数11y x =上,∴设A (a ,1a ),∴OC=a ,AC=1a ,∵AC ⊥x 轴,BD ⊥x 轴,∴AC ∥BD ,∴△OAC ∽△OBD ,∴AC OC OA BD OD OB ==,∵A 为OB 的中点,∴12AC OC OA BD OD OB ===,∴BD=2AC=2a ,OD=2OC=2a ,∴B (2a ,2a ),设2k y x =,∴k=224a a ⋅=,∴2y 与x 的函数表达式是:24y x =.故答案为:24y x =.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.25.(2015攀枝花)如图,若双曲线ky x =(0k >)与边长为3的等边△AOB (O 为坐标原点)的边OA 、AB 分别交于C 、D 两点,且OC=2BD ,则k 的值为 .36325.考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.26.(2015荆门)如图,点1A ,2A 依次在93(0)y x x >的图象上,点1B ,2B 依次在x 轴的正半轴上,若11A OB △,212A B B △均为等边三角形,则点2B 的坐标为 .【答案】(62,0).考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题. 27.(2015南平)如图,在平面直角坐标系xOy 中,△OAB 的顶点A 在x 轴正半轴上,OC是△OAB 的中线,点B ,C 在反比例函数3y x =(0x >)的图象上,则△OAB 的面积等于 .【答案】92.考点:1.反比例函数系数k 的几何意义;2.综合题. 28.(2015烟台)如图,矩形OABC 的顶点A 、C 的坐标分别是(4,0)和(0,2),反比例函数ky x(x >0)的图象过对角线的交点P 并且与AB ,BC 分别交于D ,E 两点,连接OD ,OE ,DE ,则△ODE 的面积为 .【答案】154.考点:1.反比例函数系数k 的几何意义;2.反比例函数综合题;3.综合题. 29.(2015玉林防城港)已知:一次函数210y x =-+的图象与反比例函数ky x =(0k >)的图象相交于A ,B 两点(A 在B 的右侧).(1)当A (4,2)时,求反比例函数的解析式及B 点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P ,使△PAB 是以AB 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由. (3)当A (a ,﹣2a+10),B (b ,﹣2b+10)时,直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D .若52BC BD =,求△ABC 的面积.【答案】(1)8y x =,B (1,8);(2)(﹣4,﹣2)、(﹣16,12-);(3)10.【解析】试题分析:(1)把点A 的坐标代入ky x =,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B 的坐标;(2)①若∠BAP=90°,过点A 作AH ⊥OE 于H ,设AP 与x 轴的交点为M ,如图1,对于y=﹣2x+10,当y=0时,﹣2x+10=0,解得x=5,∴点E (5,0),OE=5.∵A (4,2),∴OH=4,AH=2,∴HE=5﹣4=1.∵AH ⊥OE ,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM ,∴△AHM ∽△EHA ,∴AH MH EH AH =,∴212MH=,∴MH=4,∴M (0,0),可设直线AP 的解析式为y mx =,则有42m =,解得m=12,∴直线AP 的解析式为12y x=,解方程组128y x y x ⎧=⎪⎪⎨⎪=⎪⎩,得:42x y =⎧⎨=⎩或42x y =-⎧⎨=-⎩,∴点P 的坐标为(﹣4,﹣2).②若∠ABP=90°,同理可得:点P 的坐标为(﹣16,12-).综上所述:符合条件的点P 的坐标为(﹣4,﹣2)、(﹣16,12-);(3)过点B 作BS ⊥y 轴于S ,过点C 作CT ⊥y 轴于T ,连接OB ,如图2,则有BS ∥CT ,∴△CTD∽△BSD,∴CD CTBD BS=.∵52BCBD=,∴32CT CDBS BD==.∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2014年题组】1. (2014年湖南湘潭)如图,A、B两点在双曲线4yx=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A. 3B. 4C. 5D. 6 【答案】D . 【解析】试题分析:∵点A 、B 是双曲线4y x =上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,∴根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∵S 阴影=1,∴S1+S2=4+4﹣1×2=6.故选D .考点:反比例函数系数k 的几何意义.2. (2014年吉林长春)如图,在平面直角坐标系中,点A 、B 均在函数ky x =(k >0,x >0)的图象上,⊙A 与x 轴相切,⊙B 与y 轴相切.若点B 的坐标为(1,6),⊙A 的半径是⊙B 的半径的2倍,则点A 的坐标为( )A. (2,2)B. (2,3)C. (3,2)D. 34,2⎛⎫ ⎪⎝⎭ 【答案】C .考点:1.切线的性质;2.曲线上点的坐标与方程的关系.3. (2014年江苏连云港)如图,△ABC 的三个顶点分别为A (1,2),B (2,5),C (6,1).若函数ky x =在第一象限内的图像与△ABC 有交点,则k 的取值范围是( )A. 2≤k ≤449B. 6≤k ≤10C. 2≤k ≤6D. 2≤k ≤225【答案】A . .考点:1.反比例函数图象上点的坐标特征;2.待定系数法的应用;23.曲线上点的坐标与方程的关系;一元二次方程根的判别式.4. (2014年江苏盐城)如图,反比例函数ky x =(x <0)的图象经过点A (﹣1,1),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B′在此反比例函数的图象上,则t 的值是( )A.152+B.32C.43 D. 152-+【答案】A . 【解析】考点:1.反比例函数的综合题;2.曲线上点的坐标与方程的关系;3.等腰直角三角形的性质;4.轴对称的性质;5.方程思想的应用.5. (2014年重庆市B 卷)如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数k y (k 0)x =≠在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是( )A 、5(,0)4B 、7(,0)4C 、9(,0)4D 、11(,0)4【答案】C .【解析】试题分析:∵A(m,2),∴正方形ABCD的边长为2.∵E(n,23),∴n m2=+.∵反比例函数ky(k0)x=≠在第一象限的图象经过A,E,∴k2k2m22mm m12k3m23m2⎧=⇒=⎪⎪−−−−→=⇒=⎨+⎪=⎪+⎩把①代入②①②.∴n m23=+=,即点E的坐标为(3,23).设直线EG的解析式为y ax b=+,∵G(0,-2),∴283a b a39b2b2⎧⎧+==⎪⎪⇒⎨⎨⎪⎪=-=-⎩⎩.∴直线EG的解析式为8y x29=-.令y=0得89x20x94-=⇒=.∴点F的坐标是9,04⎛⎫⎪⎝⎭.故选C.考点:1.反比例函数和一次函数交点问题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.正方形的性质.6. (2014年广西北海)如图,反比例函数kyx=(x>0)的图象交Rt△OAB的斜边OA于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD:OD=1:2,则k 的值为【答案】20.考点:1.反比例函数系数k 的几何意义;2.相似三角形的判定和性质. 7. (2014年广西崇左)如图,A (4,0),B (3,3),以AO ,AB 为边作平行四边形OABC ,则经过C 点的反比例函数的解析式为 .【答案】3y x =-.考点:1.平行四边形的性质;2.待定系数法的应用;3.曲线上点的坐标与方程的关系.8. (2014年广西玉林、防城港)如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线1k y x =和2ky x =的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①12k AM CN k =;②阴影部分面积是()121k k 2+;③当∠AOC=90°时12k k;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.9. (2014年湖北荆州)如图,已知点A是双曲线2yx=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线kyx=(k<0)上运动,则k的值是.【答案】﹣6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.10. (2014年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数kyx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=﹣2x+8;(3)直线BP与直线AM的位置关系为平行,.考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.☞考点归纳归纳 1:反比例函数的概念基础知识归纳: 一般地,函数(k 是常数,k0)叫做反比例函数。

初中数学九年级上册反比例函数单元测试题及答案北师大版

初中数学九年级上册反比例函数单元测试题及答案北师大版

反比例函数单元测试题 姓名 学号一、选择题(每小题3分,共30分) 1、反比例函数y =xn 5图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2)3、已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ). A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).Q pxyot /hv /(km/h)O t /hv /(km/h)Ot /hv /(km/h)Ot /hv /(km/h)OA .B .C . .A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ). A 、x <-1 B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共24分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数k kx y +=的图象不经过第 象限.13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14、反比例函数y =102)2(-+m xm 的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 . 16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 . 17、如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B (x 2,y 2)两点, 则2x 1y 2-7x 2y 1=___________.18、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为 B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是 .三、解答题(共46分)19、(5分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.20、(5分)请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式,并画出函数图象. 举例: 函数表达式:21、(9分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当k =4时,求△BOC 的面积.22、(9分)如图,已知反比例函数y =-x8与一次函数y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB 的面积.23、(9分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.24、(9分)已知y=y 1-y 2,y 1与x 2成正比例,y 2与x -1成反比例,当x=-1时,y=3;当x=2时,y=-3.(1)求y 与x 之间的函数关系;(2)当x=2时,求y 的值.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题 11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12.三、解答题 21、y =-x6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =x2(x >0). x (2)1 1 232 … y…4234 1…(只要是生活中符合反比例函数关系的实例均可) 画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k ; (2)△BOC 的面积为2.(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM=21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =xk ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y=x 4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。

北师大版初中数学专题:反比例函数

北师大版初中数学专题:反比例函数

反比例函数一.选择题(共2小题)1.如图,点A是函数y=的图象上的点,点B,C的坐标分别为B(﹣,﹣),C(,).试利用性质:“函数y=的图象上任意一点A都满足|AB﹣AC|=2”求解下面问题:作∠BAC的角平分线AE,过B作AE的垂线交AE于F,已知当点A在函数y=的图象上运动时,点F总在一条曲线上运动,则这条曲线为()A.直线B.抛物线C.圆D.反比例函数的曲线2.已知点A(x1、y1),B(x2,y2)在反比例函数y=的图象上,当x1<x2<0时,y1>y2,则m的范围为()A.m>B.m<C.m>D.m<二.填空题(共26小题)3.如图,在平面直角坐标系中,矩形ABCD的边分别平行于坐标轴,原点O恰好为矩形对角线的交点,反比例函数y=的图象与矩形ABCD的边交于点M、N、P、Q,记矩形ABCD的面积为S1,四边形MNPQ 的面积为S2,若S1=3S2,则MN:MQ的值为.4.如图,已知动点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点P,Q,当QE:DP=9:25时,图中的阴影部分的面积等于.5.如图,将反比例函数y=(k>0)的图象向左平移2个单位长度后记为图象c,c与y轴相交于点A,点P为x轴上一点,点A关于点P的对称点B在图象c上,以线段AB为边作等边△ABC,顶点C恰好在反比例函数y=﹣(x>0)的图象上,则k=.6.如图,点A(﹣7,8),B(﹣5,4)连接AB并延长交反比例函数y=(x<0)的图象于点C,若=,则k=.7.如图,已知直线y=﹣x+1与坐标轴交于A,B两点,矩形ABCD的对称中心为M,双曲线y=(x >0)正好经过C,M两点,则直线AC的解析式为:.8.如图,等边△OBA和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过OB的中点C和AE的中点D,已知OB=16,则点F的坐标为.9.如图,反比例函数y=﹣的图象与直线y=x+b(b>0)交于A,B两点(点A在点B右侧),过点A作x轴的垂线,垂足为点C,连接AO,BO,图中阴影部分的面积为12,则b的值为.10.如图,平面直角坐标系xOy中,在反比例函数y=(k>0,x>0)的图象上取点A,连接OA,与y=的图象交于点B,过点B作BC∥x轴交函数y=的图象于点C,过点C作CE∥y轴交函数y=的图象于点E,连接AC,OC,BE,OC与BE交于点F,则=.11.如图,直角坐标系中,Rt△ABC的AB边在x轴上,∠CAB=90°,sin∠ACB=.将Rt△ABC沿直线BC翻折得Rt△DBC,再将Rt△DBC绕点B逆时针旋转,正好点C与坐标原点O重合,点D的对应点E落在反比例函数y=(x>0)的图象上,此时线段AC交双曲线于点F,则点F的坐标为.12.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为,的值为.13.如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是.(只填序号)14.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=.15.如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD 的面积为S2,若,则CD的长为.16.已知如图,直线y=x分别与双曲线y=(m>0,x>0)、双曲线y=(n>0,x>0)交于点A,点B,且=,将直线y=x向左平移6个单位长度后,与双曲线y=交于点C,若S△ABC=4,则mn的值为.17.一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,m),B(n,﹣1)两点,则使kx+b 的x的取值范围是.18.如图,点A为直线y=﹣x上一点,过A作OA的垂线交双曲线y=(x<0)于点B,若OA2﹣AB2=12,则k的值为.19.已知直线y=kx+2与y轴交于点A,与双曲线y=相交于B,C两点,若AB=3AC,则k的值为.20.如图,直线y=x﹣8交x轴于点A,交y轴于点B,点C是反比例函数y=的图象上位于直线AB上方的一点,CD∥x轴交AB于点D,CE⊥CD交AB于点E,若AD•BE=4,则k的值为.21.已知双曲线y=与直线y=x交于A、B两点(点A在点B的左侧).如图,点P是第一象限内双曲线上一动点,BC⊥AP于C,交x轴于F,P A交y轴于E,则的值是.22.如图,点A是函数的图象上的点,点B、C的坐标分别为B(﹣,﹣)、C(,).试利用性质:点“函数的图象上任意一点A都满足”求解下面问题:作∠BAC的内角平分线AE,过B作AE的垂线交AE于F.已知当A在函数的图象上运动时,OF的长度总等于.23.从数﹣3,,0,2中任取一个数记为a,再从余下的三个数中,任取一个数记为b.若k=a+b,反比例函数y=的图象经过第一、三象限的概率是.24.如图,在直角坐标系中,四边形OACB为菱形,OB在x轴的正半轴上,∠AOB=60°,过点A的反比例函数y=的图象与BC交于点F,则△AOF的面积为.25.如图,点A的坐标为(1,0),点B的坐标为(0,2),点C在反比例函数y=(k>0,x>0)的图象上,AC⊥AB,过点C作CD∥AB,交反比例函数于点D,且CD=2AB,则k的值为.26.已知函数y=的图象上有一点P(m,n),且m,n是关于x的方程x2﹣4ax+4a2﹣6a﹣8=0的两实数根,其中a是使方程有实根的最小整数,则y=的解析式为.27.如图,已知双曲线(k≠0)与正比例函数y=mx(m≠0)交于A、B两点,以AB为边作等边三角形ABD,且,再以AB为斜边作直角三角形ABC,使CB∥y轴,连接CD,若△ACD的周长比△CBD的周长少4,则k=.28.某工厂每月计划用煤Q吨,每天平均耗煤a吨.如果每天节约用煤x吨,那么Q吨煤可以多用y天,写出y与x的函数关系式为.三.解答题(共32小题)29.已知:A(a,y1).B(2a,y2)是反比例函数(k>0)图象上的两点.(1)比较y1与y2的大小关系;(2)若A、B两点在一次函数第一象限的图象上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连接OA、OB,且S△OAB=8,求a的值;(3)在(2)的条件下,如果3m=﹣4x+24,,求使得m>n的x的取值范围.30.已知A(x1,y1),B(x2,y2)是反比例函数y=图象上的两点,且x1﹣x2=﹣2,x1•x2=3,y1﹣y2=﹣,当﹣3<x<﹣1时,求y的取值范围.31.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.32.如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.33.如图,已知直线l:y=ax+b与反比例函数y=﹣的图象交于A(﹣4,1)、B(m,﹣4),且直线l与y轴交于点C.(1)求直线l的解析式;(2)若不等式ax+b>﹣成立,则x的取值范围是;(3)若直线x=n(n<0)与y轴平行,且与双曲线交于点D,与直线l交于点H,连接OD、OH、OA,当△ODH的面积是△OAC面积的一半时,求n的值.34.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E两点,求△CDE的面积.35.如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOB的面积.36.如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y 轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.37.如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b﹣<0的解集(请直接写出答案).38.如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数(x>0)的图象相交于点B(2,1).(1)求m的值和一次函数的解析式;(2)结合图象直接写出:当x>0时,不等式的解集.39.如图,直线y=x﹣1与反比例函数y=的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(﹣1,m).(1)求反比例函数的解析式;(2)若点P(n,﹣1)是反比例函数图象上一点,过点P作PE⊥x轴于点E,延长EP交直线AB于点F,求△CEF的面积.40.如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.41.某公司从2013年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:年度2013201420152016投入技改资金x(万元) 2.534 4.5产品成本y(万元/件)7.26 4.54(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;(2)按照这种变化规律,若2017年已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).42.为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为8 mg.根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用.那么从消毒开始,经多长时间学生才可以返回教室?43.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.44.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在直线为x轴和y轴建立如图所示的平面直角坐标系,F是BC上的一个动点(不与B、C重合),过F点的反比例函数y=(k>0)的图象与AC边交于点E,连接OE,OF,EF.(1)若tan∠BOF=,求F点的坐标;(2)当点F在BC上移动时,△OEF与△ECF的面积差记为S,求当k为何值时,S有最大值,最大值是多少?(3)是否存在这样的点F,使得△OEF为直角三角形?若存在,求出此时点F坐标;若不存在,请说明理由.45.已知反比例函数y=(m为大于0的常数)的图象经过▱ABOD的顶点D,点A、B的坐标分别为(0,3),(﹣2,0).(1)求该反比例函数的表达式;(2)设点P是该反比例函数图象上的一点,若OD=OP,求出符合条件的P点的坐标;若以D、O、P 为顶点的三角形是等腰三角形,直接写出满足条件的点P的个数.46.如图,过原点的直线l与双曲线y=相交于A(2,2)、B两点,点C、D在第三象限双曲线的图象上(点C在点D上方),连接AC交x轴于点E,连接AD交y轴于点F.设点C的横坐标为m.(1)用含m的代数式表示点E的坐标;(2)求证:∠ACB=2∠AEO;(3)若∠CBD=135°,△AEF的面积为10,求直线AC的表达式.47.有这样一个问题:探究同一坐标系中系数互为倒数的正、反比例函数y=x与y=(k≠0)的图象性质.小明根据学习函数的经验,对这两个函数当k>0时的图象性质进行了探究.设函数y=x与y =图象的交点为A、B.下面是小明的探究过程:(1)如图所示,若已知A的坐标为(﹣2,﹣1),则B点的坐标为.(2)若A的坐标为(﹣k,﹣1),P点为第一象限内双曲线上不同于点B的任意一点.①设直线P A交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下:设P(m,),直线P A的解析式为y=ax+b(a≠0).则解得所以,直线P A的解析式为.请把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△P AB的形状,并用k表示出△P AB的面积.48.如图,一次函数y=k1x+5(k1<0)的图象与坐标轴交于A,B两点,与反比例函数y=(k2>0)的图象交于M,N两点,过点M作MC⊥y轴于点C,已知CM=1.(1)求k2﹣k1的值;(2)若=,求反比例函数的解析式;(3)在(2)的条件下,设点P是x轴(除原点O外)上一点,将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由.49.如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.50.如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m,n的值并写出反比例函数的表达式;(2)连接AB,E是线段AB上一点,过点E作x轴的垂线,交反比例函数图象于点F,若EF=AD,求出点E的坐标.51.如图,在平面直角坐标系中,点A的横坐标为8,AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,交AB于点D.(1)求反比例函数的解析式;(2)求四边形OCDB的面积.52.已知y=y1+y2,其中y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5;求y 与x的函数解析式.53.如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,m﹣3),B(﹣m,﹣1)两点.(1)求一次函数和反比例函数的表达式;(2)直线AB与x轴交于点C,点P在双曲线上,且在直线AB的下方,如果△ACP的面积为12,求点P的坐标.54.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,3),B(﹣3,n)两点,与y 轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)在x轴上找一点P,使|P A﹣PB|的值最大,求满足条件的点P的坐标及△P AB的面积.55.某校为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)下表是该技校的部分作息时间,若同学们希望在上午第一节下课后的课间10分钟内都能喝到不超过40℃的开水,已知第一节下课前无人接水,请直接写出生活委员应该在什么时间或时间段接通饮水机电源.(不可以用上课时间接通饮水机电源)时间(上午)节次内容8:35到校课前准备9:00~9:40第一节语文9:50~10:30第二节绘图56.如图,A、B两点在函数y=(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.57.设实数a>0,b>0,则有≥,当且仅当a=b时等号成立,我们称它为基本不等式(均值定理).(1)证明此定理;(2)利用此定理,当x>0时,求x+的最小值过程如下:“令a=x,b=,则x+≥2=2,当且仅当x=即x=1时取等号,即x+的最小值为2.”仿照此过程,求函数y=(x>﹣1)的最小值.58.如图,点A、B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C、D分别在x轴的正、负半轴上,若CD=k,已知AB=4AC,E是AB的中点,且△BCE的面积是△ADE的面积的3倍.(1)求AB的长.(2)求k的值.59.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,点A的横纵坐标之比为3:4,反比例函数y=(k>0)在第一象限内的图象经过点A,且与BC交于点F.(1)若OA=10,求反比例函数解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标.60.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象都经过A(﹣2,﹣4),B(4,a)两点.(1)求反比例函数和一次函数的表达式;(2)过O,A两点的直线与反比例函数图象交于点C,连接BC,求△ABC的面积.反比例函数参考答案一.选择题(共2小题)1.C;2.D;二.填空题(共26小题)3.2﹣;4.;5.2;6.﹣8;7.y=﹣2x+6;8.(16﹣16,0);9.3;10.;11.(3,);12.24;﹣;13.①③④;14.8;15.5;16.100;17.x<﹣1或0<x <2;18.﹣6;19.1或﹣;20.﹣;21.1;22.;23.;24.4;25.;26.y =;27.8;28.;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
y
O
A
图2
九年级数学上第五章反比例函数
一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案
1、(2010内蒙呼和浩特)已知:点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y=-x
3
图像上的三点,且x 1<0<x 2<x 3则y 1、y 2、y 3的大小关系是( ) A .y 1< y 2< y 3 B. y 2<y 3<y 1 C. y 3<y 2<y 1 D.无法确定
2、已知函数1
y x
=
的图象如图所示,当x≥-1时,y 的取值范围是( ) A.y <-1
B.y≤-1
C. y≤-1或y >0
D. y <-1或y≥0
3、(2010吉林)反比例函数x
k
y =
的图象如图所示,则k 的值可能是( ) A .-1
B .
2
1
C .1
D .2
4、(2010云南曲靖)函数y=kx-k 与y )0(≠=
k x
k
在同一坐标系中的大致图像是( )
5、(2010湖北黄石)如图,反比例函数x
k
=
y (k >0)与一次函数b x 21y +=
的图象相交于两点A (1x ,1y ),B (2x ,2y ),线段AB 交y 轴与C ,当|1x -2x |=2 且AC = 2BC 时,k 、b 的值分别为( ) A.k =
21
,b =2 B.k =94,b =1 C.k =13,b =13 D.k =9
4,b =13
6、(2010辽宁大连)如图2,反比例函数1
1k y x
=
和正比例函数22y k x = 的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是( ) A. 10x -<< B. 11x -<< C. 1x <-或01x << D. 10x -<<或1x >
7、(2010 广西玉林、防城港)直线l 与双曲线C 在第一象限相交于A 、B 两点,
A
O
y x
B C
O
A
B C
x
y
y =x y
1 x
O
A B
C
图3
D P B y
其图象信息如图4所示,则阴影部分(包括边界)横、纵坐标都是整数的点 (俗称格点)有( )
A .4个
B .5 个
C .6个
D .8个 8、(2010四川攀枝花)如图,等腰直角三角形ABC 位于第一象限,AB=AC=2, 直角顶点A 在直线y = x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分 别平行于x 轴、y 轴。

若双曲线y =x
k
(k ≠0)与△ABC 的边有交点,则k 的取值 范围是( )
A .1<k <2
B .1≤k ≤3
C .1≤k ≤4
D .1≤k <4
9、(2010鄂尔多斯)定义新运算: a ⊕b=⎪⎩⎪
⎨⎧≠>-≤-)0()
(1b b a b a b a a 且,则函数y=3⊕x 的图象大致是
10、(2010辽宁本溪)如图所示,已知菱形OABC ,点C 在x 轴上,直线y =x
经过点A ,菱形OABC 的面积是2.若反比例函数的图象经过点B ,则此 反比例函数表达式为( ) A .1
y x
=
B .2
y x
=
C .21
y x
+= D .21
2y x
+=
180° 二、填空题
11、(2010内蒙赤峰)已知反比例函数x
y 2
=
,当-4≤x ≤-1时,y 的最大值是___________. 12、(2010广西河池)如图3,Rt △ABC 在第一象限,90BAC ∠=
,AB=AC=2, 点A 在直线y x =上,其中点A 的横坐标为1,且AB ∥x 轴, AC ∥y 轴,若双曲线k
y x
=
()0k ≠与△ABC 有交点,则k 的 取值范围是 .
13、(2010福建南平)函数y= 4x 和y=1x 在第一象限内的图像如图,点P 是y= 4
x
的图像上一动点,PC ⊥x
轴于点C ,交y=1
x 的图像于点B.给出如下结论:①△ODB 与△OCA 的面积 相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;
B A
O
C
y x ④CA= 1
3
AP.其中所有正确结论的序号是______________.
14、(2010广西南宁)如图7所示,点1A 、2A 、3A 在x 轴上,且
32211A A A A OA ==,分别过点1A 、2A 、3A 作y 轴的平行线,与分比
例函数)0(8
>=
x x
y 的图像分别 交于点1B 、2B 、3B ,分别过点1B 、 2B 、3B 作x 轴的平行线,分别与y 轴交于点1C 、2C 、3C ,连接1OB 、
2OB 、3OB ,那么图中阴影部分的面积之和为 .
15、(2010吉林长春)双曲线111k y k 0x
=(>)与直线222y (0)k b k =+>的一个交点的横坐标为2,当x =3
时,1y 2y (填“>”“<”或“=”). 16、(2010 广西钦州市)反比例函数k
y x
=
(k >0)的图象与经过原点的直线l 相交于A 、B 两点,已知A 点的坐标为(2,1),那么B 点的坐标为 17、(2010陕西西安)已知),(),,(2211y x B y x A 都在反比例函数x
y 6
=
的图象上。

若 421-=x x ,则21y y 的值为
18、(2010湖北恩施自治州)在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数x
k y 2
=的图象有公共点,则21k k 0(填“>”、“=”或“<”). 19、(2010湖北武汉)直线y =3
3
x b -
+与y 轴交于点A ,与双曲线y =k x 在第一象限交于点B ,C 两点,
且AB ⋅AC =4,则k = . 三、解答题
20、(2010广东广州,23,12分)已知反比例函数y =
8
m x
-(m 为常数)的 图象经过点A (-1,6).
(1)求m 的值;
(2)如图9,过点A 作直线AC 与函数y =
8
m x
-的图象交于点B ,与 x 轴交于点C ,且AB =2BC ,求点C 的坐标.
21、(2010甘肃兰州)(本题满分9分)如图,P 1是反比例函数y =x
k
(k>0),在第一象限图像上的一点,点A 1 的坐标为(2,0).
(1)当点P 1的横坐标逐渐增大时,△P 1O A 1的面积
O
M
x
y
A
将如何变化?
(2)若△P 1O A 1与△P 2 A 1 A 2均为等边三角形,求 此反比例函数的解析式及A 2点的坐标.
22、(2010山东济宁)如图,正比例函数12y x =
的图象与反比例函数k
y x
=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1.
(1)求反比例函数的解析式;
(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),
且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.
23、(2010 山东省德州) ●探究 (1) 在图1中,已知线段AB ,CD ,其中点分别为E ,F . ①若A (-1,0), B (3,0),则E 点坐标为__________;
②若C (-2,2), D (-2,-1),则F 点坐标为__________; (2)在图2中,已知线段AB 的端点坐标为A (a ,b ) ,B (c ,d ), 求出图中AB 中点D 的坐标(用含a ,b ,c ,d 的
代数式表示),并给出求解过程. ●归纳 无论线段AB 处于直角坐标系中的哪个位置,
当其端点坐标为A (a ,b ),B (c ,d ), AB 中点为D (x ,y ) 时,
x =_________,y =___________.(不必证明)
●运用 在图2中,一次函数2-=x y 与反比例函数
x y 3
=的图象交点为A ,B .
①求出交点A ,B 的坐标;
②若以A ,O ,B ,P 为顶点的四边形是平行四边形, 请利用上面的结论求出顶点P 的坐标. 答案 一、选择
1、B
2、C
3、B
4、C
5、D
6、D
7、B
8、C
9、B 10、C 二、填空
x y y =x 3 y =x -2
A
B
O 第22题图3
O x y
D B 第22题图2 A
第22题图1
O x y
D B A C。

相关文档
最新文档