平面直角坐标系第一课时教学设计
北师大版数学八年级上册3.2平面直角坐标系(第1课时)优秀教学案例
3.组织小组汇报,让各小组展示自己的研究成果,其他小组进行评价和提问,从而促进知识的内化和巩固。
(四)反思与评价
1.鼓励学生在学习过程中进行自我反思,总结自己在解决问题时的成功经验和不足之处,以便在今后的学习中取得更好的效果。
2.创设具有挑战性的问题情景,如寻找宝藏游戏、机器人行走路径等,让学生在解决问题的过程中,自然地引入坐标概念,增强学习的积极性。
3.利用多媒体、教具等辅助手段,直观演示坐标系的建立过程,帮助学生形象地理解坐标与图形之间的关系,提高课堂参与度。
(二)题导向
1.设计具有启发性的问题,引导学生思考,如:“如何在平面内表示一个点的位置?”“如何通过坐标解决实际问题?”等,培养学生的问题意识和探究精神。
3.针对本节课的重点、难点,进行总结梳理,帮助学生巩固所学知识。
(五)作业小结
1.课后作业:
-根据课堂所学,绘制一幅学校平面图,并用坐标表示各建筑物的位置。
-完成教材课后习题,巩固坐标与图形之间的关系。
2.作业要求:
-认真完成作业,规范书写,养成良好的学习习惯。
-遇到问题及时向同学或老师请教,提高问题解决能力。
4.倡导合作、互助、共享的精神,使学生学会尊重他人、关心集体,形成良好的道德品质。
5.鼓励学生勇于面对挑战,不怕困难,培养积极向上的心态和坚韧不拔的精神。
三、教学策略
(一)情景创设
1.以生活中的实际情景为背景,如地图上的位置表示、停车场车辆的定位等,引导学生感知平面直角坐标系在现实中的应用,激发学生的学习兴趣。
二、教学目标
(一)知识与技能
1.理解平面直角坐标系的概念,掌握坐标轴、坐标点、坐标值等基本要素。
平面直角坐标系教案 (第一课时)
平面直角坐标系教案(第一课时)剑川县沙溪镇初级中学王仲磊1. 认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位2. 渗透对应关系,提高学生的数感.[教学重点与难点]重点:平面直角坐标系和点的坐标.难点:正确画坐标和找对应点.[教学设计][设计说明]一、利用已有知识,引入1.如图,怎样说明数轴上点A和点B的位置,2.根据下图,你能正确说出各个象棋子的位置吗?二、明确概念平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为(1)由数轴的表示引入,到两个数轴和有序数对。
(2)从学生熟悉的物品入手,引申到平面直角坐标系。
(3)描述平面直角坐标系特征和画法(4) 正方向;两个坐标轴的交点为平面直角坐标系的原点。
(5)点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。
表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1 写出图中A、B、C、D点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?例2 在平面直角坐标系中描出下列各点。
()A(3,4);B(-1,2);C(-3,-2);D(2,-2)问题1:各象限点的坐标有什么特征?练习:教材49页:练习1,2。
三、深入探索教材48页:探索:识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
[巩固练习]1. 教材49页习题6.1--第1题2. 教材50页--第2,4,5,6。
四、小结 1. 平面直角坐标系;2. 点的坐标及其表示3. 各象限内点的坐及各坐标轴上的点的坐标的特征4. 坐标的简单应用[作业]• 1.课本第45~46页:第6、7、9题• 2.各写出5个满足下列条件的点,并在坐标系中分别描出它们:•(1)横坐标与纵坐标相等•(2)横坐标与纵坐标相反•(3)横坐标相等,纵坐标不等•(4)纵坐标相等,横坐标不等•你能找出每组的规律吗?。
人教版初一数学下册《平面直角坐标系》(第一课时)的教学设计
《平面直角坐标系》(第一课时)的教学设计1.教学目标:知识目标理解平面直角坐标系的有关概念,会正确地画出直角坐标系,会根据坐标描出点的位置,由点的位置写出它的坐标.能力目标渗透数形结合、类比转化的数学思想;揭示人类认识世界是由特殊到一般、具体到抽象、一维到多维等认识规律,培养学生的思维能力和创新意识.情感目标培养学生的合作精神和积极参与、勤于思考、善于探索的习惯,增强学生的自信心,激发学生的学习热情.2.教学重点、难点:重点:理解平面直角坐标系的有关概念,由点的位置写出坐标,由坐标描出点的位置.难点:构建平面直角坐标系及平面直角坐标系内的点与有序实数对的一一对应关系. 3.教学方法与教学手段:教学方法:本课主要采用探索式教学法,引导学生通过独立思考、自主探索,合作交流等活动方式经历知识的发生、发展过程,学会获取新知识的方法.另外,根据八年级学生的年龄特点,采用了游戏活动法,既激发了学生的求知欲,培养了学生学习的兴趣,又突破了本节课的难点.教学手段:采用多媒体,实物投影,练习卷,游戏纸板等.4.教学过程:4.1回顾旧知活动1:(1)什么叫数轴?(2)数轴上的点与实数有什么关系?(设计意图:通过复习旧知,为学习新知打下基础.)4.2创设情境活动2:车站正东100米处有一所学校,正西50米处是少年宫,请问能否在一条数轴上表示出这三者的位置?为什么?活动3:如果车站正南150米处有一个图书馆,你能在上述的数轴中表示出图书馆的位置吗?为什么?(设计意图:让学生体验从实际生活中发现数学问题,从而认识数学的发展是人对客观事物认识需要而产生的.)上述活动结束后,老师表扬同学们说,画两条数轴来表示不在同一直线上的点的位置的方法,直到1637年以前,才被法国数学家笛卡尔发现.4.3阅读资料早在1637年以前,法国数学家、解析几何的创始人笛卡尔受到了经纬度的启发,地理上的经纬度是以赤道和本初子午经为标准的,这两条线从局部上可以看成是平面内互相垂直的两条直线,所以笛卡尔的方法就是在平面内画两条原点重合、互相垂直且具有相同单位长度的数轴建立平面直角坐标系,从而解决了用一对实数表示平面内的点的位置的问题.(设计意图:从科学家探索之路可让学生体验数学是从生活中产生的,从而培养学生的探索精神,激发学生学习的兴趣.)通过上面几个活动的开展和资料的阅读,可以水到渠成地引入本课的课题《平面直角坐标系》(老师板书).4.4学习新知通过学生的回答,多媒体演示平面直角坐标系的建立.通过师生共同讨论,多媒体逐步显示的方式,学习有关概念:横轴(x轴)、纵轴(y轴),正方向、坐标原点、坐标平面、四个象限,坐标轴上的点不属于任何象限等.(设计意图:结合图形,通过老师引导、提问,多媒体逐步显示的方式,使学生更加清晰、直观地理解和掌握平面直角坐标系的有关概念.)概念学完后,老师设问:在平面直角坐标系中能否类似于数轴上表示点的方法来表示平面内点的位置呢?4.5探索问题活动4:(1)你到电影院看电影,假设你只记得自已的座位是第9排,能找到自已的座位吗?(2)假设你只记得自已的座位是第6座,能找到自已的座位吗?(3)你认为6排9座和9排6座是同一张座位吗?(设计意图:通过创设看电影找座位这个学生非常熟悉的情境,激发学生内在的求知欲,从而使学生认识到:确定电影院里的座位,需要用两个有序实数.)活动5:你还能举出在现实生活中需要用两个有序实数才能确定平面内物体位置的例子吗(小组讨论,全班交流)?(设计意图:通过学生的相互交流,使他们进一步认识到:确定平面内点的位置,需要用两个有序实数.)4.6指导应用举例:在平面直角坐标系内,先给出一点M,提问:如何找出表示点M的两个有序实数?请学生回答,得出:过点M作横轴的垂线,垂足对应的数是3,过点M作纵轴的垂线,垂足对应的数是2,所以这两个数是3和2(注意画垂线用虚线).接下来由老师讲解:因为3在横轴上,所以3叫点M的横坐标,2在纵轴上,所以2叫点M的纵坐标,依次写出点M的横坐标和纵坐标,得到一对有序实数(3,2),称为点M的坐标,记作:M(3,2).师生共同归纳出书写坐标的口诀:“横坐标在前,纵坐标在后,中间加逗号,两边加括号.”接下来,请学生求点N的坐标,求出点N的坐标是N(2,3)后,请学生比较点M和点N 的坐标,发现表示这两个点的坐标的两个实数完全相同,但它们的顺序不同,而它们在图中的位置也不同,即它们不是同一个点,联系前面学习的看电影找座位中6排9座和9排6座也不是同一张座位,从而进一步说明了,表示点的坐标的两个实数必须要有顺序,即点的坐标是“有序实数对”.然后请学生求出点Q和点P的坐标分别是:Q(-2,0),P(0,4).(设计意图:本题设计了求四个点的坐标,其中两个点在象限内,两个点在坐标轴上,让学生明确了求不同位置下点的坐标的方法;设计点M和点N这两个点,让学生更好地理解了点的坐标是“有序实数对”.例1、已知点在坐标平面内的位置,求点的坐标.练一练:求出右图中A、B、C、D、E、F、G、H、M各点的坐标.观察你所求出的这些点的坐标,回答下列问题:(1)这些点分别位于哪个象限或坐标轴?(2)请仔细观察你所写出的这些点的横、纵坐标的符号,回答在四个象限内和两条坐标轴上的点的横、纵坐标各有什么特征?师生互动,请学生站起来回答,老师板书.例2、已知点的坐标,在坐标平面内描出点的位置.描出A(4, 3)、B(2, - 3)、C( -4, -1)、 D( - 2, 2)、E(3, 0)、F(0, - 2).第一个点A(4, 3),由学生站起来回答描出该点的位置的方法.其余的点由学生在练习卷上完成,利用实物投影,请学生上台交流完成情况.(设计意图:“学数学而不练,犹如入空山而空返”(华罗庚语).适当的训练是学习、巩固新知识必不可少的环节.通过师生共同完成例1、例2,使学生进一步理解和掌握了平面直角坐标系中点和坐标的对应关系.例1中的第(2)问为下面的游戏活动和第二课时的学习打下了伏笔.4.7组织游戏设每位同学都表示平面内的一个点,让居中的横、纵向同学建立平面直角坐标系,举起老师发的游戏纸板,横向的同学表示x轴,纵向的同学表示y轴,纸板上的数字分别表示x 轴、y轴上的坐标.游戏活动1:请同学根据老师说的坐标站起来.游戏活动2:老师报同学的姓名,请被报到姓名的同学站起来,先说出自已表示的点所在的象限或坐标轴,再说出点的坐标.由此得出:坐标平面内的点一一对应有序实数对.(设计意图:通过游戏活动,激发了学生的学习热情,使整个课堂气氛达到了高潮;使学生体会到数学源于生活,生活中处处有数学;增进了师生间、生生间的合作和友谊,使学生在轻松和愉悦的氛围中归纳总结出了坐标平面内的点与有序实数对之间的对应关系.)4.8交流收获通过本节课的学习,说说你有哪些收获(小组讨论,全班交流)?(设计意图:通过学生之间讨论、交流,对所学内容作全面的小结,使学生的知识与技能、情感态度和价值观得到了升华.)4.9馈赠寄语同学们,每个人的人生就是一个以时间为横轴、人的价值为纵轴的平面直角坐标系,相信同学们一定能用自已的勤奋和智慧在这个坐标系中画出一个个光彩夺目的点.(设计意图:利用平面直角坐标系设计寄语,既体现了数学与生活的紧密相连,使学生感觉到学习本节内容的重要性,激发了学生学习的热情,同时表达了老师对学生的良好祝愿,充分体现了师生平等、和谐的合作伙伴关系.)5.教后反思:《平面直角坐标系》是《函数及其图象》这一章的重要内容,它是学习下一节《一次函数》的重要基础,平面直角坐标系概念的引入,标志着数学由常量数学向变量数学的迈进,这是学生数学知识的一个飞跃。
《平面直角坐标系+第1课时》精品教学方案
2 平面直角坐标系第1课时配套北师大版【教学方案】第三章位置与坐标2 平面直角坐标系第1课时一、教学目标1.认识到建立平面直角坐标系的必要性,并能掌握平面直角坐标系的相关概念.2.在给定的坐标系中,会根据坐标描出点的位置、由点的位置写出点的坐标.3.经历画平面直角坐标系、描点、连线、看图及由点找坐标的过程,体会数形结合思想.4.培养学生的合作精神和积极参与、勤于思考、善于探索的习惯.二、教学重难点重点:掌握平面直角坐标系的相关概念.难点:会根据坐标描出点的位置、由点的位置写出点的坐标.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【情境导入】教师活动:教师出示课件,让学生先认真思考,再找学生回答.1.文字密码游戏:如图“家”字的位置记作(1,9),请你破解密码:(2,7),(8,4),(4,6),(5,6),(4,4),(5,2),(6,1),(8,8).预设:密码是:“我爱北京天安门!”2.如图,是某市的旅游示意图,在科技大学的小亮如何向来访的朋友介绍该市的几个风景点的位置呢?预设:①经纬度定位法(经度,纬度);②极坐标系定位法(方向角,距离).回忆上节课所用的方法,教师指出:有些同学可能还会这样介绍,以科技大学到碑林为例:向东多少,向北多少.如果这样介绍,那么向东多少、向北多少该如何说明呢?根据上一节的经验,同学们不难想到在地图上打上方格线,从而引出新课的做一做环节.【做一做】教师活动:通过做一做环节,引导学生得出平面直角坐标系的相关概念.(1)小红在旅游示意图上画上了方格,标上数字,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置(5,2)呢?提示:教师可引导学生从每行每列画直线,两线的交点即为所求.预设:钟楼的位置是(3,8);(2,5)表示大成殿;(5,2)表示影月湖强调:通常将(0,0)点称为原点.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?提示:教师可以引导学生按下图所示找出对应的位置.预设:碑林的位置在(3,1),大成殿的位置在(-3,-2).通过做一做环节,教师与学生一起归纳得出如下知识:平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系(简称直角坐标系).三要素:(1)两条数轴;(2)互相垂直;(3)公共原点.水平的数轴叫做x轴或横轴,x轴取向右为正方向;竖直的叫做y轴或纵轴,y轴取向上为正方向.x轴与y轴的公共原点O称为直角坐标系的原点.【思考】如何在平面直角坐标系中表示点呢?预设:对于平面内任意一点P,过点P分别向x 轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标.提示:有序数对(a,b)是指:横坐标a写在前,纵坐标b写在后,中间用逗号隔开!如图,在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成四个区域. 右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限和第四象限.注意:坐标轴上的点不在任何一个象限内.【典型例题】教师活动:教师提出问题,学生先独立思考,解答.然后再小组交流探讨,最终教师展示答题过程.例1 写出下图中的多边形ABCDEF各个顶点的坐标.分析:根据平面直角坐标系的特点写出各点的坐标即可.解:各个顶点的坐标分别为:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).例2在平面直角坐标系中找点A(3,-2).解:归纳:由坐标找点的方法:(1)先找到表示横坐标与纵坐标的点;(2)然后过这两点分别作x轴与y轴的垂线;(3)垂线的交点就是该坐标对应的点.【做一做】(1)在如图所示的平面直角坐标系中,描出下列各点:A (-5,0),B(1,4),C(3,3),D(1,0),E(3,-3),F(1,-4).(2) 依次连接A,B,C,D,E,F,A,你得到什么图形?(3) 在平面直角坐标系中,点与实数对之间有何关系?预设:(1)(2)它的图象像飞机(3)我们可以得出:①在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.下面是某学校的示意图,以办公楼所在位置为原点,以图中小正方形的边长为单位长度,建立平面直角坐标系.(1)请写出教学楼、实验楼、图书馆的坐标;(2)学校准备在(-3,-3)处建一栋学生公寓,请你标出学生公寓的位置.2. 如图,分别写出五边形各个顶点的坐标.3.下图是画在方格纸上的某岛简图.(1) 分别写出地点A,L,N,P,E的坐标;(2) 坐标(4,7) ,(5,5) ,(2,5) 所代表的分别是图中的哪个点?答案:1.解:(1)教学楼(2,4),实验楼(3,-3),图书馆(-3,3).(2)如图所示:2.解:各个顶点的坐标分别为:A(5,2),B(0,5),C(-5,2),D(-3,-4),E(3,-4).3.解:(1) A(3,8),L(6,7),N(9,5),P(9,1),E(3,5).(2) (4,7)所代表的点是C,(5,5)所代表的点是F,(2,5)所代表的点是D.思维导图的形式呈现本节课的主要内容:。
《平面直角坐标系》(第一课时)教学设计
《平面直角坐标系》(第一课时)教案教材分析"平面直角坐标系"在教材中是学习了数轴与有关几何知识以后安排这节课的,本教学设计旨在通过教学,使学生掌握平面直角坐标系的基本概念和两个基本问题-------已知点求坐标和已知坐标描点,并且让学生经历用数学符号和图形描述现实世界的过程,感受数学与现实世界的联系,数学内部"数"与"形"的关系,增强学生"用数学"的意识,以及培养学生严谨朴实的科学态度和探索精神.教学目标1. 知识与技能目标(1)了解平面直角坐标系的概念并会平面直角坐标系.(2)在平面直角坐标系中能由点的位置确定点的坐标或能由点的坐标确定点的位置.2. 过程目标: 通过在平面直角坐标系中能由点的位置确定点的坐标或由点的坐标确定点的位置,体会平面中所有的点与一对有序数对一一对应,使学生经历用数学符号,图形描述现实世界的过程.3. 情感与态度目标:感受数学来源于生活,又服务于生活,增强学生用数学的意识.教学重点: 平面直角坐标系的概念及已知点求坐标和已知坐标求描点.教学难点:平面上的点有序数对的关系和建立直角坐标系的模形.突破难点的措施1. 通过学生熟悉的情景------确定课程表中的"课"和象棋盘中棋子的位置,使学生在头脑中有建立平面直角坐标系的模型的想法.通过电脑动画演示过平面上的点分别向X轴和Y轴作垂线,垂足对应的数字分别是该点的横坐标、纵坐标. 使学生充分掌握平面上的点的坐标的确定方法.2. 通过回顾旧知------数轴上的点与该点的坐标是一一对应的关系,类比推出平面上的点与有设计理念1.学应结合具体的数学内容采用"生活问题情景------建立模型-------解释, 应用和拓展------回到生活问题" 的模式展开,让学生经历数学知识的形成和应用过程.2.学习过程是师生互动、积极交流、共同发展的过程,教师是数学教学的组织者,引导者和合作者,其首要任务是要创设能引导学生主动参与的学习平台,营造一个宽松的、和谐的、相互支持、相互接纳的课堂氛围,让学生在平等、尊重、信任、理解和宽容中受到挑战、鼓舞和激励.3. 教师不是教教材,而是要有创造性地用教材,要融入自己的智慧和知识经验,对教材知识进行重组和整合,选取更好的内容对教材进行加工,充分有效地激活教材知识.4. 教师是学生学习能力的培养者,不能把知识传播作为自己的目的,应把教学重心放在如何促进学生的"学" 上,让学生养成动手实践、自主探索和合作交流的学习方式,使学生主动建构知识.教学过程:一、回顾旧知,打下伏笔师:数轴的三要素是什么?生:原点、正方向、单位长度师: 说出下列数轴上各点所表示的数生:A:--1 , B: 3 ,C: --2.5师: 对了,我们把这个数叫做这个点的坐标.师: 已知下列各点的坐标,请在数轴上确定下列各点的位置.生: D :2 , E : --3 F:--0.5师: 通过以上练习,我们可以由数轴上的点说出它的坐标,由坐标在数轴上描点.那你知道数轴上的点与数有怎样的关系?生: 一一对应.师: 怎样理解数轴上的点与坐标是一一对应的关系?生: 也就是说在数轴撒谎能够的点都可以用一个坐标来表示, 任何一个坐标都可以在数轴上找到相应的位置.二、创设情境,提出问题1. 电脑显示: 某班一周的课程表节次\星期一二三四五;六1 语数语数语语2 数语英英英英3 计书体语历地4 英历数语数数5 自英英体英6 生政生政音7 班数地数美师: 请你告诉老师, “音乐课”什么时候上?你是怎么知道的?生:在星期五的第六节。
《平面直角坐标系》(教学设计) 第一课时
新人教版七年级数学下册第七章第2节《平面直角坐标系(一)》教学设计师:这个题目的答案是什么呢?生:选A.师:其他三个选项的错误是什么呢?生:B选项x轴的正方向应该是1,2,负方向是-1,-2;C选项的x轴和y轴没箭头;D选项的两条坐标轴不垂直.师:好的,你的回答非常全面.4、知识介绍,再次探究师:大家请看大屏幕,在平面直角坐标系内,有一点A,如何确定点A的位置呢?请同学们自学课本66页后回答.生:(边在白板演示边回答)过点A分别向x轴和y 轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标.师:回答的非常好,请同学们看大屏幕上这些点的坐标分别是多少?思考:师:请同学们回答一下原点o的坐标是什么?生:(0,0)师:非常好,那么x轴和y轴上点的坐标有什么特点?(小组交流后回答)生:x轴的点的纵坐标是0,如(1,0),(-1,0),y 轴上的点的横坐标为0,如(0,1),(0,-1).教师演练,学生观察过程中掌握坐标的写法。
并且在教室指引下观察坐标轴上的坐标特点,并归纳。
通过教师的动手演示,让学生从根本上认识坐标,会写坐标,知道一个点的坐标怎样来找。
还从象限内点的坐标扩展到坐标轴上点的坐标。
在教师的演示和精心的讲解下,相信学生会自己掌握怎样去找坐标和书写坐标。
会区分象限内的点与坐标轴上的点的坐标的区别点评:1、本节课的前一节是7.1.1 有序数对,本节课可以在上节课的基础上进行课本的思考提到问题简洁明快,开门见山一下子进入主题:思考类似于利用数轴确定直线上点的位置,能不能找到一种方法来确定平面内点的位置呢?(例如图7.1-3中A,B,C,D各点)?)接着介绍直角坐标系。
这里不一定费非用小组讨论的方式,教师讲授也可,知道学生阅读课本也行。
2、有了超级画板可以直接出示下图,对照图形介绍直角坐标系的有关知识2、本节课安排的练习剖析,深入理解。
3.2平面直角坐标系第1课时教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与坐标系相关的实际问题,如如何在坐标系中表示学校周围的主要建筑。
-对于实际问题的建模,难点在于如何将问题中的信息转化为坐标平面上的点,如地图上两个地点的距离计算;
-坐标轴上的原点是一个特殊的点,需要强调其坐标表示为(0,0),而坐标轴上的其他点只有一个坐标为零,另一个坐标为非零值;
-通过动态演示或实际操作,如移动点在坐标系中的变化,帮助学生形象理解坐标与点的关系。
五、教学反思
在今天的教学中,我发现学生们对平面直角坐标系的概念和运用表现出较大的兴趣。通过引入日常生活中的例子,他们能够更好地理解坐标系的作用。在理论讲授环节,我注意到了几个关键点:首先,学生对坐标轴的理解比较直观,但对象限的概念需要更多的时间去消化。我通过画图和实际操作,帮助他们理解不同象限内点的坐标特征。
教学难点方面,我发现学生们对于坐标轴上点的特殊坐标表示理解得不够透彻,特别是原点的坐标(0,0)。在今后的教学中,我需要用更直观的方式解释这一点,例如通过数轴的对比来加深理解。
最后,我会在课后收集学生的反馈,了解他们在学习过程中遇到的困难和问题,以便在下一节课中进行针对性的讲解和辅导。通过不断反思和改进,我希望能够使我的教学更加有效,帮助学生更好地掌握平面直角坐标系的知识。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生将在坐标纸上标出一些点,然后测量和分析这些点之间的距离和关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
《平面直角坐标系第一课时》教学设计
典型例题与练习
例1、将平面直角坐标系作在方格纸中,确定所给点的坐标(题略)
例2、确定下列各点在平面直角坐标系中所处的位置
(3,2);(5,-3);(-2,-3);(-1,3);
(0,-1);(3,0)
练习:下列各点在第四象限的有()
A(-2,1)B(-5,-1)
C(3,-2)D(3,3)
拓展: 已知(a,b)在第四象限,那么点(-a,b),(-b,a)分别在哪个象限?
2、注意的问题
(1)画平面直角坐标系时,别忘了标x轴、y轴的正方向及x轴、y轴的名称。
(2)写坐标时要加小括号,括号内先横后纵,中间用逗号隔开。
通过反思和总结,增强学生的总结能力和表述能力,以及勇于探索的精神。
在平面直角坐标系确定点的位置
引导观察:过P 点分别作x轴、y轴的垂线,垂足分别记为M,N,则将M在横轴上所对应的数a称为P的横坐标,将N点在纵轴上所对应的数b称为P的纵坐标,则此时将有序数对(a,b)称为P点坐标
在给定的平面直角坐标系中,能根据点的位置写出点的坐标
让学生在确定点的过程中,渗透数形结合的数学思想
让学生积极思考,充分发表意见,揭示平面直角坐标系的构成与特点,培养学生的观察和归纳能力。
活动3熟悉平面直角坐标系的画法
平面直角坐标系画法的三个要求: 两轴互相垂直 标出两轴的正方向及名称 横纵两轴上的单位长度要统一
使学生在使用平面直角坐标系时先能画出一个准确的,同时进一步熟悉平面直角坐标系的特征
活动4
《平面直角坐标系第一课时》教学设计
教学任务分析
教
学
目
标
知识目标
掌握平面指教坐标系的有关概念,了解点的坐标的含义。
能力目标
平面直角坐标系(教学设计)第一课时
新人教版七年级数学下册第七章第2节《平面直角坐标系(一)》教学设计师:这个题目的答案是什么呢?生:选A.师:其他三个选项的错误是什么呢?生:B选项x轴的正方向应该是1,2,负方向是-1,-2;C选项的x轴和y轴没箭头;D选项的两条坐标轴不垂直.师:好的,你的回答非常全面.4、知识介绍,再次探究师:大家请看大屏幕,在平面直角坐标系内,有一点A,如何确定点A的位置呢?请同学们自学课本66页后回答.生:(边在白板演示边回答)过点A分别向x轴和y 轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标.师:回答的非常好,请同学们看大屏幕上这些点的坐标分别是多少?思考:师:请同学们回答一下原点o的坐标是什么?生:(0,0)师:非常好,那么x轴和y轴上点的坐标有什么特点?(小组交流后回答)生:x轴的点的纵坐标是0,如(1,0),(-1,0),y轴上的点的横坐标为0,如(0,1),(0,-1). 教师演练,学生观察过程中掌握坐标的写法。
并且在教室指引下观察坐标轴上的坐标特点,并归纳。
学生观察象限内点的坐标和坐标轴上点的坐标。
学生观察,教师演示教师提问,学生回答通过教师的动手演示,让学生从根本上认识坐标,会写坐标,知道一个点的坐标怎样来找。
还从象限内点的坐标扩展到坐标轴上点的坐标。
教师指引学生去发现象限内的点的坐标与坐标轴上点的坐标之间的区在教师的演示和精心的讲解下,相信学生会自己掌握怎样去找坐标和书写坐标。
会区分象限内的点与坐标轴上的点的坐标的区别学生在已有的知识范点评:1、本节课的前一节是7.1.1 有序数对,本节课可以在上节课的基础上进行课本的思考提到问题简洁明快,开门见山一下子进入主题:思考类似于利用数轴确定直线上点的位置,能不能找到一种方法来确定平面内点的位置呢?(例如图7.1-3中A,B,C,D各点)?)接着介绍直角坐标系。
平面直角坐标系 第1课时教学设计
第六届全国北师大版初中数学优质课评比与观摩活动作品欣赏平面直角坐标系(第一课时)一、教材分析《平面直角坐标系1》是新北师大版八年级上册第三章《位置与坐标》第二节内容.本章是“位置与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会用平面直角坐标系可以确定平面内任意一点的位置,有了平面直角坐标系,我们可以从“数”的角度进一步认识几何变换;平面直角坐标系也是后续学习函数、平面解析几何的必备知识;同时,平面直角坐标系与现实世界的密切联系,更让学生认识到数学与人类生活有着密切联系和对人类历史发展起着重要的作用,提高学生参加数学学习活动的积极性和好奇心.二、学情分析在前面的学习中,学生已经掌握了“在具体情境中,能在方格纸中用数对(限于正整数)表示位置,知道数对与方格纸上点的对应”、“知道实数与数轴上的点一一对应”“结合实例进一步体会有序数对可以表示物体的位置”.这些均为完成本节课的学习目标奠定基础,但学生对如何从实际问题中抽象出数学模型(平面直角坐标系)缺乏经验,对如何通过类比数轴上的点与实数一一对应关系来理解平面内的点与有序数对的一一对应关系缺乏相关思考.三、教学任务分析教学目标:1.从现实情境入手,感受建立平面直角坐标系的必要性,然后抽象出平面直角坐标系的相关概念;2.会在给定的平面直角坐标系中,根据点的坐标描出点的位置、会由点的位置写出点的坐标;3.经历知识的形成过程,用类比的方法思考和解决问题,进一步体会数形结合的思想.教学重点:平面直角坐标系的形成过程及由点写出坐标和根据坐标描点.教学难点:认识点与坐标的一一对应关系.四、教法与学法分析教法分析:本节课以“创设情境,提出问题──类比抽象,建立模型──形成概念,巩固新知──融入史料,总结延伸”的程序展开,引导学生从已有的数学知识和生活经验出发,提出问题与学生共同探讨解决问题的方法,让学生经历知识形成的过程体会建模的思想,从而更好地理解平面直角坐标系的意义.本节课中对于不同的内容应选择了不同的方法.对于坐标系的产生过程,采用了探索发现法;对于坐标系的相关概念,由于其难度不大,易于理解,因此,采用了指导阅读法;对于由点求坐标、由坐标描点,则采用了小组讨论和讲练相结合的方法.学法分析:本节课从学生实际出发,创设有助于学生探索思考的问题情境,让学生经历“观察、类比、发现、归纳”的过程,培养学生的探索、创新意识,发展学生思维的创造性,激发他们的学习兴趣,通过任务型阅读和巩固练习,加深对知识的理解,让学生变“学会”为“会学”,使学生真正成为学习的主体.五、教学过程分析整个教学过程按照:“创设情境,提出问题─类比抽象,建立模型─形成概念,巩固新知─融入史料,总结延伸”四个环节展开.(一)创设情境,提出问题问题1.右图是某市的旅游示意图,在科技大学的小亮如何向来访的朋友介绍该市的几个风景点的位置呢?(教师给予学生充分的思考和讨论的时间,引导学生用自己的方式介绍景点的位置.学生可能会想到用经纬度,也可能会想到极坐标等方法,这些方法都很好,都值得肯定.教师在参与学生讨论、获取学生能够思考到的信息后,引导学生利用“向东走多少,向北走多少”来描述各景点的位置.)问题2.生活中常常用“向东走多少,再向北走多少”的方式去介绍,那么到底向东走多少呢,怎么解决这个问题?问题3.如果小亮和他的朋友在“中心广场”,那么图中各个景点的位置又怎么介绍呢?(二)抽象类比,形成概念问题4.当小亮在中心广场处,借助我们学过的哪种工具能有效地区分南北呢?(师生共析得出方案,可竖直方向建立一条数轴)问题5.画数轴要注意什么?问题6.那为了区分东西方向,我们又可以有什么好办法呢?(在学生充分表达自己观点的基础上,师生共同概括出平面直角坐标系的概念:平面内,两条互相垂直,且有公共原点的数轴组成平面直角坐标系.)(三)活动引领,探究新知活动1.自学明晰概念师:我们从实际问题中建立起了平面直角坐标系的模型,下面请同学们带着如下问题自主学习课本第59页的内容:(1)什么是平面直角坐标系?它由那些部分组成?(2)你会画一个平面直角坐标系吗?请自行在练习本上建立一个直角坐标系.(教师巡视,将有问题的坐标图形进行投影,大家一起找出错误并纠正)活动2.由点写出坐标写出图中的多边形ABCDEF 各顶点的坐标.师:(结合上图)我们知道,过一点有且只有一条直线与已知直线垂直,所以一个点的横、纵坐标也是唯一确定的,所以一个点所对应的坐标由几个呢?(板书:点---坐标)活动3.由坐标找点 师:在建立的平面直角坐标系中,你能找到坐标(3,4)对应的点M 吗?你是怎样找到的,请把你找的过程与同学交流.师:请在平面直角坐标系中描出下列各数对所对应的点: A(-7,-2),B(-1,2),C(1,1),D(-1,-2),E(1,-5),F(-1,-6);依次连接A,B,C,D,E,F,A,你得到什么图形?师:由描点的方法可知,找点就是找两条直线的交点,那么这样的点有几个?(板书:坐标---点)师:在平面直角坐标系中,点与实数对之间有何关系? (结合学生的回答,教师总结:在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;反过来,对于任意一对有序数对,都有平面上唯一的一点与它对应.这是从形和数两个方面来研究同一个问题,是典型的数形结合思想.(板书:数形结合) 活动4.研究坐标象限师:平面内,建立了直角坐标系后,把平面分成几个区域?(介绍象限,坐标轴等概念.教师给出一些点的坐标,让学生说出它们所在的象限或坐标轴) 师:结合刚才的练习,你能归纳出象限内的点的坐标符号和坐标轴上的点有哪些特征吗? 师:我们一起来做个小游戏,请同桌的一个同学说出点的坐标,另一位同学说出点在哪个象限或哪个坐标轴上.A B C D E F O 11xy(四)融入史料,总结延伸1.师:通过本节课的学习,你学到了什么知识和方法?获得那些活动经验?还有什么疑惑?2.师: 分享“笛卡尔发现平面直角坐标系”的故事.结合学生的特点,分层布置作业:A、课本P60习题3.2 1,2,3,4题B、查阅资料:了解平面直角坐标系的种类和发展史。
平面直角坐标系(第一课时)教学设计
平面直角坐标系(第一课时)教课方案教课目的1.掌握平面直角坐标系的有关观点,认识点的坐标的意义.2.依据点的地点写出点的坐标,由坐标找出点.3.经过成立平面直角坐标系的过程,进一步浸透数形联合的思想.教课要点与难点教课要点:平面直角坐标系和点的坐标.教课难点:在平面直角坐标系中依据点的地点写出点的坐标,由坐标描出点教课过程一、提出问题,导入新课问题:1、什么是数轴 ?2、如图,写出数轴上 A 和 B 两点所对应的数,反过来,描出数 -4,0 和 1 所对应的点 .3、我们已经知道,平面内点的地点确实定需要两个数,而借用一条数轴只好确立直线上的点的地点,那么平面内的点我们借用几条数轴来确立它的地点呢?二、探究新知,解决问题1、让学生带着以下问题阅读课本 41 页“思虑”以下的内容 .(1)什么是平面直角坐标系 ?( 2)在平面直角坐标系中,什么是横轴、纵轴、原点?( 3)在座标平面内怎样求一个点的坐标?2、检查自学结果,明确观点(1)平面内两条相互垂直、原点重合的数轴,构成平面直角坐标系 .(2)水平的数轴称为 x 轴或横轴,习惯上取向右为正方向;竖直的数轴为 y 轴或纵轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点 .(3)点的坐标:由该点出发向 x 轴作垂线,交在 x 轴上的点表示的数是几,这个数就是该点的横坐标;相同,由该点出发向 y 轴作垂线,交在 y 轴上的点表示的数是几,这个数就是该点的纵坐标 .注意:( 1)画平面直角坐标系时,别忘了标 x 轴、 y 轴的正方向及 x 轴、 y轴的名称 .(2)写坐标时要加括号,括号内先横后纵,中间用逗号分开,如( 2,3)(教课说明:平面直角坐标系的产生是法国数学家迪卡尔的伟大发现,里边涉及到的观点很难指引学生自己得出,所以能够经过自学的方式让学生掌握这些知识 .)3.简单应用课本 43 页练习 1、2.(三)、稳固训练,娴熟技术:1.在平面内,两条的数轴构成平面直角坐标系;2.两条数轴往常分别置于地点与地点,取与的方向分别为两条数轴的正方向,水平的数轴叫做()或() ,竖直的数轴叫做( )或( ),其交点 O 称为 ();四、总结反省,情义发展问题 1:平面直角坐标系及其有关观点;问题 2:在座标平面内怎样求一个点的坐标?问题 3:已知点的坐标,怎样在座标平面内描出这个点?五、讲堂小结1.本节主要学习了平面直角坐标系及其有关观点。
《平面直角坐标系》(第一课时)教案
《平面直角坐标系 》 (第一课时) 教案教材分析:"平面直角坐标系"在教材中是学习了数轴与有关几何知识以后安排这节课的,本教学设计旨在通过教学,使学生掌握平面直角坐标系的基本概念和两个基本问题-------已知点求坐标和已知坐标描点,并且让学生经历用数学符号和图形描述现实世界的过程,感受数学与现实世界的联系,数学内部"数"与"形"的关系,增强学生"用数学"的意识,以及培养学生严谨朴实的科学态度和探索精神. 教学目标1.在复习数轴有关知识的基础上,使学生理解平面直角坐标系的有关概念,并会正确地画出直角坐标系.2.在平面直角坐标系中能由点的位置确定点的坐标或能由点的坐标确定点的位置3.让学生在活动中形成形数结合的意识和合作交流的意识.教学重点与难点重点:平面直角坐标系和点的坐标.难点:正确画坐标和找对应点.突破难点的措施1. 通过学生熟悉的情景------确定课程表中的"课"和象棋盘中棋子的位置,使学生在头脑中有建立平面直角坐标系的模型的想法.通过教师演示过平面上的点分别向X 轴和Y 轴作垂线,垂足对应的数字分别是该点的横坐标 、 纵坐标. 使学生充分掌握平面上的点的坐标的确定方法.2. 通过回顾旧知------数轴上的点与该点的坐标是一一对应的关系,类比推出平面上的点与有 序数对也是一一对应的关系. 教学过程一、复习旧知识,引入新课问题:(1)什么是数轴?画出数轴.(2)指出图中A 、B 点所表示的数是什么?并在数轴上描出“-3 ”表示的点在数轴上的位置. -3-11BA 0324由学生回答问题后教师引导学生得出:数轴上的点可以用一个数表示,这个数叫做这个点的坐标.例如点A 的坐标为2,点B 的坐标为-2,反之,知道数轴上点的坐标,这个点就确定了. 那么请问数轴上的点与数有怎样的关系?是一一对应的关系. 怎样理解数轴上的点与坐标是一一对应的关系? 这也就是说在数轴上的点都可以用一个坐标来表示, 任何一个坐标都可以在数轴上找到相应的位置.二、创设情境,提出问题再请同学门来看看某班一周的课程表一二三四五 ;六节次\星期1 语数语数语语2 数语英英英英3 计书体语历地4 英历数语数数5 自英英体英6 生政生政音7 班数地数美现在请问, “音乐课”什么时候上?星期二的第四节上什么课?你能用一对有序数对来表示上每一节课的时间吗?可以的话怎么样写?现在再请同学们来看一副中国象棋的图,在棋盘这样一个平面内,我门可不可以找到一种方法来表示棋盘上的各个棋子?(通过一定时间的思考,进行小组讨论,让学生畅所欲言,说出自己的想法)三。
平面直角坐标系(第一课时)教案
《平面直角坐标系》教案(第一课时)执教人:彭宣武一、教学目标1、知识与技能⑴认识并能画出平面直角坐标系。
⑵能在方格纸上建立适当的直角坐标系,描述物体的位置。
⑶在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
⑷根据平面直角坐标系中点的坐标与点的位置关系,进一步感受点的坐标的特点。
2、过程与方法在“坐标系的建立”、“由坐标找点”及“由点找坐标”等过程中,体会“发现”、“探索”的乐趣,进一步提高学生学生数形结合意识,合作交流意识。
3、情感、态度与价值观在平面直角坐标系的建立过程中,进一步培养“空间观念”,并从中体会到合作的重要性,加强动手、操作能力和观察能力,培养形象思维能力。
二、教学重点正确建立坐标系;确定点的坐标的方法及点的坐标书写方法 三、教学难点点(a,b )与(b,a )的区别及特殊点的坐标的特征 四、教具准备挂图,小黑板 五、教学过程㈠学前准备1、在电影院内如何找到电影票上所指的位置?2、在地图上怎样确定唐山大地震的震中的具体位置? ㈡探究新知1、创设问题情景,引入新知(出示挂图)2、讲解平面直角坐标系的概念⑴平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
⑵x 轴(横轴)、y 轴(纵轴)直角坐标系的原点。
⑶平面直角坐标系,将平面分成了四个部分,强调按逆时针方向旋转。
⑷点P 的坐标的确定方法:过点P 分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a,b 分别叫点P 的横坐标和纵坐标,有序实数对(a,b )叫做点P 的坐标。
⑸各象限内的点的坐标的符号特点⑹比较点(a,b )与点(b,a )的区别,揭示有序实数对与坐标平面的点的对应关系。
3、例题教学 ⑴例1题目略学生回答各个顶点的坐标(出示小黑板) ①强调坐标书写方法②坐标轴上的点不属于任何一个象限⑵想一想:学生交流想一想中的问题,总结出一般结论 ①当两点的横坐标相同时,其连线平行于y 轴;当两点的纵坐标相同时,其连线平行于x 轴,反之亦然。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系
苟仁初中杨小娜
一、背景分析
(1)教材分析
本节课的学习任务就是:理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。
认识并能画出平面直角坐标系。
能在给定的直角坐标系中,由点的位置写出它的坐标及由坐标描出点的位置。
“平面直角坐标系”作为“数轴”的进一步发展,实现了认识上从一维空间到二维空间的跨越,构成更广范围内的数形结合、数形互相转化的理论基础。
就是今后学习函数、函数与方程、函数与不等式关系的必要知识。
所以平面直角坐标系就是沟通代数与几何的桥梁,就是今后学习的一个重要的数学工具。
目的就是让学生尽早接触平面直角坐标系这种数学工具,更快更好地感受数形结合的思想。
所以,本节课的教学重点就是:理解平面直角坐标系及相关概念,能由点的位置写出它的坐标。
(2)学生情况分析
《平面直角坐标系》就是八年级上册第三章《位置的确定》第二节内容。
学生在小学阶段已经学习过一种确定位置的方法,即用数对确定位置,这对学生理解本节课的内容起到了一个很好的铺垫作用。
学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴
坐标描出数轴上点及由数轴上的点写出数轴上坐标的经验,同时经过前两节《位置的确定》课的学习,对平面上的点由一个有序数对表示,有了一定的认识。
八年级的学生经过一年的初中学习已经具备了初步的逻辑推理能力与空间想象能力,自主探索、合作交流已经成为她们学习数学的重要方式,所以学生学习本节课时已经具备了必要的相关知识与技能。
如何从一维数轴点与实数之间的对应关系过渡到二维坐标平面中的点与有序数对之间关系,限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,不能很好地理解一一对应,不能正确认识横、纵坐标的意义,有的只限于机械地记忆,这样会影响对数形结合思想的形成。
同时本节内容中概念较多,比较琐碎,如何熟练运用对学生来说也有一定困难。
二、教学任务分析
1、知识与技能:
1、认识平面直角坐标系,在给定的直角坐标系中,会根据坐标轴描出点的位置,由点的位置写出它的坐标。
2、明确坐标系内的点与点的坐标就是一一对应的。
3、能确定各个象限内点、以及坐标轴上点的坐标特点。
2、情感目标:
通过平面直角坐标系点与坐标之间关系的探究过程及
解决简单的实际问题,培养学生的好奇心,创新精神,通过学生参与数学活动增强团队精神,培养学生合作意识。
教学方法:诱导法;引导发现法;指导法
教学重点难点:
重点:根据实际问题建立适当的坐标系,并能写出各点的坐标。
难点:1、根据实际问题建立适当的坐标系,并能写出各点的坐标。
2、坐标平面内的点与有序实数对的一一对应关系。
三、教学过程设计
(一)创设情境,导入新课
通过坐标系的建立者笛卡儿故事与坐标系在生活以及高科技中的运用,激发学生学习知识的兴趣,迫切想了解今天所学内容。
(二)实践活动,探索新知
活动1
多媒体演示一个方格纸游戏,调动学生参与,激发学生兴趣。
法国数学
家笛卡儿利用
蜘蛛织网
创建了直角
坐标系。
本环节给出一幅由方格纸格点给出的树形图,由学生分组展开凤麟争艳,都由女生参与,按要求填写每个格点的位置,明确格点的位置
都可以用两个数据(称为数对)表示,并且都不相同,那么您发现了这些数据共同的符号性质就是?学生会回答都为正,继续发问,那么我要负数怎么半?学生会回答给出负的另一半,OK,那么象什么?(数轴)还需要什么?(引导学生回答正方向)那么就描绘出了两条数轴吧,这两条数轴就是怎么样的位置关系呢?一条水平,一条竖直,且有公共原点,规定向右与向上为正方向、非常好,我们同学们一起将平面直角坐标系建立好了、,下面我们就来瞧瞧,平面直角坐标系的定义。
、
展示坐标系,问学生如果没有平面直角坐标系,这个平面只有一个区域吧,那么如果加上平面直角坐标系,平面被分成了几个部分,同学们会回答4个部分,展示4个象限,那么只有这四个部分不?整个平面还缺少哪部分?同学们会回答坐标轴第五部分,很好,进一步给出正半轴概念。
探究1、
学习了平面直角坐标系的概念后,结合之前的方格纸
平面内点的坐标的定义:
-1y
1x o 1-1a b •P
(a ,b )过点P作x 轴的垂线,将垂足点对应的数a 叫做P 点
的横坐标,作y 轴的垂线,将垂足点对应的数b 叫做P 点的纵坐标,将垂足点对
应的数组合起来形成一对有序实数,即为点P的坐标,可表示为P(a ,
b )x y o -123456789-2-3-4-5-6-7-8-9112
34
5
-1
-2
-3
-4-5
第四象限第一象限第二象限第三象限x 轴的正半轴
游戏,每个格点的位置都可以用两个不同的数对表示,平面直角坐标系也就是通过方格纸游戏认识的,那么学习平面直角坐标系的作用就是?学生回答确定点的位置, 很好,那么瞧到这里
有平面直角坐标系,有任意一个点P 、您认为怎么确定这个点的位置, 需要两个数据,那么这里有两条数轴,这两个数据分别怎么确定呢?引导学生给出平面直角坐标系点的坐标定义 ,并问学生,这里的点P 对应的坐标唯一不?唯一、分别向坐标轴作垂线,垂足点对应的数唯一。
探究2
由上述活动,我们可以由点确定坐标,那么反过来,先给一个点的坐标,我们能找到它的位置不?就是不就是唯一?引导学生得到结果,总结:平面直角坐标系内的点与点的坐标就是一一对应的。
活动2
既然我们同学们都已经认识了点的坐标定义,那么下面我们具体给出8个点,您们分别给出它们的坐标,
y o -11-11m n •
Q(m ,n )
x
反之:若知道点Q 的坐标为(m ,n ),那
么如何找到点的位置?
过在x 轴上表示实数m 的点作x 轴的垂线,再过y 轴上表示
实数n 的点作y 轴的垂线,两线的交点即为点Q .
(+,+)
(-,+)
(-,-)(+,-)
x
y
o -1
23456789-2-3-4-5-6-7-8-911
2
3
4
5-1-2-3-4
-5
A B C 抢答各点坐标
E G (-3,3)(2,3)
(3,2)
(5,-4)(-7,-5)
D F H (-7,2)(-5,-4)
(3,-5)
分组竞赛,龙虎争霸,选2组,每组4个男生活动,要她们根据点的坐标定义迅速给出点的坐标, 学生参与,激发学习热情。
探究3
同学们发现了,每个象限都给了2个点作为代表, 您们观察各个象限内的点坐标符号有何特征,我们先从第一象限开始,帮助学生归纳出结论。
探究4
刚才前面同学们提到,除了4个想象,平面还包含?坐标轴,那么坐标轴上点的坐标又有何特点呢?帮助学生分析得到结论。
(三)学生小结
1、认识平面直角坐标系定义;
2、平面直角坐标系内点的坐标定义,明确坐标系内的点与点的坐标就是一一对应的;
3、能确定各个象限内点、以及坐标轴上点的坐标特点。
(四)老师赠言
通过活动得到LOVEMATH 的结果,让学生心灵得到升华,
(+,+)
(-,+)
(-,-)(+,-)
x y
o -123456789-2-3-4-5-6-7-8-911
2
3
4
5
-1
-2-3
-4
-5A B C 探究1:各象限内的点的坐标有何特征?
E G (-3,3)(2,3)
(3,2)
(5,-4)(-7,-5)
D F H (-7,2)(-5,-4)
(3,-5)
(+,+)
(-,+)
(-,-)(+,-)
x
y
o -1
23456789-2-3-4-5-6-7-8-911
2
3
4
5
-1-2-3-4
-5
A B C 探究1:各象限内的点的坐标有何特征?
E G (-3,3)(2,3)
(3,2)
(5,-4)(-7,-5)
D F H (-7,2)(-5,-4)
(3,-5)
热爱数学 (五)作业布置 (六)板书设计:
四、课后反思与点评
本节课,本人一直在反思如何引入课题,参瞧课本的引入,以及很多自己所思考的方式,本人最后还就是选择从学生好奇的角度出发,选取一些生活中平面直角坐标系的应用,来激发她们学习的热情与动力、希望学生能从更高的角度来认识平面直角坐标系、
1、 69p 页第3、5题。