基于matlab实现BP神经网络模型仿真
基于MATLAB的BP神经网络实现研究
Mirc mp tr pi t n o. 2 N . ,0 6 co o ue l ai sV i2 , o 8 2 0 Ap c o
的 工 具 箱 。 在 神 经 网 络 工 具 箱 中 , 提供 了许 多 有 关 神 经 网 如 它 络 设 计 、 练 和仿 真 的 函数 。 户 只要 根据 自己 的需 要 调 用 相 训 用
图 1 三层 B P网 络 结 构 图
隐 层 输 入 层
输 出层
B 网 络 由正 向 传 播 和 反 向 传 播 组 成 , 正 向 传 播 阶 段 , P 在
和 仿 真 的 函数 和 方 便 、 友好 的 图形 用 户 界 面来 实现 B 网络 , 可 实 时 将 仿 真 结 果 可视 化 , 而 使 应 用B 网络 来 解 决许 多领 域 的 P 还 从 P
实际问题 变得非常方便和有效 。
关 ■ 词 :P 神 经 网 络 I B MATL ABI 真 仿 中 圈 分 类 号 : P13 T 8 文献标识码 : A
每一层神 经元 的状 态只影 响下一层神 经元 的状态 , 若在 输 出 层得不到期望的输 出值 , 则进行 误差的反 向传播 阶段 。 其具体
的学习过程和步骤如 下:
关 的程 序 , 而 免除 了编 写复杂 而庞 大 的算 法程 序 的困扰 。 从
20 0 4年 , MATL AB 的最 新 版本 产 品 MATL 7发 布 。 AB MAT — L 7在 编 程 和 代 码 效 率 、 图 和 可 视 化 、 学 运 算 、 据 读 AB 绘 数 数 写 等 方 面 都 有 了很 大 的 改 进 。
引言
人 工 神 经 网络 ( ric l ua Newok A A t ia Nerl t r , NN) f i 的理 论
Bp神经网络的Matlab实现
式, 同一层之 间不存 在相 互连接 , 隐层 可 以有 一层或 多层 . 层与层 之 间有 两种 信号在 流通 : 一种是 工 作信 号 ( 实线 表 示 )它是 施 加输 入信 号 后 用 , 向前传 播直 到在输 出端 产生 实 际输 出的信 号 , 是输 入 和权 值 的 函数 . 另
我们 可 以直观 、 便地进 行分 析 、 算 及仿 真 工作 _ . 经 网络 工 具箱 是 M tb以神 经 网 络 为基 础 , 方 计 2神 j aa l 包含 着 大
量B p网络 的作 用 函数和算 法 函数 , B 为 p网络 的仿 真研 究 提供 了便 利 的工 具 . 运用 神 经 网络 工具 箱 一般 按 照
21年 1 00 0月
湘 南 学 院 学报
J u n lo a g a o ra f Xin n n Umv  ̄i e t y
Oc . 2 0 t . 01 V0 . l No. J3 5
第 3 卷第 5期 1
B p神 经 网络 的 Ma a 现 t b实 l
石 云
一
输 入层
隐 层
输 出层
种是 误差信 号 ( 虚线 表示 )网络实 际输 出与期望 输 出间的差 值 即为 用 ,
图 1 典型 B p网络 模 型
误差 , 由输 出端开 始逐层 向后传 播 . p网络 的学 习过程 程 由前 向计 算 它 B
用matlab编BP神经网络预测程序
求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。
];输入T=[。
];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net_1.IW{1,1}inputbias=net_1.b{1}% 当前网络层权值和阈值layerWeights=net_1.LW{2,1}layerbias=net_1.b{2}% 设置训练参数net_1.trainParam.show = 50;net_1.trainParam.lr = 0.05;net_1.trainParam.mc = 0.9;net_1.trainParam.epochs = 10000;net_1.trainParam.goal = 1e-3;% 调用TRAINGDM 算法训练BP 网络[net_1,tr]=train(net_1,P,T);% 对BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。
]';%测试sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。
3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。
BP神经网络原理及其MATLAB应用
BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。
它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。
本文将介绍BP神经网络的原理及其在MATLAB中的应用。
BP神经网络的原理基于神经元间的权值和偏置进行计算。
一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。
输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。
BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。
前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。
反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。
在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。
以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。
可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。
BP神经网络matlab教程
w
N 1 ho
w o (k )hoh (k )
N ho
2.4.2 BP网络的标准学习算法
第七步,利用隐含层各神经元的 h (k )和 输入层各神经元的输入修正连接权。
e e hih (k ) wih (k ) h (k ) xi (k ) wih hih (k ) wih w
p
i 1
h 1,2,
o 1,2,
,p
q
yio (k ) whohoh (k ) bo
o 1,2,
yoo (k ) f( yio (k ))
h 1
q
2.4.2 BP网络的标准学习算法
第四步,利用网络期望输出和实际输出, 计算误差函数对输出层的各神经元的偏导 o (k ) 数 。 ( w ho (k ) b ) e e yio yi (k )
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不 符
误差反传
误差以某种形式在各层表示----修正各层单元 的权值
网络输出的误差减少到可接受的程度 进行到预先设定的学习次数为止
2.4.2 BP网络的标准学习算法
网络结构 输入层有n个神经元,隐含层有p个神经元, 输出层有q个神经元 变量定义 x x1, x2 , , xn 输入向量; 隐含层输入向量; hi hi1 , hi2 , , hi p 隐含层输出向量; ho ho1 , ho2 , , ho p 输出层输入向量; yi yi1 , yi2 , , yiq 输出层输出向量; yo yo1 , yo2 , , yoq 期望输出向量; d o d1 , d 2 , , d q
BP神经网络matlab实现的基本步骤
1、数据归一化2、数据分类,主要包括打乱数据顺序,抽取正常训练用数据、变量数据、测试数据3、建立神经网络,包括设置多少层网络(一般3层以内既可以,每层的节点数(具体节点数,尚无科学的模型和公式方法确定,可采用试凑法,但输出层的节点数应和需要输出的量个数相等),设置隐含层的传输函数等。
关于网络具体建立使用方法,在后几节的例子中将会说到。
4、指定训练参数进行训练,这步非常重要,在例子中,将详细进行说明5、完成训练后,就可以调用训练结果,输入测试数据,进行测试6、数据进行反归一化7、误差分析、结果预测或分类,作图等数据归一化问题归一化的意义:首先说一下,在工程应用领域中,应用BP网络的好坏最关键的仍然是输入特征选择和训练样本集的准备,若样本集代表性差、矛盾样本多、数据归一化存在问题,那么,使用多复杂的综合算法、多精致的网络结构,建立起来的模型预测效果不会多好。
若想取得实际有价值的应用效果,从最基础的数据整理工作做起吧,会少走弯路的。
归一化是为了加快训练网络的收敛性,具体做法是:1 把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。
2 把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量比如,复数阻抗可以归一化书写:Z = R + jωL = R(1 + jωL/R) ,复数部分变成了纯数量了,没有量纲。
另外,微波之中也就是电路分析、信号系统、电磁波传输等,有很多运算都可以如此处理,既保证了运算的便捷,又能凸现出物理量的本质含义。
神经网络归一化方法:由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:1、线性函数转换,表达式如下:复制内容到剪贴板代码:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。
MATLAB神经网络(2)BP神经网络的非线性系统建模——非线性函数拟合
MATLAB神经⽹络(2)BP神经⽹络的⾮线性系统建模——⾮线性函数拟合2.1 案例背景在⼯程应⽤中经常会遇到⼀些复杂的⾮线性系统,这些系统状态⽅程复杂,难以⽤数学⽅法准确建模。
在这种情况下,可以建⽴BP神经⽹络表达这些⾮线性系统。
该⽅法把未知系统看成是⼀个⿊箱,⾸先⽤系统输⼊输出数据训练BP神经⽹络,使⽹络能够表达该未知函数,然后⽤训练好的BP神经⽹络预测系统输出。
本章拟合的⾮线性函数为y=x12+x22该函数的图形如下图所⽰。
t=-5:0.1:5;[x1,x2] =meshgrid(t);y=x1.^2+x2.^2;surfc(x1,x2,y);shading interpxlabel('x1');ylabel('x2');zlabel('y');title('⾮线性函数');2.2 模型建⽴神经⽹络结构:2-5-1从⾮线性函数中随机得到2000组输⼊输出数据,从中随机选择1900 组作为训练数据,⽤于⽹络训练,100组作为测试数据,⽤于测试⽹络的拟合性能。
2.3 MATLAB实现2.3.1 BP神经⽹络⼯具箱函数newffBP神经⽹络参数设置函数。
net=newff(P, T, S, TF, BTF, BLF, PF, IPF, OPF, DDF)P:输⼊数据矩阵;T:输出数据矩阵;S:隐含层节点数;TF:结点传递函数。
包括硬限幅传递函数hardlim、对称硬限幅传递函数hardlims、线性传递函数purelin、正切型传递函数tansig、对数型传递函数logsig;x=-5:0.1:5;subplot(2,6,[2,3]);y=hardlim(x);plot(x,y,'LineWidth',1.5);title('hardlim');subplot(2,6,[4,5]);y=hardlims(x);plot(x,y,'LineWidth',1.5);title('hardlims');subplot(2,6,[7,8]);y=purelin(x);plot(x,y,'LineWidth',1.5);title('purelin');subplot(2,6,[9,10]);y=tansig(x);plot(x,y,'LineWidth',1.5);title('tansig');subplot(2,6,[11,12]);y=logsig(x);plot(x,y,'LineWidth',1.5);title('logsig');BTF:训练函数。
利用matlab仿真的BP-ANN分类器设计
BP-ANN分类器设计1.引言从深层意义上看,模式识别和人工智能本质都是在解决如何让用机器模拟人脑认知的过程。
一方面,从需要实现的功能出发,我们可以将目标分解为子功能,采用自定而下的的分解法实现我们需要的拟合算法。
而另一方面,无论人脑多么复杂,人类的认知过程都可以认为若干个神经元组成的神经网络在一定机制下经由复杂映射产生的结果。
从神经元的基本功能出发,采用自下而上的设计方法,从简单到复杂,也是实现拟合算法的一条高效途径。
1.1什么是人工神经网络人工神经网络(Artificial Neural Network,ANN)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。
在工程与学术界也常直接简称为神经网络或类神经网络。
神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。
每个节点代表一种特定的输出函数,称为激励函数(activation function)。
每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。
网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。
而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。
它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
人工神经网络具有四个基本特征:(1)非线性非线性关系是自然界的普遍特性。
大脑的智慧就是一种非线性现象。
人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。
具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
(2)非局限性一个神经网络通常由多个神经元广泛连接而成。
一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。
通过单元之间的大量连接模拟大脑的非局限性。
BP神经网络实验详解(MATLAB实现)
BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
神经网络与深度学习基于MATLAB的仿真与实现
目录分析
目录分析
《神经网络与深度学习基于MATLAB的仿真与实现》是一本介绍神经网络和深 度学习理论的书籍,由电子工业社于2016年。该书以通俗易懂的方式,结合 MATLAB仿真与实现,详细阐述了神经网络与深度学习的基本概念、原理和实践。 下面,我们对其目录进行简要分析。
目录分析
本书的目录结构清晰明了,逻辑性强。它以循序渐进的方式引导读者从基础 知识入手,逐步深入到高级主题。全书共分为11章,各章的主题相对独立,又相 互,形成了一个完整的神经网络和深度学习知识体系。
精彩摘录
“循环神经网络(RNN)是一种能够处理序列数据的神经网络。它们通过使用 循环结构来捕捉序列数据的时间依赖关系。”这句话解释了循环神经网络的特点 和应用领域,对于处理序列数据具有重要的指导意义。
精彩摘录
“长短期记忆(LSTM)是一种特殊的RNN,它通过引入记忆单元来解决普通 RNN存在的长期依赖问题。”这句话介绍了LSTM的特点和应用领域,对于处理序 列数据中的长期依赖关系具有重要的指导意义。
精彩摘录
“Dropout是一种正则化技术,它通过在训练过程中随机地丢弃一部分神经元 来防止过拟合。”这句话说明了Dropout的作用和效果,有助于读者理解如何防 止过拟合这一重要问题。
精彩摘录
“卷积神经网络(CNN)是一种专门用于处理图像数据的神经网络。它们通过 使用卷积层来捕捉图像中的空间结构信息。”这句话揭示了卷积神经网络的特点 和应用领域,对于处理图像数据具有重要的指导意义。
精彩摘录
“反向传播算法是训练神经网络的核心步骤。这个算法通过计算损失函数关 于权重的梯度,并使用梯度下降法来更新权重,从而减小预测误差。”这句话解 释了反向传播算法的工作原理和目的,对于理解神经网络的训练过程至关重要。
(完整版)BP神经网络matlab实例(简单而经典)
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
如何使用MATLAB进行神经网络建模
如何使用MATLAB进行神经网络建模使用MATLAB进行神经网络建模神经网络是一种模拟人脑神经系统运作的数学模型,它能够模拟人类的感知、学习和决策过程。
在现代科学和工程领域,神经网络被广泛应用于诸如模式识别、图像处理、时间序列预测等问题的解决中。
而MATLAB作为科学计算和数据分析的常用工具,也提供了一系列强大的神经网络建模工具。
接下来,我们将介绍如何使用MATLAB进行神经网络建模。
一、准备工作在使用MATLAB进行神经网络建模之前,我们需要准备一些必要的工作。
首先,需要安装MATLAB软件,并确保安装的是最新版本。
其次,需要了解MATLAB中神经网络建模的基本原理和概念。
二、数据准备与预处理在进行神经网络建模之前,我们首先需要准备好用于训练和测试的数据集。
通常情况下,我们需要将数据集分为训练集和测试集两部分。
训练集用于神经网络的训练,而测试集则用于评估神经网络的性能。
在准备好数据集后,我们还需要对数据进行一些预处理操作,例如数据归一化、数据标准化等。
这些操作有助于提高神经网络的性能和收敛速度。
三、神经网络建模使用MATLAB进行神经网络建模的核心步骤包括网络设计、网络训练和网络评估。
首先,我们需要确定神经网络的结构,包括输入层、隐藏层和输出层的神经元数量。
这需要根据具体问题的需求和特点进行调整。
然后,我们可以使用MATLAB提供的神经网络工具箱来建立神经网络模型。
根据问题的不同,有多种神经网络模型可供选择,例如前馈神经网络、递归神经网络、自适应神经网络等。
在建立好神经网络模型后,我们还需要选择合适的训练算法对网络进行训练。
常用的训练算法包括误差逆传播算法(Backpropagation)、Levenberg-Marquardt算法等。
最后,我们使用测试集对训练好的神经网络进行评估,得到模型的性能指标,如准确率、误差等。
四、模型调优与改进神经网络建模是一个不断调优与改进的过程。
在建立好初始模型后,我们可以通过修改网络结构、调整训练参数等方式来改进模型的性能。
BP神经网络的设计实例(MATLAB编程)
神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练BP 网络。
训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。
在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。
神经网络与深度学习——基于MATLAB的仿真与实现
第8章 SOM神经网络
8.1 SOM神经网络的基本结构与算法基础 8.2 SOM神经网络的MATLAB实现 8.3关于SOM神经网络的几点讨论
第9章概率神经网络
9.1概率神经网络的基本结构与算法基础 9.2概率神经网络的MATLAB实现
1
第10章深度信 念网络
2
第11章自编码 器
3ቤተ መጻሕፍቲ ባይዱ
第12章卷积神 经网络
4
第13章生成对 抗网络(GAN)
5
第14章循环神 经网络
第10章深度信念网络
10.1玻耳兹曼机基本结构及学习 10.2深度信念网络的基本结构 10.3深度信念网络的MATLAB实现
第11章自编码器
11.1自编码器的基本结构与算法基础 11.2自编码器的MATLAB实现
第12章卷积神经网络
12.1卷积神经网络的基本结构与算法基础 12.2卷积神经网络的实现
第13章生成对抗网络(GAN)
13.1 GAN的起源与发展 13.2 GAN的结构与原理 13.3 GAN的MATLAB实现
第14章循环神经网络
14.1循环神经网络的结构与算法基础 14.2 LSTM网络的MATLAB实现
作者介绍
同名作者介绍
这是《神经网络与深度学习——基于MATLAB的仿真与实现》的读书笔记模板,暂无该书作者的介绍。
本书阐述经典神经网络及典型的深度学习(神经网络)方法的基本架构、算法原理及相关问题。在此基础上, 介绍MATLAB中神经网络工具箱在神经网络、深度学习中的应用,并给出相应的应用实例。本书可作为高等院校相 关专业的本科生、研究生及从事神经网络及深度学习方面学习及研究工作的专业人员的参考书。
目录分析
第1章神经网络概 述
基于BP神经网络的函数逼近实验及MATLAB实现_曹旭帆
! ( 3) 由 ymj = F
W y m m- 1 ij i
计算从第一层直至输
i
出层各节点 j的输出 ymj , 其中上标 m 为 BP 网络的层
标号, F 为神经元的激励函数 ymi - 1为 BP网络 m - 1层
的 i节点的输出, Wmij为 m - 1层的 i节点到 m 层的 j节
点的连接权值, M = M, M - 1, ∀, 1。
!mj = !mj +
m j
( 9) 返回 2, 输入下一组数据前重复 ( 2) ∃ ( 8)的
过程。由此可见, BP 算法的主要思路是从后向前逐层
传播输出层的误差, 并用此误差修正前层权值。
对于 BP 神经网络, 有一个重要定理, 对于任何闭
区间内的连续函数, 都可以用一个三层的 BP 网络逼
近, 本文要研究的问题就是 BP 网络的 隐层神经元个
根据上述一系列实验以及各种算法的训练速度计算量及内存需求量我们设计的bp网络net隐层神经元数目定为16输入输出层神经元数目为1隐层输出层传递函数均为tansig训练函数为traingdx用样本训练网络net训练步数为10000步目标误差0000001bp网络net经过训练达到误差精度要求逼近误差e为00044959netiw11表示隐层16个神经元和输入层1神经元之间的连接权值netlw21表示输出层1个神经元和隐层16个神经元之间的连接权值netb1表示隐层16个神经元的阈值netb2表示输出个神经元的阈值bp网络net的各项权值和阈值如下
关键词: BP 神经网络; MATLAB; 函数逼近; 多项式拟合
中图分类号: TP183
文献标识码: A
文章编号: 1006- 7167( 2008) 05- 0034- 05
基于MATLAB的BP神经网络设计
维普资讯
第 3 (0 7 第 8期 5卷 20 )
计算 机与数字工程
15 2
数太 少 , 错性 差 , 别未 经学 习的能力 样本 低 , 容 识 所 以必 须综合 多方 面 的 因素进行 设计 。 ①根 据 前 人 经 验 , 以 参 考 以 下 公 式 进 行 可
一
隐层节点数太多会导致学习时间过长 ; 而隐层节点
・
收 到本 文 时 间 :06年 1 20 O月 1 日 9
作者简介 : 孙帆 , , 男 硕士研究生 , 研究方 向: 神经 网络算法 , 电站 电价预测 。施学 勤 , , 水 女 硕士研究生 , 研究方 向 : 数 据库理论 与设计 , 管理信息系统 。
B 神经 网络 P T 13 P 8 M TA A L B语言 设计
定, 无规律 可寻。简要介 绍利用 MA L B语 言进行 B TA P网络建立 、 训练 、 真的方法及注意事项 。 仿
关键词 中图分类号
1 引 言
人工 神经 网络 ( rfil erl e ok 简 称 At c ua N t rs i aN i w A N) 近 年 来 发 展 起 来 的模 拟 人 脑 生 物 过 程 的 N 是
设计 :
针对 不 同 的应 用 ,P网络 提供 了多 种训 练 , B 学 习方法 , 常 对 于 包 含 数 百 个 权 值 的 函数 逼 近 网 通 络 , 练 函数 t il 收敛 速度 最 快 。将 R R P算 训 r nm a PO 法 的训 练 函数 t ir 用 于模 式 识 别 时 , 速 度 r np应 a 其
映射 。在模式样本相对较少的情的超平 面划 分 , 时 , 可 此 选择 两层 B P网络就 可以 了; 当模式样本数 很多 时 , 小 网络规模 , 一个 隐层 是有必 要 的 , 减 增加 但是
BP神经网络在MATLAB上的实现与应用
收稿日期:2004-02-12作者简介:桂现才(1964)),海南临高人,湛江师范学院数学与计算科学学院讲师,从事数据分析与统计,数据挖掘研究.2004年6月第25卷第3期湛江师范学院学报JO URN AL OF Z HA NJI ANG NOR M AL CO LL EG E Jun 1,2004Vol 125 N o 13BP 神经网络在M ATLAB 上的实现与应用桂现才(湛江师范学院数学与计算科学学院,广东湛江524048)摘 要:BP 神经网络在非线性建模,函数逼近和模式识别中有广泛地应用,该文介绍了B P 神经网络的基本原理,利用MA TL AB 神经网络工具箱可以很方便地进行B P 神经网络的建立、训练和仿真,给出了建立BP 神经网络的注意事项和例子.关键词:人工神经网络;BP 网络;NN box MA TL AB中图分类号:TP311.52 文献标识码:A 文章编号:1006-4702(2004)03-0079-051 BP 神经网络简介人工神经网络(Artificial Neural Netw orks,简称为N N)是近年来发展起来的模拟人脑生物过程的人工智能技术.它由大量简单的神经元广泛互连形成的复杂的非线性系统,它不需要任何先验公式,就能从已有数据中自动地归纳规则,获得这些数据的内在规律,具有很强的非线性映射能力,特别适合于因果关系复杂的非确性推理、判断、识别和分类等问题.基于误差反向传播(Back propagation)算法的多层前馈网络(Multiple -layer feedf or ward net 2work,简记为BP 网络),是目前应用最多也是最成功的网络之一,构造一个BP 网络需要确定其处理单元)))神经元的特性和网络的拓扑结构.1.1神经元模型神经元是神经网络最基本的组成部分,一般地,一个有R 个输入的神经元模型如图1所示.其中P 为输入向量,w 为权向量,b 为阈值,f 为传递函数,a 为神经元输出.所有输入P 通过一个权重w 进行加权求和后加上阈值b 再经传递函数f 的作用后即为该神经元的输出a.传递函数可以是任何可微的函数,常用的有Sigmoid 型和线性型.1.2 神经网络的拓扑结构神经网络的拓扑结构是指神经元之间的互连结构.图2是一个三层的B P 网络结构.B P 网络由输入层、输出层以及一个或多个隐层节点互连而成的一种多层网,这种结构使多层前馈网络可在输入和输出间建立合适的线性或非线性关系,又不致使网络输出限制在-1和1之间.2 M A TLAB 中B P 神经网络的实现BP 网络的训练所采用的算法是反向传播法,可以以任意精度逼近任意的连续函数,近年来,为了解决BP 网络收敛速度慢,训练时间长等不足,提出了许多改进算法[1][2].在应用BP 网络解决实际问题的过程中,选择多少层网络、每层多少个神经元节点、选择何种传递函数、何种训练算法等,均无可行的理论指导,只能通过大量的实验计算获得.这无形增加了研究工作量和编程计算工作量.M AT L AB 软件提供了一个现成的神经网络工具箱(Neural Netw ork T oolbox,简称N Nbox),为解决这个矛盾提供了便利条件.下面针对BP 网络的建立、传递函数的选择、网络的训练等,在介绍NN box 相关函数的基础上,给出利用这些函数编程的方法.2.1 神经网络的建立M AT LAB 的N Nbox 提供了建立神经网络的专用函数ne wff().用ne wf f 函数来确定网络层数、每层中的神经元数和传递函数,其语法为:net =ne wf f(PR,[S1,S2,,,S N],{TF1,TF2,,,T FN},B TF,BL F,PF)其中PR 是一个由每个输入向量的最大最小值构成的Rx2矩阵.Si 是第i 层网络的神经元个数.TFi 是第i 层网络的传递函数,缺省为tansig,可选用的传递函数有tansig,logsig 或purelin.BT F )字符串变量,为网络的训练函数名,可在如下函数中选择:traingd 、traingdm 、traingdx 、trainbfg 、trainlm 等,缺省为trainlm.BL F )字符串变量,为网络的学习函数名,缺省为learngdm.BF )字符串变量,为网络的性能函数,缺省为均方差c mse cnew ff 在确定网络结构后会自动调用init 函数用缺省参数来初始化网络中各个权重和阈值,产生一个可训练的前馈网络,即该函数的返回值为net.由于非线性传递函数对输出具有压缩作用,故输出层通常采用线性传递函数,以保持输出范围.2.2 神经网络训练初始化后的网络即可用于训练,即将网络的输入和输出反复作用于网络,不断调整其权重和阈值,以使网络性能函数net.performFcn 达到最小,从而实现输入输出间的非线性映射.对于new ff 函数产生的网络,其缺省的性能函数是网络输出和实际输出间的均方差M SE.在N Nbox 中,给出了十多种网络学习、训练函数,其采用的算法可分为基本的梯度下降算法和快速算法,各种算法的推导参见文献[1][2].在M A T LAB 中训练网络有两类模式:逐变模式(incremental mode)和批变模式(batch mode).在逐变模式中,每一个输入被作用于网络后,权重和阈值被更新一次.在批变模式中,所有的输入被应用于网络后,权重和阈值才被更新一次.使用批变模式不需要为每一层的权重和阈值设定训80湛江师范学院学报(自然科学) 第25卷练函数,而只需为整个网络指定一个训练函数,使用起来相对方便,而且许多改进的快速训练算法只能采用批变模式,在这里我们只讨论批变模式,以批变模式来训练网络的函数是train ,其语法主要格式为:[net,tr]=train(N ET,p,t),其中p 和t 分别为输入输出矩阵,NET 为由ne wff 产生的要训练的网络,net 为修正后的网络,tr 为训练的记录(训练步数epoch 和性能perf).train 根据在new ff 函数中确定的训练函数来训练,不同的训练函数对应不同的训练算法.Traingd 基本梯度下降算法.收敛速度慢,可用于增量模式训练.Traingdm 带有趋势动量的梯度下降算法.收敛速度快于Traingd,可用于增量模式训练.Traingdx 自适应学习速度算法.收敛速度快于Traingd,仅用于批量模式训练.Trainnp 强适应性BP 算法.用于批量模式训练,收敛速度快,数据占用存储空间小.Traincgf Fletcher-reeves 变梯度算法.是一种数据占用存储空间最小的变梯度算法.Traincgp Polak -Ribiere 变梯度算法.存储空间略大于Traincgp,但对有些问题具有较快的收敛速度.Traincgb Powell-beale 变梯度算法.存储空间略大于Traincgp,具有较快的收敛速度.Trainsc g 固定变比的变梯度算法.是一种无需线性搜索的变梯度算法.Trainbf g BFGS 拟牛顿算法.数据存储量近似于Hessian 矩阵,每个训练周期计算虽大,但收敛速度较快.Trainoss 变梯度法与拟牛顿法的折中算法.Trainlm Levenberg -Marquardt 算法.对中度规模的网络具有较快的收敛速度.Trainbr 改进型L )M 算法.可大大降低确定优化网络结构的难度.训练时直接调用上述的函数名,调用前为下列变量赋初始值:net.trainParam.show )))每多少轮显示一次;net.trainPara m.L r )))学习速度;net.trainParam.epochs )))最大训练轮回数;net.trainPara m.goal )))目标函数误差.2.3 仿真函数及实例利用仿真函数可对训练好的网络进行求值运算及应用.函数调用形式为:a=sim(net,p);其中net 为训练好的网络对象,p 为输入向量或矩阵,a 为网络输出.如果P 为向量,则为单点仿真;P 为矩阵,则为多点仿真.作为应用示例利用上述的函数,可解决下述非线性单输入单输出系统的模型化问题.已知系统输入为:x(k)=sin(k*P /50)系统输出为:y(k)=0.7sin(P x)+0.3sin(3P x)假定采样点k I [0,50].采用含有一个隐层的三层BP 网络建模,为了便于比较建立了两个模型.模型一的神经元为{1,7,1},模型二为{3,7,1},输入层和隐层传递函数均为TA NSIG 函数,输出层为线性函数.网络训练分别采用基本梯度下降法和变学习速度的梯度下降法.可编制如下的应用程序:k=0:50;x(k)=sin(k*pi/50);y(k)=0.7*sin(pi*x)+0.3*sin(3*pi*x);net=new ff([0,1],[1,7,1],{-tansig .,.tansig .,.purelin .},.traingd .);%建立模型一,并采用基本梯度下降法训练.net.trainParam.show=100;%100轮回显示一次结果81第3期 桂现才:BP 神经网络在M A TL AB 上的实现与应用82湛江师范学院学报(自然科学)第25卷net.trainParam.L r=0.05;%学习速度为0.05net.trainParam.epochs=50000;%最大训练轮回为50000次net.trainParam.goal=1e-4;%均方误差为0.0001net=train(net,x,y);%开始训练,其中x,y分别为输入输出样本y1=sim(net,x);%用训练好的模型进行仿真plot(x,y,x,y1);%绘制结果曲线若采用模型二,仅需将程序第4句ne wf f函数中的第二个参数改为[3,7,1].若采用变学习速度算法,仅需将该函数第4个参数改为.traingda.,加入:net.trainparam.lr-inc=1.05%;训练速度增加系数.一句即可.模型一用基本梯度下降法,训练次数要5万次以上,用变学习速度的梯度下降法,训练次数为4214次.模型二用基本梯度下降法,训练次数要5万次以上,用变学习速度的梯度下降法,训练次数6511次.(M A TL AB6.0)以上结果反映出BP网络经有效训练后可很好地逼近非线性函数.但其训练次数过多,训练时间长.3建立BP神经网络的注意事项利用M A TL AB软件提供的工具箱编制采用BP网络解决非线性问题程序是一种便捷、有效、省事的途径,但在使用时要解决好以下几个关键环节.3.1神经元结点数网络的输入与输出结点数是由实际问题的本质决定的,与网络性能无关.网络训练前的一个关键步骤是确定隐层结点数L,隐层结点数的选择与其说具有科学性,不如说更具有技巧性,往往与输入数据中隐含的特征因素有关.L的选择至今仍得不到一个统一的规范.L的初始值可先由以下两个公式中的其中之一来确定[3][4].l=m+n(1)或l=0143mn+0112n2+2154m+0177n+0135+0151(2)其中m、n分别为输入结点数目与输出结点数目.隐层结点数可根据公式(1)或(2)得出一个初始值,然后利用逐步增长或逐步修剪法.所谓逐步增长是先从一个较简单的网络开始,若不符合要求则逐步增加隐层单元数到合适为止;逐步修剪则从一个较复杂的网络开始逐步删除隐层单元,具体实现已有不少文献讨论.3.2传递函数的选择工具箱提供了三种传递函数:L og-sigmoid、tan-sigmoid和线性函数.前两种为非线性函数,分别将x I(-],+])的输入压缩为y I[0,1]和y I[-1,+1]的输出.因此,对非线性问题,输入层和隐层多采用非线性传递函数,输出层采用线性函数,以保持输出的范围,就非线性传递函数而言,若样本输出均大于零时,多采用L og-sigmoid函数,否则,采用Tan-sigmoid函数.对线性系统而言,各层多采用线性函数.3.3数据预处理和后期处理如果对神经网络的输入和输出数据进行一定的预处理,可以加快网络的训练速度,M A TL AB 中提供的预处理方法有(1)归一化处理:将每组数据都变为-1至1之间数,所涉及的函数有pre mnmx、postmnmx、tramnmx;(2)标准化处理:将每组数据都化为均值为0,方差为1的一组数据,所涉及的函数有prestd、poststd、trastd;(3)主成分分析:进行正交处理,可减少输入数据的维数,所涉及的函数有prepca、trapca.(4)回归分析与相关性分析:所用函数为postrg,可得到回归系数与相关系数,也可用[5]介绍的方法进行置信区间分析.下面以归一化处理为例说明其用法,另外两种预处理方法的用法与此类似.对于输入矩阵p 和输出矩阵t 进行归一化处理的语句为:[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);训练时应该用归一化之后的数据,即:net =train(net,pn,tn);训练结束后还应对网络的输出an =sim(net ,pn)作如下处理:a =postmnmx(an,mint,maxt);当用训练好的网络对新数据pne w 进行预测时,也应作相应的处理:pnew n =tramnmx(pne w,minp,maxp);ane wn =sim(net,pne wn);ane w =postmnmx(anew,mint,ma xt);3.4 学习速度的选定学习速度参数net.trainparam.lr 不能选择的太大,否则会出现算法不收敛.也不能太小,会使训练过程时间太长.一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值来确定.3.5 对过拟合的处理网络训练有时会产生/过拟合0,所谓/过拟合0就是训练集的误差被训练的非常小,而当把训练好的网络用于新的数据时却产生很大的误差的现象,也就是说此时网络适应新情况的泛化能力很差.提高网络泛化能力的方法是选择合适大小的网络结构,选择合适的网络结构是困难的,因为对于某一问题,事先很难判断多大的网络是合适的.为了提高泛化能力,可用修改性能函数和提前结束训练两类方法来实现,详见[6].参考文献:[1] 张乃尧、阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.[2] 刘增良、刘有才.模糊逻辑与神经网络)))理论研究与探索[M].北京:北京航空航天大学出版社,1996.[3] 徐庐生.微机神经网络[M].北京:中国医药科技出版社,1995.[4] 高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报,1998,21(1):80-85[5] 陈小前,罗世彬,王振国,等1B P 神经网络应用中的前后处理过程研究[J].系统工程理论与实践,2002,22(1):65-70.[6] 闵惜琳、刘国华.用MA TLAB 神经网络工具箱开发B P 网络应用[J].计算机应用,2001,21(8):163-164.[7] 飞思科技产品研发中心.MA TLAB 6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003.Realization of BP Networks and Their Applications on MATLABG UI Xian-cai(Mathe matics and C omputational Science School,Zhanji ang Normal C ollege,Zhanjiang,Guangdong 524048,Chi na)Abstract:B P Neural Netw orks are widely applied in nonlinear modeling,f unction approach,and pat 2tern rec ognition.This paper introduces the fundmental of BP Neural Networks.Nnbox can be easily used to create,train and simulate a netw ork,w hile some e xamples and explanations are given.Key words:Artificial Neural Netw orks;B P Networks;Nnbox;M A TL AB 83第3期 桂现才:BP 神经网络在M A TL AB 上的实现与应用。
第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子
BP网络应用实例
x=imread(m,’bmp’); bw=im2bw(x,0.5); 为二值图像 [i,j]=find(bw==0); )的行号和列号 imin=min(i); )的最小行号 imax=max(i); )的最大行号 %读人训练样本图像丈件 %将读人的训练样本图像转换 %寻找二值图像中像素值为0(黑
4
BP网络学习算法
图5.5具有多个极小点的误差曲面
5
BP网络学习算法
另外一种情况是学习过程发生振荡,如图5.6所示 。 误差曲线在m点和n点的梯度大小相同,但方向相反 ,如果第k次学习使误差落在m点,而第k十1次学习 又恰好使误差落在n点。 那么按式(5.2)进行的权值和阈值调整,将在m 点和n点重复进行,从而形成振荡。
图 5.16
待分类模式
20
BP网络应用实例
解(1)问题分析 据图5.16所示两类模式可以看出,分类为简单的非 线性分类。有1个输入向量,包含2个输入元素;两 类模式,1个输出元素即可表示;可以以图5.17所 示两层BP网络来实现分类。
图 5.17
两层BP网络
21
BP网络应用实例
(2)构造训练样本集
6
BP网络学习算法
图5.6学习过程出现振荡的情况
7
BP网络的基本设计方法
BP网络的设计主要包括输人层、隐层、输出层及各 层之间的传输函数几个方面。 1.网络层数 大多数通用的神经网络都预先确定了网络的层数,而 BP网络可以包含不同的隐层。
8
BP网络的基本设计方法
但理论上已经证明,在不限制隐层节点数的情况下 ,两层(只有一个隐层)的BP网络可以实现任意非 线性映射。 在模式样本相对较少的情况下,较少的隐层节点, 可以实现模式样本空间的超平面划分,此时,选择 两层BP网络就可以了;当模式样本数很多时,减小 网络规模,增加一个隐层是必要的,但BP网络隐层 数一般不超过两层。
基于MATLAB的神经网络的仿真
智能控制基于MATLAB 的神经网络的仿真学院:姓名:学号:年级:学科:检测技术与自动扮装置日期:一.引言人工神经网络以其具有信息的散布存储、并行处置和自学习能力等长处, 已经在模式识别、信号处置、智能控制及系统建模等领域取得愈来愈普遍的应用。
MATLAB中的神经网络工具箱是以人工神经网络理论为基础, 利用MATLAB 语言构造出许多典型神经网络的传递函数、网络权值修正规则和网络训练方式,网络的设计者可按照自己的需要挪用工具箱中有关神经网络的设计与训练的程序, 免去了繁琐的编程进程。
二.神经网络工具箱函数最新版的MATLAB 神经网络工具箱为它几乎涵盖了所有的神经网络的大体常常利用类型,对各类网络模型又提供了各类学习算法,咱们能够按照自己的需要挪用工具箱中的有关设计与训练函数,很方便地进行神经网络的设计和仿真。
目前神经网络工具箱提供的神经网络模型主要用于:1.数逼近和模型拟合;2.信息处置和预测;3.神经网络控制;4.故障诊断。
神经网络工具箱提供了丰硕的工具函数,其中有针对某一种网络的,也有通用的,下面列表中给出了一些比较重要的工具箱函数。
三.仿真实例BP 网络是一种多层前馈神经网络,由输入层、隐层和输出层组成。
BP 网络模型结构见图1。
网络同层节点没有任何连接,隐层节点能够由一个或多个。
网络的学习进程由正向和反向传播两部份组成。
在正向传播中,输入信号从输入层节点经隐层节点逐层传向输出层节点。
每一层神经元的状态只影响到下一层神经元网络,如输出层不能取得期望的输出,那么转入误差反向传播进程,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,逐次地向输入层传播去进行计算,在经正向传播进程,这两个进程反复运用,使得误差信号最小或达到人们所期望的要求时,学习进程结束。
利用神经网络工具箱进行设计和仿真的具体步骤:1.肯定信息表达方式:将实际问题抽象成神经网络求解所能同意的数据形式;2.肯定网络模型:选择网络的类型、结构等;3.选择网络参数:如神经元数,隐含层数等;4.肯定训练模式:选择训练算法,肯定训练步数,指定训练目标误差等;5.网络测试:选择适合的训练样本进行网络测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于BP神经网络模型及改进模型对全国历年车祸次数预测一、背景我国今年来随着经济的发展,汽车需求量不断地增加,所以全国每年的车祸次数也被越来越被关注,本文首先搜集全国历年车祸次数,接着通过这些数据利用BP神经网络模型和改进的径向基函数网络进行预测,最后根据预测结果,分析模型的优劣,从而达到深刻理解BP神经网络和径向基函数网络的原理及应用。
所用到的数据即全国历年车祸次数来自中国汽车工业信息网,网址如下:/autoinfo_cn/cszh/gljt/qt/webinfo/2006/05/124650 1820021204.htm制作历年全国道路交通事故统计表如下所示:二、问题研究(一)研究方向(1)通过数据利用BP神经网络模型预测历年全国交通事故次数并与实际值进行比较。
(2)分析BP神经网络模型改变训练函数再进行仿真与之前结果进行对比。
(3)从泛化能力和稳定性等方面分析BP神经网络模型的优劣。
(4)利用径向基函数网络模型进行仿真,得到结果与采用BP神经网络模型得到的结果进行比较。
(二)相关知识(1)人工神经网络人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。
在工程与学术界也常直接简称为神经网络或类神经网络。
神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。
每个节点代表一种特定的输出函数,称为激励函数(activation function)。
每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。
网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。
而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。
人工神经网络有以下几个特征:(1)非线性非线性关系是自然界的普遍特性。
大脑的智慧就是一种非线性现象。
人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性网络关系。
具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。
(2)非局限性一个神经网络通常由多个神经元广泛连接而成。
一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。
通过单元之间的大量连接模拟大脑的非局限性。
联想记忆是非局限性的典型例子。
(3)非常定性人工神经网络具有自适应、自组织、自学习能力。
神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。
经常采用迭代过程描写动力系统的演化过程。
(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。
例如能量函数,它的极值相应于系统比较稳定的状态。
非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。
(2)BP神经网络模型BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
(3)径向基函数网络模型径向基函数(Radial Basis Function,RBF)神经网络由三层组成,输入层节点只传递输入信号到隐层,隐层节点由像高斯函数那样的辐射状作用函数构成,而输出层节点通常是简单的线性函数。
隐层节点中的作用函数(基函数)对输入信号将在局部产生响应,也就是说,当输入信号靠近基函数的中央范围时,隐层节点将产生较大的输出,由此看出这种网络具有局部逼近能力,所以径向基函数网络也称为局部感知场网络。
三、建模第一步:根据数据选定BP神经网络的结构,本文中所用到的BP神经网络模型网络层数为2,隐层神经元数目为10,选择隐层和输出层神经元函数分别为tansig函数和purelin函数,网络训练方法分别用了梯度下降法、有动量的梯度下降法和有自适应lr的梯度下降法。
第二步:对输入数据和输出数据进行归一化处理;第三步:有函数newff()构造神经网络。
第四步:在对神经网络训练之前,首先设定相关参数,例如最大训练次数、训练要求精度、学习率等。
第五步:对BP神经网络进行训练。
第六步:重复训练直到满足要求为止。
第七步:保存训练好的神经网络,并用训练好的神经网络进行预测。
第八步:将预测值和实际输出值进行对比,分析模型的稳定性。
四、仿真x=[];y=[];p=x';t=y';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);%数据归一figure(1);plot(pn,tn,'-');title('实际输入与实际输出图','fontsize',12)ylabel('实际输出','fontsize',12)xlabel('样本','fontsize',12)net=newff(minmax(pn),[10 1],{'tansig''purelin'},'traingd');net.trainParam.epochs=50000;net.trainParam.goal=0.00001;net.trainParam.lr=0.01;%net.trainParam.min_grad=1e-50;net=train(net,pn,tn);t2=sim(net,pn);figure(2);plot(pn,tn,'r',pn,t2,'b');legend('期望输出','预测输出')title('预测输出与实际输出对比','fontsize',12) ylabel('函数输出','fontsize',12)xlabel('样本','fontsize',12)figure(3)plot(pn,t2,':og');hold onplot(pn,tn,'-*');legend('预测输出','期望输出')title('BP网络预测输出','fontsize',12)ylabel('函数输出','fontsize',12)xlabel('样本','fontsize',12)error=t2-tn;figure(4)plot(error,'-*')title('BP网络预测误差','fontsize',12)ylabel('误差','fontsize',12)xlabel('样本','fontsize',12)figure(5)plot((tn-t2)./t2,'-*');title('神经网络预测误差百分比')errorsum=sum(abs(error))%输出训练后的权值和阈值iw1=net.IW{1};b1=net.b{1};lw2=net.LW{2};b2=net.b{2};仿真结果如下图所示:(1)模型训练方法为梯度下降法,函数为traingd-1-0.8-0.6-0.4-0.20.20.40.60.81实际输入与实际输出图实际输出样本-1-0.8-0.6-0.4-0.200.20.40.60.81样本函数输出预测输出与实际输出对比-1-0.8-0.6-0.4-0.200.20.40.60.81样本函数输出024681012-3BP 网络预测误差误差样本024681012神经网络预测误差百分比神经网络的第一层的权重为:13.6043215790013-13.6781856692610-14.0649206962947-13.9848650272192-13.9871960386982-13.9951268043836-14.0071081197679-13.988886625663514.110816728841513.9653714912941神经网络第一层的偏置为:-14.393549295834211.28167070143647.643172268473664.706256083856511.69507957693330-1.57106974025717-4.61930431372367-7.7988362108953210.754283704611714.0333143274359神经网络的第二层的权重为:0.519149236262203 0.251828769407092 0.1027356545542340.150414********* 0.281458748263410 0.309838232092716-0.0253911425777369 -0.289400126603914 0.4399908683284090.108195723319044神经网络第而层的偏置为:-0.427391472171392(2) 模型训练方法为有动量的梯度下降法,函数为traingdm-1-0.8-0.6-0.4-0.200.20.40.60.81样本函数输出(3) 模型训练方法为有自适应lr 的梯度下降法,函数为traingda-1-0.8-0.6-0.4-0.200.20.40.60.81样本函数输出五、评价(1)初始值的影响本文建立BP神经网络模型时用的是newff()函数,由于newff()的随意性,所以基本上每一次的训练结果都是不同的。
前馈型神经网络在训练之前必须要对权值和阈值进行初始化,newff()可以自动完成这一过程,但是,权值和阈值的初始化时随机的,这里就不详细研究了。
(2)训练函数的影响从上文所给的结果图可以看出,训练函数对模型训练的影响是显著的,网络训练方法分别用了梯度下降法、有动量的梯度下降法和有自适应lr的梯度下降法,可以看到用梯度下降法要训练24961步才能达到要求的训练精度,而使用有动量的梯度下降法和有自适应lr 的梯度下降法分别只需要11199步和830步。