六个三角函数相互关系记忆图

合集下载

三角函数公式与记忆方法

三角函数公式与记忆方法

三角函数公式及其记忆方法一、同角三角函数的基本关系式 (一)基本关系1、倒数关系1cot tan =⋅αα1csc sin =⋅αα1sec cos =⋅αα 2、商的关系αααtan cos sin =αααtan csc sec = αααcot sin cos =αααcot sec csc = 3、平方关系1cos sin 22=+αααα22sec tan 1=+αα22csc cot 1=+(二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

1、倒数关系对角线上两个函数互为倒数; 2、商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

二、诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

(一)常用的诱导公式1、公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:z k k ∈=+,sin )2sin(ααπz k k ∈=+,cos )2cos(ααπz k k ∈=+,tan )2tan(ααπz k k ∈=+,cot )2cot(ααπ z k k ∈=+,sec )2sec(ααπz k k ∈=+,csc )2csc(ααπ2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系:ααπsin )sin(-=+ααπcos )cos(-=+ααπtan )tan(=+ααπcot )cot(=+ ααπsec )sec(-=+ααπcsc )csc(-=+3、公式三:任意角α与 -α的三角函数值之间的关系:ααsin )sin(-=-ααcos )cos(=-ααtan )tan(-=-ααcot )cot(-=- ααsec )sec(=-ααcsc )csc(-=-4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:ααπsin )sin(=-ααπcos )cos(-=-ααπtan )tan(-=-ααπcot )cot(-=- ααπsec )sec(-=-ααπcsc )csc(=-5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos(2π-α)=cosα tan (2π-α)=-tanα cot(2π-α)=-cotα sec(2π—α)=secα csc(2π—α)=—cscα6、公式六:2π+α与α的三角函数值之间的关系:sin (2π+α)=cosα cos(2π+α)=-sinαtan (2π+α)=-cotα cot(2π+α)=-tanαsec(2π+α)=—cscα csc(2π+α)=secα7、公式七:2π-α与α的三角函数值之间的关系:sin (2π-α)=cosα cos(2π-α)=sinαtan (2π-α)=cotα cot(2π-α)=tanαsec(2π—α)=cscα csc(2π—α)=secα 8、推算公式:23π+α与α的三角函数值之间的关系:sin (23π+α)=-cosα cos(23π+α)=sinα tan (23π+α)=-cotα cot(23π+α)=-tanα sec(23π+α)=cscα csc(23π+α)=—secα 9、推算公式:23π—α与α的三角函数值之间的关系:sin (23π-α)=-cosα cos (23π-α)=-sinα tan (23π-α)=cotα cot(23π-α)=tanα sec (23π-α)=—cscα csc (23π—α)=—secα 诱导公式记忆口诀:“奇变偶不变,符号看象限”。

三角函数知识点总结归纳图

三角函数知识点总结归纳图

三角函数知识点总结归纳图在数学中,三角函数是研究三角形以及与角度相关的函数。

它们在许多领域中都有广泛的应用,如物理学、工程学、计算机图形学等。

本文将对常用的三角函数进行总结和归纳,并使用图表形式展示相关知识点。

一、正弦函数(sine function)正弦函数是最基本也是最重要的三角函数之一。

它表示一个角度对应的三角形中的对边与斜边之比。

正弦函数的定义域为实数集合R,值域为[-1, 1]。

1. 正弦函数的周期性正弦函数是周期性函数,其最小正周期为2π。

即对于任意实数x,有sin(x+2π)=sin(x)。

2. 正弦函数的图像正弦函数的图像为连续的波浪线,通过原点(0,0),在每个周期内,正弦函数在x轴上的值在[-1,1]之间变化。

3. 正弦函数的性质正弦函数具有奇函数的性质,即sin(-x)=-sin(x)。

同时,正弦函数在π/2和3π/2时取得最大值1,在π和2π时取得最小值-1。

二、余弦函数(cosine function)余弦函数是三角函数中的另一个重要函数,表示一个角度对应的三角形中的邻边与斜边之比。

余弦函数的定义域为实数集合R,值域为[-1, 1]。

1. 余弦函数的周期性余弦函数也是周期性函数,其最小正周期为2π。

即对于任意实数x,有cos(x+2π)=cos(x)。

2. 余弦函数的图像余弦函数的图像为连续的波浪线,通过点(0,1),在每个周期内,余弦函数在x轴上的值在[-1,1]之间变化。

3. 余弦函数的性质余弦函数为偶函数,即cos(-x)=cos(x)。

同时,余弦函数在π和2π时取得最大值1,在π/2和3π/2时取得最小值-1。

三、正切函数(tangent function)正切函数是表示一个角度对应的三角形中的对边与邻边之比。

正切函数的定义域为实数集合R,值域为全体实数。

1. 正切函数的周期性正切函数也具有周期性,其最小正周期为π。

即对于任意实数x,有tan(x+π)=tan(x)。

六个三角函数相互关系记忆图

六个三角函数相互关系记忆图

规律(两图同用此规律):①在第一幅图中,对角线的两个三角函数成倒数关系例如:sin(α)∙csc⁡(α)=1或 csc α=1sin⁡(α) ②边界上的任一三角函数等于其相邻两函数的乘积(乘积关系) 例如:sin⁡函数的两边分别是tan 和cos ,∴sin α=tan α∙cos⁡(α)又例如:tan 函数的两边分别是sin 和sec ,∴tan⁡(α)=sin⁡(α)∙sec⁡(α)③在有阴影的三角形里,两个上顶角的平方和都等于下顶角(平方和关系) 例如:sin 和cos 分别处于阴影三角形的两个上顶角∴sin 2α+cos 2α=1又例如:tan⁡和1分别处于阴影三角形的两个上顶角∴tan 2α+1=sec 2(α)六个三角函数相互关系记忆图高中适用简化三个三角函数相互关系记忆图两图的画法六个三角函数的图:sin Costan cotcscsec ①先看左上部,画图的顺序是sin 到cos 再到tan ,呈现一个“7”字型,而下半部分的顺序是csc 到sec 到cot ,呈现倒“7”字型。

②中心写一个1③从sin 到cos 再到cot , csc 再到sec 和tan ,顺次连接成六边形④补上对角线,记住对角线一定要过中心的1⑤以sin ,cos 和1为第一个有阴影的三角形,每隔一个三角型就有一个阴影三角形,阴影三角形总共有三个。

1 三个三角函数的图:sin Costan1①画图的顺序是sin 到cos 再到tan ,呈现一个“7”字型②中心写一个1③从sin 到cos 再到tan , 再回到sin ,顺次连接成三角形④将sin 和1连起来⑤以sin ,cos 和1为有阴影的三角形。

三角函数一共有6个

三角函数一共有6个

三角函数一共有6个:直角三角形中:正弦:sin 对边比斜边余弦:cos 邻边比斜边正切:tan 对边比邻边余切:cot 邻边比对边正割:csc 斜边比对边余割:sec 斜边比邻边设三角形三个内角分别为A,B,C;对边分别为a,b,c正弦定理:a/sinA=b/sinB=c/sinC=2R,(R为该三角形外接圆半径)余弦定理:c2=a2+b2-2abcosCb2=a2+c2-2accosBa2=b2+c2-2bccosA由余弦定理可推导出:a=bcosC+ccosBb=ccosA+acosCc=acosB+bcosA海仑公式:SΔABC=√[p(p-a)(p-b)(p-c)],而公式里的p为半周长: p=(a+b+c)/21 三角函数公式大全一,诱导公式口诀:(分子)奇变偶不变,符号看象限.1. sin (α+k²360)=sin αcos (α+k²360)=cos atan (α+k²360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二,两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三,二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a': cos2α=1-2sin2αcos2α=2cos2α-1四*,其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα=sin(a+φ),其中tanφ=b/a,其终边过点(a, b) asinα+bcosα=cos(a-φ),其中tanφ=a/b,其终边过点(b,a) 2.降次,配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式sin3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ= 书p45 例5(2)sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1) cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]7. 半角公式书p45 例4小计:57个另:三角函数口诀三角知识,自成体系,记忆口诀,一二三四。

三角函数及其导数积分公式六边形记忆法

三角函数及其导数积分公式六边形记忆法

三⾓函数及其导数积分公式六边形记忆法从俞诗秋的⽂章修改⽽来,原来的⼝诀不太好记原⽂:三⾓函数双曲函数及其导数积分公式的六边形记忆法三⾓函数及其导数积分公式的六边形记忆法2. 三⾓函数的定义1. 三⾓函数的记忆:●对⾓线倒数:对⾓线互为倒数sinx=1/cscx,指在三⾓函数六边形中,过中点且连接两个顶点的线段中,两端点处的函数乘积等于中间的数1,即sinxcscx=1, cosxsecx=1, tanxcotx=1.●倒三⾓形平⽅和:指在三⾓函数六边形中,每个有阴影的三⾓形下顶处函数的平⽅等于上⾯两个顶处函数平⽅的和.即sin2x+cos2x=1, tan2x+1=sec2x, cot2x+1=csc2x.●邻点积:指在三⾓函数六边形中,任何⼀个顶处的函数等于相邻两个顶处函数的乘积.即sinx=tanxcosx, cosx=sinxcotx, cotx=cosxcscx, cscx= cotxsecx, secx=cscxtanx, tanx=secxsinx. 2.三⾓函数求导数图中左⾯“+”号表⽰六边形左⾯三个顶⾓处函数的导数为正值,右⾯“-”号表⽰六边形右⾯三个顶⾓处函数的导数为负值。

●上互换:指在三⾓函数求导六边形中,上顶⾓处函数的导数为另⼀上顶⾓处函数的导数.即:(sinx)’=cosx, (cosx)’=-sinx。

●中下2:指在三⾓函数求导六边形中,中间顶⾓处函数的导数为对应边下顶⾓处函数导数的平⽅.即:(tanx)’=sec2x,(cotx)’=-csc2x。

●下中下:指在三⾓函数求导六边形中,下顶⾓处函数的导数为对应边中间顶⾓处函数的导数与下顶⾓处函数的导数之乘积。

即:(secx)’=tanxsecx,(cscx)’=-cotxcscx。

3.三⾓函数求积分由于积分是导数的逆运算,我们⽴即可以有求积分记忆⼝诀:上互换,下2中,中下下。

注:原函数的符号视其在相应六边形的位置⽽定。

例如:例1求.步骤:(a)与secx有关的积分⼝诀是“下2中”,(b)通过调整以及从六边形中可知,===ln+c= ln+c。

三角函数-思维导图

三角函数-思维导图

三角函数三角函数定义符号三角函数线正弦 余弦 正切余切正割余割角制与弧度制角制弧度制定义:平面内,一射线绕端点旋转分类表示方式旋转方向终边位置正角负角零角(不旋转)象限角轴线角第一/二/三/四象限角在(正/负)X 轴上在(正/负)Y 轴上定义:用弧长与半径之比度量对应圆心角角度的方式,用符号rad 表示,读作弧度互相转化弧度制与角制的相关性恒等变换基本关系式诱导公式和差倍角和差与积的转化解三角形平方关系商数关系倒数关系三角函数的恒等关系中的基本关系式含义:角a 与特殊角的三角函数关系口诀:奇变偶不变,符号看象限诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等sin(2k π+α)=sin α(k ∈Z)cos(2k π+α)=cos α(k ∈Z)tan(2k π+α)=tan α(k ∈Z)cot(2k π+α)=cot α(k ∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sin αcos(π+α)=-cos αtan(π+α)=tan αcot(π+α)=cot α公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sin αcos(-α)=cos αtan(-α)=-tan αcot(-α)=-cot α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sin αcos(π-α)=-cos αtan(π-α)=-tan αcot(π-α)=-cot α公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sin αcos(2π-α)=cos αtan(2π-α)=-tan αcot(2π-α)=-cot α公式六:π/2±α与α的三角函数值之间的关系sin(π/2+α)=cos αsin(π/2-α)=cos αcos(π/2+α)=-sin αcos(π/2-α)=sin αtan(π/2+α)=-cot αtan(π/2-α)=cot αcot(π/2+α)=-tan αcot(π/2-α)=tan α和差公式倍角公式辅助角公式两角和与差的三角函数公式sin(α+β)=sin αcos β+cos αsin βsin(α-β)=sin αcos β-cos αsin βcos(α+β)=cos αcos β-sin αsin βcos(α-β)=cos αcos β+sin αsin βtan(α+β)=(tan α+tan β)/(1-tan αtan β)tan(α-β)=(tan α-tan β)/(1+tan α·tan β)二倍角公式(升幂缩角公式)sin2α = 2sin αcos αcos2α = cos^2(α)-sin^2(α) = 2cos^2(α)-1 = 1-2sin^2(α)tan2α = 2tan α/[1-tan^2(α)]二倍角公式半角公式万能公式半角公式(降幂扩角公式)sin^2(α/2)=(1-cos α)/2cos^2(α/2)=(1+cos α)/2tan^2(α/2)=(1-cos α)/(1+cos α)另也有tan(α/2)=(1-cos α)/sin α=sin α/(1+cos α)万能公式sin α=2tan(α/2)/[1+tan^2(α/2)]cos α=[1-tan^2(α/2)]/[1+tan^2(α/2)]tan α=2tan(α/2)/[1-tan^2(α/2)]三倍角公式平方关系(sina)^2+(cosa)^2 = 11+(tana)^2 = (seca)^21+(cota)^2 = (csca)^2商数关系tana = sina/cosa cota = cosa/sina倒数关系:sina*csca = 1cosa*seca = 1tana*cota = 1三倍角公式sin3α=3sin α-4sin^3(α)cos3α=4cos^3(α)-3cos αtan3α=[3tan α-tan^3(α)]/[1-3tan^2(α)]三角函数的和差化积公式sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2]正弦定理a/sinA=b/sinB=c/sinC=2R(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a :b :c=sinA :sinB :sinC 解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。

初中数学知识点三角函数:三角函数公式关系

初中数学知识点三角函数:三角函数公式关系

初中数学知识点——三角函数:三角函数公式关系倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法构造以“上弦、中切、下割;左正、右余、中间1”的正六边形为模型。

倒数关系对角线上两个函数互为倒数;商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。

)。

由此,可得商数关系式。

平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/(1-tan^2(α))tan(1/2*α)=(sinα)/(1+cosα)=(1-cosα)/sinα半角的正弦、余弦和正切公式sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=(1—cosα)/sinα=sinα/1+cosα万能公式sinα=2tan(α/2)/(1+tan^2(α/2))cosα=(1-tan^2(α/2))/(1+tan^2(α/2))tanα=(2tan(α/2))/(1-tan^2(α/2))三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))/(1-3tan^2(α))三角函数的和差化积公式sinα+sinβ=2sin((α+β)/2)·cos((α-β)/2)sinα-sinβ=2cos((α+β)/2)·sin((α-β)/2)cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)三角函数的积化和差公式sinα·cosβ=0.5[sin(α+β)+sin(α-β)]cosα·sinβ=0.5[sin(α+β)-sin(α-β)]教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

三角函数公式及其记忆方法

三角函数公式及其记忆方法

三角函数公式及其记忆方法一、同角三角函数得基本关系式(一)基本关系1、倒数关系2、商得关系3、平方关系(二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"得正六边形为模型。

1、倒数关系对角线上两个函数互为倒数;2、商数关系六边形任意一顶点上得函数值等于与它相邻得两个顶点上函数值得乘积。

(主要就是两条虚线两端得三角函数值得乘积,下面4个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线得三角形中,上面两个顶点上得三角函数值得平方与等于下面顶点上得三角函数值得平方。

二、诱导公式得本质所谓三角函数诱导公式,就就是将角n·(π/2)±α得三角函数转化为角α得三角函数。

(一)常用得诱导公式1、公式一: 设α为任意角,终边相同得角得同一三角函数得值相等:2、公式二:α为任意角,π+α得三角函数值与α得三角函数值之间得关系:3、公式三:任意角α与 -α得三角函数值之间得关系:4、公式四:利用公式二与公式三可以得到π-α与α得三角函数值之间得关系:5、公式五:利用公式一与公式三可以得2π-α与α得三角函数值之间得关系:sin(2π-α)=-sinα cos(2π-α)=cosαtan(2π-α)=-tanα cot(2π-α)=-cotαsec (2π—α) = secαcsc (2π—α) =—cscα6、公式六:+α与α得三角函数值之间得关系:sin(+α)=cosα cos(+α)=-sinαtan(+α)=-cotα cot(+α)=-tanαsec (+α) =—cscα csc (+α) = secα7、公式七:-α与α得三角函数值之间得关系:sin(-α)=cosα cos(-α)=sinαtan(-α)=cotα cot(-α)=tanαsec (—α) = cscα csc (—α) = secα8、推算公式:+α与α得三角函数值之间得关系:sin(+α)=-cosα cos(+α)=sinαtan(+α)=-cotα c ot(+α)=-tanαsec (+α) = cscα csc (+α) =—secα9、推算公式:—α与α得三角函数值之间得关系:sin(-α)=-cosα cos(-α)=-sinαtan(-α)=cotα cot(-α)=tanαsec(-α) =—cscα csc(—α) =—secα诱导公式记忆口诀:“奇变偶不变,符号瞧象限”。

三角函数公式大全图解

三角函数公式大全图解

三角函数公式大全图解三角函数公式:两角和公式我们常常需要计算两个角度的正弦、余弦和正切值的和或差。

这时候,就需要用到两角和公式。

两角和公式的形式如下:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinBcos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinBtan(A+B) = (tanA+tanB)/(1-XXX)tan(A-B) = (tanA-tanB)/(1+XXX)其中,A和B为两个角度。

倍角公式倍角公式用于计算一个角度的两倍的正弦、余弦和正切值。

倍角公式的形式如下:sin2A = 2sinAcosAcos2A = cos2A - sin2A = 2cos2A - 1 = 1 - 2sin2Atan2A = 2tanA/(1-tan2A)其中,A为一个角度。

三倍角公式三倍角公式用于计算一个角度的三倍的正弦、余弦和正切值。

三倍角公式的形式如下:sin3A = 3sinA - 4(sinA)3cos3A = 4(cosA)3 - 3cosAtan3A = tanA·tan(A+π/3)·tan(A-π/3)其中,A为一个角度。

半角公式半角公式用于计算一个角度的一半的正弦、余弦和正切值。

半角公式的形式如下:sin(A/2) = ±√[(1-cosA)/2]cos(A/2) = ±√[(1+cosA)/2]tan(A/2) = ±√[(1-cosA)/(1+cosA)]其中,A为一个角度。

和差化积和差化积公式用于将两个三角函数的和或差转化为一个三角函数的积。

和差化积公式的形式如下:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)cot(A±B) = (cotAcotB ∓ 1)/(cotB±cotA)其中,A和B为两个角度。

三角函数值表及记忆方法

三角函数值表及记忆方法

只想上传这一个表 下面的都就是无用的话 不用瞧了。

1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=
2
1
sin45°=cos45°=22
2 30˚ 45˚ 60˚ 90˚
23 1变化,其余类似记忆.
3、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为
2m 形式,正切、余切值可表示为3
m
形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.
4、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都就是正值)即当0°<α<90°时,
则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。

②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A .。

三角函数公式及其记忆方法

三角函数公式及其记忆方法

三角函数公式及其记忆方法-、同角三角函数的基本关系式 (—)基本关系1、倒数关系(二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间 1、倒数关系对角线上两个函数互为倒数; 2、商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积,下面 4个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

二、诱导公式的本质所谓三角函数诱导公式, 就是将角n • ( n /2) ±a 的三角函数转化为角a 的三角函数。

(一)常用的诱导公式1、公式一: 设a 为任意角,终边相同的角的同一三角函数的值相等:sin (2k “ '.Q =sin : ,k zcos (2k “ 丄汀二cos : ,k z tan (2k “U )=tan : , k z cot (2k? ' -::)= cot : ,kzsec (2k * '习二sec : ,k z csc (2k'°-卜二)二 csc : ,k ztan cot =1 sin c s c = 1cos : sec : =12、 商的关系sin 二 tan .:icos :cos : cot : sin :3、 平方关系sec : ,tan二CSC : CSC : sin 2 二亠cos 2 :二 11 tan2 匚-sec 2:1"的正六边形为模型。

SIIM翻sect!2、公式二:a为任意角,n + a的三角函数值与a的三角函数值之间的关系sin (,亠很)=_sin : cos (,亠 *)二—cos :- tan (札,雳)=tan : cot (:亠隈)=cot : sec (二 -)--sec :esc (二 -)--csc :sin ( 2 n —a ) =—sin a cos ( 2 n — a )=cos tan ( 2 n —a ) =—tan a cot ( 2 n — a )=—cot sec (2 n —a )=sec acsc (2 n —a ):=—csc a6、公式六:n+ aT 与a 的三角函数值之间的关系:sin ( n + 2a )=cos a cos ( n + a ) 2=—sin atan ( — +2■ a )=-—cot acot ( — + a )=:—tan asec ( n +2a )=— csc acsc ( — + a )= 2sec a7、公式七: n - a 2与a 的三角函数值之间的关系:sin ( n - 2-a )=cos a cos ( n — a ) 2=sin atan ( n -2-a )= cot a cot ( n — a ) 2=tan asec ( n —-a )=csc a csc ( n — a )= 2sec a8、推算公式:3n 2+ a 与a的三角函数值之间的关系:sin (3n2+ a )= —cos acos (注 + a ) 2=sin atan ( 3n 2 + a )= :—cot acot (竺 + a ) 2=—tan asec (也 2+ a )= csc acsc (■3n+ —sec a9、推算公式:3n2—a 与 a 的三角函数值之间的关系:sin (注 2—a ): =—cos acos (注一a )2=—sin a公式五:利用公式一和公式三可以得5、a 2 n - a 与 a 3、公式三:任意角a 与-a 的三角函数值之间的关系:sin( - : ) - -sin _:: tan( - : )- -tan : sec(Y )二 cos(-:)二 cos: cot( -: ) - -cot:CSC (Y )二-csc:4、公式四:利用公式二和公式三可以得到n - a 与a 的三角函数值之间的关系:sin (二-■ ) = sin :- tan (二-匚)=- tan : sec (二 _ 匚)_ -COS (M -;工)=-cos:cot (二--)=-cot: csc (二-:)=csc :tan (3n—a)= cot a cot (3n—a)= tan a~ ~2~sec (巴-a ) =—CSC a CSC (3n— a ) = —sec a2 丁诱导公式记忆口诀:“奇变偶不变,符号看象限”。

完整三角函数公式表

完整三角函数公式表

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=c otαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβ2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————tan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin———·cos———2 2α+βα-βsinα-sinβ=2cos———·sin———2 2α+βα-βcosα+cosβ=2cos———·cos———2 2α+βα-βcosα-cosβ=-2sin———·sin———2 2 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=—-[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)arc sin x + arc sin y = arc sin x – arc sin y = arc cos x + arc cos y = arc cos x – arc cos y = arc tan x + arc tan y = arc tan x – arc tan y =2 arc sin x = 2 arc cos x =2 arc tanx = cos (n arc cos x) =三角形中三角函数基本定理Tag:三角函数点击: 1522 【正弦定理】式中R为ABC的外接圆半径(图1.3).【余弦定理】【勾股定理】在直角三角形(C为直角)中,勾方加股方等于弦方(图1.4),即勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理.【正切定理】或【半角与边长的关系公式】式中,r为ABC的内切圆半径,且式中S为ABC的面积.。

三角函数及其导数积分公式的六边形记忆法

三角函数及其导数积分公式的六边形记忆法

从俞诗秋的文章修改而来,原来的口诀不太好记原文:三角函数双曲函数及其导数积分公式的六边形记忆法三角函数及其导数积分公式的六边形记忆法2. 三角函数的定义1. 三角函数的记忆:●对角线倒数:对角线互为倒数sinx=1/cscx,指在三角函数六边形中,过中点且连接两个顶点的线段中,两端点处的函数乘积等于中间的数1,即sinxcscx=1, cosxsecx=1, tanxcotx=1.●倒三角形平方和:指在三角函数六边形中,每个有阴影的三角形下顶处函数的平方等于上面两个顶处函数平方的和.即sin2x+cos2x=1, tan2x+1=sec2x, cot2x+1=csc2x.●邻点积:指在三角函数六边形中,任何一个顶处的函数等于相邻两个顶处函数的乘积.即sinx=tanxcosx, cosx=sinxcotx, cotx=cosxcscx, cscx= cotxsecx, secx=cscxtanx, tanx=secxsinx.2.三角函数求导数图中左面“+”号表示六边形左面三个顶角处函数的导数为正值,右面“-”号表示六边形右面三个顶角处函数的导数为负值。

●上互换:指在三角函数求导六边形中,上顶角处函数的导数为另一上顶角处函数的导数.即:(sinx)’=cosx, (cosx)’=-sinx。

●中下2:指在三角函数求导六边形中,中间顶角处函数的导数为对应边下顶角处函数导数的平方.即:(tanx)’=sec2x,(cotx)’=-csc2x。

●下中下:指在三角函数求导六边形中,下顶角处函数的导数为对应边中间顶角处函数的导数与下顶角处函数的导数之乘积。

即:(secx)’=tanxsecx,(cscx)’=-cotxcscx。

3.三角函数求积分由于积分是导数的逆运算,我们立即可以有求积分记忆口诀:上互换,下2中,中下下。

注:原函数的符号视其在相应六边形的位置而定。

例如:例1求.步骤:(a)与secx有关的积分口诀是“下2中”,(b)通过调整以及从六边形中可知,===ln+c= ln+c。

三角函数公式及其记忆方法

三角函数公式及其记忆方法

三角函数公式及其记忆方法4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:ααπsin )sin(=- ααπcos )cos(-=-ααπtan )tan(-=- ααπcot )cot(-=-ααπsec )sec(-=- ααπcsc )csc(=-5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系:sin (2π-α)=-sinα cos (2π-α)= cosαtan (2π-α)=-tanα cot (2π-α)=-cotαsec (2π—α) = secα csc (2π—α) =—cscα6、公式六:2π+α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)=-sinα tan (2π+α)=-cotα cot (2π+α)=-tanαsec (2π+α) =—cscα csc (2π+α) = secα7、公式七:2π-α与α的三角函数值之间的关系:sin(π-α)= cosα2cos(π-α)= sinα2tan(π-α)= cotα2cot(π-α)= tanα2sec (π—α) = cscα2csc (π—α) = secα28、推算公式:3π+α与α的三角函数值2之间的关系:sin(23π+α)=-cosα cos (23π+α)= sinαtan(23π+α)=-cotα cot (23π+α)=-tanαsec (23π+α) = cscαcsc (3π+α) =—secα29、推算公式:23π—α与α的三角函数值之间的关系:sin(23π-α)=-cosα cos (23π-α)=-sinαtan(23π-α)= cotα cot (23π-α)= tanαsec(3π-α) =—cscα2csc(23π—α) =—secα诱导公式记忆口诀:“奇变偶不变,符号看象限”。

“奇、偶”指的是π的倍数的奇偶,“变2与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。

三角函数公式及其记忆方法

三角函数公式及其记忆方法

三角函数公式及其记忆方法一、同角三角函数的基本关系式 (一)基本关系1、倒数关系1cot tan =⋅αα 1csc sin =⋅αα 1sec cos =⋅αα 2、商的关系αααtan cos sin = αααtan csc sec = αααcot sin cos = αααcot sec csc = 3、平方关系1cos sin 22=+αα αα22sec tan 1=+ αα22csc cot 1=+(二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

1、倒数关系对角线上两个函数互为倒数; 2、商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

二、诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

(一)常用的诱导公式1、公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:z k k ∈=+,sin )2sin(ααπ z k k ∈=+,cos )2cos(ααπz k k ∈=+,tan )2tan(ααπ z k k ∈=+,cot )2cot(ααπ z k k ∈=+,sec )2sec(ααπ z k k ∈=+,csc )2csc(ααπ2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系:ααπsin )sin(-=+ ααπcos )cos(-=+ααπtan )tan(=+ ααπcot )cot(=+ ααπsec )sec(-=+ ααπcsc )csc(-=+3、公式三:任意角α与 -α的三角函数值之间的关系:ααsin )sin(-=- ααcos )cos(=-ααtan )tan(-=- ααcot )cot(-=- ααsec )sec(=- ααcsc )csc(-=-4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:ααπsin )sin(=- ααπcos )cos(-=-ααπtan )tan(-=- ααπcot )cot(-=- ααπsec )sec(-=- ααπcsc )csc(=-5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)= cosα tan (2π-α)=-tanα cot (2π-α)=-cotα sec (2π—α) = secα csc (2π—α) =—cscα6、公式六:2π+α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)=-sinα tan (2π+α)=-cotα cot (2π+α)=-tanαsec (2π+α) =—cscα csc (2π+α) = secα7、公式七:2π-α与α的三角函数值之间的关系:sin (2π-α)= cosα cos (2π-α)= sinαtan (2π-α)= cotα cot (2π-α)= tanα sec (2π—α) = cscα csc (2π—α) = secα8、推算公式:23π+α与α的三角函数值之间的关系:sin (23π+α)=-cosα cos (23π+α)= sinα tan (23π+α)=-cotα cot (23π+α)=-tanαsec (23π+α) = cscα csc (23π+α) =—secα 9、推算公式:23π—α与α的三角函数值之间的关系:sin (23π-α)=-cosα cos (23π-α)=-sinα tan (23π-α)= c otα cot (23π-α)= tanα sec (23π-α) =—cscα csc (23π—α) =—secα诱导公式记忆口诀:“奇变偶不变,符号看象限”。

三角函数诱导公式之:同角三角函数关系六角形记忆法_知识点总结

三角函数诱导公式之:同角三角函数关系六角形记忆法_知识点总结

三角函数诱导公式之:同角三角函数关系六角形记忆法_知识点总结
构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。

倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。

)。

由此,可得商数关系式。

平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

三角函数公式及其记忆方法

三角函数公式及其记忆方法

sin(-) = - sintan(-) = - tan sec(-) = seccos(-) = cos cot(-) = - cotcsc(-) = - csc三角函数公式及其记忆方法一、同角三角函数的基本关系式(一)基本关系1、倒数关系tan cot= 12、商的关系sin csc = 1cos sec = 1sin= tancossec= tancsc二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

1、倒数关系对角线上两个函数互为倒数;2、商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积,下面 4 个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

二、诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

一)常用的诱导公式1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:cos= cotsin3、平方关系sin2+cos2=1csc= cot1+ tan2= sec21+cot2= csc2sin(2k+) = sin,kz tan(2k+) =tan, k zsec(2k+) = sec,kcos(2k+) = cos, kz cot(2k+) =cot,k z csc(2k+)= csc,k z2、公式二:α 为任意角,sin(+) = -sintan(+) = tansec(+) = -secπ+α 的三角函数值与αcos(+) = - coscot(+) = cotcsc(+) = - csc的三角函数值之间的关系:3、公式三:任意角α 与-α 的三角函数值之间的关系:4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(-) = sin tan(-) = - tan sec(-) = - cos(-) = - cos cot(-) = -cot csc(-) = csc5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)= cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsec(2π—α)= secαcsc (2π—α)=—cscα公式六:π+α与α的三角函数值之间的关系:2sin(π+α)=cosαcos(π+α)=-sinα2 2 ππtan(2+α)=-cotαcot( +α)=tanαsec(π+α) =—cscαπ csc ( +α)=secα27、公式七:π-α与α的三角函数值之间的关系:2sin(π -α)=cosαcos(π-α)=sinα2 2tan(π-α)=cotαcot(π-α)=tanα2 2sec (π —α) =cscαcsc (π —α) =secα2 28、推算公式:3π+α与α的三角函数值之间的关系:2sin( 3π+α)=-cosαcos( 3π+α)=sinαtan( 3π+α)=-2 cotαcot( 3π+α)=2-tanα3πsec ( 32+α) =cscαcsc ( 3π+α) =2—secα9、推算公式:3π—α与α的三角函数值之间的关系:sin( 3π-α)=-cosαcos(3π-α)=-sinαtan( 3π-α)=cotαcot(3π-α)= tanαsec( 3π-α) =2 —cscαcsc( 3π—α)2=—secα诱导公式记忆口诀:“奇变偶不变,符号看象限”。

三角函数公式及其记忆方法

三角函数公式及其记忆方法

三角函数公式及其记忆方法一、同角三角函数的基本关系式 (一)基本关系1、倒数关系1cot tan =⋅αα 1csc sin =⋅αα 1sec cos =⋅αα 2、商的关系αααtan cos sin = αααtan csc sec = αααcot sin cos = αααcot sec csc = 3、平方关系1cos sin 22=+αα αα22sec tan 1=+ αα22csc cot 1=+(二)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

1、倒数关系对角线上两个函数互为倒数; 2、商数关系六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。

)。

由此,可得商数关系式。

3、平方关系在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

二、诱导公式的本质所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。

(一)常用的诱导公式1、公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:z k k ∈=+,sin )2sin(ααπ z k k ∈=+,cos )2cos(ααπz k k ∈=+,tan )2tan(ααπ z k k ∈=+,cot )2cot(ααπ z k k ∈=+,sec )2sec(ααπ z k k ∈=+,csc )2csc(ααπ2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系:ααπsin )sin(-=+ ααπcos )cos(-=+ααπtan )tan(=+ ααπcot )cot(=+ ααπsec )sec(-=+ ααπcsc )csc(-=+3、公式三:任意角α与 -α的三角函数值之间的关系:ααsin )sin(-=- ααcos )cos(=-ααtan )tan(-=- ααcot )cot(-=- ααsec )sec(=- ααcsc )csc(-=-4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:ααπsin )sin(=- ααπcos )cos(-=-ααπtan )tan(-=- ααπcot )cot(-=- ααπsec )sec(-=- ααπcsc )csc(=-5、公式五:利用公式一和公式三可以得2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)= cosα tan (2π-α)=-tanα cot (2π-α)=-cotα sec (2π—α) = secα csc (2π—α) =—cscα6、公式六:2π+α与α的三角函数值之间的关系:sin (2π+α)= cosα cos (2π+α)=-sinα tan (2π+α)=-cotα cot (2π+α)=-tanαsec (2π+α) =—cscα csc (2π+α) = secα7、公式七:2π-α与α的三角函数值之间的关系:sin (2π-α)= cosα cos (2π-α)= sinαtan (2π-α)= cotα cot (2π-α)= tanα sec (2π—α) = cscα csc (2π—α) = secα8、推算公式:23π+α与α的三角函数值之间的关系:sin (23π+α)=-cosα cos (23π+α)= sinα tan (23π+α)=-cotα cot (23π+α)=-tanαsec (23π+α) = cscα csc (23π+α) =—secα 9、推算公式:23π—α与α的三角函数值之间的关系:sin (23π-α)=-cosα cos (23π-α)=-sinα tan (23π-α)= c otα cot (23π-α)= tanα sec (23π-α) =—cscα csc (23π—α) =—secα诱导公式记忆口诀:“奇变偶不变,符号看象限”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规律(两图同用此规律):
①在第一幅图中,对角线的两个三角函数成倒数关系
例如:
sin(α)∙csc⁡(α)=1
或 csc α=1sin⁡(α) ②边界上的任一三角函数等于其相邻两函数的乘积(乘积关系) 例如:sin⁡函数的两边分别是tan 和cos ,
∴sin α=tan α∙cos⁡(α)
又例如:tan 函数的两边分别是sin 和sec ,
∴tan⁡(α)=sin⁡(α)∙sec⁡(α)
③在有阴影的三角形里,两个上顶角的平方和都等于下顶角(平方和关系) 例如:sin 和cos 分别处于阴影三角形的两个上顶角
∴sin 2α+cos 2α=1
又例如:tan⁡和1分别处于阴影三角形的两个上顶角
∴tan 2α+1=sec 2(α)
六个三角函数相互关系记忆图
高中适用简化三个三角函数相互关系记忆图
两图的画法
六个三角函数的图:
sin Cos
tan cot
csc
sec ①先看左上部,画图的顺序是sin 到cos 再到tan ,呈现一个“7”字型,而下半部分的顺序是csc 到sec 到cot ,呈现倒“7”字型。

②中心写一个1
③从sin 到cos 再到cot , csc 再到sec 和tan ,顺次连接成六边形
④补上对角线,记住对角线一定要过中心的1
⑤以sin ,cos 和1为第一个有阴影的三角形,每隔一个三角型就有一个阴影三角形,阴影三角形总共有三个。

1 三个三角函数的图:
sin Cos
tan
1
①画图的顺序是sin 到cos 再到tan ,呈现一个“7”字型
②中心写一个1
③从sin 到cos 再到tan , 再回到sin ,顺次连接成三角形
④将sin 和1连起来
⑤以sin ,cos 和1为有阴影的三角形。

相关文档
最新文档