概率论第三章练习题

合集下载

概率论~第三章习题参考答案与提示

概率论~第三章习题参考答案与提示
设二维随机变量xy的概率密度为6第三章习题参考答案与提示?2121yxyxyxf?xy?其中1yx?和2yx?都是二维正态密度函数且它们对应的二维随机变量的相关系数分别为13和13它们的边缘密度函数所对应的随机变量的数学期望都是0方差都是1
第三章 习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
22.已知 X 、 Y 分别服从正态分布 N (0,32 ) 和 N (1,42 ) ,且 X 与Y 的相关系数 ρ XY = −1/ 2 ,设 Z = X / 3 + Y / 2 ,求:
(1)求数学期望 EZ ,方差 DZ ; (2)Y 与 Z 的相关系数 ρYZ ; 答案与提示:本题要求熟悉数学期望、方差、协方差的性质、计算及有关正态 分布的性质。
X
Y
0
1
0
0.1
0.2
1
0.3
0.4
求:(1) EX , EY , DX , DY ;
(2)( X , Y )的协方差,相关系数,协方差阵,相关阵。
答案与提示: (1) EX = 0.7 , DX = 0.21, EY = 0.6 , DY = 0.24 。
(2) EXY = 0.4 ; Cov ( X ,Y ) = −0.02 , ρXY = 0.089 ;
(1) X 的概率密度;
(2)Y = 1 − 2 X 的概率密度。
答案与提示:考查服从正态分布随机变量的概率密度的一般表达形式、参数的
几何意义及正态分布随机变量的性质。
(1) f (x) = 1 e−(x−1.7)2 /6 (−∞ < x < +∞) 6π
(2) f ( y) = 1 e−( y+2.4)2 / 24 2 6π

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论练习册答案第三章

概率论练习册答案第三章

习题3-11.而且12{0}1P X X ==. 求X 1和X 2的联合分布律.解 由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04P X P X =⋅==≠, 所以X 1和X 2不独立.2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律.解 从7只球中取4球只有3547=C 种取法. 在4只球中, 黑球有i 只, 红球有j 只(余下为白球4i j --只)的取法为4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4.于是有0223221{0,2}3535P X Y C C C ====,1113226{1,1}3535P X Y C C C ====,1213226{1,2}3535P X Y C C C ====,2023223{2,0}3535P X Y C C C ====,21132212{2,1}3535P X Y C C C ====,2203223{2,2}3535P X Y C C C ====,3013222{3,0}3535P X Y C C C ====, 3103222{3,1}3535P X Y C C C ====,{0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============.3. (,)(6),02,24,0,.f x y k x y x y =--<<<<⎧⎨⎩其它求: (1) 常数k ; (2) {1,3}P X Y <<; (3) { 1.5}P X <; (4) {4}P X Y +≤.解 (1) 由(,)d d 1f x y x y +∞+∞-∞-∞=⎰⎰, 得2424222204211d (6)d (6)d (10)82y k x y x k y x x y k y y k =--=--=-=⎡⎤⎢⎥⎣⎦⎰⎰⎰, 所以 18k =. (2) 3121,31{1,3}d (6)d 8(,)d d x y P X Y y x y x f x y x y <<<<==--⎰⎰⎰⎰1322011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰321113()d 828y y =-=⎰. (3) 1.51.5{ 1.5}d (,)d ()d X P X x f x y y f x x +∞-∞-∞-∞<==⎰⎰⎰4 1.521d (6)d 8y x y x --=⎰⎰1.5422011(6)d 82y x x y =--⎡⎤⎢⎥⎣⎦⎰ 421633()d 882y y =-⎰ 2732=. (4) 作直线4x y +=, 并记此直线下方区域与(,)0f x y ≠的矩形区域(0,2)(0,4)⨯的交集为G . 即:02,0G x y <<<≤4x -.见图3-8. 因此{P X Y +≤4}{(,)}P X Y G =∈(,)d d Gf x y x y =⎰⎰44201d (6)d 8x y x y x -=--⎰⎰ 4422011(6)d 82xy x x y -=--⎡⎤⎢⎥⎣⎦⎰ 42211[(6)(4)(4)]d 82y y y y =----⎰ 42211[2(4)(4)]d 82y y y =-+-⎰423211(4)(4)86y y =----⎡⎤⎢⎥⎣⎦23=. 图3-8 第4题积分区域4. 二维随机变量(,)X Y 的概率密度为2(,),1,01,0,f x y kxy x y x =⎧⎨⎩≤≤≤≤其它. 试确定k , 并求2{(,)},:,01P X Y G G x y x x ∈≤≤≤≤.解 由21114001(,)d d d (1)d 26x k kf x y xdy x kxy y x x x +∞+∞-∞-∞====-⎰⎰⎰⎰⎰,解得6=k .因而 2112401{(,)}d 6d 3()d 4x xP X Y G x xy y x x x x ∈==-=⎰⎰⎰. 5. 设二维随机变量(X , Y )概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -=⎧⎨⎩≤≤≤≤其它 求关于X 和Y 边缘概率密度.解 (,)X Y 的概率密度(,)f x y 在区域:0G ≤x ≤1,0≤y ≤x 外取零值.因而, 有24.8(2)d ,01,()(,)d 0,2.4(2),01,0,x X y x y x f x f x y y x x x +∞-∞-<<==-<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它.124.8(2)d ,01,()(,)d 0,2.4(34),01,0,yY y x x y f y f x y x y y y y +∞-∞-<<==-+<<=⎧⎪⎨⎪⎩⎧⎨⎩⎰⎰其它.其它. 6. 假设随机变量U 在区间[-2, 2]上服从均匀分布, 随机变量 1,1,1,1,U X U --=>-⎧⎨⎩若≤若 1,1,1, 1.U Y U -=>⎧⎨⎩若≤若试求:(1) X 和Y 的联合概率分布;(2){P X Y +≤1}.解(2){P X Y +≤1}1{1}P X Y =-+>1{1,1}P X Y =-==12133=-=. 习题3-21. 设(X , Y )的分布律为求: (1) 在条件X =2下Y 的条件分布律;(2){22}P X Y ≥≤.解 (1) 由于6.02.01.003.0}2{=+++==X P ,所以在条件X =2下Y 的条件分布律为216.03.0}2{}1,2{}2|1{========X P Y X P X Y P ,06.00}2{}2,2{}2|2{========X P Y X P X Y P ,616.01.0}2{}3,2{}2|3{========X P Y X P X Y P ,316.02.0}2{}4,2{}2|4{========X P Y X P X Y P ,{P Y ≤2}{1}{2}P Y P Y ==+==0.10.3000.20.6++++=. 而{2,2}{2,1}{2,2}{3,1}{3,2}P X Y P X Y P X Y P X Y P X Y ===+==+==+==≥≤0.3000.20.5=+++=.因此{2,2}{22}{2}P X Y P X Y P Y =≥≤≤≥≤0.550.66==. 2. 设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成, 二维随机变量(X , Y )在区域D 上服从均匀分布, 求(X , Y )关于X 的边缘概率密度在x =2处的值.解 由题设知D 的面积为22e e111d ln 2D S x x x ===⎰. 因此, (X ,Y )的密度为 1,(,),(,)20x y D f x y ∈=⎧⎪⎨⎪⎩,其它.由此可得关于X 的边缘概率密度 ()(,)d X f x f x y y +∞-∞=⎰.显然, 当x ≤1或x ≥e 2时,()0X f x =; 当21e x <<时,111()d 22x X f x y x==⎰.故(2)14X f =. 3. 设二维随机变量(X , Y )的概率密度为(,)1,01,02,0,.f x y x y x =<<<<⎧⎨⎩其它求:(1) (X , Y )的边缘概率密度(),()X Y f x f y ;(2)11{}.22P Y X ≤≤ 解 (1) 当01x <<时,20()(,)d d 2xX f x f x y y y x +∞-∞===⎰⎰;当x ≤0时或x ≥1时, ()0X f x =. 故 2,01,()0,其它.X x x f x <<=⎧⎨⎩当0<y <2时,12()(,)d d 12y Y y f y f x y x x +∞-∞===-⎰⎰;当y ≤0时或y ≥2时, ()0Y f y =.故 1,02,()20,.Y yy f y -<<=⎧⎪⎨⎪⎩其它(2) 当z ≤0时,()0Z F z =; 当z ≥2时,1)(=z F Z ;当0<z <2时, (){2Z F z P X Y =-≤2}(,)d d x y zz f x y x y -=⎰⎰≤2x12202-2d 1d d 1d zxz x zx y x y =⋅+⋅⎰⎰⎰⎰24z z =-.故 1,02,()20,.()其它Z z zz f z F z -<<'==⎧⎪⎨⎪⎩(3) {}{}11311322161122442≤,≤≤≤≤P X Y P Y X P X ===⎧⎫⎨⎬⎩⎭. 4. 设G 是由直线y =x , y =3,x =1所围成的三角形区域, 二维随机变量(,)X Y 在G 上服从二维均匀分布.求:(1) (X , Y )的联合概率密度;(2) {1}P Y X -≤;(3) 关于X 的边缘概率密度. 解 (1)由于三角形区域G 的面积等于2, 所以(,)X Y 的概率密度为⎪⎩⎪⎨⎧∉∈=.),(,0,),(,21),(G y x G y x y x f (2)记区域x y y x D -=|),{(≤}1与G 的交集为0G ,则{1}P Y X -≤0011113d d (2)22224G G x y S ===-=⎰⎰.其中0G S 为G 0的面积.(3) X 的边缘概率密度()(,)d X f x f x y y +∞-∞=⎰. 所以,当]3,1[∈x 时, 311()d (3)22X xf x y x ==-⎰. 当1<x 或3>x 时, 0)(=x f X .因此 ⎪⎩⎪⎨⎧∈-=.,0],3,1[),1(21)(其它x x x f X习题3-31. 设X 与Y 相互独立, 且分布律分别为下表:求二维随机变量(,)X Y 的分布律.解 由于X 与Y 相互独立, 所以有}{}{},{j i j i y Y P x X P y Y x X P =⋅====,6,5,2,0;0,21,1=--=j i .因此可得二维随机变量(,)X Y 的联合分布律2. 设(X , Y )的分布律如下表:问,αβ为何值时X 与Y 相互独立? 解由于边缘分布满足23111,1i j i j p p ⋅⋅====∑∑, 又X , Y 相互独立的等价条件为 p ij = p i . p .j (i =1,2; j =1,2,3).故可得方程组 21,3111().939αβα++==⋅+⎧⎪⎪⎨⎪⎪⎩解得29α=,19β=.经检验, 当29α=,19β=时, 对于所有的i =1,2; j =1,2,3均有p ij = p i . p .j 成立.因此当29α=,19β=时, X 与Y 相互独立..3. 设随机变量X 与Y 的概率密度为()e (,)0,.,01,0,x y b f x y x y -+=⎧<<>⎨⎩其它(1) 试确定常数b .(2) 求边缘概率密度()X f x , ()Y f y . (3) 问X 与Y 是否相互独立? 解 (1) 由11()101(,)d d e d d e d e d (1e )x y y x f x y x y b y x b y x b +∞+∞+∞+∞-+----∞-∞====-⎰⎰⎰⎰⎰⎰,得 111eb -=-.(2) ()(,)d X f x f x y y ∞-∞=⎰1e ,01,1e 0,xx --<<=-⎧⎪⎨⎪⎩其它.()(,)d Y f y f x y x ∞-∞=⎰e ,0,0,y y ->=⎧⎨⎩其它.(3) 由于(,)()()X Y f x y f x f y =⋅,所以X 与Y 相互独立.4. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为21e ,0,()2Y yy f y y ->=⎧⎪⎨⎪⎩,≤0.(1) 求X 和Y 的联合概率密度.(2) 设关于a 的二次方程为220a Xa Y ++=, 试求a 有实根的概率.解 (1) 由题设知X 和Y 的概率密度分别为1,01,()0,X x f x <<=⎧⎨⎩其它, 21e ,0,()20,.yY y f y ->=⎧⎪⎨⎪⎩其它 因X 和Y 相互独立, 故(X , Y )的联合概率密度为21e ,01,0(,)()()20,.yX Y x y f x y f x f y -<<>==⎧⎪⎨⎪⎩其它 (2) 方程有实根的充要条件是判别式大于等于零. 即244X Y ∆=-≥20X ⇔≥Y .因此事件{方程有实根}2{X =≥}Y .下面计算2{P X ≥}Y (参见图3-3).2{P X ≥}Y 2211221(,)d d e d (1e)d 2yxx Df x y xdy x y x --===-⎰⎰⎰⎰⎰2121ed 12[(1)(0)]0.1445xx πΦΦ-=-=--≈⎰.图3-3 第6题积分区域 习题3-41. 设二维随机变量(X ,Y )的概率分布为YX0 1若随机事件{X =0}与{X +Y =1}相互独立, 求常数a , b .解 首先, 由题设知0.40.11a b +++=. 由此得0.5a b +=. 此外,{0}0.4P X a ==+,{1}{0,1}{1,0}0.5P X Y P X Y P X Y a b +====+===+=, {0,1}{0,1}P X X Y P X Y a =+=====. 根据题意有{0,1}{0}{1}P X X Y P X P X Y =+===+=,即(0.4)0.5a a =+⨯. 解得0.4,0.1a b ==.2. 设两个相互独立的随机变量X ,Y 的分布律分别为求随机变量Z = X + Y 的分布律. 解 随机变量Z = X + Y 的可能取值为7,5,3.Z 的分布律为18.06.0.03}2,1{}3{=⨯=====Y X P Z P , {5}{1,4}{3,2}0.30.4070.60.54P Z P X Y P X Y ====+===⨯+⨯=,28.04.07.0}4,3{}7{=⨯=====Y X P Z P ,或写为3. 随机变量X 与Y 相互独立, 且均服从区间[0,3]上的均匀分布, 求{}max{,}1P X Y ≤.解 由题意知, X 与Y 的概率密度均为1,03,()30x f x =⎧⎪⎨⎪⎩≤≤,其它.又由独立性, 有P {max{X +Y }≤1}=P {X ≤1,Y ≤1}= P {X ≤1} P {Y ≤1}.而 P {X ≤1}= P {Y ≤1}11011()d d 33f x x x -∞===⎰⎰, 故 P {max{X +Y }≤1}=111339⨯=.4. 设X 和Y 是两个相互独立的随机变量, 且X 服从正态分布N (μ, σ2), Y 服从均匀分布U (-a , a )( a >0), 试求随机变量和Z =X +Y 的概率密度.解 已知X 和Y 的概率密度分别为22()2()e2x X f x μσπσ--=, ),(+∞-∞∈x ; ⎪⎩⎪⎨⎧-∉-∈=).,(,0),,(,21)(a a y a a y ay f Y .由于X 和Y 相互独立, 所以22()21()()()d e d 22z y aZ X Y a f z f z y f y y y a μσπσ---+∞-∞-=-=⎰⎰=1[()()]2z μa z μa ΦΦa σσ-+---. 10. 设随机变量X 和Y 的联合分布是正方形G={(x,y )|1≤x ≤3, 1≤y ≤3}上的均匀分布, 试求随机变量U=|X -Y|的概率密度f (u ).解 由题设知, X 和Y 的联合概率密度为111,3,3,(,)40,.x y f x y =⎧⎪⎨⎪⎩≤≤≤≤其它记()F u 为U 的分布函数, 参见图3-7, 则有 当u ≤0时,(){||F u P X Y =-≤u }=0; 当u ≥2时,()1F u =;当0< u <2时, 图3-7 第8题积分区域||(){}(,)d d x y uF u P U u f x y x y -==⎰⎰≤≤21[42(2)]412u =-⨯- 211(2)4u =--.故随机变量||U X Y =-的概率密度为1(2),02,()20,u u p u -<<=⎧⎪⎨⎪⎩其它..总习题三1. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧<<<=.,0,10,||,1),(其它x x y y x f 求条件概率密度)|()|(||y x f x y f Y X X Y 和.解 首先2,01,()0,.(,)其它X x x f x f x y dy +∞-∞<<==⎧⎨⎩⎰1,01,()1,10,0,(,)≤其它.Y y y f y y y f x y dx +∞-∞-<<==+-<⎧⎪⎨⎪⎩⎰图3-9第1题积分区域当01y <<时, |1,1,1(|)0,X Y y x y f x y x <<-=⎧⎪⎨⎪⎩取其它值.当1y -<≤0时, |1,1,1(|)0,X Y y x y f x y x -<<+=⎧⎪⎨⎪⎩取其它值.当10<<x 时, |1,||,(|)20,Y X y x f y x x y <=⎧⎪⎨⎪⎩取其它值.2. 设随机变量X 与Y 相互独立, 下表列出二维随机变量(,)X Y 的分布律及关于X 和关于Y 的边缘分布律中部分数值, 试将其余数值填入表中空白处 .解 首先, 由于11121{}{,}{,}P Y y P X x Y y P X x Y y ====+==, 所以有11121111{,}{}{,}6824P X x Y y P Y y P X x Y y ====-===-=.在此基础上利用X 和Y 的独立性, 有11111{,}124{}1{}46P X x Y y P X x P Y y =======.于是 2113{}1{}144P X x P X x ==-==-=.再次, 利用X 和Y 的独立性, 有12211{,}18{}1{}24P X x Y y P Y y P X x =======.于是 312111{}1{}{}1623P Y y P Y y P Y y ==-=-==--=.最后, 利用X 和Y 的独立性, 有2222313{,}{}{}428P X x Y y P X x P Y y ======⨯=; 2323311{,}{}{}434P X x Y y P X x P Y y ======⨯=;1313111{,}{}{}4312P X x Y y P X x P Y y ======⨯=.因此得到下表3. (34)e (,)0,.,0,0,x y k f x y x y -+=⎧>>⎨⎩其它 (1) 求常数k ;(2) 求(X ,Y )的分布函数;(3) 计算{01,02}P X Y <<≤≤; (4) 计算(),x f x ()y f y ;(5) 问随机变量X 与Y 是否相互独立? 解 (1)由3401(,)d d e d e d 12xy kf x y x y k x y +∞+∞+∞+∞---∞-∞===⎰⎰⎰⎰,可得12=k .(2) (X ,Y )的分布函数(,)(,)d d x y F x y f u v x y -∞-∞=⎰⎰.当x <0或y <0时,有 0),(=y x F ; 当0,0x y ≥≥时, 34340(,)12e d e d (1e )(1e )x yuv x y F x y u v ----==--⎰⎰.即 34(1e )(1e ),0,0,(,)0,.x y x y F x y --⎧--≥≥=⎨⎩其它(3) {01,02}P X Y <<≤≤38(1,2)(0,0)(1e )(1e )F F --=-=--. (4) (34)012ed ,0,()(,)d 0,其它.x y X y x f x f x y y +∞-++∞-∞⎧>⎪==⎨⎪⎩⎰⎰所以 33e ,0,()0,其它.x X x f x -⎧>=⎨⎩类似地, 有44e ,0,()0,其它.y Y y f y -⎧>=⎨⎩显然2),(),()(),(R y x y f x f y x f Y X ∈∀⋅=, 故X 与Y 相互独立. 4.解 已知的分布律为注意到41260}1{}1{=++====Y P X P , 而0}1,1{===Y X P ,可见P {X =1, Y =1}≠P {X =1}P {Y =1}. 因此X 与Y 不相互独立.(2) Z X Y =+的可能取值为3, 4, 5, 6, 且316161}1,2{}2,1{}3{=+===+====Y X P Y X P Z P , }1,3{}2,2{}3,1{}4{==+==+====Y X P Y X P Y X P Z P3112161121=++=, 316161}2,3{}3,2{}5{=+===+====Y X P Y X P Z P . 即Z X Y =+(3) V =21}2,2{}1,2{}2,1{}2{===+==+====Y X P Y X P Y X P V P , 21}2{1}3{==-==V P V P . 即max(,)V X Y =的分布律为(4) min{U =}3,1{}2,1{}1{==+====Y X P Y X P U P}1,2{}1,3{==+==+Y X P Y X P 21=, 21}1{1}2{==-==U P U P . 即min{,}U X Y =的分布律为(5) W U V =+31}1,2{}2,1{}2,1{}3{===+=======Y X P Y X P V U P W P ,}2,2{}3,1{}4{==+====V U P V U P W P31}2,2{}1,3{}3,1{===+==+===y X P Y X P Y X P ,31}2,3{}3,2{}3,2{}5{===+=======Y X P Y X P V U P W P .5. 2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它. (1) 求P {X >2Y }; (2) 求Z = X +Y 的概率密度f Z (z ).解 (1) 1120227{2}(,)d d d (2)d 24yx yP X Y f x y x y y x y x >>==--=⎰⎰⎰⎰. (2) 方法一: 先求Z 的分布函数:()()(,)d d Z x y zF z P X Y Z f x y x y +=+=⎰⎰≤≤.当z <0时, F Z (z )<0; 当0≤z <1时, 1()(,)d d d (2)d zz yZ D F z f x y x y y x y x -==--⎰⎰⎰⎰= z 2-13z 3; 当1≤z <2时, 2111()1(,)d d 1d (2)d Z z z yD F z f x y x y y x y x --=-=---⎰⎰⎰⎰= 1-13(2-z )3; 当z ≥2时, F Z (z ) = 1.故Z = X +Y 的概率密度为222,01,()()(2),12,0,Z Z z z z f z F z z z ⎧-<<⎪'==-<⎨⎪⎩≤其它.方法二: 利用公式()(,)d :Z f z f x z x x +∞-∞=-⎰2(),01,01,(,)0,x z x x z x f x z x ---<<<-<⎧-=⎨⎩其它 2,01,1,0,.z x x z x -<<<<+⎧=⎨⎩其它当z ≤0或z ≥2时, f Z (z ) = 0; 当0<z <1时, 0()(2)d (2);zZ f z z x z z =-=-⎰当1≤z <2时, 121()(2)d (2).Zz f z z x z -=-=-⎰故Z = X +Y 的概率密度为222,01,()(2),12,0,.Z z z z f z z z ⎧-<<⎪=-<⎨⎪⎩≤其它.6. 设随机变量(X , Y )得密度为21,01,02,(,)30,.其它x xy x y x y ϕ⎧+⎪=⎨⎪⎩≤≤≤≤试求: (1) (X , Y )的分布函数; (2) (X , Y )的两个边缘分布密度; (3) (X , Y )的两个条件密度; (4) 概率P {X +Y >1}, P {Y >X }及P {Y <12|X <12}.解 (1) 当x<0或y <0时, φ(x , y ) = 0, 所以 F (x , y ) = 0.当0≤x <1, 0≤y <2时, φ(x , y ) = x 2+13xy ,所以 201(,)(,)d d [()d ]d 3x yx yF x y u v u v u uv v u -∞-∞==+⎰⎰⎰⎰ϕ32211312x y x y =+. 当0≤x <1, 2≤y 时,2(,)(,)d d [(,)d ]d [(,)d ]d xyx y x F x y u v u v u v v u u v v u -∞-∞===⎰⎰⎰⎰⎰⎰ϕϕϕ22001[()d ]d 3xu uv v u =+⎰⎰21(21)3x x =+. 当1≤x , 0≤y <2时,1(,)(,)d d [(,)d ]d xyyF x y u v u v u v v u -∞-∞==⎰⎰⎰⎰ϕϕ12001[()d ]d 3yu uv v u =+⎰⎰1(4)12y y =+. 当1≤x , 2≤y 时,122001(,)[()d ]d 13F x y u uv v u =+=⎰⎰.综上所述, 分布函数为220,00,1(),01,02,341(,)(21),01,2,31(4),1,02,121,1, 2.x y y x y x x y F x y x x x y y y x y x y <<⎧⎪⎪+<<⎪⎪⎪=+≥⎨⎪⎪+≥⎪⎪≥≥⎪⎩或≤≤≤≤≤< (2) 当0≤x ≤1时,22202()(,)d ()d 2,33X xy x x y y x y x x ϕϕ+∞-∞==+=+⎰⎰故 222,01,()30,.其它≤≤X x x x x ϕ⎧+⎪=⎨⎪⎩当0≤y ≤2时,12011()(,)d ()d ,336Y xy y x y x x x y ϕϕ+∞-∞==+=+⎰⎰ 故 11,02,()360,.其它≤≤Y y y y ϕ⎧+⎪=⎨⎪⎩(3) 当0≤y ≤2时, X 关于Y = y 的条件概率密度为2(,)62(|).()2Y x y x xy x y y yϕϕϕ+==+当0≤x ≤1时, Y 关于X = x 的条件概率密度为(,)3(|).()62X x y x yy x y x ϕϕϕ+==+(4) 参见图3-10.图3-10 第9题积分区域 图3-11 第9题积分区域1{1}(,)d d x y P X Y x y x y ϕ+>+>=⎰⎰12201165d ()d .372xx x xy y -=+=⎰⎰ 同理, 参见图3-11.{}(,)d d y xP Y X x y x y ϕ>>=⎰⎰122117d ()d .324xx x xy y =+=⎰⎰ 1111{,}(,)112222{|}1122{}()22X P X Y F P Y X P X F <<<<==<211(,)221201()534.32()d |X y x y x x xϕ+==⎰。

概率论 第三章测试题

概率论 第三章测试题

第三章测试题1、已知随机变量,ξη的分布列分别为求(),()E D ξξ2、设随机变量(,)ξη的分布列为求(),(),(),(|1),(|1),(),(),(,),E E E E E D D Cov ξηξηξηξηηξξηξηρ=-=。

3、设随机变量ξ的概率密度函数为1|1|,02()0,x x f x --<<⎧=⎨⎩其它,求(),()E D ξξ。

4、设随机变量ξ的概率密度函数为2,01()0,ax bx c x f x ⎧++<<=⎨⎩其它,且已知()0.5,()0.15E D ξξ==,求系数,,a b c 。

5、某机场的送客车一次载有20名旅客自机场开出,沿途有10个停车点,若到达停车点无人下车则车不停下,设每名旅客在各个停车点下车是等可能的,求送客车停车次数的数学期望。

6、设()4,()9,0.6D D ξηξηρ===,求(32)D ξη-。

7、设随机变量ξ的方差()D ξ存在且有限,已知(0,,a b a a b ηξ=+≠常数),求ξηρ。

8、设随机变量(,)ξη在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,求()D ξη+。

9、设随机变量ξ的概率密度函数为,0()0,x e x f x x -⎧>=⎨≤⎩, 2Y eξξ-=+,21Z ξ=-,求(),()E Y E Z 。

10、设随机变量(,)ξη的协方差矩阵为4339-⎛⎫⎪-⎝⎭,求ξηρ。

11、设随机变量(,)ξη的概率密度函数为212,01(,)0,y y x f x y ⎧≤≤≤=⎨⎩其它,求(),(),(),(),(,),E E D D Cov ξηξηξηξηρ。

12、设随机变量(,)ξη的概率密度函数为,01,0(,)0,cxy x y x f x y <<<<⎧=⎨⎩其它,求(1)常数c ;(2)(),(),(),()E E D D ξηξη;(3)边缘密度函数(),()f x f y ξη,并判断,ξη是否相互独立;(4)条件概率密度函数(|)f y x ,1(|)4f y ,(|)f x y ,1(|)2f x ,(5)条件数学期望1(|)4E η,1(|)2E ξ。

概率论习题第三章答案

概率论习题第三章答案

第三章连续型随机变量3、1设随机变量 ξ 的分布函数为F(x),试以F(x)表示下列概率: 。

)()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。

)(解:)0(1)()4();(1)()3();0()(P 2);()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ3、2函数x211F(x)+=就是否可以作为某一随机变量的分布函数,如果在其它场合恰当定义。

在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞<<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能就是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能就是随机变量的分布函数; (3)F(x)在),(-0∞内单调上升、连续且,若定义 ⎩⎨⎧≥<<∞=01)()(~x x X F x F -则)(~x F 可以就是某一随机变量的分布函数。

3、3函数 sinx 就是不就是某个随机变量ξ的分布函数?如果ξ的取值范围为[]。

,);(,);(,)(⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ230302201 解:(1)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,sinx 0≥且1sin 20=⎰πxdx ,所以 sinx 可以就是某个随机变量的分布密度; (2) 因为12sin 0≠=⎰πxdx ,所以sinx 不就是随机变量的分布密度; (3) 当 ⎥⎦⎤⎢⎣⎡∈23,ππx 时,sinx<=0所以sinx 不就是随机变量的分布密度。

3、4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有[][]。

--故上式右端=知由证:)1)(21a)P(1a)(3)P(1;-2F(a))(21)(1)1(,)(2)()()2(;)(21)()(1)(1)(1)(1)(1)()()1(.)(F 12)()3(;1)(2)()2(;(p 21)(1)()1(00000-=<=>-=-==<-=--=-=-=+=-==--=>-=<-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-∞-∞-∞-∞--∞-a F dxx p a F dx x p dx x p a P dx x p dx x p dx x p a F dx x p dxx p dx x p dx x p a F a a P a F a P dx x a F a F a a a a a aaaaaa ξξξξξ3、5设)(1x F 与)(2x F都就是分布函数,证明F(x)=aF(x)+bF(x)也就是一个分布函数,并由此讨论,分布函数就是否只有离散型与连续型这两种类型? 证:因为)(1x F与 )(2x F 都就是分布函数,于就是F(x1)=aF1(x1)+bF2(x2)<= aF1(x1)+bF2(x2)= F(x2) 又F(x-0)= aF1(x1-0)+bF2(x2-0) = aF1(x)+bF2(x)= F(x) 所以,F(x)也就是分布函数。

最新概率论与数理统计第三章习题及答案

最新概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论第三章习题及答案

概率论第三章习题及答案

02
题目8
一个盒子里有100个球,其中红球有30个,蓝球有40个,黄球有20个,
绿球有10个。随机抽取一个球并记录其颜色,然后放回盒子中。连续抽
取三次,求三次抽取中抽到红球的次数的期望值。
03
题目9
一个袋子中有5个红球和5个蓝球,从中随机抽取3个球,求抽取到红球
的个数X的分布律。
02 答案部分
基础题目答案
在处理复杂事件时,应先分解 为简单事件,再根据概率的加
法原则进行计算。
注意区分必然事件和不可能事 件,它们在概率论中具有特殊
地位。
知识点回顾与巩固
知识点回顾 概率的基本性质:概率具有非负性、规范性、有限可加性。
事件的独立性及其性质。
知识点回顾与巩固
条件概率的定义及其性质。 贝叶斯公式的应用场景和推导方法。
挑战题目解题思路与技巧
总结词
综合运用知识
详细描述
对于挑战题目,需要综合运用概率论中的知识,如随机变量的分布、随机过程的性质等。 要能够准确理解题目的背景和要求,构建合适的概率模型,并运用适当的数学方法进行求 解。
示例
题目问的是“一个袋子中有3个红球和2个白球,每次从中随机取出1个球并放回,连续取 5次。求取出的5个球中至少有3个红球的概率。”解题时,应先计算取出的5个球中都是 白球的概率,再用1减去这个概率,得出至少有3个红球的概率。
未来学习计划与展望
• 学习随机过程的基本概念和性质,了解常见的随 机过程如泊松过程、马尔可夫链等。
未来学习计划与展望
展望
学习概率论与其他数学分支的交叉知识,如统计学、线 性代数等。
将概率论的知识应用于实际问题和科学研究,加深对理 论知识的理解和掌握。

概率论与数理统计第三章自测题与答案

概率论与数理统计第三章自测题与答案

第三章 多维随机变量及其分布 自测题(90分钟)一、单项选择题(每题3分,共15分)1.设),1,0(~,21N X X 则21X X Y += ( )(A ))2,0(~N Y (B ))1,0(~N Y (C ))2,0(~N Y (D )Y 不一定服从正态分布 2.设Y X ,相互独立,都服从区间[0,1]上的均匀分布,则服从区间或区域上的均匀分布的是( )(A )()Y X , (B )Y X + (C )2X (D )Y X -3.设随机变量X 和Y , 已知,73}0{}0{,71}0,0{=≤=≤=≤≤Y P X P Y X P =≤}0),{min(Y X P 则( ) (A )73 (B )72 (C )75 (D )49164.设Y X ,相互独立,且都服从标准正态分布,则( )(A )41}0{=≥+Y X P (B )41}0{=≥-Y X P (C )41}0),{max(=≥Y X P (D )41}0),{min(=≥Y X P5.设两个随机变量Y X ,相互独立,且5.0}1{}1{}1{}1{=====-==-=Y P X P Y P X P ,则下列各式中正确的是( )(A )1}{==Y X P (B )5.0}{==Y X P (C )25.0}0{==+Y X P (D )25.0}0{==XY P 二、填空题(每空3分,共24分)1.设()Y X ,的联合分布律如下,且事件{X=0}与{X+Y=1}相互独立,则a= , b= .2.设Y X ,相互独立,表中列出()Y X ,的联合分布律和关于X 和Y 的边缘分布律的部分数值,3.设Y X ,相互独立,且均服从区间[0,3]上的均匀分布,则=≤}1),{max(Y X P 。

4.设随机变量X 和Y 相互独立都服从b (2,p ),且95}1{=≥X P ,则}1{=+Y X P = 。

5.已知()Y X ,的概率密度为⎩⎨⎧<<=-其他,00,),(yx e y x f y ,则=≤+}1{Y X P ,}21{≤Y X P = 。

概率论与数理统计教材第三章习题

概率论与数理统计教材第三章习题

方差的计算公式: 方差的计算公式:
DX = E X [E( X )]
2
( )
( x EX) ∞
+∞
2
f ( x)dx
2
有关方差的定理: 定理1 有关方差的定理: 定理1
推论: 推论:Db = 0;
D( X + b) = DX; D(aX) = a2 DX.
6
D(aX + b) = a2 DX
定理2 定理2: 若X与Y 独立, D( X +Y ) = DX + DY 与 独立,
E[g( X,Y )] = ∫
+∞ +∞
∞ ∞
∫ g( x, y) f ( x, y)dxdy,
4
假定这个积分是绝对收敛的. 假定这个积分是绝对收敛的
五、关于数学期望的定理
定理1 定理1
E(a + bX ) = a + bEX
(3)E(bX ) = bEX ) (2)E(a + X ) = a + EX )
+∞ ∞
EY = Eg( X ) = ∫ g( x) f ( x) dx
3
四、二维随机变量的函数的数学期望
的联合概率函数为p(x (1)设二维离散随机变量 )设二维离散随机变量(X,Y)的联合概率函数为 i , yj),则 的联合概率函数为 , 随机变量函数g(X,Y)的数学期望如下: 的数学期望如下: 随机变量函数 的数学期望如下
10
2、X与Y 的相关系数 与 定义 R( X,Y ) = cov( X ,Y )
R( X,Y ) =
定理3 定理3
cov( X,Y ) D( X) D(Y )
R( X,Y ) ≤ 1

概率论第三章习题及答案

概率论第三章习题及答案
i

PX x , Y y
j i

j 1, 2,
返回主目录
第三章 习题课
已知联合分布律求边缘分布律
X 以及Y 的边缘分布律也可以由 下表表示
Y X
y1 p11
p21

y2 p12
p22

… … … … …
yj
p1 j
… … …

pi
p1
p2
x1
x2

p2 j
对于任意固定的 Y, 对于任意固定的 X,
F ( , y ) 0;
F ( x,) 0;
F (,) 0;
F (,) 1.
返回主目录
第三章 习题课
3) F (x , y)=F(x+0, y), F (x, y)=F(x, y+0), 即 F (x, y)关于 x 右连续,关于 y 也右连续.


2 则称随机变量 X, Y 服从参数为 1, 2, 12, 2 ,


X, Y ~ N 1, 2, , , 2, 1 1. i i 1 , 2, i 0 i 1
2 1 2 2
的正态分布,记作
Y 的取值为 y1, y2, , y j ,
则称
设 X, Y 二维离散型随机变量,X 的取值为
pij P X xi , Y y j
i,j 1, 2,
X, Y 的(联合)分布律. 为二维离散型随机变量
第三章 习题课
二维离散型随机变量的联合分布律
X, Y 的联合分布律也可以由 下表表示
Y X
x1 x2

概率论与数理统计期末测试(新)第三章练习题

概率论与数理统计期末测试(新)第三章练习题

概率论与数理统计期末测试(新)第三章练习题一、选择题1、随机变量X 和Y 相互独立,且方差21()Var X σ=,22()Var Y σ=,(120,0σσ>>),12,k k 是已知常数,则12()Var k X k Y -等于( )。

(A) 221122k k σσ- (B) 221122k k σσ+ (C)22221122k k σσ- (D) 22221122k k σσ+2、随机变量X 与Y 相互独立,且方差()2Var X =,() 1.5Var Y =,则(321)Var X Y --等于( )。

(A) 9 (B) 24 (C) 25 (D) 23、已知随机变量X 与Y 的方差,()4Var X =,()9Var Y =,协方差cov(,)2X Y =,则(2)V a r X Y -等于( )。

(A) 25 (B) 13 (C) 17 (D) 214、已知随机变量X 与Y 的方差,()9Var X =,()16Var Y =,相关系数(,)0.5corr X Y =,则()Var X Y -等于( )。

(A) 19 (B)13 (C) 37 (D) 255、5个灯泡的寿命12345,,,,X X X X X 相互独立同分布且()i E X a =,()i Var X b =(1,2,3,4,5i =),则5个灯泡的平均寿命123451 ()5Y X X X X X =++++的方差()Var Y =( )。

(A) 5b (B) b (C) 0.2b (D) 0.04b6、如果随机变量X 与Y 不相关,则正确的是( )。

(A) ()()()Var aX bY aVar X bVar Y +=+ (B) ()()()Var X Y Var X Var Y -=- (C)()()()Var XY Var X Var Y = (D) ()()()E XY E X E Y =7、如果随机变量X 与Y 独立,则正确的是( )。

(完整版)概率论第三章第四章习题及答案

(完整版)概率论第三章第四章习题及答案
返回主目录
第三章 多维随机变量及其分布
n
解:(1)P{X n} P{X n,Y m}
m0
n e14 (7.14)m (6.86)nm
m0
m!(n m)!
e14 n
n! (7.14)m (6.86)nm
n! m0 m!(n m)!
e14 (7.14 6.86)n 14n e14 , n 0,1,2,
返回主目录
第三章 多维随机变量及其分布
(3)P{Y m | X 20} C2m0 0.51m0.4920m , m 0,1,2, ,20.
P{Y m | X n} Cnm 0.51m0.49nm , m 0,1,2, , n
返回主目录
第三章 多维随机变量及其分布
11.设随机变量(X,Y)的联合概率密度为
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
返回主目录
第四章 随机变量的数字特征
U 的密度函数为
nun1, x (0,1),
fU (u)
0,
其他.
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
E(U )
ufU (u)du
e14 (7.14)m (6.86)nm m!(n m)!
e
1414n n!
Cnm
7.14 14
m
6.86 14
nm
Cnm 0.51m0.49nm , m 0,1,2, , n
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
m 0,1,2, , n; n 0,1,2, .
cxey ,0 x y ,

概率论与数理统计答案 第三章习题

概率论与数理统计答案 第三章习题


f
X
(
x)
fY
(
y)
2x(1
0,
|
y |),0
x 1,| y|1 其它
f (x, y)
故X和Y不相互独立.
14.设X和Y是相互独立的随机变量,X在(0,1)上服从均匀分布,
Y的概率密度为
fY
(
y)
1 2
e
y
2
,
y
0
(1)求X和Y的联合概率密度;
0, y 0
(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.
(X,Y)关于Y的边缘分布律可用Y= j时 X取所有可能取的值的概率相加而得. 也可以单独列表如下:
X0 1 2
pk 1 2 1
4 44
Y0 1 2 3
pk 1 3 3 1
8 88 8
X Y0123
012
1 10 0 88
0 220
88
00 11
88
1 P{Y=j} 8
3 8
3 8
1 8
P{X=i}
0 25/36 5/36 5/6
0 45/66 10/66 5/6
1 5/36 1/36 1/6
1 10/66 1/66 1/6
P{X=i} 5/6 1/6 1
P{X=i} 5/6 1/6 1
13(1)问第1题中的随机变量X和Y是否相互独立?(需说明理由) 解 (1)P{X=i,Y=j}=P{X=i}P{Y=j}对(X,Y)所有可能取值 (i,j)( i ,j =0,1)都成立,故放回抽样X和Y相互独立.
y)dy y (4)
4
(2)
2

《概率论与数理统计》习题及答案 第三章

《概率论与数理统计》习题及答案  第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。

解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 11()(1)(1),2,3,.k k P X k pp p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。

解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有kr kb aC C -,所以X 的分布列为()kr kb ar a bC C P X k C -+==,m a x (0,),m a x (0,)1,,m in (,)k r a r a b r =--+ ,此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。

3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。

解 设i A =‘第i 个零件是合格品’1,2,3i =。

则 1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,1231236(3)()23424P X P A A A ===⋅⋅=.即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。

概率论第三章练习答案

概率论第三章练习答案

(C)
A.97
B.79
C.61
D.29
7.设已知随机变量 与 的相关系数 = 0 ,则 与 之间的关系为:
(D

A. 独立
B. 相关
C. 线性相关
D. 线性无关
8.设 X, Y 为两个独立的随机变量, 已知 X 的均值为 2, 标准差为 10, Y 的均值为 4, 标
准差为 20, 则与 Y − X 的标准差最接近的是[ D ]
3.已知(X,Y)的联合密度为 (x) =
(B ) A、0
B、0.25
C、0.5
4xy 0
0 x, y 1
其它
,则 F(0.5,2)=
D、0.1
F(0.5,2)= PX 0.5,Y 2
=
0.5
1
4xydxdy = 4
0.5
xdx
1
ydy
=
1 (利用图像)
00
0
0
4
4.如果 X 与 Y 满足 D(X+Y)=D(X-Y),则必有 ( ) A.X 与 Y 独立 B.X 与 Y 不相关 C.D(Y)=0 D .D ( X) D( Y) = 0
A 10
B 15
C 30
D 22
D(Y − X)= DX + DY = 100 + 400 = 500
400 500 900, 20 500 30
9.设随机变量 X~N(-3,1),Y~N(2,1),且 X 与 Y 独立,设 Z=X-2Y+7,
则 Z~
(A)
A.N(0,5) B.N(0,-3) C.N(0,46)
+ +(x,y)dxdy = 1 − −
即 + + ce−(x+ y)dxdy = 1 c = 1 00

第三章试题答案概率论与数理统计

第三章试题答案概率论与数理统计

第三章历年考题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设二维随机变量(X ,Y )的分布律为, 则P {X +Y =0}=( ) A.0.2答案:CYX -1 0 1 0 1度为⎩⎨⎧<<-<<-=,,;y ,x ,c )y ,x (f 其他01111 则常数c=( )A.41B.21答案:A律为设p ij =P{X=i,Y=j}i,j=0,1,则下列各式中错误..的是( ) A .p 00<p 01 B .p 10<p 11 C .p 00<p 11D .p 10<p 01答案:DY X 0 1 0 1,律为 YX0 1 20 01 2 0则P{X=Y}=( ) A . B . C . D .答案:A5.设随机变量(X ,Y )的联合概率密度为f(x,y)=.;0y ,0x ,0,e Ae y 2x 其它>>⎪⎩⎪⎨⎧--则A=( )A.21B.1C.23答案:D6.设二维随机变量(X 、Y )的联合分布为( )则P{XY=0}=( ) A. 41B.125C.43答案:C7.已知X ,Y 的联合概率分布如题6表所示 X -10 2YX0 5 0 4161 231 41Y 0 0 1/6 5/12 1/3 1/12 0 0 1 1/3 0 0题6表F (x,y )为其联合分布函数,则F (0,31)=( )A .0B .121C .61D .41答案:D8.设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎪⎩⎪⎨⎧>>+-其它00,0)(y x e y x则P (X ≥Y )=( ) A .41 B .21C .32D .43 答案:B9.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )A .161B .163C .41D .83答案:D10.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0B .)(x F XC .)(y F YD .1答案:B11.设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为()Y0 1 2X-10 0 02 0则F(0,1)=A.0.2 答案:B12.设二维随机变量(X,Y)的联合概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+.,0;1y 0,2x 0),y x (k 其它则k=( )A.41B.31C.21D.32答案:B13.设二维随机变量(X ,Y )的分布律为 Y X1 231 2101103102101102101则P{XY=2}=( )A .51B .103C .21D .53答案:C14.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f 则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y )= ( )A .x 21B .2xC .y 21D .2y答案:D15.设随机变量X ,Y 相互独立,其联合分布为则有( )A .92,91==βαB .91,92==βαC .32,31==βαD .31,32==βα答案:B 因为91,92==βα31)91(91}1{}2{}1,2{3131********αβα+=======----=+Y P X P Y X P 解方程组即得15. .设二维随机变量(X ,Y )的联合概率密度为⎩⎨⎧>>=+-;,0,0,0,2),()2(其它y x e y x f y x 则P{X<Y}=( )A .41B .31C .32 D .43答案:B15. .设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎩⎨⎧>>+-其它0y ,0x e )y x (则P (X ≥Y )=( )A .41B .21C .32 D .43 答案:B二、填空题(本大题共15小题,每空2分,共30分)请在每小题的空格中填上正确答案。

概率论课后习题第3章答案

概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。

高中数学必修三第三章《概率》章节练习题(含答案)

高中数学必修三第三章《概率》章节练习题(含答案)

高中数学必修三第三章《概率》章节练习题(含答案)高中数学必修三第三章《概率》章节练题一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有()。

A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是()。

A。

B。

C。

D。

补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()。

A。

B。

C。

D。

3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手。

若从中任选3人,则选出的火炬手的编号相连的概率为()。

A。

B。

C。

D。

4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为()。

A。

B。

C。

D。

5.在棱长为a的正方体ABCD-A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为()。

A。

B。

C。

D。

6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是()。

A。

P1=P2 B。

P1>P2 C。

P1<P2 D。

无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为()。

8.已知函数f(x)=log2x,x∈R。

在区间[1,8]上任取一点x,使f(x)≥-2的概率为()。

补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是()。

A。

B。

C。

D。

9.如图,利用随机模拟的方法可以估计图中由曲线y=√(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组[0,1]的均匀随机数,a=RAND,b=RAND;②做变换,令x=4a,y=√(b);③判断(x,y)是否在阴影部分中,若是则计数器加1;④重复上述步骤n次,估计S≈n×计数器/.则利用上述方法,当n=时,估计得到的阴影部分的面积S≈()。

概率论与数理统计课程第三章练习题及解答

概率论与数理统计课程第三章练习题及解答

第三章 多维随机变量及其分布一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、若X ,Y 均服从正态分布,则(X ,Y )服从二维正态分布 ( × )2、随机变量(X ,Y )的概率密度为22,1(,)0,k x y f x y ⎧+≤=⎨⎩其它,则π1=k (√ )3、有限个相互独立的正态随机变量的线性组合仍然服从正态分布。

(√) 二、单选题1、随机变量X ,Y 相互独立且~(0,1)X N ,~(1,1)Y N ,则下列各式成立的是( B )A .21}0{=≤+Y X P ; B .21}1{=+≤Y X P ; C .21}0{=≥+Y X P ; D .-≤=1{1}2P X Y 。

分析 因X ,Y 相互独立,它们又都服从正态分布,因此X +Y 与X -Y 也都服从正态分布,且(1,2)X Y N + ,(1,2)X Y N --,由于1{1}(0)2P X Y +≤=Φ=Φ=,选B2、设随机变量21,X X 的分布律为:101111424iX p- i =1,2且满足1}0{21==X X P ,则==}{21X X P ( A )A .0;B .41;C .21; D .1。

分析 从1}0{21==X X P ,可知12{0}0P X X ≠=,即12121212{1,1}{1,1}{1,1}{1,1}0P X X P X X P X X P X X =-=-==-====-==== 根据联合分布与边缘分布的关系,求出21,X X 的联合概率分布12121212{}{1,1}{0,0}{1,1}0P X X P X X P X X P X X ===-=-+==+===,选A 3、设随机变量X ,Y 相互独立且同分布:1{1}{1}2P X P Y =-==-=,1{1}{1}2P X P Y ====,则下列各式成立的是( A )A .1{}2P X Y ==; B .{}1P X Y ==; C .1{0}4P X Y +==; D .1{1}4P XY ==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 三
1.(1)盒子中装有3只黑球,2只红球,2只白球,在其中任取4只球.以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.(2)在(1)中求Y}-3P{X 3},Y P{X 2X},P{Y Y},P{X <=+=>.
2.设随机变量)Y X,(的概率密度为
⎩⎨
⎧<<<<--=其他,0,42,20),6(),(y x y x k y x f
(1) 确定常数k .
(2)求3}Y 1,P{X <<.
(3)求 1.5}P{X <.
(4)求4}Y P{X ≤+.
3.设随机变量)Y X,(具有分布函数
⎩⎨
⎧>>+--=----其他,0,0,0,1),(F y x e e e y x y x y x
求边缘概率密度.
4.将一枚硬币掷3次,以X表示前2次出现H的次数,以Y表示3次出现H的次数.求X,Y的联合分布律以及)Y X,(的边缘分布律.
5.设二维随机变量)Y X,(的概率密度为
⎩⎨
⎧≤≤≤≤-=其他,0,0,10),
2(8.4),(x y x x y y x f
求边缘概率密度. 6.设二维随机变量)Y X,(的概率密度为
⎩⎨
⎧≤≤=其他,0,1,),(22y x y cx y x f
(1)确定常数C.
(2)求边缘概率密度.
7.设二维随机变量)Y X,(的概率密度为
⎩⎨
⎧<<=-其他,0,0,),(y x e y x f y
求边缘概率密度.
8.设X 和Y 是两个相互独立的随机变量,X 在区间)1,0(上服从均匀分布,Y 的概率密度为 ⎪⎩⎪⎨⎧≤>=-.0,0,0,2
1)(2Y y y e y f y
求X 和Y 的联合概率密度.
9.设X 和Y 是两个相互独立的随机变量,其概率密度分别为
⎩⎨
⎧≤≤=.,0,10,1)(X 其他x x f ⎩⎨⎧>=-.,0,0,)(Y 其他y e y f y
求随机变量Y X Z +=的概率密度.
10. 设随机变量X 和Y 相互独立,且具有相同的分布,它们的概率密度均为
⎩⎨
⎧>=-.,0,1,)(1其他x e x f x
求随机变量Y X Z +=的概率密度.
11. 设二维随机变量)Y X,(的概率密度为
⎪⎩⎪⎨⎧>>+=+-其他,0,0,0,)(2
1),()(y x e y x y x f y x
(1) 问X 和Y 是否相互独立?
(2) 求Y X Z +=的概率密度.
12. 某种商品一周的需求量是一个随机变量,其概率密度为
⎩⎨
⎧≤>=-.0,0,0,)(t t e t t f t
设各周的需求量是相互独立的.求
(1) 两周的需求量的概率密度.
(2) 三周的需求量的概率密度.。

相关文档
最新文档