2019年广东高中学业水平考试数学试卷
2019年普通高等学校招生全国统一考试数学及详细解析(广东卷)
试卷类型:A2019年普通高等学校招生全国统一考试(广东卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第一部分 选择题(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.( 1 ) 若集合}03|{},2|||{2=-=≤=x x x N x x M ,则M ∩N = ( )A .{3}B .{0}C .{0,2}D .{0,3}【答案】B解: ∵由2||≤x ,得22≤≤-x ,由032=-x x ,得30==x x 或, ∴M ∩N }0{=,故选B .( 2 ) 若i b i i a -=-)2(,其中a 、b ∈R ,i 是虚数单位,则22b a += ( )A .0B .2C .25 D .5【答案】D解: ∵ i b i i a -=-)2(,∴i b ai -=-2,⎩⎨⎧==21b a 即 ,522=+b a ,故选D .( 3 ) 93lim 23-+-→x x x =( )A .61-B .0C .61 D .31 【答案】A 解: 6131)3)(3(3933323lim lim lim-=-=-++=-+-→-→-→x x x x x x x x x ,故选A .( 4 ) 已知高为3的直棱锥C B A ABC '''-的底面是边长为1的正三角形 (如图1所示),则三棱锥ABC B -'的体积为 ( ) A .41B .21C .63D .43【答案】D解:∵ ,ABC B B 平面⊥'A'C'AC图1∴43343313131=⋅⋅='⋅=⋅=∆∆-'B B S h S ABC ABC ABC B V . 故选D.( 5 ) 若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A .3 B .23 C .38 D .32【答案】B解: ∵轴上焦点在x ,∴2=a ,∵ 21==a c e ,∴22=c , ∴23222=-==c a b m ,故选B .( 6 )函数13)(23+-=x x x f 是减函数的区间为( )A .),2(∞+B .)2,(∞-C .)0,(-∞D .(0,2)【答案】D解: ∵,63)(2x x x f -='20,063,0)(2<<<-<'x x x x f 解得即令,故选D .( 7 ) 给出下列关于互不相同的直线m 、l 、n 和平面α、β,的四个命题: ①若A l m =⊂αα ,,点m A ∉,则l 与m 不共面;②若m 、l 是异面直线, αα//,//m l , 且m n l n ⊥⊥,,则α⊥n ; ③若βα//,//m l , βα//,则m l //;④若=⊂⊂m l m l ,,αα点A ,ββ//,//m l ,则βα//. 其中为假命题的是A .①B .②C .③D .④ 【答案】C解:③是假命题,如右图所示满足βα//,//m l , βα//,但 m l \// ,故选C .( 8 ) 先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子 朝上的面的点数分别为X 、Y ,则1log 2=Y X 的概率为 ( )A .61 B .365 C .121 D .21 【答案】C解:满足1log 2=Y X 的X 、Y 有(1, 2),(2, 4),(3, 6)这3种情况,而总的可能数有36种,所以121363==P ,故选C .( 9 ) 在同一平面直角坐标系中,函数)(x f y =和)(x g y =的图像lαβm关于直线x y =对称.现将)(x g y =图像沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位,所得的图像是由两条线段组成的折线 (如图2所示),则函数)(x f 的表达式为A .⎪⎩⎪⎨⎧≤<+≤≤-+=20,2201,22)(x xx x x fB .⎪⎩⎪⎨⎧≤<-≤≤--=20,2201,22)(x xx x x fC .⎪⎩⎪⎨⎧≤<+≤≤-=42,1221,22)(x xx x x fD .⎪⎩⎪⎨⎧≤<-≤≤-=42,3221,62)(x xx x x f【答案】A解:将图象沿y 轴向下平移1个单位,再沿x 轴向右平移2个单位得下图A ,从而可以得到)(x g 的图象,故⎪⎩⎪⎨⎧≤<-≤≤-=32,4220,12)(x x x xx g ,∵函数)(x f y =和)(x g y =的图像关于直线x y =∴⎪⎩⎪⎨⎧≤<+≤≤-+=20,2201,22)(x x x x x f ,故选A .(也可以用特殊点检验获得答案)(10)已知数列{}n x 满足212x x =,)(2121--+=n n n x x x , ,4,3=n .若2lim =∞→n x x ,则=1xA .23B .3C .4D .5【答案】B解法一:特殊值法,当31=x 时,3263,1633,815,49,2365432=====x x x x x 由此可推测2lim =∞→n x x ,故选B .解法二:∵)(2121--+=n n n x x x ,∴)(21211-----=-n n n n x x x x ,21211-=-----n n n nx x x x 即, ∴{}n n x x -+1是以(12x x -)为首项,以21-为公比6的等比数列,令n n n x x b -=+1,则11111211)21()21(2)21)((x x x x q b b n n n n n -=-⋅-=--==---+-+-+=)()(23121x x x x x x n …)(1--+n n x x+-+-+-+=121211)21()21()2(x x x x …11)21(x n --+3)21(32)21(1)21(12111111x x x x n n ---+=--⎥⎦⎤⎢⎣⎡---+=∴2323)21(321111lim lim ==⎥⎦⎤⎢⎣⎡-+=-∞→∞→x x xx n x n x ,∴31=x ,故选B . 解法三:∵)(2121--+=n n n x x x ,∴0221=----n n n x x x ,∴其特征方程为0122=--a a ,解得 211-=a ,12=a ,nn n a c a c x 2211+=,∵11x x =,212x x =,∴3211x c -=,3212x c =,∴3)21(3232)21(3211111xx x x x n n n --+=+-⋅-=,以下同解法二.第二部分 非选择题(共100分)二.填空题:本大题共4小题目,每小题5分,共20分.(11)函数xex f -=11)(的定义域是 .【答案】)0,(-∞解:使)(x f 有意义,则01>-x e , ∴ 1<x e ,∴0<x ,∴)(x f 的定义域是)0,(-∞.(12)已知向量)3,2(=,)6,(x =,且b a //,则=x .【答案】4解:∵b a //,∴1221y x y x =,∴x 362=⋅,∴4=x .(13)已知5)1cos (+θx 的展开式中2x 的系数与4)45(+x 的展开式中3x 的系数相等,则=θcos. 【答案】22±解:4)45(+x 的通项为r r rx C )45(44⋅⋅-,1,34==-∴r r , ∴4)45(+x 的展开式中3x 的系数是54514=⋅C , 5)1cos (+θx 的通项为R R x C -⋅55)cos (θ,3,25==-∴R R ,∴5)1cos (+θx 的展开式中2x 的系数是,5cos 235=⋅θC∴ 21cos 2=θ,22cos ±=θ.(14)设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f .(用n 表示)【答案】5,)2)(1(21-+n n解:由图B 可得5)4(=f ,由2)3(=f ,5)4(=f ,9)5(=f ,14)6(=f ,可推得∵n 每增加1,则交点增加)1(-n 个, ∴)1(432)(-++++=n n f2)2)(12(--+=n n)2)(1(21-+=n n .三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. ( 15 )(本小题满分12分)化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期.【答案】解: )23sin(32)232cos()232cos()(x x k x k x f ++--+++=πππππ)23sin(32)23cos()23cos(x x x +++++=πππ)23sin(32)23cos(2x x +++=ππ]3sin )23sin(3cos)23[cos(4ππππx x +++= x 2cos 4=∴ ]4,4[)(-∈x f ,ππ==22T , ∴)(x f 的值域是]4,4[-,最小正周期是π.( 16 ) (本小题共14分)如图3所示,在四面体ABC P -中,已知6==BC PA ,342,8,10====PB AC AB PC .F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且PB EF ⊥. (Ⅰ)证明:CEF PB 平面⊥;(Ⅱ)求二面角F CE B --的大小.图BABPF E(Ⅰ)证明:在ABC ∆中, ∵,6,10,8===BC AB AC ∴,222AB BC AC =+∴△PAC 是以∠PAC 为直角的直角三角形, 同理可证,△PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形. 在PCB Rt ∆中,∵,341715,342,6,10====CF PB BC PC ∴,CF PB BC PC ⋅=⋅ ∴,CF PB ⊥ 又∵,,F CF EF PB EF =⊥ ∴.CEF PB 平面⊥(II )解法一:由(I )知PB ⊥CE ,PA ⊥平面ABC∴AB 是PB 在平面ABC 上的射影,故AB ⊥CE ∴CE ⊥平面PAB ,而EF ⊂平面PAB , ∴EF ⊥EC ,故∠FEB 是二面角B —CE —F 的平面角, ∵EFB PAB ∆∆~∴35610cot tan ===∠=∠AP AB PBA FEB , ∴二面角B —CE —F 的大小为35arctan .解法二:如图,以C 点的原点,CB 、CA 为x 、y 轴,建立空间直角坐标系C -xyz ,则)0,0,0(C ,)0,8,0(A ,)0,0,6(B ,)6,8,0(P ,∵)6,0,0(=PA 为平面ABC 的法向量,)6,8,6(--=PB 为平面ABC 的法向量, ∴34343342636,cos -=⋅-=<PB PA , ∴二面角B —CE —F 的大小为34343arccos .(17 ) (本小题共14分)在平面直角坐标系xoy 中,抛物线2x y =上异于坐标原点O 的两不同动点A、B满足BO AO ⊥(如图4所示)(Ⅰ)求AOB ∆得重心G (即三角形三条中线的交点)的轨迹方程;(Ⅱ)AOB ∆的面积是否存在最小值?若存在,请求出 最小值;若不存在,请说明理由.y C解法一:(Ⅰ)∵直线AB 的斜率显然存在,∴设直线AB 的方程为b kx y +=,),(),,(2211y x B y x A ,依题意得0,,22=--⎩⎨⎧=+=b kx x y xy b kx y 得消去由,① ∴k x x =+21,② b x x -=21 ③∵OB OA ⊥,∴02121=+y y x x ,即 0222121=+x x x x ,④ 由③④得,02=+-b b ,∴)(01舍去或==b b ∴设直线AB 的方程为1+=kx y∴①可化为 012=--kx x ,∴121-=x x ⑤, 设AOB ∆的重心G 为),(y x ,则33021k x x x =++= ⑥ , 3232)(3022121+=++=++=k x x k y y y ⑦, 由⑥⑦得 32)3(2+=x y ,即3232+=x y ,这就是AOB ∆得重心G 的轨迹方程.(Ⅱ)由弦长公式得2122124)(1||x x x x k AB -+⋅+=把②⑤代入上式,得 41||22+⋅+=k k AB ,设点O 到直线AB 的距离为d ,则112+=k d ,∴ 24||212+=⋅⋅=∆k d AB S AOB ,∴ 当0=k ,AOB S ∆有最小值,∴AOB ∆的面积存在最小值,最小值是1 .解法二:(Ⅰ)∵ AO ⊥BO, 直线OA ,OB 的斜率显然存在, ∴设AO 、BO 的直线方程分别为kx y =,x ky 1-=, 设),(11y x A ,),(22y x B ,依题意可得由⎩⎨⎧==2xy kxy 得 ),(2k k A ,由⎪⎩⎪⎨⎧=-=21xy x ky 得 )1,1(2kk B -, 设AOB ∆的重心G 为),(y x ,则31321k k x x x -=++=① , 31302221k k y y y +=++= ②,由①②可得,3232+=x y ,即为所求的轨迹方程. (Ⅱ)由(Ⅰ)得,42||k k OA +=,4211||k k OB +=, ∴42421121||||21k k k k OB OA S AOB +⋅+⋅=⋅⋅=∆212122++=k k 12221=+≥, 当且仅当221kk =,即1±=k 时,AOB S ∆有最小值,∴AOB ∆的面积存在最小值,最小值是1 .解法三:(I )设△AOB 的重心为G(x , y ) ,A(x 1, y 1),B(x 2 , y 2 ),则⎪⎪⎩⎪⎪⎨⎧+=+=332121y y y x x x …(1) 不过∵OA ⊥OB ,∴1-=⋅OB OA k k ,即12121-=+y y x x , …(2) 又点A ,B 在抛物线上,有222211,x y x y ==, 代入(2)化简得121-=x x ,∴32332)3(31]2)[(31)(3132221221222121+=+⨯=-+=+=+=x x x x x x x x y y y , ∴所以重心为G 的轨迹方程为3232+=x y ,(II )22212122222122212222212121))((21||||21y y y x y x x x y x y x OB OA S AOB +++=++==∆, 由(I )得12212)1(2212221221662616261=⨯=+-=+⋅≥++=∆x x x x S AOB ,当且仅当6261x x =即121-=-=x x 时,等号成立,所以△AOB 的面积存在最小值,存在时求最小值1 .( 18 ) (本小题共12分)箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为t s :.现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n 次.以ξ表示取球结束时已取到白球的次数. (Ⅰ)求ξ的分布列; (Ⅱ)求ξ的数学期望.【答案】解:(Ⅰ)取出黄球的概率是t s s A P +=)(,取出白球的概率是ts tA P +=)(,则 ts sP +==)0(ξ, 2)()1(t s st P +==ξ, 32)()2(t s st P +==ξ, ……, n n t s st n P )()1(1+=-=-ξ, nn t s st n P )()(1+==-ξ,∴ξ的分布列是(Ⅱ)++⨯++⨯++⨯=322)(2)(10t s st t s st t s s E ξ…n nn n t s t n t s st n )()()1(1+⨯++⨯-+- ①++++=+4332)(2)(t s st t s st E t s t ξ (11)11)()()1()()2(+++-+++-++-+n n n n n n t s nt t s st n t s st n ②①—②得++++++=+43322)()()(t s st t s st t s st E t s s ξ (11)11)()()1()()(+++-+-+--++++n n n n n n n n t s nt t s st n t s nt t s st∴ 11)()1()()()1(-++-++-+--=n nn n n n t s t n t s s nt t s t n s t E ξ∴ξ的数学期望是11)()1()()()1(-++-++-+--=n nn n n n t s t n t s s nt t s t n s t E ξ.( 19 ) (本小题共14分)设函数)(x f 在),(+∞-∞上满足)2()2(x f x f +=-,)7()7(x f x f +=-,且在闭区间[0,7]上,只有0)3()1(==f f . (Ⅰ)试判断函数)(x f y =的奇偶性;(Ⅱ)试求方程0)(=x f 在闭区间]2005,2005[-上的根的个数,并证明你的结论.【答案】 解:(Ⅰ)∵)2()2(x f x f +=-, ∴)52()32(+=-f f即 )5()1(f f =-,∵在[0,7]上,只有0)3()1(==f f , ∴0)5(≠f ,∴)1()1(f f ≠-,∴)(x f 是非奇非偶函数.(Ⅱ)由)2()2(x f x f +=-,令2-=x x ,得 )4()(x f x f -=,由)7()7(x f x f +=-,令3+=x x ,得 )10()4(x f x f +=-,∴)10()(x f x f +=,∴)(x f 是以10为周期的周期函数,由)7()7(x f x f +=-得,)(x f 的图象关于7=x 对称, ∴在[0,11]上,只有0)3()1(==f f , ∴10是)(x f 的最小正周期,∵在[0,10]上,只有0)3()1(==f f , ∴在每一个最小正周期内0)(=x f 只有两个根,∴在闭区间]2005,2005[-上的根的个数是802.( 20 ) (本小题共14分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合(如图5所示).将矩形折叠,使A 点落在线段DC 上. (Ⅰ)若折痕所在直线的斜率为k ,试写出折痕所在直线的方程;(Ⅱ)求折痕的长的最大值.。
2019年广东省初中学业水平考试(数学)试卷及答案
2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.…一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的绝对值是(A)A.2 B.-2 C.12D.±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为(B)A.×106 B.×105 C.221×103 D.×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是(A)4.下列计算正确的是(C ) A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =;5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6.数据3、3、5、8、11的中位数是(C ) A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A .a b >B .a b <C .0a b +>D .0ab< \8(B ) A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是(D ) A .12x x ≠B .2112=0x x -C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有(C )A .1个B .2个C .3个D .4个、二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .答案:4解析:本题考查了零次幂和负指数幂的运算12.如图,已知a b ,175∠=°,则∠2= .答案:105︒解析:本题考查了平行线的性质,互为补角的计算《13.一个多边形的内角和是1080︒ ,这个多边形的边数是 .答案:8解析:本题考查了多边形内角和的计算公式14.已知23x y =+,则代数式489x y -+的值是 .答案:21解析:整体思想,考查了整式的运算15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号) .%答案:(15+解析:本题利用了特殊三角函数值解决实际问题16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律~三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①②解 ①21>-x x >3 ②4)1(2>+x 422>+x 22>x#1>x∴该不等式组的解集是x >318.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x 解 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x原式=222+*=2222+=21+19.如图,在ABC △中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC △内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AEEC的值.&解 (1)如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆ 2==∴DBADEC AE四、解答题(二) (本大题3小题,每小题7分,共21分)&20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 (1) 4x = ; 40y = ; 36(2)解:由题意可知树状图为[由树状图可知,同时抽到甲、乙两名学生的概率为21 = 63答:同时抽到甲、乙两名学生的概率为13。
广东省2019届1月份普通高中学业水平考试数学试卷Word版含解析
广东省2019届1月份普通高中学业水平考试数学试卷一.选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】由题意可知故选B2. 对任意的正实数,下列等式不成立的是()A. B.C. D.【答案】B【解析】∵∴选项错误故选B3. 已知函数,设,则()A. B. C. D.【答案】C【解析】∵函数∵∴故选C4. 设是虚数单位,是实数,若复数的虚部是2,则()A. B. C. D.【答案】D∵复数的虚部为2∴∴故选D5. 设实数为常数,则函数存在零点的充分必要条件是()A. B. C. D.【答案】C【解析】∵若函数存在零点∴∴∴函数存在零点的充分必要条件是故选C6. 已知向量,,则下列结论正确的是()A. B. C. D.【答案】B【解析】对于,若∥,则,因为,故错误;对于,因为,所以,则,故正确;对于,,,故错误;对于,,故错误故选B7. 某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A. 6和9B. 9和6C. 7和8D. 8和7【答案】A∴男女生的比例为,∵用分层抽样的方法,从该班学生中随机选取15人参加某项活动∴男生的人数为,女生的人数为故选A点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1);(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.8. 如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A. B. C. D.【答案】C【解析】由图像可知该空间几何体为长方体,长和宽为2,高为1体积故选C点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.9. 若实数满足,则的最小值为()A. B. C. D.【答案】D【解析】根据已知作出可行域如图所示:,即,斜率为,在处截取得最小值为故选D点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.10. 如图,是平行四边形的两条对角线的交点,则下列等式正确的是()A. B.C. D.【答案】D【解析】对于,,故错误;对于,,故错误;对于,,故错误。
2019年广东省初中学业水平考试(数学)试卷及答案
2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的绝对值是(A)A.2 B.-2 C.12D.±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为(B)A.2.21×106 B.2.21×105 C.221×103 D.0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是(A)4.下列计算正确的是(C ) A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6.数据3、3、5、8、11的中位数是(C ) A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A .a b >B .a b <C .0a b +>D .0ab< 824(B ) A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是(D ) A .12x x ≠B .2112=0x x -C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有(C )A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .答案:4解析:本题考查了零次幂和负指数幂的运算12.如图,已知a b,175∠=°,则∠2=.答案:105︒解析:本题考查了平行线的性质,互为补角的计算13.一个多边形的内角和是1080︒,这个多边形的边数是.答案:8解析:本题考查了多边形内角和的计算公式14.已知23x y=+,则代数式489x y-+的值是.答案:21解析:整体思想,考查了整式的运算15.如图,某校教学楼AC与实验楼BD的水平间距CD=153米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).答案:()15153+解析:本题利用了特殊三角函数值解决实际问题16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是(结果用含a、b代数式表示).答案:8a b+解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214xx->⎧⎨+>⎩①②解 ①21>-x x >3 ②4)1(2>+x 422>+x 22>x 1>x∴该不等式组的解集是x >318.先化简,再求值:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭, 其中x 解 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x原式=222+ =2222+ =21+19.如图,在ABC △中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC △内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AEEC的值.解 (1)如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆2==∴DBADEC AE四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 (1) 4x = ; 40y = ; 36 (2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21=63答:同时抽到甲、乙两名学生的概率为13。
2019年广东省普通高中学业水平测试数学模拟测试卷2
2019年广东省普通高中学业水平测试数学模拟测试卷(二)(时间:90分钟 满分:100分)一、选择题(共15小题,每小题4分,共60分) 1.已知集合M={-1,0,1},N={x|x 2=x },则M ∩N=( )A .{1}B .{0,1}C .{-1,0}D .{-1,0,1}2.已知等比数列{a n }的公比为2,则a 4a 2值为( ) A.14 B.12C.2D.4 3.命题“存在x 0∈R ,x 02-1=0”的否定是( )A .不存在x 0∈R ,x 02-1=0B .存在x 0∈R ,x 02-1≠0C .存在x 0∈R ,x 02-1=0D .对任意的x 0∈R ,x 02-1≠0 4.直线l 过点(1,-2),且与直线2x+3y-1=0垂直,则l 的方程是 ( ) A .2x+3y+4=0 B .2x+3y-8=0 C .3x-2y-7=0 D .3x-2y-1=05.已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系 ( ) A.一定是异面 B.一定是相交 C.不可能平行 D.不可能垂直6.已知|a |=sin π24,|b |=cos π24,且a 、b 的夹角为π12,则a ·b = ( )A.116B.18C.√38D.147.圆(x-1)2+y 2=1与直线y=√33x 的位置关系是( )A.相交B.相切C.相离D.直线过圆心8.若AD 为△ABC 的中线,现有质地均匀的粒子散落在△ABC 内,则粒子落在△ABD 内的概率等于 ( ) A.45B.34C.12D.239.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是 ( )A.①B.②C.③D.④10.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1.则事件“抽到的不是一等品”的概率为( ) A.0.7 B.0.65 C.0.35 D.0.311.函数f (x )=x 3-2的零点所在的区间是 ( ) A.(-2,0) B.(0,1) C.(1,2) D.(2,3)12.已知实数x 、y 满足{x ≥0,y ≥0,x +4y ≥4,则z=x+y 的最小值等于 ( )A.0B.1C.4D.513.将函数y=cos x 的图象向左平移π2个单位长度,得到函数y=f (x )的图象,则下列说法正确的是( )A .y=f (x )的最小正周期为πB .y=f (x )是偶函数C .y=f (x )的图象关于点(π2,0)对称D .y=f (x )在区间[0,π2]上是减函数 14.cos π5cos 3π10-sin π5sin 3π10=( )A .1B .0C .-1D .115.已知函数f (x )是奇函数,且在区间[1,2]单调递减,则f (x )在区间[-2,-1]上是 ( ) A .单调递减函数,且有最小值-f (2) B .单调递减函数,且有最大值-f (2) C .单调递增函数,且有最小值f (2) D .单调递增函数,且有最大值f (2) 二、填空题(共4小题,每小题4分,共16分)16.若A (1,-2,1),B (2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为 . 17.若函数f (x )=log a (x+m )+1(a>0且a ≠1)恒过定点(2,n ),则m+n 的值为 .18.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边为射线l :y=-√2x (x ≤0),则cos θ的值是 .19.已知椭圆的中心在原点,焦点在x 轴上,离心率为√55,且过点P (-5,4),则椭圆的方程为 .三、解答题(共2小题,每小题12分,共24分)20.如图,在四棱锥P-ABCD 中,底面ABCD 是菱形,∠DAB=60°,PD ⊥平面ABCD ,PD=AD=1,点E ,F 分别为AB 和PD 的中点. (1)求证:直线AF ∥平面PEC ; (2)求三棱锥P-BEF 的体积.21.甲,乙两组各4名同学参加学校组织的“抗日战争历史知识知多少”抢答比赛,他们答对的题目个数用茎叶图表示,如图,中间一列的数字表示答对题目个数的十位数,两边的数字表示答对题目个数的个位数.(1)求甲组同学答对题目个数的平均数和方差;(2)分别从甲,乙两组中各抽取一名同学,求这两名同学答对题目个数之和为20的概率.答案:1.B 【解析】x 2-x=0⇒x (x-1)=0⇒N={0,1},∴M ∩N={0,1}.2.D 【解析】a4a 2=q 2=4.3.D4.C 【解析】设直线l :3x-2y+c=0,因为(1,-2)在直线上,代点的坐标到直线方程得c=-7.故选C .5.C 【解析】a 、b 是两条异面直线,c ∥a ,那么c 与b 异面和相交均有可能,但不会平行.因为若c ∥b ,又c ∥a ,由平行公理得a ∥b ,与a 、b 是两条异面直线矛盾.故选C .6.B 【解析】因为|a |=sin π24,|b |=cos π24,且a 、b 的夹角为π12,所以a ·b=|a||b|cos π12=sin π24·cos π24·cos π12=12sin π24·cos π12=14sin π6=18. 7.A 【解析】由圆的方程得到圆心坐标为(1,0),半径r=1, 所以(1,0)到直线y=√33x 的距离d=|√33|√1+(√33)=12<1=r ,则圆与直线的位置关系为相交.故选A .8.C 【解析】P=S △ABD S △ABC=12.故选C .9.C 【解析】其俯视图若为圆,则正视图中的长度与侧视图中的宽度应一样,由图中可知其正视图与侧视图的宽度不一样,因此其俯视图不可能是圆.故选C . 10.C 【解析】∵事件A={抽到一等品},且P (A )=0.65, ∴事件“抽到的不是一等品”的概率为 P=1-P (A )=1-0.65=0.35.故选C .11.C 【解析】∵f (1)=(1)3-2=-1<0,f (2)=(2)3-2=6>0.故选C .12.B 【解析】作出已知不等式组所表示的可行域,如图,可知目标z=x+y 经过点(0,1)时,z 取最小值,∴z=0+1=1.故选B .13.D 【解析】将函数y=cos x 的图象向左平移π2个单位长度,得到函数y=f (x )=cos (x +π2)=-sin x 的图象,再结合正弦函数的图象特征.故选D . 14.B15.B 【解析】因为函数f (x )是奇函数,所以f (-2)=-f (2),f (-1)=-f (1),又f (x )在区间[1,2]单调递减,所以f (1)>f (2)⇒-f (1)<-f (2)⇒f (-1)<f (-2)f (x )在区间[-2,-1]上是单调递减函数,且有最大值-f (2).故选B .16.(0,0,3) 【解析】设P (0,0,z ),由|PA|=|PB|,得1+4+(z-1)2=4+4+(z-2)2, 解得z=3,故点P 的坐标为(0,0,3).17.0 【解析】f (x )=log a (x+m )+1过定点(2,n ),则log a (2+m )+1=n 恒成立,∴{2+m =1,1=n ⇒{m =-1,n =1,∴m+n=0.18.-√33 【解析】终边在y=-√2x (x ≤0)上,∴cos θ<0.{tanθ=-√2,sin 2θ+cos 2θ=1⇒cos θ=-√33.19.x 245+y 236=1 【解析】设椭圆的方程为x 2a 2+y 2b2=1(a>b>0), 将点(-5,4)代入得25a 2+16b 2=1,又离心率e=ca =√55,即e 2=c2a 2=a 2-b 2a 2=15, 所以a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1.20.【解】(1)证明:如图,作FM ∥CD 交PC 于M ,连接ME. ∵点F 为PD 的中点,∴FM 12CD ,又AE 12CD ,∴AE FM ,∴四边形AEMF 为平行四边形,∴AF ∥EM , ∵AF ⊄平面PEC ,EM ⊂平面PEC , ∴直线AF ∥平面PEC.(2)连接ED ,在△ADE 中,AD=1,AE=12, ∠DAE=60°,∴ED 2=AD 2+AE 2-2AD ·AE×cos 60°=12+(12)2-2×1×12×12=34,∴ED=√32,∴AE 2+ED 2=AD 2,∴ED ⊥AB.PD ⊥平面ABCD ,AB ⊂平面ABCD ,∴PD ⊥AB , 又∵PD ∩ED=D , ∴AB ⊥平面PEF. S △PEF =12PF ·ED=12×12×√32=√38, ∴三棱锥P-BEF 的体积V P-BEF =V B-PEF=13S △PEF ·BE=13×√38×12=√348.21.【解】(1)由题图可得,甲组答对题目的个数:8,9,11,12,∴x 甲=8+9+11+124=10,S 甲2=14×[(8-10)2+(9-10)2+(11-10)2+(12-10)2]=52.(2)由题图可得,乙组答对题目的个数:8,8,9,11,设事件“两名同学答对题目个数之和为20”为事件A ,以(x ,y )记录甲,乙两组同学答对题目的个数,满足“从甲、乙两组中各抽取一名同学”的事件有(8,8),(8,8),(8,9),(8,11),(9,8),(9,8),(9,9),(9,11),(11,8),(11,8),(11,9),(11,11),(12,8),(12,8),(12,9),(12,11),共16种.满足事件A 的基本事件为(9,11),(11,9),(12,8),(12,8),共4种,∴P (A )=416=14. 所以两名同学答对题目个数之和为20的概率为14.。
广东省广州市2019届高三年级第一学期调研考试(一模)理科数学试题(解析版)
2019届广州市高三年级调研测试理科数学本试卷共5页,23小题,满分150分,考试用时120分钟 一、选择题:本题共12小题,每小题5分,共60分。
1.设集合M=2{|02},{|230},x x N x x x ?=--<则集合M N Ç=( )A. {|02}x x ?B. {|03}x x ?C. {|12}x x -<<D. {|01}x x ?【答案】A 【解析】 【分析】利用一元二次不等式的解法化简集合N ,再由交集的定义即可得结果. 【详解】因为集合{}|02M x x=?,{}{}2|230|13N x x x x x =--<=-<<,{}|02M Nx x \??,故选A.【点睛】本题考查一元二次不等式的解法和集合的交集问题,属于简单题. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合. 2.若复数(1a iz i i+=-是虚数单位)为纯虚数,则实数a 的值为( ) A. -2 B. -1 C. 1 D. 2 【答案】C 【解析】 【分析】利用复数代数形式的除法运箅化简复数1a iz i+=-,再根据实部为0且虚部不为0求解即可. 【详解】()()()()i 1i i 11i 1i 1i 1i 22a a a a z +++-+===+-+-为纯虚数,1010a a ì+?ï\í-=ïî,即1a =,故选C.主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于( ). A. 1 B. 53C. 2D. 3 【答案】C 【解析】试题分析:因为322123124S a a =??,所以32642d a a =-=-=,选C.考点:等差数列性质4.若点(1,1)P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线的方程为( ) A. 230x y +-= B. 210x y -+= C. 230x y +-= D. 210x y --= 【答案】D 【解析】圆心C(3,0),k PC =12-,∵点P 是弦MN 的中点,∴PC ⊥MN , ∴k MN k PC =-1,∴k MN =2,∴弦MN 所在直线方程为y -1=2(x -1), 即2x -y -1=0.考点:圆的弦所在的直线方程.5.已知实数ln222,22ln 2,(ln 2)a b c ==+=,则,,a b c 的大小关系是 A. c b a << B. c a b << C. b a c << D. a c b << 【答案】B 【解析】 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,从而可得结果. 【详解】由对数函数的性质0ln21<<, 所以22ln 22,+>所以由指数函数的单调性可得,200ln 2112222,0ln 2ln 21=<<=<<=,c a b \<<,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(本题三个数分别在三个区间()()()0,1,1,2,2,+? );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用. 6.下列命题中,真命题的是( ) A. 00,0x x R e $危B. 2,2xx R x "?C. 0a b +=的充要条件是1ab=- D. 若,x y R Î,且2x y +>,则,x y 中至少有一个大于1 【答案】D 【解析】 【分析】根据指数函数的值域判断A ;根据特殊值判断B C 、;根据逆否命题与原命题的等价性判断D . 【详解】根据指数函数的性质可得x 0e >,故A 错误;2x =时,22x x >不成立,故B 错误;当0a b ==时,1ab=-不成立,故C 错误; 因为“2x y +>,则,x y 中至少有一个大于1”的逆否命题 “,x y 都小于等于1,则2x y +?”正确,所以“2x y +>,则,x y 中至少有一个大于1”正确,故选D.【点睛】本题主要考查指数函数的值域、特称命题与全称命题的定义,以及原命题与逆否命题的等价性,意在考查综合应用所学知识解答问题的能力,属于中档题. 7.由()y f x =的图象向左平移3p个单位,再把图象上所有点横坐标伸长到原来的2倍得到sin 36y x p 骣琪=-琪桫的图象,则()f x =( ) A. 3sin 26x p 骣琪+琪桫 B. sin 66x p 骣琪-琪桫 C. 3sin 23x p骣琪+琪桫D. sin 63x p 骣琪+琪桫 【答案】B 【解析】将36y sin x p骣琪=-琪桫的图象上各个点的横坐标变为原来的12,再把所得图象向右平移3p 个单位,即可得到()f x 的图象,根据三角函数的图象变换规律可得()f x 的解析式.【详解】将36y sin x p骣琪=-琪桫的图象上各个点的横坐标变为原来的12,可得函数66y sin x p骣琪=-琪桫的图象, 再把函数66y sin x p骣琪=-琪桫的图象向右平移3p 个单位,即可得到()66366f x sin x sin x p pp 轾骣骣犏琪琪=--=-琪琪犏桫桫臌的图象, 所以()f x = 66sin x p骣琪-琪桫,故选B. 【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,属于中档题. 能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8. 已知甲袋中有1个黄球和2个红球,乙袋中有2个黄球和2个红球,现随机地从甲袋中取出两个球放入乙袋中,然后从乙袋中随机取出1个球,则从乙袋中取出红球的概率为( ) A.13 B. 12 C. 59 D. 29【答案】C 【解析】试题分析:甲取出的求有两种情况:(1)从甲取出1黄球1红球,概率为:132136213C C C ?,(2)从甲取出2红球,概率为:142136129C C C ?,故概率为125399+=.考点:1、古典概型;2、分类加法、分步乘法计数原理.9.已知抛物线22(0)y px p =>为双曲线22221(0,0)x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个点,且AF ⊥x 轴,则双曲线的离心率为( )A.1 B. 31 C. 51 D. 22【解析】 【分析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A 的坐标,将A 代入抛物线方程求出双曲线的三参数,,a b c 的关系,则双曲线的离心率可求.【详解】抛物线的焦点坐标为,02p骣琪琪桫,双曲线的焦点坐标为(),0c ,2p c \=,点A 是两曲线的一个交点,且AF x ^轴,将x c =代入双曲线方程得到2,b A c a骣琪琪桫, 将A 的坐标代入抛物线方程可得,422222444b pc c a b a===+, 即4224440a a b b +-=,解得222ba=+ 22222222b c a a a -\==+)22232221c a=+=解得21ce a==,故选A . 【点睛】本题主要考查双曲线性质与双曲线的离心率,是中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解.10.已知等比数列{}n a 的前n 项和为n S ,若367,63S S ==,则数列{}n na 的前n 项和为( ) A. 3(1)2n n -++? B. 3(1)2n n ++? C. 1(1)2n n ++? D. 1(1)2n n +-? 【答案】D 【解析】当1q = 时,不成立,当1q ¹ 时,()3161171{1a q q a q -=-- ,两式相除得3631171163q q q -==-+ ,解得:2q = ,11a = 即1112n n n a a q --== ,12n n n a n -?? ,2112232......2n n s n -=+??+? ,2n s = ()211222......122n n n n -??+-?? ,两式相减得到:21122......22n n n s n --=++++-?()12212112n nn n n -=-?-?- ,所以()112nn s n =+-? ,故选D.11.如图为一个多面体的三视图,则该多面体的体积为( )A.203 B. 7 C. 223 D. 233【答案】C 【解析】该几何体为如图所示的几何体11EFBC ABCD -,是从棱长为2的正方体中截取去两个三棱锥后的剩余部分,其体积111111131111211212273232A B C D ABCD A A EF D D BC V V V V ---=--=-创创-创创=,故选C. 12.已知过点(,0)A a 作曲线:x C y x e =?的切线有且仅有两条,则实数a 的取值范围是( ) A. ()(--4)0+ト?,,B. ()0+¥, C. ()(--1)1+ト?,, D. ()--1¥, 【答案】A 【解析】 【分析】设出切点,对函数求导得到切点处的斜率,由点斜式得到切线方程,化简为20x a =,整理得到方程2000x ax a --=有两个解即可,240a a D=+>解出不等式即可.【详解】设切点为()00,x x x e ,(1)x y x e =+¢,000(1)x x x y x e =\=+?¢,则切线方程为:()00000=1()x x y x e x e x x -+?,切线过点(,0)A a 代入得:()00000=1()x x x e x e a x -+?, 2001x a x \=+,即方程2000x ax a --=有两个解,则有2400a a a D=+>?或4a <-. 故答案为:A.【点睛】这个题目考查了函数的导函数的求法,以及过某一点的切线方程的求法,其中应用到导数的几何意义,一般过某一点求切线方程的步骤为:一:设切点,求导并且表示在切点处的斜率;二:根据点斜式写切点处的切线方程;三:将所过的点代入切线方程,求出切点坐标;四:将切点代入切线方程,得到具体的表达式.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,a b 的夹角为45°,且1,2a b ==,则a b -=__________ 【答案】1 【解析】 【分析】先利用平面向量的运算法则以及平面向量的数量积公式求出a b -平方的值,再开平方即可得结果. 【详解】因为向量,a b 的夹角为45°,1,2a b ==,()2222a b a b a b -=+-?222cos 45a b a b °=+-?21221212=+-创?,可得1a b -=,故答案为1.【点睛】本题主要考查平面向量的运算法则以及平面向量的数量积公式,属于简单题. 向量数量积的运算主要掌握两点:一是数量积的基本公式cos a ba b q ?;二是向量的平方等于向量模的平方22a a =.14.已知423401234(23)x a a x a x a x a x +=++++,则2202413()()a a a a a ++-+=__________. 【答案】1令1x =,得401234(23)a a a a a +=++++; 令1x =-,得401234(23)a a a a a -+=-+-+;两式相加得22024130123402413()()()()a a a a a a a a a a a a a a a ++-+=++++?+--444(2(23)(1)1=?=-=.点睛: “赋值法”普遍适用于恒等式,是一种重要的方法,对形如2(),()(,)n n ax b ax bx c a b +++?R 的式子求其展开式的各项系数之和,常用赋值法, 只需令1x =即可;对形如()(,)n ax by a b +?R 的式子求其展开式各项系数之和,只需令1x y ==即可.15.已知实数,x y 满足203500x y x y x y ì-?ïï-+?ïí>ïï>ïî,则11()()42x y z =的最小值为__________.【答案】C 【解析】试题分析:不等式组20{350x y x y -?-+?表示的平面区域如下图所示,目标函数2111()()()422x y x y z +==,设2t x y =+,令20x y +=得到如上图中的虚线,向上平移20x y +=易知在点()1,2A 处取得最小值,min 4t =,所以目标函数4min 11()216z ==. 考点:线性规划.16.在四面体P ABC -中,1PA PB PC BC ====,则该四面体体积的最大值为________. 3由于平面PBC 是边长为1的正三角形,P ABC A PBC V V --= ,底面面积固定,要使体积最大,只需高最大,故当PA ^平面PBC 时体积最大,2133113V =创?.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤,第17-21题为必考题,每个试题考生都必须作答,第22-23题为选考题,考生根据要求作答.17.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222cos cos sin sin sin B C A A B -=+. (1)求角C 的大小;(2)若A=6p,△ABC 的面积为43M 为BC 的中点,求AM. 【答案】(1) 2;3C p=(2) 27【解析】 【分析】(1)利用正弦定理,结合同角三角函数的关系化简已知的等式,得到三边的关系式,再利用余弦定理表示出根据cos C 的值,可求角C 的大小;(2)求得()6B AC A pp =-+==,ABC D为等腰三角形,由三角形面积公式可求出CB CM 、的值,再利用余弦定理可得出AM 的值. 【详解】(1)∵222cos cos sin sin sin B C A A B -=+∴()2221sin 1sin sin sin sin B C A A B ---=+() ∴222sin sin sin sin sin C B A A B -=+由正弦定理得:222c b a ab -=+即222a b c ab +-=-∴22211cos 222a b c C ab +-=-=-即∵C 为三角形的内角,∴23C p= (2)由(1)知23C p =,∴()6B AC A pp =-+== ∴△ABC 为等腰三角形,即CA=CB 又∵M 为CB 中点 ∴CM=BM 设CA=CB=2x 则CM=BM=x1sin 432CABSCA CB C =鬃=∴CA=4,CM=2由余弦定理得:222cos 27CA CM CM CA C +-鬃=.【点睛】本题主要考查正弦定理、余弦定理以及三角形的面积公式,属于中档题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.18.某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,若该项指标值落在[20,40)内的产品视为合格品,否则为不合格品,图1是设备改造前样本的频率分布直方图,表1是设备改造后的频数分布表.表1,设备改造后样本的频数分布表:(1)请估计该企业在设备改造前的产品质量指标的平均数;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元,质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元,其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率,现有一名顾客随机购买两件产品,设其支付的费用为X (单位:元),求X 得分布列和数学期望.【答案】(1) 30.2;(2)分布列见解析, 400. 【解析】(1)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(2)X 的可能取值为:240, 300,360, 420, 480,根据直方图求出样本中一、二、三等品的频率分别为111,,236,利用独立事件与互斥事件概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】(1)样本的质量指标平均值为0.0417.50.162.5??????30.2=. 根据样本质量指标平均值估计总体质量指标平均值为30.2 .(2)根据样本频率分布估计总体分布,样本中一、二、三等品的频率分别为111,,236, 故从所有产品中随机抽一件,是一、二、三等品的概率分别为111,,236, 随机变量X 的取值为:240, 300,360, 420, 480,()()12111111240;3006636369P X P X C ==?==创=;()()112211115111360;420263318233P X C P X C ==创+?==创=, ()111480224P X ==?, 所以随机变量X 的分布列为:()115112403003604204804003691834E X \=?????.【点睛】本题主要考查直方图的应用,互斥事件的概率公式、独立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19.如图,多面体ABCDEF 中,四边形ABCD 为矩形,二面角A-CD-F 为60°,DE ∥CF ,CD ⊥DE ,AD=2,DE=DC=3,CF=6.(1)求证:BF ∥平面ADE ;(2)在线段CF 上求一点G ,使锐二面角B-EG-D 的余弦值为14. 【答案】(1)详见解析;(2)点G 满足32CG =. 【解析】 【分析】(1)先证明//BC 平面ADE ,//CF 平面ADE ,可得平面//BCF 平面ADE ,从而可得结果;(2)作AO DE ^于点O ,则AO ^平面CDEF ,以平行于DC 的直线为x 轴,DE 所在直线为y 轴,OA 所在直线为z 轴,建立空间直角坐标系,设()3,,0,15G t t-#,利用向量垂直数量积为零列方程组求得平面BEG 的法向量,结合面DEG 的一个法向量为()0,0,1n =,利用空间向量夹角余弦公式列方程解得12t =,从而可得结果.【详解】(1)因为ABCD 是矩形,所以BC ∥AD , 又因为BC 不包含于平面ADE , 所以BC ∥平面ADE ,因为DE ∥CF ,CF 不包含于平面ADE , 所以CF ∥平面ADE ,又因为BC ∩CF =C ,所以平面BCF ∥平面ADF , 而BF ⊂平面BCF ,所以BF ∥平面ADE .(2)∵CD ⊥AD ,CD ⊥DE∴∠ADE 为二面角A-CD-F 的平面角 ∴∠ADE=60° ∵CD ⊥面ADE\平面CDEF ^平面ADE ,作AO DE ^于点O ,则AO ^平面CDEF ,由2,3AD DE ==,得1,2DO EO ==,以O 为原点,平行于DC 的直线为x 轴,DE 所在直线为y 轴,OA 所在直线为z 轴, 建立如图所示的空间直角坐标系O xyz -,则()()()()()3,3,1,0,0,1,0,0,2,0,3,5,0A C D E F --,()3OB OA AB OA DC =+=+=,设()3,,0,15G t t-#,则()()3,2,3,0,,3BE BG t =--=-,设平面BEG 的法向量为(),,m x y z =,则由00m BE m BG ì?ïí?ïî,得323030x y z ty z ì-+-=ïíï-=î,取233x ty z tì=-ïï=íïïî, 得平面BEG 的一个法向量为()23m t t =-, 又面DEG 的一个法向量为()0,0,1n =,23cos ,4413m n t m n m n t t ×\==-+,314t\=, 解得12t =或1322t =-(舍去),此时14CG CF =,得1342CG CF ==,即所求线段CF 上的点G 满足32CG =.【点睛】本题主要考查线面平行的判定定理、空间向量的应用,属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.20.已知椭圆C :22221(0,0)x y a b a b +=>>的离心率为12,点P 3(3,在C 上.(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左右焦点,过2F 的直线l 与椭圆C 交于不同的两点A 、B ,求△1F AB 的内切圆的半径的最大值.【答案】(1) 22143x y += ;(2) 最大值为34.【解析】 【分析】 (1) 根据离心率为12,点33,骣琪琪在椭圆上,结合性质222a b c =+ ,列出关于a 、b 、c 的方程组,求出a 、b ,即可得结果;(2)可设直线l 的方程为1x m y =+,与椭圆方程联立,可得()2234690m ymy ++-=,结合韦达定理、弦长公式,利用三角形面积公式可得12121221121234F ABm S F F y y m D +=-=+,换元后利用导数可得,1F ABS D 的最大值为3,再结11442F AB S a r rD =?可得结果.【详解】(1)依题意有22222123314c a a b c a bì=ïïï=+íïï+=ïî,解得231a b c ì=ïï=íï=ïî故椭圆C 的方程为22143x y +=.(2)设()()1122,,,A x y B x y ,设1F AB D 的内切圆半径为r ,1F AB D 的周长为121248AF AF BF BF a +++==,11442F AB S a rr D \=?,根据题意知,直线l 的斜率不为零, 可设直线l 的方程为1x my =+,由221431x y x my ìï+=íï=+ïî,得()2234690m y my ++-=, ()()22636340,m m m R D=++>?,由韦达定理得12122269,3434m y y y y m m --+==++, ()12212121212112142F ABm S F F y y y y y y D +\=-+-=,令t ,则1t ³,12124313F AB t S t t tD \==++, 令()13f t t t =+,则当1t ³时,()()21'10,3f t f t t=->单调递增,()()141,33F AB f t f S D \??,即当1,0t m ==时,1F AB S D 的最大值为3,此时max 34r =,故当直线l 的方程为1x =时,1F AB D 内切圆半径的最大值为34.【点睛】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系,属于难题. 用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求. 21.已知函数21()(2ln ),x f x a x x a R x-=-+?. (1)讨论()f x 的单调性;(2)若()f x 的有两个零点,求实数a 的取值范围.【答案】(1) 当a≤0,()f x 在(0,2)上单调递增,在(2,+∞)递减;当104a <<,()f x 在(0,2)和a +?)上单调递增,在(2,aaa=14,()f x 在(0,+∞)递增;当a >14,()f x 在(02,+a 2)递减;(2) ()1,081ln2a 骣琪?琪-桫.【解析】 【分析】(1)求出()'f x ,分四种情况讨论a 的范围,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)由(1)知当0a <时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?,又()10f a =<,取01max ,5x a禳镲=-睚镲铪,可证明()()00022200000111112ln 0f x a x x a x x x x x =-+-?-?<,()f x 有两个零点等价于()()1222ln 204f a =-+>,得188ln 2a >--,可证明,当14a =时与当0a >且14a ¹时,至多一个零点,综合讨论结果可得结论.【详解】(1)()f x 的定义域为()0,+?,()()()2332122'1x ax x f x a xx x --骣-琪=-+=琪桫, (i )当0a £时,210ax -<恒成立,()0,2x Î时,()()'0,f x f x >在()0,2上单调递增; ()2,x ??时,()()'0,f x f x <在()2,+?上单调递减.(ii )当0a >时,由()'0f x =得,1232,x x x a a===-(舍去), ①当12x x =,即14a =时,()0f x ³恒成立,()f x 在()0,+?上单调递增;②当12x x >,即14a >时,x a骣琪Î琪桫或()2,x ??,()'0f x >恒成立,()f x 在(),2,a骣琪+?琪桫上单调递增;2x 骣Î时,()'0f x <恒成立,()f x 在2a骣琪琪桫上单调递减. ③当12x x <,即104a <<时,x a骣琪??琪桫或()0,2x Î时,()'0f x >恒成立,()f x 在()0,2,a骣琪+?琪桫单调递增,x 骣琪Î琪桫时,()'0f x <恒成立,()f x 在a骣琪琪桫上单调递减. 综上,当0a £时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?;当14a =时,()f x 单调递增区间为()0,+?,无单调递减区间为;当14a >时,()f x 单调递增区间为(),2,a 骣琪+?琪桫,单调递减区间为2a骣琪琪桫. (2)由(1)知当0a <时,()f x 单调递增区间为()0,2,单调递减区间为()2,+?,又()10f a =<,取01max ,5x a禳镲=-睚镲铪,令()()1212ln ,f x x x f x x =-=,则()12'10f x x=->在()2,+?成立,故()12ln f x x x =-单调递增,()()1052ln5122ln51f x ?=+->,()()0002220000111112ln 0f x a x x a x x x x x =-+-?-?<, ()f x \有两个零点等价于()()1222ln 204f a =-+>,得188ln 2a >--,1088ln 2a \>>--,当0a =时,()21x f x x-=,只有一个零点,不符合题意;当14a =时,()f x 在()0,+?单调递增,至多只有一个零点,不符合题意;当0a >且14a ¹时,()f x 有两个极值,()()1222ln 20,2ln 4f a f a a a a a骣琪=-+>=-琪桫, 记()2ln g x x x x x =-,()()'1ln 1ln 2g x x x xx=++-+, 令()ln h x x x=+,则()3221121'22x h x x x x -=-+, 当14x >时,()()'0,'h x g x >在1,4骣琪+?琪桫单调递增;当104x <<时,()()'0,'h x g x <在10,4骣琪琪桫单调递减, 故()()1''=22ln 20,4g x g g x 骣琪>->琪桫在()0,+?单调递增,0x ®时,()0g x ®,故2ln 0f a a a a a骣琪=->琪桫,又()()1222ln 204f a =-+>,由(1)知,()f x 至多只有一个零点,不符合题意, 综上,实数a 的取值范围为1,088ln 2骣琪-琪-桫.【点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值、零点等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.(二)选考题:共10分,请在22-23题中任选一题作答,如果多做,则按所做的第一题计分.22.已知曲线C 的极坐标方程为23cos 2sin r q q =+,直线()1:6l R p q r =?,直线()2:3l R pq r =?,设极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求直线12,l l 的直角坐标系方程以及曲线C 的参数方程;(2)若直线1l 与曲线C 交于O 、A 两点,直线2l 与曲线C 交于O 、B 两点,求△AOB 的面积.【答案】(1)13:l y x = ; 2:3l y x ;32,12x cos y sin q q qì=ïíï=+î 为参数;(2)23【解析】 【分析】(1)利用极角的定义、直线的倾斜角的定义以及两直线过原点,可得到直线1l 与直线2l 的直角坐标方程;曲线C 的极坐标方程两边同乘以r 利用222,cos ,sin x y x y rr q r q =+== 即可得其直角坐标方程,然后化为参数方程即可;(2)联立6232sin pq r q qì=ïïíï=+ïî,得14OA r ==,同理223OB r ==形面积公式可得结果.【详解】(1)依题意,直线1l 直角的坐标方程为3y x =, 直线2l 直角的坐标方程为3y x ,由2sin r q q =+得223cos 2sin rr q r q =+,222,cos ,x y x sin y r r q r q =+==,()()222314x y r \=-+-=,\曲线C 的参数方程为32cos (12x y sin a a aì=ïíï=+î为参数).(2)联立6232sin pq r q qì=ïïíï=+ïî,得14OA r ==, 同理223OB r ==6AOBp?, 11142323222AOB S OA OB sin AOB D \=?创?,即AOB D 的面积为23【点睛】本题主要考查极坐标方程化为直角坐标方程与参数方程,属于中档题. 利用关系式cos sin x y r q r qì=ïí=ïî,222tan x y yxr q ì+=ïíï=ïî可以把极坐标方程与直角坐标方程互化,通过选取相应的参数可以把普通方程化为参数方程. 23.选修4-5:不等式选讲 已知函数()()13f x x a a R =-?. (1)当2a =时,解不等式()113x f x -+?; (2)设不等式()13x f x x -+?的解集为M ,若11[,]32M Í,求实数a 的取值范围.【答案】(1){|01}x x x 3或.(2)14[,]23-. 【解析】试题分析:(1)利用零点分段讨论求解.(2)利用11,32x 轾Î犏犏臌化简313x x a x -+-?得到1x a -?在区间11,32轾犏犏臌上是恒成立的,也就是11a x a -<<+是不等式11,32轾犏犏臌的子集,据此得到关于a 的不等式组,求出它的解即可.解析:(1)当2a =时,原不等式可化为3123x x -+-?.①当13x £时,原不等式可化为3123x x -++-?,解得0x £,所以0x £; ②当123x <<时,原不等式可化为3123x x --+?,解得1x ³,所以12x ?; ③当2x ³时,原不等式可化为3123x x --+?,解得32x ³,所以2x ³.综上所述,当2a =时,不等式的解集为{}|01x x x 3或. (2)不等式()13x f x x -+?可化为313x x a x -+-?,依题意不等式313x x a x -+-?在11,32轾犏犏臌恒成立,所以313x x a x -+-?,即1x a -?,即11a xa -#+,所以113112a a ì-?ïïíï+?ïî.解得1423a -#,故所求实数a 的取值范围是14,23轾-犏犏臌.。
2019届广东省学业水平考试汕头市模拟训练题(一)
2
(1)求 an 的通项公式; (2)若 bn 2
a n 1
,求 bn 的前 n 项和 Tn .
2019 届广东省普通高中学业水平考试汕头市数学科模拟训练题(一)
第 3 页 共 4 页
A. 最小正周期为 2 ,最大值为 2 C. 最小正周期为 2 ,最大值为
B. 最小正周期为 ,最大值为 2 D. 最小正周期为 ,最大值为
1 2
1 2
第 1 页 共 4 页
2019 届广东省普通高中学业水平考试汕头市数学科模拟训练题(一)
8.已知向量 a 1, 3 , b 3, m .若 a // b ,则实数 m =( A. 2 3 B.
Байду номын сангаас
)
3
C. 3 3
D. 3 )
9.从 A、B、C 三件产品中任选两件,A 被选中的概率为( A.
1 2
B.
1 3
C.
2 3
D. 1
10.图 1 是甲、乙两名学生几次数学测试得分的茎叶图,则甲、乙两人这几次测试得分的中位 数较大的是( A. 86 B. 85 C. 84 D. 81 )
图1 11.如图2,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体 积为( A. B. C. )
4 3 8 3 16 3
图2 )
D. 8
12.设 f ( x ) 是偶函数,且在 (0, ) 内是减函数,又 f (1) 0 ,则 x f ( x ) 0 的解集是( A. {x | 3 x 0 或 x 3} C. {x | x 3 或 x 3}
2019年广东省初中学业水平考试(数学)试卷及答案(可编辑修改word版)
2019 年广东省初中学业水平考试数学说明:1.全卷共4 页,满分为120 分,考试用时为100 分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10 小题,每小题3 分,共30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2 的绝对值是(A)A.2 B.-2 C.12D.±22.某网店2019 年母亲节这天的营业额为221000 元,将数221000 用科学记数法表示为(B)A.2.21×106 B.2.21×105 C.221×103 D.0.221×1063.如图,由4 个相同正方体组合而成的几何体,它的左视图是(A)4.下列计算正确的是(C)A.b6÷b3=b2B.b3⋅b3=b9C.a2+a2= 2a2D.(a3 )3 =a642 5. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6. 数据 3、3、5、8、11 的中位数是(C )A .3B .4C .5D .67. 实数 a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A . a > bB . a < bC . a + b > 0D . a < 0b8. 化简 的结果是(B )A .-4B .4C .±4D .29. 已知 x 、 x 是一元二次方程 x 2 - 2x = 0 的两个实数根,下列结论错误的是(D ) 1 2A. x ≠ x B . x 2 - 2x =0 1 2 1 1C . x 1 + x 2 =2D . x 1 ⋅ x 2 =210. 如图,正方形 ABCD 的边长为 4,延长 CB 至 E 使 EB=2,以 EB 为边在上方作正方形 EFGB ,延长 FG 交 DC 于 M ,连接 AM 、AF ,H 为 AD 的中点,连接 FH 分别与 AB 、AM 交于点 N 、K .则下列结论: ①△ANH ≌△GNF; ②∠AFN = ∠HFG ; ③FN = 2NK ; ④S △AFN : S △ADM = 1: 4 .其中正确的结论有(C )3 A.1 个 B .2 个 C .3 个 D .4 个二、填空题(本大题 6 小题,每小题 4 分,共 24 分)请将下列各题的正确答案填写在答题卡相应的位置上. ⎛ 1 ⎫-111.计算: 20190 + ⎪ ⎝ 3 ⎭答案:4= .解析:本题考查了零次幂和负指数幂的运算12.如图,已知 a b ,∠1 = 75 °,则∠2= .答案:105︒解析:本题考查了平行线的性质,互为补角的计算13. 一个多边形的内角和是1080︒答案:8,这个多边形的边数是 .解析:本题考查了多边形内角和的计算公式14. 已知 x = 2 y + 3 ,则代数式4x - 8 y + 9 的值是 .答案:21解析:整体思想,考查了整式的运算15. 如图,某校教学楼 AC 与实验楼 BD 的水平间距 CD=15 米,在实验楼顶部 B 点测得教学楼顶部 A 点的仰角是 30°,底部 C 点的俯角是 45°,则教学楼 AC 的高度是 米(结果保留根号) .答案: (15 + 15 3 )⎩ 解析:本题利用了特殊三角函数值解决实际问题16. 如题 16-1 图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题 16-2 图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用 9 个这样的图形(题 16-1图)拼出来的图形的总长度是(结果用含 a 、b 代数式表示) .答案: a + 8b解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)⎧x -1 > 2 ① 17.解不等式组: ⎨2 ( x +1) > 4 ②解 ① x -1 > 2x >3② 2(x +1) > 42x + 2 > 42x > 2x > 12 ∴该不等式组的解集是 x >3⎛ x - 1⎫÷ x 2- x 18. 先化简,再求值: x - 2 x - 2 ⎪ x 2 - 4 , 其中 x = .⎝ ⎭解 原式= x -1 ⋅ (x + 2)(x - 2)x - 2= x + 2xx (x -1)当 x =原式== 2 + 2 22=1+19. 如图,在△ABC 中,点 D 是 AB 边上的一点.(1) 请用尺规作图法,在△ABC 内,求作∠ADE ,使∠ADE =∠B ,DE 交 AC 于 E ;(不要求写作法,保留作图痕迹)(2) 在(1)的条件下,若 AD = 2 ,求 AE 的值.DB EC22 + 222解(1)如图(2) ∠ADE =∠B, ∠A =∠A ∴∆ADE ∽∆ABC∴AE=AD= 2 EC DB四、解答题(二)(本大题3 小题,每小题7 分,共21 分)20.为了解某校九年级全体男生1000 米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D 四个等级,绘制如下不完整的统计图表,如题20 图表所示,根据图表信息解答下列问题:(1)x= ,y= ,扇形图中表示C 的圆心角的度数为度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.⎩⎩ 解 (1) x = 4 ;y = 40 ; 36(2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为 1答:同时抽到甲、乙两名学生的概率为 。
2019年1月广东省普通高中学业水平考试数学试题及答案解析
2019年1月广东省普通高中学业水平考试数学试卷数学试卷(B 卷)一、选择题:本大题共15小题,每小题4分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}0,2,4A =,{}2,0,2B =-, 则A B =( )A.{}0,2B.{}2,4-C.[]0,2D.{}2,0,2,4-2.设i 为虚数单位,则复数()3i i += ( ) A.13i +B.13i -+C.13i -D.13i --3.函数()3log 2y x =+的定义域为( ) A.()2,-+∞B.()2,+∞C.[)2,-+∞D.[)2,+∞4.已知向量()()2,2,2,1a b =-=-,则a b += ( )A.1C.5D.255.直线3260x y +-=的斜率是( )A.32B.32-C.23D.23-6.不等式290x -<的解集为( ) A.{}3|x x <-B.{}3|x x <C.{}3|3x x x <->或D.{}3|3x x -<<7.已知0a >=( )A.12a B.32a C.23a D.13a8.某地区连续六天的最低气温(单位:℃)为: 9, 8, 7, 6, 5, 7, 则该六天最低气温的平均数和方差分别为( ) A.7和53B.8和83C.7和1D.8和239.如图,长方体1111ABCD A BC D -中,11,2AB AD BD ===,则1AA = ( )A.1C.210.命题“,sin 10x R x ∀∈+≥”的否定是( ) A.00,sin 10x R x ∃∈+< B.,sin 10x R x ∀∈+< C.00,sin 10x R x ∃∈+≥D.,sin 10x R x ∀∈+≤11.设,x y 满足约束条件30100x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最大值为( )A.-5B.-3C.1D.412.已知圆C 与y 轴相切于点()0,5,半径为5,则圆C 的标准方程是( ) A.()()225525x y -+-= B.()()225525x y ++-=C.()()22555x y -+-=或()()22555x y ++-= D.()()225525x y -+-=或()()225525x y ++-=13.如图,ABC △中,,AB a AC b ==,4BC BD =,用,a b 表示AD ,正确的是( ) A.1434AD a b =+B.5414AD a b =+ C.3414AD a b =+D.5414AD a b =- 14.若数列{}n a 的通项26n a n =-,设n n b a =,则数列{}n b 的前7项和为( ) A.14B.24C.26D.2815.已知椭圆()222210b x y a ba +>>=的长轴为12A A ,P 为椭圆的下顶点,设直线12,PA PA 的斜率分别为12,k k ,且D 1C 1B 1A 1D C BAB1212k k ⋅=-,则该椭圆的离心率为( )C.12D.14二、填空题:本大题共4小题,每小题4分,满分16分.16.已知角α的顶点与坐标原点重合,终边经过点()4,3P -,则cos α=______. 17.在等比数列{}n a 中,121,2a a ==,则4a =______.18.袋中装有五个除颜色外完全相同的球,其中2个白球,3个黑球,从中任取两球,则取出的两球颜色相同的概率是______.19.已知函数()f x 是定义在(),-∞+∞上的奇函数,当[)0,x ∈+∞时,()24f x x x =-,则当(),0x ∈-∞时,()f x =______.三、解答题:本大题共2小题,每小题12分,满分24分.解答须写出文字说明、证明过程和演算步骤. 20.ABC △的内角,,A B C 的对边分别为,,a b c ,已知3cos 5A =,5bc =. (1)求ABC △的面积; (2)若6b c +=,求a 的值.21.如图,三棱锥P ABC -中,PA PB ⊥,PB PC ⊥,PC PA ⊥ ,2PA PB PC ===,E 是AC 的中点,点F 在线段PC 上.(1)求证:PB AC ⊥;(2)若PA ∕∕平面BEF , 求四棱锥B APFE -的体积. (参考公式:锥体的体积公式13V Sh =,其中S 是底面积,h 是高.)2019年1月广东省普通高中学业水平考试数学试卷参考答案一、选择题:本大题共15小题,每小题4分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}0,2,4A =,{}2,0,2B =-, 则A B =( )A.{}0,2B.{}2,4-C.[]0,2D.{}2,0,2,4-FECBAP1.D 【解析】由并集的定义,可得{}2,0,2,4A B =-.故选D.2.设i 为虚数单位,则复数()3i i += ( ) A.13i +B.13i -+C.13i -D.13i --2.B 【解析】()23331i i i i i +=+=-.故选B.3.函数()3log 2y x =+的定义域为( ) A.()2,-+∞B.()2,+∞C.[)2,-+∞D.[)2,+∞3.A 【解析】要使()3log 2y x =+有意义,则20x +>,解得2x >-,即定义域为()2,-+∞. 故选A.4.已知向量()()2,2,2,1a b =-=-,则a b += ( )A.1C.5D.254.C 【解析】由()()2,2,2,1a b =-=-,可得()4,3a b +=-,则245a b +==+.故选C.5.直线3260x y +-=的斜率是( )A.32B.32-C.23D.23-5.B 【解析】直线3260x y +-=,可化为332y x =-+,故斜率为32-.故选B.6.不等式290x -<的解集为( ) A.{}3|x x <-B.{}3|x x <C.{}3|3x x x <->或D.{}3|3x x -<<6.D 【解析】由290x -<,可得29x <,解得33x -<<.故选D.7.已知0a >=( )A.12a B.32a C.23a D.13a7.D23a =2113323a aa a-===.故选D.8.某地区连续六天的最低气温(单位:℃)为: 9, 8, 7, 6, 5, 7, 则该六天最低气温的平均数和方差分别为( ) A.7和53B.8和83C.7和1D.8和238.A 【解析】平均数()987657167x +++++==⨯, 方差()()()()()()22222229787776757156377s -+-+-+-+-+⎡⎤==⎣⎦-.故选A.9.如图,长方体1111ABCD A BC D -中,11,2AB AD BD ===,则1AA = ( )A.1C.29.B 【解析】在长方体中,222211BD AB AD AA =++,则22221211AA =++,解得1AA =故选B.10.命题“,sin 10x R x ∀∈+≥”的否定是( ) A.00,sin 10x R x ∃∈+< B.,sin 10x R x ∀∈+< C.00,sin 10x R x ∃∈+≥D.,sin 10x R x ∀∈+≤10.A 【解析】全称命题的否定是把全称量词改为存在量词,并否定结论,则原命题的否定为“00,sin 10x R x ∃∈+<”.故选A.11.设,x y 满足约束条件30100x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-的最大值为( )D 1C 1B 1A 1D C BAA.-5B.-3C.1D.411.C 【解析】作出约束条件表示的平面区域如图所示,当直线2z x y =-过点()1,0A 时,z 取得最大值,1201max z =-⨯=.故选C.12.已知圆C 与y 轴相切于点()0,5,半径为5,则圆C 的标准方程是( ) A.()()225525x y -+-= B.()()225525x y ++-=C.()()22555x y -+-=或()()22555x y ++-= D.()()225525x y -+-=或()()225525x y ++-=12.D 【解析】由题意得圆C 的圆心为()5,5或()5,5-,故圆C 的标准方程为()()225525x y -+-=或()()225525x y ++-=.故选D.13.如图,ABC △中,,AB a AC b ==,4BC BD =,用,a b 表示AD ,正确的是( )A.1434AD a b =+B.5414AD a b =+ C.3414AD a b =+D.5414AD a b =-B13.C 【解析】由4BC BD =,可得4()AC AB AD AB -=-,则3414AD AB AC =+,即3414AD a b =+.故选C.14.若数列{}n a 的通项26n a n =-,设n n b a =,则数列{}n b 的前7项和为( ) A.14B.24C.26D.2814.C 【解析】当3n ≤时,0n a ≤,62n n n b a a n ==-=-,即124,2b b ==,30b =.当3n >时,0,26n n n n a b a a n >===-,即452,4b b ==,676,8b b ==.所以数列{}n b 的前7项和为420246826++++++=.故选C.15.已知椭圆()222210b x y a b a +>>=的长轴为12A A ,P 为椭圆的下顶点,设直线12,PA PA 的斜率分别为12,k k ,且1212k k ⋅=-,则该椭圆的离心率为( )C.12D.1415.B 【解析】由题意得()()()12,0,,0,0,A a A a P b --,则1k b a =-, 2k b a =,则212212b k k a ⋅=-=-,即222a b =,所以2222c a b b =-=,离心率c e a ====.故选B. 二、填空题:本大题共4小题,每小题4分,满分16分.16.已知角α的顶点与坐标原点重合,终边经过点()4,3P -,则cos α=______.16.45 【解析】由题意得4,3x y ==-,5r ===,4cos 5x r α==.17.在等比数列{}n a 中,121,2a a ==,则4a =______. 17.8 【解析】设等比数列{}n a 的公比为q ,由题意得212a q a ==,则3341128a a q ==⨯=.18.袋中装有五个除颜色外完全相同的球,其中2个白球,3个黑球,从中任取两球,则取出的两球颜色相同的概率是______. 18.25【解析】记2个白球分别为12,白白,3个黑球分别为123,,黑黑黑,从这5个球中任取两球,所有的取法有12{,}白白,11{,}白黑,12{,}白黑,13{,}白黑,21{,}白黑,22{,}白黑,23{,}白黑,12{,}黑黑,13{,}黑黑,23{,}黑黑,共10种.其中取出的两球颜色相同取法的有4种,所以所求概率为42105P ==.19.已知函数()f x 是定义在(),-∞+∞上的奇函数,当[)0,x ∈+∞时,()24f x x x =-,则当(),0x ∈-∞时,()f x =______.19.24x x -- 【解析】当(),0x ∈-∞时,()0,x -∈+∞),由奇函数可得()()()()2244f x f x x x x x ⎡⎤=--=----=--⎣⎦.三、解答题:本大题共2小题,每小题12分,满分24分.解答须写出文字说明、证明过程和演算步骤. 20.ABC △的内角,,A B C 的对边分别为,,a b c ,已知3cos 5A =,5bc =. (1)求ABC △的面积; (2)若6b c +=,求a 的值.20.【解析】(1)∵A 是ABC △的内角,即()0,A π∈,3cos 5A =,∴4sin 5A ==. 又5bc =,∴11sin 425522ABC S bc A ==⨯⨯=△. (2)由2223cos 25b c a A bc +-==, 5bc =,可得2226b c a +-=. 由5,6bc b c =+=,可得()222226b c b c bc +=+-=.∴2266a -=,解得a =21.如图,三棱锥P ABC -中,PA PB ⊥,PB PC ⊥,PC PA ⊥ ,2PA PB PC ===,E 是AC 的中点,点F 在线段PC 上.(1)求证:PB AC ⊥;(2)若PA ∕∕平面BEF , 求四棱锥B APFE -的体积. (参考公式:锥体的体积公式13V Sh =,其中S 是底面积,h 是高.)21.【解析】(1)∵PA PB ⊥,PB PC ⊥,PA ⊂平面PAC ,PC ⊂平面PAC ,PA PC P =,∴PB ⊥平面PAC .又AC ⊂平面PAC ,∴PB AC ⊥.(2)∵PA ∕∕平面BEF , PA ⊂平面PAC ,平面BEF 平面PAC EF =,∴PA EF ∕∕.又E 为AC 的中点,∴F 为PC 的中点. ∴34PAC FEC PAC APFE S S S S =-=四边形△△△. ∵PC PA ⊥, 2PA PC ==,∴12222PAC S ⨯⨯==△. ∴32APFE S =四边形. 由(1)得PB ⊥平面PAC ,∴2PB =是四棱锥B APFE -的高. ∴12113332B APFE APFE V S PB -==⋅⨯=⨯四棱锥四边形. FECBAP。
(完整版)2019年广东省初中学业水平考试(数学)试卷及答案
2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的绝对值是(A)A.2 B.-2 C.12D.±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为(B)A.2。
21×106 B.2。
21×105 C.221×103 D.0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是(A)4.下列计算正确的是(C ) A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6.数据3、3、5、8、11的中位数是(C ) A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A .a b >B .a b <C .0a b +>D .0a b<824的结果是(B ) A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是(D ) A .12x x ≠ B .2112=0x x - C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有(C )A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .答案:4解析:本题考查了零次幂和负指数幂的运算12.如图,已知a b ,175∠=°,则∠2= .答案:105︒解析:本题考查了平行线的性质,互为补角的计算13.一个多边形的内角和是1080︒ ,这个多边形的边数是 .答案:8解析:本题考查了多边形内角和的计算公式14.已知23x y =+,则代数式489x y -+的值是 .答案:21解析:整体思想,考查了整式的运算15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=153米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号) .答案:()15153+解析:本题利用了特殊三角函数值解决实际问题16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16—2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①②解 ①21>-x x >3 ②4)1(2>+x 422>+x 22>x 1>x∴该不等式组的解集是x >318.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x 解 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x原式=222+ =2222+ =21+19.如图,在ABC △中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC △内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AEEC的值.解 (1)如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆ 2==∴DBADEC AE四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 (1) 4x = ; 40y = ; 36(2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21 = 63答:同时抽到甲、乙两名学生的概率为13。
2019年1月广东省普通高中学业水平考试数学解析版Word版含答案
机密★启用前试卷类型A 2019年1月广东省普通高中学业水平考试数学试卷一、选择题:本大题共15 小题,每小题 4 分,满分60 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 A {0,2, 4}, B { 2,0, 2},,则A B ()A.{0 ,2}B.{-2 ,4 }C.[0,2]D.{-2 ,0,2,4}【答案】 DA B 。
{ 2,0,2,4}2.设i 为虚数单位,则复数i 3 i = ()A. 1+3iB. 1+3iC. 1 3iD. 1 3i【答案】 B2i i i i i 。
3 3 3 13.函数y log3(x2) 的定义域为()A.( 2,+ ) B. (2,+ ) C. [ 2,+ ) D. [2,+ )【答案】 Ax 2 0, x 2。
4.已知向量a (2, 2),b (2, 1),,则a b ()A.1 B. 5 C.5 D. 25【答案】 C2 2a b (4, 3), a b 4 ( 3) 5。
5.直线3x 2y 6 0 的斜率是()A. 32B. -32C.23D. -23【答案】 BA 3 k=- =-B 。
216.不等式 2 9 0x 的解集为()A. { x x 3}B. { x x 3}C.{ x x 3或x 3}D. {x 3 x 3}【答案】 D2 9 0, 2 9,3 3x x x。
7.已知 a 0,则a3 2a()1 32 1A.a2 B.2a C.3a D.a3【答案】 Da a23 2a a32 11a a3 3。
8.某地区连续六天的最低气温(单位: C )为:9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为()A.57和 B .388和 C. 7和1D.38和23【答案】 A9 8 7 6 5 7x 762 1 2 2 2 2 2 2 5 s [(9 7) +(8 7) +(7 7) +(6 7) +(5 7) +(7 7) ] 。
2019年广东省初中学业水平考试(数学)试卷及答案
2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.—2的绝对值是(A )A .2B .—2C .12 D .±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为(B )A .2。
21×106B .2。
21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是(A )4.下列计算正确的是(C )A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6.数据3、3、5、8、11的中位数是(C )A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A .a b >B .a b <C .0a b +>D .0a b< 8.化简24的结果是(B )A .—4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是(D ) A .12x x ≠ B .2112=0x x -C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有(C )A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .答案:4解析:本题考查了零次幂和负指数幂的运算12.如图,已知a b,175∠=°,则∠2=.答案:105︒解析:本题考查了平行线的性质,互为补角的计算13.一个多边形的内角和是1080︒,这个多边形的边数是.答案:8解析:本题考查了多边形内角和的计算公式14.已知23x y=+,则代数式489x y-+的值是.答案:21解析:整体思想,考查了整式的运算15.如图,某校教学楼AC与实验楼BD的水平间距CD=153米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号) .答案:(15153+解析:本题利用了特殊三角函数值解决实际问题16.如题16—1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16—2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①② 解 ①21>-xx >3②4)1(2>+x422>+x22>x1>x∴该不等式组的解集是x 〉318.先化简,再求值:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭, 其中=2x . 解 原式=)1()2)(2(21--+⋅--x x x x x x =x x 2+ 当2=x原式=222+ =2222+ =21+19.如图,在ABC △中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC △内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AE EC的值.解 (1)如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆2==∴DBAD EC AE四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 (1) 4x = ; 40y = ; 36(2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21=63答:同时抽到甲、乙两名学生的概率为13。
2019年广东省初中学业水平考试数学试卷及答案
2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的绝对值是(A )A .2B .-2C .12 D .±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为(B )A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是(A )4.下列计算正确的是(C )A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6.数据3、3、5、8、11的中位数是(C )A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A .a b >B .a b <C .0a b +>D .0a b< 8.化简24的结果是(B )A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是(D ) A .12x x ≠ B .2112=0x x -C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有(C )A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .答案:4解析:本题考查了零次幂和负指数幂的运算12.如图,已知a b,175∠=°,则∠2=.答案:105︒解析:本题考查了平行线的性质,互为补角的计算13.一个多边形的内角和是1080︒,这个多边形的边数是.答案:8解析:本题考查了多边形内角和的计算公式14.已知23x y=+,则代数式489x y-+的值是.答案:21解析:整体思想,考查了整式的运算15.如图,某校教学楼AC与实验楼BD的水平间距CD=153米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).答案:(15153+解析:本题利用了特殊三角函数值解决实际问题16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①② 解 ①21>-xx >3②4)1(2>+x422>+x22>x1>x∴该不等式组的解集是x >318.先化简,再求值:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭, 其中=2x . 解 原式=)1()2)(2(21--+⋅--x x x x x x =x x 2+ 当2=x原式=222+ =2222+ =21+19.如图,在ABC △中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC △内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AE EC的值.解 (1)如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆2==∴DBAD EC AE四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 (1) 4x = ; 40y = ; 36(2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21=63答:同时抽到甲、乙两名学生的概率为13。
(完整版)2019广东省中考数学试卷及答案
2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的绝对值是 A .2B .-2C .12D .±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为 A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是 A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是 A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a b >B .a b <C .0a b +>D .0ab<8的结果是 A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是 A .12x x ≠ B .2112=0x x - C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFNADMSS=④.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .12.如图,已知a b ,175∠=°,则∠2= .13.一个多边形的内角和是1080︒ ,这个多边形的边数是 . 14.已知23x y =+ ,则代数式489x y -+ 的值是 .15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号) .16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解不等式组:()12214x x ->⎧⎨+>⎩①②18.先化简,再求值:221224xx x x x x -⎛⎫-÷ ⎪---⎝⎭,其中x19.如图,在ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC 内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB ,求AEEC的值.四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC 的三个顶点均在格点上,以点A 为圆心的EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图,一次函数y =k 1x +b 的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为(-1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.24.如题24-1图,在ABC 中,AB =AC ,⊙O 是ABC 的外接圆,过点C 作∠BCD =∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF =AC ,连接AF .(1)求证:ED =EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是ACD 的内心,25BC BE ⋅=,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线2y x 与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,CAD 绕点C 顺时针旋转得到CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作1DD x ⊥轴于点D 1,点P 是抛物线上一动点,过点P 作PM x ⊥轴,点M 为垂足,使得PAM 与1DD A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答....这样的点P 共有几个?2019广东省中考数学答案一、选择题二、填空题 11、答案:4解析:本题考查了零次幂和负指数幂的运算 12、答案:︒105解析:本题考查了平行线的性质,互为补角的计算 13、答案:8解析:本题考查了多边形内角和的计算公式 14、答案:21解析:整体思想,考查了整式的运算 15、答案:31515+解析:本题利用了特殊三角函数值解决实际问题16、答案:b a 8+三 解答题(一)17、解: ①得:3>x ①得:1>x①不等式组的解集为:3>x18、解: 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x 时 原式=222+ =2222+ =21+19、解:(1)如图所示:①ADE 即为所求。
月广东省普通高中学业水平考试数学解析 版含答案
机密★启用前试卷类型A2019年1月广东省普通高中学业水平考试数 学 试 卷一、 选择题:本大题共15小题,每小题4分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{02,4},{2,0,2}A B ==-,,,则A B = ( )A.{0,2}B.{-2,4 }C.[0,2]D.{-2,0,2,4} 【答案】D{2,0,2,4}A B =-。
2.设i 为虚数单位,则复数()3=i i +( )A. 1+3iB. 1+3i -C. 13i -D. 13i -- 【答案】B()23331i i i i i +=+=-。
3.函数3log (2)y x =+的定义域为( )A .(2+)-∞, B.(2+)∞, C. [2+)-∞, D. [2+)∞, 【答案】A20,2x x +>>-。
4.已知向量(2,2)(2,1),a b =-=-,,则a b +=( )A .1 B.5 C .5 D. 25 【答案】C224,3),4(3)5a b a b +=-+=+-=(。
5.直线3260x y +-=的斜率是( )A.32 B. 3-2 C. 23 D. 2-3【答案】B3=-=-2A kB 。
6.不等式290x -<的解集为( )A.{3}x x <-B. {3}x x <C.{33}x x x <->或D. {33}x x -<< 【答案】D2290,9,33x x x -<<-<<。
7.已知0a >,则32aa=( )A. 12a B.32a C. 23a D. 13a 【答案】 D211332323aa aa aa-===。
8.某地区连续六天的最低气温(单位:C )为:9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为( )A. 573和 B . 883和 C. 71和 D. 283和 【答案】A98765776x +++++==,222222215[(97)+(87)+(77)+(67)+(57)+(77)]63s =------=。
2019年1月广东省普通高中学业水平考试数学真题(含答案解析)
好记星书签整理
机密★启用前试卷类型:A 2019年1月广东省普通高中学业水平考试
数学试卷
本试卷共4页,21小题,满分100分。
考试用时90分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(A)填涂在答题卡相应
位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.每题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答
案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本题共有15小题,每小题4分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={0,2,4},B={-2,0,2},则AUB=
A.{0,2} B.{-2,4}
C.[0,2] D.{-2,0,2,4}
2.设i为虚数单位,则复数i(3+i)=
A.1+3i B.-1+3i
C.1-3i D.-1-3i
3.log3(x+2)的定义域为
A.(-2,+∞)B.(2,+∞)
C.[-2,+∞)D.[ 2,+∞)
4.已知量a=(2,-2),b=(2,-1),则|a+b|
A.1 B.5
C.5 D.25
数学试卷A第1页(共4页)。
2019年广东普通高中学业水平考试数学试题
2019年学业水平考试数学试题一、选择题:本题共15小题,每小题4分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集体{}4,2,0=A ,{}2,0,2-=B ,则=B A ( ){}2,0.A {}4,2.-B C .[0,2] {}4,2,0,2.-D2.设i 为虚数单位,则复数=+)3(i i ( )i A 31.+ i B 31.+- i C 31.- i D 31.--3. 函数)2(log )(3+=x x f 的定义域为( )),2.(+∞-A ),2.(+∞B ),2.[+∞-C ),2.[+∞D4. 已知向量)1,2(),2,2(-=-=b a +=( )1.A 5.B 5.C 25.D5. 直线0623=-+y x 的斜率是( ) 23.A 23.-B 32.C 32.-D 6. 不等式092<-x 的解集为( ){}3.-<x x A {}3.<x x B {}33.>-<x x x C 或 {}33.<<-x x D7. 已知0<a ,则32a a =( ) 21.a A 23.a B 32.a C 31.a D8. 某地区连续六天的最低气温(单位:C)为9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为( )53和7.A 388.和B 和17.C 328.和D 9.如图1,长方形1111D C B A ABCD -中,,2,11===BD AD AB则1AA = ( )1.A2.B 2.C3.D10.命题”“01sin ,≥+∈∀x R x 的否定是( )0sin ,.00<∈∃x R x A 01sin ,.<+∈∀x R x B01sin ,.00≥+∈∃x R x C 01sin ,.≤+∈∀x R x D11. 设y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≥+-00103y y x y x ,则y x z 2-=的最大值为( ) 5.-A 3.-B 1.C 4.D12.已知圆C和y 轴相切于点(0,5),半径为5,则圆C的标准方程为( )25)5()5.(22=-+-y x A 25)5()5.(22=-++y x B5)5()5(5)5()5.(2222=-++=-+-y x y x C 或25)5()5(25)5()5.(2222=-++=-+-y x y x D 或13.如图2,ABC ∆中,4,,===,用,表示,正确的是( )b a AD A 4341.+=b a AD B 4145.+= b a AD C 4143.+= b a AD D 4145.-= 14. 若数列{}n a 的通项公式为62-=n a n ,设n n a b =,则数列{}n b 的前7项和为( ) 14.A 24.B 26.C 28.D15. 已知椭圆)0(12222>>=+b a by a x 的长轴为21A A ,P 为椭圆的下顶点,设直线21,PA PA 的斜率分别是21,k k ,且2121-=∙k k ,则椭圆的离心率为( ) 23.A 22.B 21.C 41.D 二、填空题:本题共4小题,每小题4分,共16分。
2019年广东省初中学业水平考试(数学)试卷及答案
2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4,非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的绝对值是(A)A.2B.-2C.12D.±22.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为(B)A.2.21×106B.2.21×105C.221×103D.0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是(A)4.下列计算正确的是(C)A .632b b b ÷=B .339b b b ⋅=C .2222a a a +=D .()363a a =5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是(C )6.数据3、3、5、8、11的中位数是(C ) A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是(D )A .a b >B .a b <C .0a b +>D .0ab<8(B ) A .-4B .4C .±4D .29.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是(D ) A .12x x ≠B .2112=0x x -C .12=2x x +D .12=2x x ⋅10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:ANH GNF ①≌△△ ;AFN HFG ∠=∠② ;2FN NK =③;:1:4AFN ADM S S =④△△.其中正确的结论有(C )A.1个B.2个C.3个D.4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算:1120193-⎛⎫+ ⎪⎝⎭= .答案:4解析:本题考查了零次幂和负指数幂的运算12.如图,已知a b,175∠=°,则∠2=.答案:105︒解析:本题考查了平行线的性质,互为补角的计算13.一个多边形的内角和是1080︒,这个多边形的边数是.答案:8解析:本题考查了多边形内角和的计算公式14.已知23x y=+,则代数式489x y-+的值是.答案:21解析:整体思想,考查了整式的运算15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号) .答案:(15+解析:本题利用了特殊三角函数值解决实际问题16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是 (结果用含a 、b 代数式表示) .答案:8a b +解析:本题考查了轴对称图形的性质,根据题目找规律三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:()12214x x ->⎧⎨+>⎩①②解 ①21>-x x >3 ②4)1(2>+x 422>+x 22>x 1>x∴该不等式组的解集是x >318.先化简,再求值:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭, 其中x 解 原式=)1()2)(2(21--+⋅--x x x x x x =xx 2+ 当2=x原式=222+ =2222+ =21+19.如图,在ABC △中,点D 是AB 边上的一点.(1)请用尺规作图法,在ABC △内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AEEC的值.解 (1)如图(2)A A B ADE ∠=∠∠=∠,ADE ∆∴∽ABC ∆ 2==∴DBADEC AE四、解答题(二) (本大题3小题,每小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x = ,y = ,扇形图中表示C 的圆心角的度数为 度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.解 (1) 4x = ; 40y = ; 36(2)解:由题意可知树状图为由树状图可知,同时抽到甲、乙两名学生的概率为21=63答:同时抽到甲、乙两名学生的概率为13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机密★启用前
试卷类型A
2019年1月广东省普通高中学业水平考试
数 学 试 卷
一、 选择题:本大题共15小题,每小题4分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{02,4},{2,0,2}A B ==-,,
,则A B = ( )
A.{0,2}
B.{-2,4 }
C.[0,2]
D.{-2,0,2,4} 【答案】D
{2,0,2,4}A B =-。
2.设i 为虚数单位,则复数()3=i i +( )
A. 1+3i
B. 1+3i -
C. 13i -
D. 13i -- 【答案】B
()23331i i i i i +=+=-。
3.函数3log (2)y x =+的定义域为( )
A .(2+)-∞, B.(2+)∞,
C. [2+)-∞,
D. [2+)∞, 【答案】A
20,2x x +>>-。
4.已知向量(2,2)(2,1),a b =-=-,,则a b +=( )
A ..5 D. 25 【答案】C
24,3),4(5a b a b +=-+=+-=(。
5.直线3260x y +-=的斜率是( ) A.
32 B. 3-2 C. 23 D. 2
-3
【答案】B
3=-
=-2
A k
B 。
6.不等式2
90x -<的解集为( )
A.{3}x x <-
B. {3}x x <
C.{33}x x x <->或
D. {33}x x -<< 【答案】D
2290,9,33x x x -<<-<<。
7.已知0a >,则
3
2
a
a
=( )
A. 12
a B.32
a C. 23
a D. 13
a 【答案】D
2113
3
23
2
3
a
a a
a a
a
-
=
==。
8.某地区连续六天的最低气温(单位:C )为:9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为( )
A. 5
73和 B . 883和 C. 71和 D. 283
和 【答案】A
98765776x +++++=
=,222222215
[(97)+(87)+(77)+(67)+(57)+(77)]63
s =------=。
9.如图1,长方体1111ABCD A B C D -中,1AB AD ==,12BD =,则1AA =( )
A. 1
B.2
C. 2
D.3
【答案】B
22222BD AB AD DD =++,1=2DD
10.命题“,sin 10x R x ∀∈+≥”的否定是( )
A. 00,sin 10x R x ∃∈+<
B. ,sin 10x R x ∀∈+<
C. 00,sin 10x R x ∃∈+≥
D.
,sin 10x R x ∀∈+≤
【答案】A
11.设x y ,满足约束条件30100x y x y y -+≥⎧⎪
+-≤⎨⎪≥⎩
,则-2z x y =的最大值为( )
A. – 5
B. – 3
C. 1
D. 4 【答案】C
3=011=02x y x x y y -+=-⎧⎧→⎨⎨+-=⎩⎩,3=03=00x y x y y -+=-⎧⎧→⎨⎨=⎩⎩,+1=01
=00x y x y y -=⎧⎧→⎨
⎨=⎩⎩,
将三点代入2z x y =-则可得最大值为1。
12.已知圆C 与y 轴相切于点(0,5),半径为5,则圆C 的标准方程是( ) A.()()2
2
5525x y -+-= B. ()()2
2
5525x y ++-= C. ()()()()2
2
2
2
555555x y x y -+-=++-=或 D. ()()()()2
2
2
2
55255525x y x y -+-=++-=或 【答案】D
()()
22
2,5x a y b r r -+-==,又和y 轴相切于点
(0,5),5,55,5a b a b ===-=或,
则方程为(
)()()()2
2
22
55255525x y x y -+-=++-=或。
13.如图2,ABC ∆中,,,4AB a AC b BC BD ===,用,a b 表示AD ,正确的是( )
A.13
44
AD a b =
+ B. 5144AD a b =+ C. 3144AD a b =+ D.
51
44
AD a b =
- 【答案】C
111331
()444444
AD AB BD AB BC AB AC AB AC AB a b =+=+=+-=+=+。
14.若数列{}n a 的通项26n a n =-,设n n b a =,则数列{}n b 的前7项和为( ) A. 14 B. 24 C. 26 D. 28 【答案】C 前7项和为
12345674202468420246826a a a a a a a ++++++=++++++=++++++=
15.已知椭圆22
221(0)x y a b a b
+=>>的长轴为12A A ,P 为椭圆的下顶点,设直线12,PA PA 的斜率分别
为12,k k ,且121
= -
2
k k ⋅,则该椭圆的离心率为( )
A.
C. 12
D. 14
【答案】B
12(0,),(,0),(,0),P b A a A a -1200,0()0b b b b k k a a a a --====-
---,
21221=2b b b k k a a a ⋅=⋅-=-()-,
令2
2
2
2
2
=2,=1,1,
2c a b c a b e a ∴=-=∴=
==。
二、填空题:本大题共4小题,每小题4分,满分16分.
16.已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点(4,3)P -,则
cos =α .
【答案】
4
5
45,cos 5x r r α===
=。
17.在等比数列{}n a 中,121,2a a ==,则4a = . 【答案】8
22
421
2,8a q a a q a =
==⋅=。
18.袋中装有五个除颜色外完全相同的球,其中2个白球,3个黑球,从中任取两球,则取出的两球颜
色相同的概率是 .
【答案】
310
22232
5134210105
C C P C ++====。
19.已知函数()f x 是定义在,)-∞+∞(上的奇函数,当0,)x ∈+∞[时,2
()4f x x x =-,则当,0)
x ∈∞(-时,()=f x . 【答案】2
4x x -+
220,()()[(4()]4x f x f x x x x x <=-----⋅-=-+。
三、解答题:本大题共2小题,每小题12分,满分24分,解答须写出文字说明、证明过程和演算步骤. 20.ABC ∆的内角A,B,C 的对边分别为,,a b c ,已知3
cos ,55
A bc ==. (1)求ABC ∆的面积;
(2)若6b c +=,则a 的值. 【答案】 (1)34114
cos ,sin ,sin 5255
225ABC
A A S bc A =
==⋅=⋅⋅=;
(2)22222222223
2cos 256()266256205a b c bc A b c b c b c bc =+-⋅=+-⋅⋅
=+-=+--=-⋅-=,
=25a
21.如图3,三棱锥P ABC -中,,,,PA PB PB PC PC PA ⊥⊥⊥
2PA PB PC ===,E 是AC 的中点,点F 在线段PC 上.
(1)证明:PB AC ⊥;
(2)若PA 平面BEF ,求四棱锥B APFE -的体积. (参考公式:锥体的体积公式为1
3
V sh =
,其中S 是底面积, h 是高.)
【答案】
(1),,=,PA PB PB PC PC
PA P ⊥⊥
,PB PAC ∴⊥平面又,AC PAC ⊂平面PB AC ∴⊥。
(2)PA 平面BEF ,,PA PAC ⊂平面,PAC
PEF EF =平面平面1
//,2
EF PA
PAEF ∴四边形为梯形,又PA PC ⊥,PAEF ∴四边形为直角梯形,
又E 是AC 的中点,PC F ∴为的中点,又PB PAC ∴⊥平面,
111
(12)121332
B APFE APFE V S PB -∴=⋅⋅=⋅⋅+⋅⋅=四边形。