高考数学常考题型:基本不等式在实际问题中的应用

合集下载

基本不等式在实际中的应用

基本不等式在实际中的应用

基本不等式在实际中的应用1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )A .80元B .120元C .160元D .240元2.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则 ( )A .a v <<B .vC 2a b v +<D .2a b v +=3.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品 ( )A .60件B .80件C .100件D .120件4.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象有限一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.5.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 满足函数关系式35(06)814(6)k x x S x x ⎧++<<⎪=-⎨⎪≥⎩,.已知每日的利润L =S -C ,且当x =2时,L =3.(1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.6.某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足31k x m =-+(k 为常数),如果不搞促销活动,该产品的年销售量只能是1万件.已知生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为年平均每件产品成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将该产品的年利润y 万元表示为年促销费用m 万元的函数;(2)该厂家的年促销费用投入为多少万元时,厂家的年利润最大?最大年利润是多少万元?7.已知直角三角形的周长l (定值).问:直角三角形满足什么条件时,可使其面积最大?参考答案:1.答案:C 设底面矩形的长和宽分别为a m 、b m ,则ab =4.容器的总造价为202()108020()80160()ab a b a b ++⨯=++≥+=元(当且仅当a =b 时等号成立).故选C .2. 答案:A 设甲、乙两地的距离为s ,则2211sv s s a b a b ==++.由于a <b,∴11a b +>v >a ,又11a b +>v .故a v <<,选A .3.答案:B 每批生产x 件,则平均每件产品的生产准备费用是800x 元,每件产品的仓储费用是8x元,则800208x x +≥=,当且仅当8008x x =,即x =80时“=”成立, ∴每批应生产产品80件,故选B .4.解析 (1)令y =0,得221(1)020kx k x -+=,由实际意义和题设条件知x >0,k >0, 故220202010112k x k k k==≤=++,当仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使2213.2(1)20ka k a =-+成立 ⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0⇔a ≤6.所以a 不超过6(千米)时,可击中目标.5.解析 由题意得,每日的利润L 与日产量x 的函数关系式为22(06)811(6).k x x L x x x ⎧++<<⎪=-⎨⎪-≥⎩, (1)当x =2时,L =3,即322228k =⨯++-,得k =18. (2)当x ≥6时,L =11-x 为单调递减函数,故当x =6时,L max =5. 当0<x <6时,1818222(8)18688L x x x x =++=-++≤--, 当且仅当182(8)(06)8x x x -=<<-,即x =5时等号成立,即L max =6. 综上,当日产量为5吨时,每日的利润可以达到最大,最大值为6万元.6. 解析 (1)依题意得m =0时,x =1,代入31k x m =-+,得k =2,即231x m =-+. 年成本为28168163()1x m ⎛⎫+=+- ⎪+⎝⎭万元, 所以2(1.51)81631y m m ⎡⎤⎛⎫=-+-- ⎪⎢⎥+⎝⎭⎣⎦ 1628(0)1m m m =--≥+. (2)由(1)得1629(1)29211y m m ⎡⎤=-++≤-⎢⎥+⎣⎦. 当且仅当1611m m +=+,即m =3时,厂家的年利润最大,为21万元.7.解析:设直角三角形的三边分别为,,a b c ,其中c 为斜边,则法1:222a b c +=,a b c l ++=, 面积为()()()()222222*********ab a b a b l c c l cl ⎡⎤⎡⎤=+-+=--=-⎣⎦⎣⎦ 而22222a b a b ++⎛⎫ ⎪⎝⎭≥,∴2222c l c -⎛⎫ ⎪⎝⎭≥,()222c l l +≥,于是)1c l ≥.因此面积的最大值为)222132144l l -⎡⎤-=⎣⎦,当且仅当a b =,也即直角三角形为等腰直角三角形时,取得最大值.法2:∵a b +∴a b l ++(22l =,即2ab .。

如何利用基本不等式解决日常生活中的问题

如何利用基本不等式解决日常生活中的问题

如何利用基本不等式解决日常生活中的问题在我们的日常生活中,数学知识看似抽象遥远,但实际上却无处不在,尤其是基本不等式,它能帮助我们解决许多实际问题,让我们做出更明智的决策。

基本不等式,通常表述为对于任意两个正实数 a 和 b,有算术平均数大于等于几何平均数,即(a + b) /2 ≥ √(ab) 。

这个看似简单的公式,却蕴含着丰富的应用价值。

先来说说购物中的应用。

假设我们在商场看到同一款式的 T 恤有两种包装,一种是单件装,售价为x 元;另一种是三件装,售价为y 元。

如果我们打算购买 n 件 T 恤,怎样购买更划算呢?这时候基本不等式就能派上用场。

假设单件购买 m 件,三件装购买 k 套(k 为整数),使得 m + 3k= n 。

那么总花费 C = mx + ky 。

我们希望总花费最小,考虑到均值不等式,C / n =(mx + ky)/ n =(m / n)x +(k / n)y 。

为了使 C / n 最小,我们需要找到合适的 m 和 k 。

通过分析和计算,可以发现当(m / n) =(k / 3n) 时,C / n 可能取得最小值。

再比如,在安排工作任务时,基本不等式也能发挥作用。

假设一项工作总量为 A ,有甲、乙两人合作完成。

甲单独完成这项工作需要 a 小时,乙单独完成需要 b 小时。

那么两人合作完成这项工作所需的时间 t = A /(A / a + A /b) ,化简可得 t = ab /(a + b) 。

根据基本不等式,t = ab /(a +b) ≤ (a + b) / 4 。

这意味着,在分配工作任务时,要考虑到两人的工作效率,合理安排,以达到最快完成工作的目的。

在投资理财方面,基本不等式同样能提供一些思路。

假设我们有一笔资金 P ,可以选择两种投资方式,一种年利率为 r₁,另一种年利率为 r₂。

为了在一定时间内获得最大的收益,我们需要合理分配资金。

设投入第一种投资方式的资金为 x ,投入第二种的为 P x 。

基本不等式的实际应用

基本不等式的实际应用

基本不等式的实际应用
基本不等式是初中数学中重要的不等式之一,它的实际应用非常广泛。

在生活中,我们经常会遇到需要比较大小的情况,比如购物打折、交通工具的选择等等。

而基本不等式就是帮助我们进行大小比较的数学工具。

在物品打折中,我们会看到“打X折”或“打X%折”,这时我们就需要通过基本不等式来比较打折前和打折后的价格大小。

比如说,某物原价为100元,打7折后价格为70元,打8折后价格为80元,我们可以使用基本不等式7/10<8/10来说明第二种打折方式更优惠。

在选择交通工具时,我们也需要比较不同交通工具的速度和费用大小。

比如说,某旅游景点离我们住处10公里,我们可以选择步行、自行车、公交车和出租车四种交通方式。

我们需要通过基本不等式来比较它们的速度和费用大小,从而选择最优的交通方式。

除此之外,基本不等式还可以应用于代数式的简化、三角函数的证明等数学领域。

在学习数学时,我们应该充分理解和掌握基本不等式的定义和运用,以便更好地应用于实际问题中。

- 1 -。

应用基本不等式解决实际问题的方法

应用基本不等式解决实际问题的方法

应用基本不等式解决实际问题的方法(原创实用版4篇)目录(篇1)I.问题的提出II.基本不等式的应用方法III.实际问题中的应用IV.结论正文(篇1)随着数学在各个领域的广泛应用,基本不等式作为数学中的重要工具,在解决实际问题中发挥着越来越重要的作用。

本文旨在探讨基本不等式在解决实际问题中的应用方法。

首先,我们需要明确基本不等式的概念。

基本不等式是指两个或多个数相加或相乘,它们的和或积不超过另外两个数之和或积的等式。

基本不等式在解决实际问题中具有广泛的应用,如工程设计、财务管理、物流规划等领域。

其次,在解决实际问题中,我们需要根据问题的特点选择合适的基本不等式。

例如,在物流规划中,我们可以使用基本不等式来计算运输成本;在财务管理中,我们可以使用基本不等式来计算投资回报率;在工程设计中,我们可以使用基本不等式来计算结构强度等。

最后,通过具体实例,我们可以看到基本不等式在解决实际问题中的有效性。

例如,在物流规划中,我们可以使用基本不等式来计算运输成本,从而优化物流方案;在财务管理中,我们可以使用基本不等式来计算投资回报率,从而做出更明智的投资决策;在工程设计中,我们可以使用基本不等式来计算结构强度,从而确保工程的安全性。

总之,基本不等式作为一种有效的数学工具,在解决实际问题中具有广泛的应用。

目录(篇2)1.引言2.基本不等式的概念和性质3.应用基本不等式解决实际问题的方法4.结论正文(篇2)随着数学在各个领域的广泛应用,基本不等式作为一种重要的数学工具,在解决实际问题中起到了关键作用。

基本不等式是数学中的一种重要不等式,它可以用来解决各种实际问题,包括但不限于最大值、最小值、平均值等问题。

基本不等式是指“和的平方等于各加和的平方和”,即“a+b≥2√ab”。

它具有以下基本性质:一、乘法分配律;二、乘法结合律;三、二次方差恒等式。

这些性质使得基本不等式在解决实际问题中具有广泛的应用。

在解决实际问题时,我们需要将问题转化为基本不等式可以解决的问题。

2024年新高考版数学专题1_2.2 基本不等式及不等式的应用

2024年新高考版数学专题1_2.2   基本不等式及不等式的应用

x2
x
b
,则
x
2
x
b
≥1,由b>0得b≤x-x2,
即b≤
(
x
x
2
)
max
,∵x-x2=-
x
1 2
2
+
1 4
,x∈
1 4
,
3 4
,∴x=
1 2
时,(x-x2)max=
1 4
,则b≤
1 4
.
故0<b≤ 1 .
4
答案
0<b≤
1 4
例3
已知函数f(x)=x2,g(x)=
1 2
x
-m,若对任意x∈[1,2],都有f(x)≥g(x),则实
2.几个重要不等式
1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
2)a+b≥2 ab (a>0,b>0),当且仅当a=b时取等号.
3)ab≤
a
2
b
2
(a,b∈R),当且仅当a=b时取等号.
4)a+ 1 ≥2(a>0),当且仅当a=1时取等号;a+ 1 ≤-2(a<0),当且仅当a=-1时取
4.双变量的恒成立与存在性问题 1)若∀x1∈I1、∀x2∈I2 ,f(x1)>(≥)g(x2)恒成立,则f(x)min>(≥)g(x)max. 2)若∀x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)min>(≥)g(x)min. 3)若∃x1∈I1,∀x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)max. 4)若∃x1∈I1,∃x2∈I2,使得f(x1)>(≥)g(x2),则f(x)max>(≥)g(x)min. 5)已知f(x)在区间I1上的值域为A,g(x)在区间I2上的值域为B,若∀x1∈I1,∃x2 ∈I2,使得f(x1)=g(x2)成立,则A⊆B.

基本不等式的几种应用技巧

基本不等式的几种应用技巧

(1)各项必须为正值
(2)含变量的各项和或积必须为定值 (3)必须有自变量值能使函数值取到“=”号
“一正,二定,三相等”
Company Logo
基本不等式的几种应用技巧
题型一:基本不等式的直接应用
例1已知 x, y R xy的最大值为 ________。

x y ,且满足 =1,则 3 4
Company Logo
基本不等式的几种应用技巧
6 6 2 解 : y 3x 2 =3 x 1 2 3 二定 x 1 x 1 6 2 x 1 x 2 1 3=6 23 2 3 6 2 当且仅当3 x 1 2 时,等号成立 x 1
2


ห้องสมุดไป่ตู้


即ymin 6 23
2
成立,故原函数的值域 为2 55,
Company Logo


基本不等式的几种应用技巧
题型四:“1”的整体代换
1 1 例4.已知 x, y R , 若2 x y 1,求 的最小值 x y 解 x 0,y 0 错因:解答中两次 : 1 2 x y 2 2 xy
当且仅当sin 等号成立.
2 2
2时,
2 时,即sin sin
Company Logo
基本不等式的几种应用技巧
又0 sin 1,原函数不能取最小值 2 2.
2 的单调性么? y t 在0,1上单调递减, t
当 t 1 时,即sin 1, y有最小值 .
1 1 1 1 正解: 2x y x y x y
y 2x 3 3 2 2 x y
“1”代 换法

高三数学基本不等式四种应用 专题辅导

高三数学基本不等式四种应用 专题辅导

高三数学基本不等式四种应用宁伟基本不等式ab 2b a ,0b ,0a ≥+>>是证明不等式及求函数最值的重要工具,在新教材中 这一作用体现得更为明显。

灵活使用基本不等式是成功解题的关键,使用时要注意“一正、二定、三相等”,下面介绍基本不等式的四种应用,供同学们学习时参考。

一、直接应用基本不等式直接应用基本不等式是指题目中已有基本不等式的结构,且满足“一正、二定、三相等”,只需直接运用即可。

例1. 已知a ,R b ∈,求证:12b a 1b 1a 2222++≤+⋅+。

证明:由基本不等式得12b a 21b 1a 1b 1a 22222222++=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+≤+⋅+二、间接应用基本不等式间接应用基本不等式是指题中没有基本不等式的结构,或不满足“一正、二定、三相等”,这时需要对已知条件作结构变换,构造基本不等式结构模型,然后再使用基本不等式解题。

例2. 设x>0,求证:231x 22x ≥++。

分析:由题意可知,若直接应用基本不等式,则无法证明,此时需对原不等式进行结构上的变换,创造条件使用基本不等式。

证明:21x 1x 1x 22x ++=++ 232121x 121x 22121x 121x =-+⋅⎪⎭⎫ ⎝⎛+≥-+++=等号成立时21x 121x +=+即21x =例3. 已知a ,+∈R b ,且a+b=1,求b2a 1+的最小值。

错解:因为1b a =+,所以4ab1,41ab ≥≤ 因此24ab 22b 2a 1≥≥+ 剖析:出错在于两次等号不能同时取到。

正解:223abba 223b a 2a b 3b b 2a 2a b a b 2a 1+=+≥++=+++=+当ba 2ab =时 即22b ,12a ,a 2b -=-==,取得最小值三、两次应用基本不等式连续两次应用不等式解题,使用时要注意等号要同时成立。

例4. 设a>b>0,求)b a (b 16a 2-+的最小值。

高考数学:基本不等式在实际问题中的应用

高考数学:基本不等式在实际问题中的应用

试卷第1页,总7页 高考数学:基本不等式在实际生活中的应用典例1.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y (万元)与处理量x (吨)之间的函数关系可近似的表示为: 250900y x x =-+,且每处理一吨废弃物可得价值为10万元的某种产品,同时获得国家补贴10万元.(1)当[]10,15x ∈时,判断该项举措能否获利?如果能获利,求出最大利润; 如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?解:(1)根据题意得,利润P 和处理量x 之间的关系: (1010)P x y =+-22050900x x x =-+-270900x x =-+-()235325x =--+,[10,15]x ∈.∵35[10,15]x =∉,()235325P x =--+在[10,15]上为增函数,可求得[300,75]P ∈--.∴国家只需要补贴75万元,该工厂就不会亏损.(2)设平均处理成本为 90050y Q x x x==+-5010≥=, 当且仅当900x x =时等号成立,由0x >得30x =. 因此,当处理量为30吨时,每吨的处理成本最少为10万元.点评:(1)本题考查函数应用,属于容易题,解题的关键是列出收益函数,收益等于收入减成本,因此有利润(1010)P x y =+-,化简后它是关于x 的二次函数,利用二次函数的知识求出P 的取值范围,如果P 有非负的取值,就能说明可能获利,如果P 没有非负取值,说明不能获利,而国家最小补贴就是P 中最大值的绝对值.(2)每吨平均成本等于y x,由题意90050y x x x =+-,我们根据基本不等式的知识就可以求出它的最小值以及取最小值时的x 值. 变式题1.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化。

(完整版)基本不等式及其应用

(完整版)基本不等式及其应用

基本不等式及其应用1.ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0; (2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数(1)设a ≥0,b ≥0,则a ,b 的算术平均数为a +b2,几何平均数为ab .(2)基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们正的等比中项.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 24; (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p .选择题:设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82解析 ∵x >0,y >0,∴x +y 2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( ) A.43 B.53 C .2 D.54解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2] 解析 22x +y ≤2x +2y =1,∴2x +y ≤14,即2x +y ≤2-2,∴x +y ≤-2若实数x ,y 满足xy >0,则x x +y +2yx +2y的最大值为( ) A .2- 2 B .2+ 2 C .4+2 2 D .4-2 2 解析x x +y+2y x +2y=x (x +2y )+2y (x +y )(x +y )(x +2y )=x 2+4xy +2y 2x 2+3xy +2y 2=1+xy x 2+3xy +2y 2=1+1x y +3+2y x≤1+13+2=4-22,当且仅当x y =2yx ,即x 2=2y 2时取等号若函数()f x =x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +my (m >0)的最小值为3,则m 等于( ) A .2 B .2 2 C .3 D .4解析 由2x -3=(12)y 得x +y =3,1x +m y =13(x +y )(1x +m y )=13(1+m +y x +mx y )≥13(1+m +2m ),(当且仅当y x =mx y 时取等号),∴13(1+m +2m )=3,解得m =4已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .2解析 圆x 2+y 2-2y -5=0化成标准方程,得x 2+(y -1)2=6,∴圆心为C (0,1) ∵直线ax +by +c -1=0经过圆心C ,∴a ×0+b ×1+c -1=0,即b +c =1 ∴4b +1c =(b +c )(4b +1c )=4c b +b c +5 ∵b ,c >0,∴4c b +bc ≥24c b ·b c =4,当且仅当4c b =b c 时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n 的最小值为( )A.32B.53C.94D.256解析 由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, ∴q 2-q -2=0,解得q =2或q =-1(舍去)a m a n =4a 1,∴q m +n -2=16,∴2m +n -2=24,∴m +n =6 ∴1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n )≥16(5+2n m ·4m n )=32当且仅当n m =4m n 时,等号成立,故1m +4n 的最小值等于32在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5a 6的最大值是( ) A .3 B .6 C .9 D .36解析 ∵a 1+a 2+…+a 10=30,∴5(a 1+a 10)=30,即a 1+a 10=a 5+a 6=6,∵a 5+a 6≥2a 5a 6,∴6≥2a 5a 6,即a 5a 6≤9,当且仅当a 5=a 6时取等号,∴a 5a 6的最大值为9若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2 B .2 C .2 2 D .4 解析 依题意知a >0,b >0,则1a +2b ≥22ab =22ab,当且仅当1a =2b ,即b =2a 时,“=”成立.∵1a +2b =ab ,∴ab ≥22ab ,即ab ≥22,∴ab 的最小值为2 2已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是( ) A .3 B .4 C .5 D .6解析 由题意知:ab =1,∴m =b +1a =2b ,n =a +1b =2a ,∴m +n =2(a +b )≥4ab =4若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ·⎝ ⎛⎭⎪⎫1+4a b 的最小值为( ) A .7 B .8 C .9 D .10 解析 ∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4ab =9,当且仅当b =2a >0时取等号已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24 解析 由3a +1b ≥m a +3b ,得m ≤(a +3b )(3a +1b )=9b a +ab +6又9b a +ab +6≥29+6=12,∴m ≤12,∴m 的最大值为12已知a >0,b >0,a +b =1a +1b ,则1a +2b 的最小值为( )A .4B .22C .8D .16 解析 由a >0,b >0,a +b =1a +1b =a +b ab ,得ab =1,则1a +2b ≥21a ·2b =2 2.当且仅当1a =2b ,即a =22,b 2时等号成立已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( ) A.72 B .4 C.92 D .5 解析 依题意,得1a +4b =12(1a +4b )·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4ab ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解析由题意得⎩⎪⎨⎪⎧ab >0,ab ≥0,3a +4b >0,∴⎩⎨⎧a >0,b >0.又log 4(3a +4b )=log 2ab ,∴log 4(3a +4b )=log 4ab ,∴3a +4b =ab ,故4a +3b =1. ∴a +b =(a +b )(4a +3b )=7+3a b +4ba ≥7+23ab ·4b a =7+43,当且仅当3a b =4b a 时取等号若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( )A .1B .6C .9D .16解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1,同理可得b >1,∴1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1·9(a -1)=6,当且仅当1a -1=9(a -1),即a =43时等号成立,∴最小值为6设()f x =ln x,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( ) A .q =r <p B .q =r >p C .p =r <q D .p =r >q 解析 ∵0<a <b ,∴a +b2>ab ,又∵f (x )=ln x 在(0,+∞)上为增函数,故f ⎝⎛⎭⎪⎫a +b 2>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=12ln a +12ln b =ln(ab )12=f (ab )=p ,故p =r <q已知函数()f x =x +px -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为( ) A .1 B .2 C.94 D.74 解析 由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号, ∵f (x )在(1,+∞)上的最小值为4,∴2p +1=4,解得p =94填空题:已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________解析 1=x +4y ≥24xy =4xy ,∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎪⎨⎪⎧x =12y =18时,(xy )max =116已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为________解析 ∵m ·n >0,m +n =-1,∴m <0,n <0,∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n =-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·mn=-4,当且仅当m =n =-12时,1m +1n 取得最大值-4已知x <54,则()f x =4x -2+14x -5的最大值为________解析 ∵x <54,∴5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1函数y =x 2+2x -1(x >1)的最小值为________解析 y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2当且仅当(x -1)=3(x -1),即x =3+1时,等号成立函数y =x -1x +3+x -1的最大值为________解析 令t =x -1≥0,则x =t 2+1,∴y =t t 2+1+3+t =tt 2+t +4当t =0,即x =1时,y =0;当t >0,即x >1时,y =1t +4t +1, ∵t +4t ≥24=4(当且仅当t =2时取等号),∴y =1t +4t +1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________解析 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________ 解析 由已知得x =9-3y1+y ,∵x >0,y >0,∴y <3,∴x +3y =9-3y 1+y +3y =3y 2+91+y=3(1+y )2-6(1+y )+121+y=121+y+(3y +3)-6≥2121+y ·(3y +3)-6=6, 当且仅当121+y=3y +3,即y =1,x =3时,(x +3y )min =6已知函数()f x =x 2+ax +11x +1(a ∈R ),若对于任意x ∈N +,()f x ≥3恒成立,则a 的取值范围是______解析 对任意x ∈N +,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3设g(x)=x+8x,x∈N+,则g(2)=6,g(3)=173∵g(2)>g(3),∴g(x)min=173,∴-(x+8x)+3≤-83,∴a≥-83,故a的取值范围是[-83,+∞)已知x>0,y>0,且1x+2y=1,则x+y的最小值是________解析∵x>0,y>0,∴x+y=(x+y)(1x+2y)=3+yx+2xy≥3+22(当且仅当y=2x时取等号),∴当x=2+1,y=2+2时,(x+y)min=3+2 2函数y=1-2x-3x(x<0)的最小值为________解析∵x<0,∴y=1-2x-3x=1+(-2x)+(-3x)≥1+2(-2x)·3-x=1+26,当且仅当x=-62时取等号,故y的最小值为1+2 6若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________解析分离变量得-(4+a)=3x+43x≥4,得a≤-8设a+b=2,b>0,则12|a|+|a|b取最小值时,a的值为________解析∵a+b=2,∴12|a|+|a|b=24|a|+|a|b=a+b4|a|+|a|b=a4|a|+b4|a|+|a|b≥a4|a|+2b4|a|×|a|b=a4|a|+1,当且仅当b4|a|=|a|b时等号成立又a+b=2,b>0,∴当b=-2a,a=-2时,12|a|+|a|b取得最小值若当x>-3时,不等式a≤x+2x+3恒成立,则a的取值范围是________解析设f(x)=x+2x+3=(x+3)+2x+3-3,∵x>-3,所以x+3>0,故f(x)≥2(x+3)×2x+3-3=22-3,当且仅当x=2-3时等号成立,∴a的取值范围是(-∞,22-3]若对于任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________解析 xx 2+3x +1=13+x +1x ,∵x >0,∴x +1x ≥2(当且仅当x =1时取等号),则13+x +1x ≤13+2=15,即x x 2+3x +1的最大值为15,故a ≥15.解答题:已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值.解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg10=1,∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2xy 时,等号成立.由⎩⎨⎧2x +5y =20,5y x =2xy ,解得⎩⎨⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020专项能力提升设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为( ) A .4 B .4 3 C .9 D .16解析 由32+x +32+y=1得xy =8+x +y , ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立), 即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,∴xy 的最小值为16设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( ) A .0 B .1 C.94 D .3 解析 由已知得z =x 2-3xy +4y 2,(*)则xyz =xyx 2-3xy +4y2=1x y +4y x -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,∴2x +1y -2z =1y +1y -1y 2=-⎝ ⎛⎭⎪⎫1y -12+1≤1已知m >0,a 1>a 2>0,则使得m 2+1m ≥|a i x -2|(i =1,2)恒成立的x 的取值范围是( )A .[0,2a 1]B .[0,2a 2]C .[0,4a 1]D .[0,4a 2]解析 ∵m 2+1m =m +1m ≥2(当且仅当m =1时等号成立),∴要使不等式恒成立, 则2≥|a i x -2|(i =1,2)恒成立,即-2≤a i x -2≤2,∴0≤a i x ≤4, ∵a 1>a 2>0,∴⎩⎪⎨⎪⎧0≤x ≤4a 1,0≤x ≤4a 2,即0≤x ≤4a 1,∴使不等式恒成立的x 的取值范围是[0,4a 1]已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________ 解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号).又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号) 综上可知4≤x 2+4y 2≤1211设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为________解析 由题意知3a ·3b =3,即3a +b =3,∴a +b =1,∵a >0,b >0,∴1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b ≥2+2b a ·a b =4,当且仅当a =b =12时,等号成立点(a ,b )为第一象限内的点,且在圆(x +1)2+(y +1)2=8上,则ab 的最大值为________解析 由题意知a >0,b >0,且(a +1)2+(b +1)2=8,化简得a 2+b 2+2(a +b )=6,则6≥2ab +4ab (当且仅当a =b 时取等号),令t =ab (t >0),则t 2+2t -3≤0,解得0<t ≤1,则0<ab ≤1,∴ab 的最大值为1.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________解析 ∵a >0,b >0,1a +9b =1,∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b ≥10+29=16,由题意,得16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立,而x 2-4x -2=(x -2)2-6,∴x 2-4x -2的最小值为-6,∴-6≥-m ,即m ≥6.。

新高考 核心考点与题型 不等式 第2节 基本不等式及其应用 - 解析

新高考 核心考点与题型  不等式 第2节 基本不等式及其应用 - 解析

第2节 基本不等式及其应用1.重要不等式及几何意义重要不等式:如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”).基本不等式:如果,a b是正数,那么2a b+≥a b =时取等号“=”) 要点诠释:222a b ab +≥和2a b+≥ (1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。

(3)222a b ab +≥可以变形为:222a b ab +≤,2a b+≥2()2a b ab +≤. 2.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD =这个圆的半径为2ba +,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a b = 时,等号成立. 3.2211222b a b a ab ba +≤+≤≤+,即平方平均数算数平均数几何平均数调和平均数≤≤≤,(均为正、b a ),可变形如下24)()2(2222b a b a ab b a ab +≤+≤≤+,即上式的平方形式,其中调和不常用。

4.利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法 (2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量,例如:当0>x 求xx y 32+= 的最小值。

此时若直接使用均值不等式,则xx y 32+= x 42≥右侧依然含有x ,则无法找到最值 (3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此① 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围。

基本不等式在日常生活中有哪些用途

基本不等式在日常生活中有哪些用途

基本不等式在日常生活中有哪些用途在我们的日常生活中,数学知识看似抽象,但其实无处不在,发挥着重要的作用。

其中,基本不等式就是一个非常实用的工具。

基本不等式,通常表述为对于任意非负实数 a 和 b,有算术平均数大于等于几何平均数,即(a + b) /2 ≥ √(ab) 。

接下来,让我们一起探讨一下基本不等式在日常生活中的诸多用途。

先来说说购物省钱方面。

假设我们在超市看到两种促销活动,一种是买一送一,另一种是直接打五折。

在决定选择哪种更划算时,基本不等式就能派上用场。

假设商品原价为 a 元,数量为 b 个。

如果选择买一送一,那么平均每个商品的价格为 a / 2 元;如果选择打五折,平均每个商品的价格为 05a 元。

根据基本不等式,(a + 05a) / 2 =075a ≥ √(05a²) ,当且仅当 a = 0 时取等号。

这意味着在正常购买商品的情况下,打五折会更划算,能让我们在购物时做出更明智的选择,节省开支。

在投资理财中,基本不等式也能帮助我们进行风险评估和收益预测。

比如说,我们有两种投资产品,一种收益较高但风险较大,预期收益率为 a%;另一种收益较低但风险较小,预期收益率为 b%。

为了平衡风险和收益,我们可以利用基本不等式来计算一个相对合理的预期综合收益率。

通过(a% + b%)/2 ≥ √(a% × b%),可以大致估算出在不同投资比例下的综合收益率范围,从而更好地规划我们的投资组合,降低风险并追求合理的回报。

再看旅行规划。

当我们计划一次自驾游时,需要考虑路程、速度和时间的关系。

假设一段路程为固定的 S ,汽车以速度 a 行驶一段时间t1 ,以速度 b 行驶一段时间 t2 。

根据路程等于速度乘以时间,我们有S = a × t1 + b × t2 。

而平均速度等于总路程除以总时间,即 2S /(t1 + t2) 。

根据基本不等式,(a + b) /2 ≥ √(ab) ,可以得出平均速度存在一个最小值,这有助于我们合理安排行驶速度和时间,以最快的方式到达目的地,同时也能更有效地规划途中的休息和加油等事项。

数学-基本不等式在实际问题中的应用

数学-基本不等式在实际问题中的应用

基本不等式在实际问题中的应用高中数学 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决生活中简单的最大(小)值问题.3.能够运用基本不等式解决几何中的应用问题.导语同学们,我们说数学是和生活联系非常紧密的学科,我们学习数学,也是为了解决生活中的问题,比如:“水立方”是2008年北京奥运会标志性建筑之一,如图为水立方平面设计图,已知水立方地下部分为钢筋混凝土结构,该结构是大小相同的左右两个矩形框架,两框架面积之和为18 000 m 2,现地上部分要建在矩形ABCD 上,已知两框架与矩形ABCD 空白的宽度为10 m ,两框架之间的中缝空白宽度为5 m ,请问作为设计师的你,应怎样设计矩形ABCD ,才能使水立方占地面积最小?要解决这个问题,还得需要我们刚学习过的基本不等式哦,让我们开始今天的探究之旅吧!一、基本不等式在生活中的应用问题 利用基本不等式求最大(小)值时,应注意哪些问题?提示 一正:x ,y 都得是正数;二定:积定和最小,和定积最大;三相等:检验等号成立的条件是否满足实际需要.例1 (教材46页例3改编)小明的爸爸要在家用围栏做一个面积为16m 2的矩形游乐园,当这个矩形的边长为多少时,所用围栏最省,并求所需围栏的长度.解 设矩形围栏相邻两条边长分别为x m ,y m ,围栏的长度为2(x +y )m.方法一 由已知xy =16,由≥,可知x +y ≥2=8,x +y2xy xy 所以2(x +y )≥16,当且仅当x =y =4时,等号成立,因此,当这个矩形游乐园是边长为4 m 的正方形时,所用围栏最省,所需围栏的长度为16 m.方法二 由已知xy =16,可知y =,16x所以2(x +y )=2≥2×2=16.(x +16x )x ·16x 当且仅当x =y =4时,等号成立,因此,当这个矩形游乐园是边长为4 m 的正方形时,所用围栏最省,所需围栏的长度为16 m.延伸探究 如果小明的爸爸只有12 m 长的围栏,如何设计,才能使游乐园的面积最大?解 由已知得2(x +y )=12,故x +y =6,面积为xy ,由≤==3,或=≤=3,xy x +y262xy x (6-x )x +6-x 2可得xy ≤9,当且仅当x =y =3时,等号成立.因此,当游乐园为边长为3的正方形时,面积最大,最大面积为9 m 2.反思感悟 利用基本不等式解决实际问题的步骤(1)理解题意,设变量,并理解变量的实际意义;(2)构造定值,利用基本不等式求最值;(3)检验,检验等号成立的条件是否满足题意;(4)结论.跟踪训练1 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,求该容器的最低总造价.解 设该长方体容器底面的长和宽分别为a m ,b m ,成本为y 元,由于长方体容器的容积为4 m 3,高为1 m ,所以底面面积S =ab =4,y =20S +10[2(a +b )]=20(a +b )+80,由基本不等式可得y =20(a +b )+80≥20×2+80=160(元),ab 当且仅当a =b =2时,等号成立,因此,该容器的最低总造价为160元.二、基本不等式在几何中的应用例2 如图所示,设矩形ABCD (AB >BC )的周长为24,把它沿AC 翻折,翻折后AB ′交DC 于点P ,设AB =x .(1)用x 表示DP ,并求出x 的取值范围;(2)求△ADP 面积的最大值及此时x 的值.解 (1)矩形ABCD (AB >BC )的周长为24,∵AB =x ,∴AD =-x =12-x ,242在△APC 中,∠PAC =∠PCA ,所以AP =PC ,从而得DP =PB ′,∴AP =AB ′-PB ′=AB -DP =x -DP ,在Rt △ADP 中,由勾股定理得(12-x )2+DP 2=(x -DP )2,∵AB >BC =AD ,得x >12-x ,∴6<x <12,∴DP =12-(6<x <12).72x (2)在Rt △ADP 中,S △ADP =AD ·DP =(12-x )=108-(6<x <12).1212(12-72x )(6x +432x )∵6<x <12,∴6x +≥2·=72,当且仅当6x =,即x =6时取等号.432x 6x ·432x 2432x 2∴S △ADP =108-≤108-72,∴当x =6时,△ADP 的面积取最大值108-72.(6x +432x )222反思感悟 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.跟踪训练2 如图所示,将一矩形花坛ABCD 扩建为一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知AB =4米,AD =3米,当BM =________时,矩形花坛AMPN 的面积最小.答案 4解析 设BM =x (x >0),则由DC ∥AM 得=,解得ND =,NDND +344+x 12x ∴矩形AMPN 的面积为S =(4+x )=24+3x +≥24+2=48,当且仅当(3+12x )48x 3x ×48x 3x =,即x =4时等号成立.48x1.知识清单:(1)基本不等式在生活中的应用.(2)基本不等式在几何中的应用.2.方法归纳:配凑法.3.常见误区:生活中的变量有它自身的意义,容易忽略变量的取值范围.1.用一段长为8 cm 的铁丝围成一个矩形模型,则这个模型的最大面积为( )A .9 cm 2 B .16 cm 2C .4 cm 2 D .5 cm 2答案 C解析 设矩形模型的长和宽分别为x ,y ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形菜园的面积S =xy ≤==4,当且仅当x =y =2时取等号,(x +y )24424所以当矩形菜园的长和宽都为2 cm 时,面积最大,为4 cm 2.2.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案:每次加200元的燃油,则下列说法正确的是( )A .采用第一种方案划算 B .采用第二种方案划算C .两种方案一样 D .无法确定答案 B解析 任取其中两次加油,假设第一次的油价为m 元/升,第二次的油价为n 元/升.第一种方案的均价为=≥;30m +30n60m +n 2mn 第二种方案的均价为=≤.400200m+200n 2mn m +n mn 所以无论油价如何变化,第二种都更划算.3.某工厂生产某种产品,第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x (a ,b ,x 均大于零),则( )A .x =B .x ≤C .x >D .x ≥a +b2a +b2a +b2a +b2答案 B解析 由题意得,A (1+a )(1+b )=A (1+x )2,则(1+a )(1+b )=(1+x )2,因为(1+a )(1+b )≤2,(1+a +1+b2)所以1+x ≤=1+,2+a +b2a +b2所以x ≤,当且仅当a =b 时取等号.a +b24.在如图所示的锐角三角形空地中,欲建一个内接矩形花园(阴影部分),矩形花园面积的最大值为________.答案 400解析 由题意设矩形花园的长为x >0,宽为y >0,矩形花园的面积为xy ,根据题意作图如下,因为花园是矩形,则△ADE 与△ABC 相似,所以=,又因为AG =BC =40,AFAG DEBC所以AF =DE =x ,FG =y ,所以x +y =40,由基本不等式x +y ≥2,得xy ≤400,xy 当且仅当x =y =20时,矩形花园面积最大,最大值为400.课时对点练1.三国时期赵爽在《勾股方圆图注》中对勾股定理的证明可用现代数学表述为如图所示,我们教材中利用该图作为“( )”的几何解释( )A .如果a >b >0,那么>a bB .如果a >b >0,那么a 2>b 2C .对任意正实数a 和b ,有a 2+b 2≥2ab ,当且仅当a =b 时等号成立D .对任意正实数a 和b ,有a +b ≥2,当且仅当a =b 时等号成立ab 答案 C解析 可将直角三角形的两直角边长度取作a ,b ,斜边为c (c 2=a 2+b 2),则外围的正方形的面积为c 2,也就是a 2+b 2,四个阴影面积之和刚好为2ab ,对任意正实数a 和b ,有a 2+b 2≥2ab ,当且仅当a =b 时等号成立,故选C.2.汽车上坡时的速度为a ,原路返回时的速度为b ,且0<a <b ,则汽车全程的平均速度比a ,b 的平均值( )A .大 B .小C .相等 D .不能确定答案 B解析 令单程为s ,则上坡时间为t 1=,下坡时间为t 2=,sa sb 平均速度为==<<.2st 1+t 22ssa+s b 21a+1b ab a +b23.将一根铁丝切割成三段做一个面积为2 m 2,形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( )A .6.5 m B .6.8 m C .7 m D .7.2 m答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则ab =2,∴ab =4,l =a +b +≥2+=4+2≈6.828(m).故C 既够用,浪12a 2+b 2ab 2ab 2费也最少.4.如图所示,矩形ABCD 的边AB 靠在墙PQ 上,另外三边是由篱笆围成的.若该矩形的面积为4,则围成矩形ABCD 所需要篱笆的( )A .最小长度为8B .最小长度为42C .最大长度为8D .最大长度为42答案 B解析 设BC =a ,CD =b ,因为矩形的面积为4,所以ab =4,所以围成矩形ABCD 所需要的篱笆长度为2a +b =2a +≥2=4,4a 2a ·4a 2当且仅当2a =,即a =时,等号成立.4a 25.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为(4n +46)(n ∈N *)元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天 B .400天 C .600天 D .800天答案 B解析 设一共使用了n 天,则使用n 天的平均耗资为=+2n +48,当且仅当=2n 时,取得最小值,此时320 000+(50+4n +46)n2n320 000n320 000nn =400.6.(多选)已知某出租车司机为升级服务水平,购入了一辆豪华轿车投入运营,据之前的市场分析得出每辆车的营运总利润y (万元)与运营年数x 的关系为y =-x 2+12x -25,则下列判断正确的是( )A .车辆运营年数越多,收入越高B .车辆在第6年时,总收入最高C .车辆在前5年的平均收入最高D .车辆每年都能盈利答案 BC解析 由题意,y =-x 2+12x -25,是开口向下的二次函数,故A 错误;对称轴x =6,故B 正确;=-x +12-=-+12≤-2+12=2,当且仅当x =5时,等号成立,yx 25x (x +25x )25故C 正确;当x =1时,y =-14,故D 错误.7.矩形的长为a ,宽为b ,且面积为64,则矩形周长的最小值为________.答案 32解析 由题意,矩形中长为a ,宽为b ,且面积为64,即ab =64,所以矩形的周长为2a +2b =2a +≥2=32,128a 2×128当且仅当a =8时,等号成立,即矩形周长的最小值为32.8.某工厂建造一个无盖的长方体贮水池,其容积为4 800 m 3,深度为3 m .如果池底每1 m 2的造价为150元,池壁每1 m 2的造价为120元,要使水池总造价最低,那么水池底部的周长为________m.答案 160解析 设水池底面一边的长度为x m ,则另一边的长度为m ,4 8003x 由题意可得水池总造价y =150×+120×=240 000+7204 8003(2×3x +2×3×4 8003x )(x >0),(x +1 600x)则y =720+240000≥720×2+240 000=720×2×40+240 000=297(x +1 600x)x ·1 600x 600,当且仅当x =,即x =40时,y 有最小值297 600,1 600x 此时另一边的长度为=40(m),4 8003x 因此,要使水池总造价最低,则水池的底面周长为160 m.9.经观测,某公路段在某时段内的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间有函数关系:y =(v >0).在该时段内,当汽车的平均速度v 为多少时车流量y 900vv 2+5v +1 000最大?解 y ==,900vv 2+5v +1 000900v +1 000v +5∵v +≥2=20,1 000v v ·1 000v 10∴y =≤=,900v +1 000v +59002010+5180410+1当且仅当v =,即v =10时等号成立.1 000v 10∴当汽车的平均速度v =10千米/小时时车流量y 最大.1010.根据交通法规,某路段限制车辆最高时速不得超过100千米/小时,现有一辆运货卡车在该路段上以每小时x 千米的速度匀速行驶130千米.假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时14元.(2+x 2360)(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)由题意,y =2·+14·=+(0<x ≤100).(2+x 2360)130x 130x 2 340x 13x18(2)因为y =+≥2=26,当且仅当x =18时,等号成立,2 340x 13x18 2 340x ·13x181010又0<18<100,10所以当x =18千米/小时时,这次行车的总费用最低,为26元.101011.无字证明是指只用图象而无需文字解释就能不证自明的数学命题,由于其不证自明的特性,这种证明方式被认为比严格的数学证明更为优雅与条理,请写出该图验证的不等式( )A .a 2+b 2≥a +bB .4ab ≥a 2+b 2C .a +b ≥2D .a 2+b 2≥2abab 答案 D解析 从图形可以看出正方形的面积比8个直角三角形的面积和要大,当中心小正方形缩为一个点时,两个面积相等;因此(a +b )2≥8×ab =4ab ,所以a 2+b 2≥2ab .1212.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a ,b ,c ,则三角形的面积S 可由公式S =求得,其中p 为三角形周长的一半,这个公式也被称为海伦一秦九韶公p (p -a )(p -b )(p -c )式.现有一个三角形的边长满足a =6,b +c =8,则此三角形面积的最大值为( )A .3 B .8 C .4 D .9773答案 A解析 由题意p =7,S ==≤·=3,7(7-a )(7-b )(7-c )7(7-b )(7-c )77-b +7-c27当且仅当7-b =7-c ,即b =c =4时,等号成立,此三角形面积的最大值为3.713.某商场对商品进行两次提价,现提出四种提价方案,提价幅度较大的一种是( )A .先提价p %,后提价q %B .先提价q %,后提价p %C .分两次提价%p +q2D .分两次提价%(以上p ≠q )p 2+q 22答案 D解析 由题意可知,A ,B 选项的两次提价均为(1+p %)(1+q %);C 选项的提价为2,D 选项的提价为(1+p +q 2%)2,(1+p 2+q 22%)又∵<,∴(1+p %)(1+q %)<2<2,p +q2p 2+q 22(1+p +q 2%)(1+p 2+q 22%)∴提价最多的为D 选项.14.某公司租地建仓库,每月土地费用与仓库到车站距离成反比,而每月货物的运输费用与仓库到车站距离成正比.如果在距离车站10 km 处建仓库,则土地费用和运输费用分别为2万元和8万元,那么要使两项费用之和最小,仓库应建在离车站________ km 处.答案 5解析 设仓库到车站距离为x ,每月土地费用为y 1,每月货物的运输费用为y 2,由题意可设y 1=,y 2=k 2x ,k 1x 把x =10,y 1=2与x =10,y 2=8分别代入上式得k 1=20,k 2=0.8,∴y 1=,y 2=0.8x ,20x 费用之和y =y 1+y 2=0.8x +≥2×4=8,20x 当且仅当0.8x =,即x =5时等号成立.20x 当仓库建在离车站5 km 处两项费用之和最小.15.一家商店使用一架两臂不等长的天平秤黄金,一位顾客到店里购买10 g 黄金,售货员先将5 g 的砝码放在天平的左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5 g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次秤得的黄金交给顾客,你认为顾客购得的黄金是( )A .大于10 gB .大于等于10 gC .小于10 gD .小于等于10 g 答案 A解析 由于天平两臂不等长,可设天平左臂长为a (a >0),右臂长为b (b >0),则a ≠b ,再设先称得黄金为x g ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =,y =,5a b 5b a ∴x +y =+=5≥5×2=10,5ab 5b a (a b +b a )a b ·b a 当且仅当=,即a =b 时等号成立,但a ≠b ,等号不成立,即x +y >10,a b ba 因此,顾客购得的黄金大于10 g.16.某书商为提高某套丛书的销售量,准备举办一场展销会,据市场调查,当每套丛书售价定为x 元时,销售量可达到(10-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为20元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.(1)求每套丛书利润y 与售价x 的函数关系,并求出每套丛书售价定为80元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,每套丛书的利润最大?并求出最大利润.解 (1)∵Error!∴0<x <100,y =x -=x --20(0<x <100),(20+1010-0.1x )100100-x 当x =80时,y =80--20=55(元),100100-80此时销量为10-0.1×80=2(万套),总利润为2×55=110(万元).(2)y =x --20,100100-x ∵0<x <100,∴100-x >0,∴y =-+80[100100-x +(100-x )]≤-2+80=60,100100-x ·(100-x )当且仅当=100-x ,即x =90元时,每套利润最大为60元.100100-x。

如何利用基本不等式解决日常生活中的问题

如何利用基本不等式解决日常生活中的问题

如何利用基本不等式解决日常生活中的问题在我们的日常生活中,数学知识无处不在,看似抽象的基本不等式其实也有着广泛的应用。

掌握并灵活运用基本不等式,能帮助我们解决许多实际问题,让生活变得更加高效和经济。

基本不等式,对于两个正实数 a 和 b,它们的算术平均数大于等于几何平均数,即:\(\sqrt{ab} \leq \frac{a + b}{2}\),当且仅当 a = b 时,等号成立。

先来说说购物方面的例子。

假设我们要购买一定数量的某种商品,比如苹果。

超市 A 售卖的苹果每个价格是 x 元,但是需要支付固定的运费 y 元;超市 B 售卖的苹果每个价格是 z 元,没有运费。

在考虑购买成本时,我们可以运用基本不等式来决定在哪家超市购买更划算。

设我们计划购买 n 个苹果。

在超市 A 购买的总费用为\(C_{A} = nx + y\),在超市 B 购买的总费用为\(C_{B} = nz\)。

为了比较在哪家购买更经济,我们可以计算两者的平均值。

对于超市 A,平均每个苹果的费用为\(\frac{C_{A}}{n} = x +\frac{y}{n}\)。

这里,根据基本不等式,如果 x 是固定的,那么当\(n\)足够大时,\(\frac{y}{n}\)会趋近于 0,平均费用就趋近于\(x\)。

对于超市 B,平均每个苹果的费用始终是\(z\)。

所以,当\(x < z\)时,在超市 A 购买更划算;当\(x > z\)时,在超市 B 购买更划算;当\(x = z\)时,则需要进一步考虑\(y\)和\(n\)的关系来决定。

再看一个房屋装修的例子。

假如我们要装修一间房间,需要购买地板材料和墙面涂料。

地板材料每平方米的价格是 a 元,墙面涂料每桶的价格是 b 元,每桶涂料可以涂刷 c 平方米的墙面。

房间的地面面积是 m 平方米,墙面面积是 n 平方米。

在预算有限的情况下,我们希望在满足装修需求的同时,尽可能节省费用。

设购买地板材料 x 平方米,购买涂料 y 桶。

历年高考数学真题汇编专题16 以基本不等式为背景的应用题(解析版)

历年高考数学真题汇编专题16  以基本不等式为背景的应用题(解析版)

历年高考数学真题汇编专题16 以基本不等式为背景的应用题1、【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2、【2010年高考江苏卷】某兴趣小组要测量电视塔AE 的高度H (单位:m).示意图如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1) 该小组已测得一组α,β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?规范解答 (1) 由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=Htan β, 解得H =h tan αtan α-tan β=4×1.241.24-1.20=124.因此算出的电视塔的高度H 是124 m. (2) (1) 由题知d =AB ,则tan α=H d.由AB =AD -BD =H tan β-h tan β,得tan β=H -hd,所以tan(α-β)=tan α-tan β1+tan αtan β=()h hH H d d-+,当且仅当d =555时取等号. 又0<α-β<π2,所以当d =555时,tan(α-β)的值最大.因为0<β<α<π2,所以当d =555时,α-β的值最大.3、【2013年高考江苏卷】如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.本小题主要考查函数、方程和基本不等式等基础知识,考查数学阅读能力和解决实际问题的能力.满分14分.规范解答 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10km.(2) 因为a >0,所以炮弹可击中目标等价于存在k >0,使3.2=ka -120(1+k 2)a 2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根, 所以判别式Δ=(-20a )2-4a 2(a 2+64)≥0, 解得a ≤6,所以0<a ≤6.所以当a 不超过6km 时,炮弹可击中目标.一、解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:二、在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.运用基本不等式解决应用题一定要注意满足三个条件:一、正;二、定;三、相等。

应用基本不等式解决实际问题的方法

应用基本不等式解决实际问题的方法

应用基本不等式解决实际问题的方法(原创版4篇)目录(篇1)一、基本不等式的概念和性质二、应用基本不等式解决实际问题的方法1.求解最值问题2.证明不等式3.解决实际生活中的问题三、基本不等式在实际问题中的应用案例1.求解最大利润问题2.证明不等式关系3.解决实际生活中的财务问题正文(篇1)一、基本不等式的概念和性质基本不等式是数学中的一个重要概念,主要用于研究不等式之间的联系和关系。

基本不等式有两个基本性质,分别是对称性和传递性。

对称性指的是对于任意的实数 a 和 b,都有 a*b<=b*a,即乘法满足交换律。

传递性指的是对于任意的实数 a、b 和 c,如果 a<=b 且 b<=c,那么 a<=c。

二、应用基本不等式解决实际问题的方法基本不等式在实际问题中有广泛的应用,主要包括以下三种方法:1.求解最值问题:利用基本不等式可以方便地求解最值问题。

例如,对于函数 f(x)=x^2+ax+b,当 a^2-4b<=0 时,函数的最小值等于 b;当a^2-4b>0 时,函数的最小值等于 f(-a/2)。

2.证明不等式:基本不等式也可以用于证明不等式。

例如,要证明x+y<=2,可以利用基本不等式,得到 (x+y)^2<=4,从而证明 x+y<=2。

3.解决实际生活中的问题:基本不等式也可以用于解决实际生活中的问题。

例如,对于一个商人,他希望利润最大化,可以利用基本不等式,得到售价 - 成本<=售价*成本,从而得到最大利润的售价。

三、基本不等式在实际问题中的应用案例基本不等式在实际问题中有广泛的应用,以下是两个应用案例:1.求解最大利润问题:一个商人要销售一批商品,商品的成本为 c,售价为 x,销售量为 y,利润为 P=xy-c。

利用基本不等式,可以得到最大利润的售价 x<=sqrt(2*c/y)。

2.证明不等式关系:在实际问题中,基本不等式也可以用于证明不等式关系。

新高考数学试卷考点分布

新高考数学试卷考点分布

新高考改革以来,我国高考数学试卷的考点分布发生了很大的变化。

本文将针对新高考数学试卷的考点分布进行详细分析,以帮助考生更好地备考。

一、基础考点1. 集合与常用逻辑用语:这一部分主要考查集合的概念、运算、关系,以及逻辑用语的基本用法。

在历年高考中,这一部分的考题占比约为25%。

2. 函数:函数是高考数学的核心考点,包括函数的概念、性质、图像、运算等。

在历年高考中,这一部分的考题占比约为35%。

3. 三角函数与解三角形:这一部分主要考查三角函数的概念、性质、图像、运算,以及解三角形的相关知识。

在历年高考中,这一部分的考题占比约为20%。

4. 导数及其应用:这一部分主要考查导数的概念、性质、运算,以及导数在解决实际问题中的应用。

在历年高考中,这一部分的考题占比约为20%。

5. 不等式:这一部分主要考查不等式的概念、性质、解法,以及不等式在实际问题中的应用。

在历年高考中,这一部分的考题占比约为10%。

二、提高考点1. 平面向量:这一部分主要考查向量的概念、运算、性质,以及向量在解决实际问题中的应用。

在历年高考中,这一部分的考题占比约为10%。

2. 平面解析几何:这一部分主要考查直线、圆、圆锥曲线等图形的性质、方程、运算,以及解析几何在实际问题中的应用。

在历年高考中,这一部分的考题占比约为15%。

3. 立体几何:这一部分主要考查空间几何体的性质、方程、运算,以及立体几何在实际问题中的应用。

在历年高考中,这一部分的考题占比约为10%。

4. 数列:这一部分主要考查数列的概念、性质、运算,以及数列在实际问题中的应用。

在历年高考中,这一部分的考题占比约为10%。

5. 统计与概率:这一部分主要考查统计的基本概念、方法,以及概率的计算。

在历年高考中,这一部分的考题占比约为5%。

三、综合考点1. 实际应用问题:新高考数学试卷越来越注重考查考生解决实际问题的能力。

这类题目往往涉及多个知识点的综合运用,要求考生具备较强的逻辑思维能力和分析能力。

基本不等式的应用(高中数学)

基本不等式的应用(高中数学)

12
[解] (1)∵x<54,∴5-4x>0, ∴y=4x-2+4x-1 5=-5-4x+5-14x+3≤-2+3=1, 当且仅当 5-4x=5-14x,即 x=1 时,上式等号成立, 故当 x=1 时,ymax=1.
13
(2)∵0<x<12, ∴1-2x>0, ∴y=14×2x(1-2x)≤14×2x+21-2x2=14×14=116. ∴当且仅当 2x=1-2x0<x<21,即 x=14时,ymax=116.
基本不等式 基本不等式的应用
一元二次函数、方程和不等式
2
学习目标
核心素养
1.熟练掌握利用基本不等式求函数 1.通过基本不等式求最值,提升数学
的最值问题.(重点) 2.会用基本不等式求解实际应用 题.(难点)
运算素养. 2.借助基本不等式在实际问题中的 应用,培养数学建模素养.
3
自主预习 探新知
4
D.25
当且仅当 x=1-x,即 x=12时取
等号.]
40
4.已知 x>0,求 y=x22+x 1的最大值. [解] y=x22+x 1=x+2 1x. ∵x>0,∴x+1x≥2 x·1x=2, ∴y≤22=1,当且仅当 x=1x,即 x=1 时等号成立.
27
[解] 设每间虎笼长 x m,宽 y m, 则由条件知,4x+6y=36,即 2x+3y=18. 设每间虎笼面积为 S,则 S=xy. 法一:由于 2x+3y≥2 2x·3y=2 6xy, 所以 2 6xy≤18,得 xy≤227, 即 Smax=227,当且仅当 2x=3y 时,等号成立. 由22xx+ =33yy= ,18, 解得xy= =43..5, 故每间虎笼长为 4.5 m,宽为 3 m 时,可使每间虎笼面积最大.

基本不等式知识点高考

基本不等式知识点高考

基本不等式知识点高考在高考数学中,基本不等式是一个重要且常见的知识点。

掌握基本不等式对于解答不等式题型至关重要。

本文将介绍基本不等式的定义、性质以及与高考数学相关的应用。

一、基本不等式的定义和性质首先,我们来了解基本不等式的定义。

基本不等式是指对于任意实数 x,都有某种不等关系成立的基本不等式。

常见的基本不等式有:1. 二次函数的非负性当 a>0 时,对于二次函数 f(x) = ax^2 + bx + c,如果存在实数 x,使得f(x) ≥ 0,则称f(x) ≥ 0 为二次函数的非负性基本不等式。

2. 二次函数的正定性当 a>0 时,对于二次函数 f(x) = ax^2 + bx + c,如果存在实数 x,使得 f(x) > 0,则称 f(x) > 0 为二次函数的正定性基本不等式。

接下来,我们来讨论基本不等式的性质:1. 注意基本不等式的方向性在解不等式题目时,要始终注意基本不等式的方向性。

根据不等式的定义,只有把不等式的方向确定正确,我们才能得到正确的解。

2. 转化与分析在解不等式题目时,常常需要将不等式进行转化,然后根据不等式的性质进行分析。

例如,我们可以将含有绝对值的不等式转化成一个二次不等式,从而利用二次不等式的性质进行求解。

3. 合并和分离有时候,我们遇到的不等式可能是由多个基本不等式组合而成的。

在解决这类问题时,我们需要根据不等式的性质来进行合并或者分离,得到最终的解。

二、基本不等式的应用掌握基本不等式不仅仅对于解答不等式题型重要,还能够帮助我们更好地理解和应用数学知识。

以下是一些常见的与高考数学相关的应用:1. 解不等式方程在高考数学中,我们经常会遇到需要解不等式方程的题目。

这时,我们可以利用基本不等式的性质,将不等式方程转化成二次不等式,再通过求解二次不等式来得到最终的解。

2. 解优化问题优化问题是高考数学中常见的一个题型。

在解决这类问题时,我们可以通过利用基本不等式,将优化问题转化成一个不等式问题,然后利用不等式的性质来得到最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
当且仅当 x 900 时等号成立,由 x 0 得 x 30 .
x
因此,当处理量为 30 吨时,每吨的处理成本最少为10 万元.
2020/4/21
119513413
4
典例 2.在城市旧城改造中,某小区为了升级居住环境,拟在小区的 闲置地中规划一个面积为 200m2 的矩形区域(如图所示),按规划要求: 在矩形内的四周安排 2m 宽的绿化,绿化造价为 200 元/ m2 ,中间区域 地面硬化以方便后期放置各类健身器材,硬化造价为 100 元/ m2 .设矩
(1)当 x10,15时,判断该项举措能否获利?如果能获利,求出最大利润;
如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损? (2)当处理量为多少吨时,每吨的平均处理成本最少?
2020/4/21
119513413
3
解:(1)根据题意得,利润 P 和处理量 x 之间的关系:
P (10 10)x y 20x x2 50x 900 x2 70x 900
(1)分别用 x 表示 y 和 S 的函数关系式,并给出定义域;
(2)怎样设计能使 S 取得最大值,并求出最大值.
2020/4/21
119513413
9
形的长为 xm.
(1)设总造价 y (元)表示为长度 xm的函数;
(20220)/4/2当1 x m取何值时,总造价最119低5134,13 并求出最低总造价.
5
解:(1)由矩形的长为 x m ,则矩形的宽为 200 (m) ,
x
则中间区域的长为 x 4m ,宽为 200 4(m) ,则定义域为 x (4,50)
2020/4/21
119513413
7
四、迎接挑战
挑战题 1:首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”
为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化 碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为 400 吨,最多为 600 吨,月处理成本 y (元)与月处理量 x (吨)之间的函数关系可近似地表示为 y 1 x2 200x 80000 ,且每处理一吨二氧化碳得到可利用的化工产品价值为 100 元.
2 (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低? (2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至 少补贴多少元才能使该单位不亏损?
2020/4/21
119513413
8
挑战题 2:某市近郊有一块大约 500m500m的接近正方形的荒地,地方政府
准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中 总面积为 3000 平方米,其中阴影部分为通道,通道宽度为 2 米,中间的三个 矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运 动场地占地面积为 S 平方米.
x 352 325 , x [10,15] . ∵ x 35[10,15], P x 352 325 在[10,15]上为增函数,
可求得 P [300, 75].
∴国家只需要补贴 75万元,该工厂就不会亏损.
(2)设平均处理成本为
Q y x 900 50
x
x
2 x 900 50 10 ,
2020/4/21
119513413
6
三、归纳总结
●实际问题解题步骤: (1)审题弄清题意; (2)找出已知量与所求问题 之间的关系; (4)列出算式; (5)算出结果; (6)检验并作答.(所得的解是否符合实际意义 ) ●实际问题常见题型:(1)经济利润问题(2)几何问题 ●数学思想:转化化归,即将实际问题抽象概括成数学问题,也称 数学建模。基本不等式常用来求函数的最值,做到一正二定三相等。
微课:基本不等式在实际问题 中的应用
2020/4/21
119513413
1
一、温故知新
基本不等式:如果a, b∈R+,那么 a b ab 2
(当且仅当a=b时,式中等号成立)
(1)常用变形:① a b 2 ab ② ab (a b)2
4
(2)处理技巧: ①凑项使积成为定值 ②凑项使和成为定值
x

y
100
(
x
4)
200 x
4
200
200
(
x
4)
200 x
4
整理得
y
18400
0
x
200 x

x
(4,
50)
(2) x 200 2 x 200 20 2
x
x
当且仅当 x 200 时取等号,即 x 10 2 (4,50) x
所以当 x 10 2 时,总造价最低为18400 8000 2 元
“一正,二定,三相等”
2020/4/21
119513413
2
二、典例精讲
典例.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种 产品,经测算,处理成本 y (万元)与处理量 x (吨)之间的函数关系可近 似的表示为:y x2 50x 900 ,且每处理一吨废弃物可得价值为10 万元的某 种产品,同时获得国家补贴10 万元.
相关文档
最新文档