X射线衍射在材料分析测试中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X射线衍射技术在材料分析测试中的应用
摘要:X 射线衍射分析技术是一种十分有效的材料分析方法, 在众多领域的研究和生产中被广泛应用。介绍了X 射线衍射的基本原理, 从物相鉴定、点阵参数测定、微观应力测定等几方面概述了X 射线衍射技术在材料分析中的应用进展。
1 X射线基本原理
由于X 射线是波长在1000Å~0. 01Å之间的一种电磁辐射, 常用的X 射线波长约在2. 5Å~ 0. 5Å之间, 与晶体中的原子间距( 1Å )数量级相同, 因此可以用晶体作为X 射线的天然衍射光栅, 这就使得用X射线衍射进行晶体结构分析成为可能。
当X射线沿某方向入射某一晶体的时候, 晶体中每个原子的核外电子产生的相干波彼此发生干涉.当每两个相邻波源在某一方向的光程差(Δ)等于波长λ的整数倍时, 它们的波峰与波峰将互相叠加而得到最大限度的加强, 这种波的加强叫做衍射, 相应的方向叫做衍射方向, 在衍射方向前进的波叫做衍射波。Δ= 0的衍射叫零级衍射, Δ = λ的衍射叫一级衍射, Δ = nλ的衍射叫n级衍射. n不同, 衍射方向也不同。
在晶体的点阵结构中, 具有周期性排列的原子或电子散射的次生X射线间相互干涉的结果, 决定了X射线在晶体中衍射的方向, 所以通过对衍射方向的测定, 可以得到晶体的点阵结构、晶胞大小和形状等信息。
晶体结构= 点阵+ 结构基元, 点阵又包括直线点阵, 平面点阵和空间点阵. 空间点阵可以看成是互不平行的三组直线点阵的组合, 也可以看作是由互相平行且间距相等的一系列平面点阵所组成. 劳厄和布拉格就是分别从这两个角度出发, 研究衍射方向与晶胞参数之间的关系。伦琴发现X射线之后, 1912年德国物理学家劳厄首先根据X 射线的波长和晶体空间点阵的各共振体间距的量级, 理论预见到X 射线与晶体相遇会产生衍射现象, 并且他成功地验证了这一预见, 并由此推出了著名的劳厄定律。
2 X射线的应用
2 .1 X射线衍射物相分析原理
与化学分析不同,X 射线衍射分析所能指示出的是“相”,而不仅限于元素。对
X 光来说,晶体点阵是理想的衍射光栅,物质晶体结构上的差异导致形形色色的衍射花样。没有两种结晶物质会给出完全相同的衍射花样。如果将几种物相混合摄照,所得衍射线条将是各个单独物相衍射结果的简单叠加。对每种单相物质都测定一个标准物质的图样,制成卡片,物相分析就变成了简单的对照工作。同理,可对多相混合物或化合物逐一进行鉴定。
如今在硬质合金涂层的研究分析中,X 射线衍射物相分析已是常用的手段之一,与金相分析结合应用,充分发挥功效。硬质合金涂层的物相分析就是借助前人制作的上万种标准衍射图样,根据物质的X 射线衍射花样与物质内部晶体结构相关的特点,查对而快速判定涂覆物相组分,确定材料含有的相,以此达到调控优化工艺,获取所需物相结构。
2. 1 物相定性分析即固体由哪几种物质构成
不同的多晶体物质的结构和组成元素各不相同, 它们的衍射花样在线条数目、角度位置、强度上就呈现出差异, 衍射花样与多晶体的结构和组成有关, 一种特定的物相具有自己独特的一组衍射线条(即衍射谱) , 反之不同的衍射谱代表着不同的物相. 若多种物相混合成一个试样, 则其衍射谱就是其中各个物相衍射谱叠加而成的复合衍射谱. 因而, 我们可以通过测定试样的复合衍射谱, 并对复合衍射谱进行分析分解, 从而确定试样由哪几种物质构成。
2. 2 物相定量分析
物相定量分析的任务是用X 射线衍射技术, 准确测定混合物中各相的衍射强度, 从而求出多相物质中各相的含量. 其理论基础是物质参与衍射的体积或者重量与其所产生的衍射强度成正比, 因而, 可通过衍射强度的大小求出混合物中某
相参与衍射的体积分数或者重量分数, 从而确定混合物中某相的含量.X射线衍射物相定量分析方法有: 内标法、外标法、绝热法、增量法、无标样法、基体冲洗法和全谱拟合法等常规分析方法. 内标法、绝热法和增量法等都需要在待测样品中加入参考标相并绘制工作曲线, 如果样品含有的物相较多、谱线复杂, 再加入参考标相时会进一步增加谱线的重叠机会,从而给定量分析带来困难; 外标法虽然不需要在样品中加入参考标相, 但需要用纯的待测相物质制作工作曲线; 基体冲洗法、无标样法和全谱拟合法等分析方法不需要配制一系列内标标准物质和绘制标准工作曲线, 但需要复杂的数学计算, 如联立方程法和最小二乘法等 . 总之, X射线衍射方法进行物相定量分析方法很多, 但是有些方法需要有纯的物质作为标样, 而有时候纯的物质难以得到, 从而使得定量分析难以进行, 从这个意义上说, 无标样定量相分析法具有较大的使用价值和推广价值.
2.3点阵参数的测定
点阵参数是物质的基本结构参数, 任何一种晶体物质在一定状态下都有一定的点阵参数。测定点阵参数在研究固态相变、确定固溶体类型、测定固溶体溶解度曲线、测定热膨胀系数等方面都得到了应用。点阵参数的测定是通过X 射线衍射线位置的测定而获得的, 通过测定衍射花样中每一条衍射线的位置均可得出一个点阵常数值。吴建鹏等采用X 射线衍射技术测量了不同配比条件下Fe2 O3 和Cr2O3 的固溶体的点阵参数,根据Vegard 定律计算出固溶体中某相的固溶度,这种方法虽然存在一定的误差, 但对于反映固溶度随工艺参数的变化趋势仍然是非常有效的。刘晓等通过衍射技术计算出了低碳钢中马氏体的点阵常数, 并建立了一个马氏体点阵参数随固溶碳量变化的新经验方程, 他们根据试验数据所获得的回归方程可成为钢中相( 过饱和) 含碳量的实用的标定办法( 特别在低碳范围) 。
2. 4 微观应力的测定
微观应力是指由于形变、相变、多相物质的膨胀等因素引起的存在于材料内各晶粒之间或晶粒之中的微区应力。当一束X 射线入射到具有微观应力的样品上
时, 由于微观区域应力取向不同, 各晶粒的晶面间距产生了不同的应变, 即在某些晶粒中晶面间距扩张, 而在另一些晶粒中晶面间距压缩, 结果使其衍射线并不像宏观内应力所影响的那样单一地向某一方向位移, 而是在各方向上都平均地作了一些位移, 总的效应是导致衍射线漫散宽化。材料的微观残余应力是引起衍射线线形宽化的主要原因, 因此衍射线的半高宽即衍射线最大强度一半处的宽度是描述微观残余应力的基本参数。钱桦等在利用X 射线衍射研究淬火65Mn 钢回火残余应力时发现: 半高宽的变化与回火时间、温度密切相关。与硬度变化规律相似, 半高宽也是随着回火时间的延长和回火温度的升高呈现单调下降的趋势。因此,X 射线衍射中半高宽- 回火时间、温度曲线可以用于回火过程中残余应力消除情况的判定。
2.5 结晶度的测定
结晶度是影响材料性能的重要参数。在一些情况下, 物质结晶相和非晶相的衍射图谱往往会重叠。结晶度的测定主要是根据结晶相的衍射图谱面积与非晶相图谱面积的比, 在测定时必须把晶相、非晶相及背景不相干散射分离开来。基本公式为:
X c = I c/ ( I c+ K I a )
式中: X c —结晶度
I c —晶相散射强度
I a —非晶相散射强度
K —单位质量样品中晶相与非晶相散射系数之比
目前主要的分峰法有几何分峰法、函数分峰法等。范雄等采用X 射线衍射技术测定了高聚物聚丙烯(PP) 的结晶度, 利用函数分峰法分离出非晶峰和各个结晶峰, 计算出了不同热处理条件下聚丙烯的结晶度, 得出了聚丙烯结晶度与退火时间的规律。