变式训练在数学教学中作用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈变式训练在数学教学中的作用
培养学生的创新能力,是新时期教学的最终目标,可如何实现这个目标,每个老师有自己的理解和方法,本人认为,通过变式教学,可以达到这一目标。

在传统教学机制下,学生要想获得好的成绩,必须既快又准确的解题,为达到这个目的,很多教师会采用让学生做大量习题,以达到熟练巩固的程度,这样造成学生的负担很重。

随着“减负”的实施,素质教育目标的提出,有效地培养学生的创新能力,让学生从大量的习题中解放出来,已是大势所趋,但同时又不能降低教学质量,本人在变式教学方面做出了一些尝试。

变式教学是对数学中的问题进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的本质特征,揭示不同知识点间的内在联系的一种教学设计方法。

变式教学使一题多用,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲。

在教学过程中,根据学生的特点,教师通过创设合理的、有挑战性的变式训练,激发学生的学习兴趣。

通过变式训练,教师对学生的思维发展提供一个支架,而这个支架恰好是学生思维发展的一个阶梯,有利于学生构建合理、完整的新知识。

对于每一个变式,通过在师生、学生之间的相互讨论,促进课堂的民主、和谐,真正体现“教师为主导,学生为主体”的思想。

变式教学有利于发展学生的创新能力。

《高中数学新课程标准》要求培养学生的探索精神,发展学生的创新意识。

创新是素质教育的核心,培养学生的创新精神、创新意识、创新思维和创新能力是
实施素质教育的关键。

在教学中,变式练习时传统练习和创新的中介,教师通过变式,可以培养学生的探索精神和创新精神。

教师通过改变问题的情景、改变问题的条件、结论或者图形的关系,让学生探索,以激发学生的创新思维,培养他们的创新能力。

通过对一个问题多角度的求解,多方向的思维,已获得多种答案,培养学生的发散思维的能力,这种发散思维,就是创新的基础。

下面本人结合数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。

一、在数学概念的形成过程中,利用变式启发学生积极参与观察、分析、归纳,培养学生正确概括的思维能力。

从培养学生思维能力的要求来看,形成数学概念,提示其内涵与外延,比数学概念的定义本身更重要。

在形成概念的过程中,可以利用变式引导学生积极参与形成概念的全过程,让学生自己去“发现”、去“创造”,通过多样化的变式提高学生学习的积极性,培养学生的观察、分析以及概括能力。

如在讲函数的定义域时,一个函数的定义域是自变量的取值范围。

实际上学生对自变量和变量,难以辨析,此时可以做如下变形:变式1:若函数f(2x)的定义域是[-1,1],求f(2x)的定义域;
变式2:若函数f(2x)的定义域是[-1,1],求f(2)的定义域;变式3:若函数f(2x)的定义域是[-1,1],求f(log2x)的定义域。

通过以上的变式,可以对概念的理解逐渐加深,对概念中本质的东西有个非常清晰的认识,因此教师在以后的练习中也明确类似知识点的考查方向,防止教师盲目出题,学生盲目练习,在有限的时间内使得效益最大化。

二、在理解公式、定理及其性质的过程中,利用变式使学生深刻认知定理和公式中概念间的多种联系,从而培养学生多向变通的思维能力。

数学思维的发展,还赖于掌握、应用定理和公式,去进行推理、论证和演算。

由于定理和公式的实质,也是人们对于概念之间存在的本质联系的概括,所以掌握定理和公式的关键在于明确理解定理和公式中概念的联系,对于这种联系的任何形式的机械的理解,是不能熟练、灵活应用定理和公式的根源,它是缺乏多向变通思维能力的结果。

因此在定理和公式的教学中,也可利用变式,展现相关定理和公式之间的联系以及定理、公式成立依附的条件,培养学生辨析与定理和公式有关的判断,运用。

如在研究三棱锥(即四面体)顶点的射影与底面三角形“各心”的关系时就可设置以下问题:
①当三棱锥是正三棱锥时;
②当三条侧棱的长均相等时;
③当侧棱与底面所成的角都相等时;
④当各个侧面与底面所成的二面角相等,且顶点射影在底面三角形内时;
⑤当顶点与底面三边距离相等时;
⑥当三条侧棱两两垂直时;
⑦当三条侧棱分别与所对侧面垂直时;
教师通过不断变换命题的条件,引深拓广,产生一个个既类似又有区别的问题,使学生产生浓厚的兴趣,在挑战中寻找乐趣,培养了思维的深刻性,同时也进一步巩固了对于线线、线面垂直关系,尤其是三垂线定理的掌握。

防止学生形式地、机械地背诵、套用公式和定理,提高学生变通思考问题和灵活应用概念、公式以及定理的能力。

总之,在数学课堂教学中,遵循学生认知发展规律,根据教学内容和目标加强变式训练,对巩固基础、培养思维、提高能力有着重要的作用。

特别是,变式训练能培养培养学生敢于思考,敢于联想,敢于怀疑的品质,培养学生自主探究能力与创新精神。

当然,课堂教学中的变式题最好以教材为源,以学生为本,体现出“源于课本,高于课本”,并能在日常教学中渗透到学生的学习中去。

让学生也学会“变题”,使学生自己去探索、分析、综合,以提高学生的数学素质。

相关文档
最新文档