微生物学主要知识点08微生物的遗传
微生物的遗传与变异
微生物的遗传与变异遗传和变异是生物体的最本质的属性之一。
遗传性:指世代间子代和亲代相似的现象;变异性:是子代与子代之间及子代与亲代之间的差异。
遗传性保证了种的存在和延续;而变异性则推动了种的进化和发展。
遗传型(基因型):某一生物个体所含有全部遗传因子即基因的总和。
它是一种内在潜力,只有在适当的环境条件下,通过自身的发代谢和发育,才能将它具体化,即产生表型。
表型:指某一生物体所具有的一切外表特征及内在特性的总和,是遗传型在合适环境下的具体体现。
变异:指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。
饰变:指不涉及遗传物质结构改变而只发生在转录、转译水平上的表型变化。
如粘质沙雷氏菌,在25℃培养时,可产生深红色的灵杆菌素,这是一种饰变,但当在37℃培养时,则不产生色素,再在25℃下培养时,又恢复产生色素的能力。
微生物在遗传学中的地位:✧个体微小,结构简单;✧营养体一般都是单倍体;✧易培养;✧繁殖快;✧易于累积不同的中间代谢物;✧菌落形态可见性与多样性;✧环境条件对微生物群体中每个个体的直接性与一致性;✧易于形成营养缺陷型;✧存在多种处于进化过程中的原始有性生殖过程。
对微生物遗传规律的深入研究,不仅促进了现代分子生物学和生物工程学的发展,而且还为育种工作提提供了丰富的理论基础,促使育种工作向着不自觉到自觉,从低效到高效,从随机到定向,从近缘杂交到远缘杂交等方向发展。
第一节遗传变异的物质基础遗传变异有无物质基础以及何种物质可承担遗传变异功能的问题,是生物学中的一个重大理论问题。
对此有着不同的猜测。
直到1944年后,利用微生物这一实验对象进行了三个著名的实验,才以确凿的事实证实了核酸尤其是DNA才是遗传变异的真正物质基础。
一、证明核酸是遗传物质的三个经典实验(一)转化实验✧发现者:英国人Griffith于1928年首次发现这一现象。
✧研究对象:肺炎链球菌S型和R型✧过程:1944年Avery等证明遗传物质是DNA。
《微生物遗传》课件
04
自然选育
利用自然变异选择有益的变异体,通过遗传稳定性和生产性状的鉴定,培育出新的菌种。
微生物遗传学应用
05
工业发酵是微生物遗传学应用的重要领域之一,通过利用微生物的遗传特性,实现大规模生产各类发酵产品,如酒精、醋酸、酵母、抗生素等。
工业发酵中,通过遗传育种和基因工程手段改良微生物菌种,提高发酵效率和产物质量,降低生产成本。
详细描述
总结词
介绍基因表达的概念、基因表达的调控机制以及基因表达的改变对微生物的影响。
详细描述
基因表达是DNA中的遗传信息转录为RNA并翻译为蛋白质的过程。基因表达受到多种因素的调控,包括DNA的甲基化、染色质构象以及转录和翻译水平的调控。基因表达的改变可能影响微生物的生长、代谢和致病性等方面。
微生物基因突变与重组
19世纪末期
遗传学奠基人摩尔根提出基因概念,为遗传学的发展奠定了基础。
20世纪初期
DNA双螺旋结构发现,开启了分子生物学时代。
20世纪50年代
人类基因组计划启动,推动了基因组学的发展。
20世纪70年代
微生物遗传物质基础
02
介绍DNA的基本结构,包括碱基、磷酸和脱氧核糖,以及DNA的双螺旋结构。
总结词
工业发酵的微生物菌种通常具有特殊生理功能和代谢途径,通过研究其遗传机制,有助于发现新的发酵产品和工艺。
生物制药是利用微生物或其代谢产物作为药物成分,治疗和预防人类疾病的领域。
通过遗传工程手段,可以改良微生物细胞工厂,高效表达具有药效的蛋白质或其他活性分子。
生物制药中,对微生物的遗传特性和表达调控机制的研究,有助于发现和开发新的药物候选分子。
生物环保是利用微生物的降解和转化能力,处理和治理环境污染的领域。
【精品】第八章微生物的遗传和变异复习题解
第八章微生物的遗传和变异习题与题解一、填空题1、证明DNA是遗传物质的事例很多,其中最直接的证明有1928年Griffith的细菌转化实验、Avery等的1944年发表的细菌细胞抽提物的降解、转化实验和1952年Alfred等进行的35S、32P标记的T2噬菌体繁殖实验。
而1956年,H.Fraenkel-Conrat用RNA病毒(烟草花叶病毒TMV)所进行的拆分和重建实验,证明了RNA也是遗传物质。
2、细菌在一般情况下是一套基因,即单倍体;真核微生物通常是有两套基因又称二倍体。
3、大肠杆菌基因组为双链环状的在细胞中以紧密缠绕成的较致密的不规则小体形式存在于细胞中,该小体被称为拟核。
4、酵母菌基因组最显著的特点是高度重复。
酵母基因组全序列测定完成后,在其基因组上发现了许多较高同源性的DNA重复序列,称之为遗传丰余。
5、质粒DNA分子存在于细胞中,但从细胞中分离的质粒大多是3种构型,即CCC型、OC型和L型。
6、转座因子1)是细胞中位于染色体或质粒上能改变自身位置(如从染色体或质粒的一个位点转到另一个位点,或者在两个复制子之间转移)的一段DNA序列。
2)原核微生物中的转座因子有三种类型:插入序列(IS)、转座子(Tn)和某些特殊病毒(如Mu)。
3)转座因子可引发多种遗传变化,主要包括插入突变、产生染色体畸变、基因的移动和重排。
7、在普遍性转导中,噬菌体可以将供体细菌染色体的任何部分转导到受体细菌中;而在局限性转导中,噬菌体总是携带同样的片段到受体细胞中。
8、细菌的结合作用是指细菌与细菌的直接接触而产生的遗传信息的转移和重组过程9、线粒体遗传特征的遗传发生在核外,且在有丝分裂和减数分裂过程以外,因此它是一种细胞质遗传。
10、丝状真菌遗传学研究主要是借助有性过程和准性生殖过程,并通过遗传分析进行的,而准性生殖是丝状真菌,特别是不产生有性孢子的丝状真菌特有的遗传现象。
准性生殖是指不经过减数分裂就能导致基因重组的生殖过程。
微生物遗传知识点总结
微生物遗传知识点总结一、微生物的遗传物质1.DNA:微生物的遗传物质主要是DNA(脱氧核糖核酸),DNA是微生物的基因组主要组成部分,承载了微生物的遗传信息。
2.RNA:微生物的遗传物质中还包括RNA(核糖核酸),RNA在微生物的蛋白质合成中起到重要的作用,有mRNA、tRNA和rRNA等不同类型。
3.质粒:微生物的遗传物质中还存在质粒,质粒是细胞外遗传物质,可以自主复制和传递,在微生物的分子遗传研究中具有重要的意义。
二、微生物的遗传变异1.突变:突变是指微生物遗传物质的突发性变异,包括点突变、插入突变和缺失突变等,突变会导致微生物表型的变化,包括对抗药物的耐药性等特征。
2.重组:重组是指微生物遗传物质的重组和重排,包括同一基因组内的DNA重组和来自不同基因组的DNA重组,重组可以导致各种遗传特征的变异和产生新的遗传组合。
3.外源基因的导入:微生物可以通过外源基因的导入来获得新的遗传特征,包括外源DNA的转化、噬菌体的侵染和质粒的转移等方式。
三、微生物的遗传传递1.垂直传递:垂直传递是指微生物遗传物质从父代到子代的传递,包括细菌的有丝分裂、芽生、孢子形成和病毒的感染传递等方式。
2.水平传递:水平传递是指微生物遗传物质在同一代的微生物个体之间的传递,包括细菌的共享基因池、DNA转化和连接转移等方式,可以导致微生物之间的基因交换和遗传多样性的增加。
四、微生物遗传的调控机制1.DNA修饰:微生物可以通过DNA修饰来调控基因的表达,包括DNA 甲基化和DNA腺苷酸修饰等方式,这些修饰可以影响基因的转录和翻译过程。
2.转录调控:微生物可以通过转录因子的结合和解离来调控基因的转录水平,包括正调控和负调控,这些调控作用可以响应内外环境的变化。
3.蛋白质修饰:微生物可以通过蛋白质的修饰来调控蛋白质的活性和稳定性,包括翻译后修饰和酶的磷酸化、乙酰化和甲基化等方式。
4. RNA干涉:微生物可以通过RNA干涉机制来调控基因表达,包括小分子RNA的介导和crispr-cas系统等方式,这些机制可以抑制或靶向性地破坏特定基因的表达。
微生物学 第八章 微生物遗传
细菌如此之小,它们不会携带过多的额外DNA。在进 化过程中,Rho可能使得基因被紧凑地‘打包’起来,从 而反过来促进了细菌的快速生长。”
二、啤酒酵母的基因组
1996年,由欧洲、美国、加拿大和日本共96个实验室 的633位科学家的艰苦努力完成了全基因组的测序工作, 这是第一个完成测序的真核生物基因组。
质粒通常以共价闭合环状(covalently closed circle,简称 CCC)的超螺旋双链DNA分子存在于细胞中.
从细胞中分离的质粒大多是三种构型,即CCC型、OC型 (open circular form)和L型(linear form).
二、质粒的主要类型
1. 致育因子(Fertility factor,F因子) 2. 抗性因子(Resistance factor,R因子) 3. Col质粒 4. 毒性质粒(virulence plasmid) 5. 代谢质粒(Metabolic plasmid) 6. 隐秘质粒(cryptic plasmid)
少数基因突变不影响生命的生存;适应复杂多变的环境。 酵母比细菌和病毒“进步”且“富有”,而细菌和病毒更 “聪明”。
第三节 质粒和转座因子
质粒(plasቤተ መጻሕፍቲ ባይዱid) 独立于染色体外,能进行自主复制的细胞 质遗传因子,主要存在于各种微生物细胞中;
转座因子(transposable element) 位于染色体或质粒上的一 段能改变自身位置的DNA序列,广泛分布于原核和真核细胞 中。
拟核上结合有类组蛋白蛋白质和少量RNA分子,使其 压缩成一种手脚架形的(scaffold)致密结构 。
大肠杆菌及其它原核细胞就是以这种拟核形式在细胞 中执行着诸如复制、重组、转录、 翻译以及复杂的调节 过程。
微生物遗传知识点总结
微生物遗传知识点总结1. 细菌的遗传物质:细菌遗传物质主要为环状核糖体RNA(plasmid)和线状核糖体RNA(chromosome)。
环状核糖体RNA一般用来携带特定功能的基因,如抗药性基因等;线状核糖体RNA则包含了细菌的基本遗传信息。
2. 真菌的遗传物质:真菌的遗传物质为线状核糖体RNA (chromosome),真菌基因组(基因组大小较大)一般包含了细菌的基本遗传信息以及其他功能基因。
3.病毒的遗传物质:病毒遗传物质主要为DNA或RNA,可以是双链的或单链的。
病毒利用寄主细胞的复制机制进行自身的遗传,感染细胞后,病毒的基因会整合到宿主细胞的染色体上,成为细菌的一部分。
4.遗传修饰:微生物中常见的遗传修饰方式有化学修饰、DNA甲基化和结构修饰等。
这些修饰可以影响基因表达、DNA复制和修复等过程,从而影响微生物的遗传特征。
5.细菌的水平基因转移:细菌拥有多种水平基因转移机制,包括转染、共转移、转座子、转化等方式。
这些机制使得细菌能够快速适应环境变化,并具有快速产生新基因型的能力。
6.真菌的有性和无性生殖:真菌包括有性生殖和无性生殖两种方式。
有性生殖通过两个不同的配子的结合产生新的基因组,有助于增加基因的多样性;无性生殖则通过单个微生物细胞的分裂繁殖来维持和传递遗传信息。
7.病毒的突变:病毒突变是其遗传变异的主要方式。
突变可以是点突变(单个碱基的改变)、缺失突变(基因缺失)、插入突变(外源DNA插入)等方式,导致病毒的基因组结构和功能的改变。
8.抗药性的遗传机制:抗药性是微生物遗传的重要研究方向之一、细菌的抗药性主要通过基因的垂直传递和水平传递两种方式进行。
基因的垂直传递是指抗药性基因在细菌的染色体上遗传给后代细菌;水平传递则是指通过细菌间共享质粒等遗传物质,传递抗药性基因。
9.基因工程和生物技术:微生物遗传的研究对于基因工程和生物技术具有重要意义。
通过对微生物遗传物质进行改造和调控,可以实现基因的克隆、表达、突变和组合等操作,从而用于生物医学、农业、食品工业和环境保护等方面的应用。
微生物复习知识点
微生物知识点一、名词解释第一章绪论微生物:指在自然界广泛分布的个体微小,结构简单,肉眼不能看到,需借助光学显微镜或电子显微镜放大几百倍,几千倍,甚至几万倍才能看到的微小生物的统称。
菌株(又称品系):表示由一个独立分离的单细胞繁殖而成的纯菌群。
第二章细菌原生质体:在人为条件下,用溶菌酶处理或在含青霉素的培养基中培养而抑制新生细胞壁合成而形成的仅由一层细胞膜包裹的,圆球形,对渗透压变化敏感的细胞,一般由革兰氏阳性细菌形成。
球状体(原生质球):针对革兰氏阴性细菌加溶菌酶和EDTA处理后而获得的残留部分细胞壁的球形体。
芽孢:某些细菌在其生长发育后期,在细胞内形成一个圆形或椭圆形,厚壁,含水量极低,抗逆性极强的休眠体。
伴孢晶体:少数芽孢杆菌在其形成芽孢的同时,会在芽孢旁形成一颗菱形或双锥形的碱溶性蛋白晶体。
鞭毛:某些细菌从细胞内向细胞外伸出地细长波状弯曲的丝状物。
是细菌的运动器官。
培养基:培养基是人工配制的,适合微生物生长繁殖或产生代谢产物的营养物质。
外毒素:病原细菌,主要是一些革兰氏阴性菌,在生长过程中合成并分泌到细胞外的毒素,化学本质是蛋白质。
类毒素:因外毒素对热和某些化学物质敏感,可以脱毒形成类毒素。
内毒素:革兰氏阴性菌的细胞壁物质,主要成分是脂多糖,当菌体裂解时释放发挥毒性,即内毒素。
放线菌:是一类介于细菌和丝状真菌之间,在形态上具有分支状菌丝,菌落形态和霉菌相似,以孢子进行繁殖,革兰染色多为阳性的单细胞原核细胞型微生物。
生长曲线:将一定数量的细菌接种到定量的液体培养基中,定时取样测定细胞的数量,以培养时间为横坐标,以菌数的对数为纵坐标作图,得到一条反映细菌在整个培养期间菌数变化规律的曲线。
热原质:泛指那些能引起机体发热的物质,依据其来源不同可分为内源性热原质和外源性热原质。
第四章病毒毒粒(病毒颗粒):病毒的细胞外颗粒形式,也是病毒的感染性形式。
病毒的复制:病毒感染敏感宿主细胞后,病毒核酸进入细胞,通过其复制与表达产生子代病毒基因组和新的蛋白质。
《微生物学》主要知识点-08第八章微生物的遗传
第八章微生物的遗传概述:遗传(heredity or inheritanc® 和变异(variation)是生物体的最本质的属性之一。
遗传即生物的亲代将一整套遗传因子传递给子代的行为或功能。
变异指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。
基因型(ge no type某一生物个体所含有的全部基因的总和。
表型(phe no type)某一生物所具有的一切外表特征及内在特性的总和。
饰变( modification)不涉及遗传物质结构改变而发生在转录、翻译水平上的表型变化。
8.1遗传变异的物质基础8.1.1三个经典实验1. 经典转化实验:1928年F.Griffith以Streptococcus pneumoniae为研究对象进行转化(transformation)实验。
1944年O.T.Avery等人进一步研究得出DNA是遗传因子。
S strun A2. 噬菌体感染实验:1952年Alfred D.Hershey和Martha Chase用32P标记病毒的DNA,用35S标记病毒的蛋白质外壳,证实了T2噬菌体的DNA是遗传物质。
3.植物病毒的重建实1956年H.Fraenkel-Conrat用含RNA的烟草花叶病毒(tobacco mosaic virus,TMV)与TMV 近源的霍氏车前花叶病毒(Holmes ribgrass mosaic virus,HRV)所进行的拆分与重建实验证明,RNA也是遗传的物质基础。
8.2微生物的基因组结构:基因组(genome是指存在于细胞或病毒中的所有基因。
细菌在一般情况下是一套基因,即单倍体(haploid);真核微生物通常是有两套基因又称二倍体(diploid )。
基因组通常是指全部一套基因。
由于现在发现许多非编码序列具有重要的功能,因此目前基因组的含义实际上是指细胞中基因以及非基因的DNA序列的总称,包括编码蛋白质的结构基因、调控序列以及目前功能还尚不清楚的DNA序列。
微生物分子遗传学的基本原理
微生物分子遗传学的基本原理微生物分子遗传学是研究微生物遗传的基本原理和机制的学科,主要涉及到微生物的基因组学、表观遗传学和功能基因组学等方面。
微生物分子遗传学的研究对于了解微生物的演化和发展,以及微生物与环境的交互关系具有重要的意义。
本文将从微生物基因的结构、调控机制和遗传变异等方面探讨微生物分子遗传学的基本原理。
一、微生物基因的结构微生物的基因是由DNA组成的,其基本结构与其他生物的基因相似,包括启动子、转录起始位点、编码区和终止位点等。
微生物基因的长度和复杂度因菌种的不同而有所差异,大部分基因的长度在数百到数千个碱基对之间。
微生物基因的编码区通常由连续的密码子组成,每个密码子编码一个氨基酸,以组成蛋白质。
此外,在基因的编码区之间也会存在一些不编码的序列,这些序列的功能是参与转录、翻译或调控等生物过程。
二、微生物基因的调控机制基因的调控是指调整基因表达水平的过程。
在微生物中,基因的调控主要通过转录因子和RNA polymerase等分子间的相互作用来实现。
转录因子是一种负责调控基因表达的蛋白质,可以结合到启动子附近的区域,并与RNA polymerase一同构成转录复合物。
RNA polymerase则负责将DNA转录成为RNA,进而合成相应的蛋白质。
微生物基因的调控可以分为两类:正向调控和负向调控。
正向调控是指转录因子与启动子结合后促进RNA polymerase的结合并提高基因表达水平。
而负向调控则是指转录因子与启动子结合后阻碍RNA polymerase的结合并降低基因表达水平。
此外,基因的表达还受到许多外界因素的影响,包括细胞内外的信号、环境因素、营养状态等。
三、微生物基因的遗传变异微生物基因的遗传变异包括两类:突变和基因重组。
突变是指DNA序列在复制或重组过程中发生的不同类型的突然变化。
微生物的突变可以包括点突变、插入突变、删除突变等各种不同形式。
这些突变可能会破坏基因的功能,也可能会导致一些新的表型特征出现。
医学微生物学笔记 - 细菌的遗传与变异
细菌的遗传与变异●遗传(heredity):使微生物的性状保持相对稳定,子代与亲代生物学的性状基本相同,且代代相传。
●变异(variation):在一定条件下,子代与亲代之间以及子代与子代之间的生物学性状出现的差异,有利于物种的进化。
●基因型(genotype):细菌的遗传物质。
●表型(phenotype):基因表现出的各种性状。
●遗传性变异:是细菌的基因结构发生了改变,故又称基因型变异。
常发生于个别的细菌,不受环境因素的影响,变异发生后是不可逆的,产生的新性状可稳定地遗传给后代。
●非遗传性变异:细菌在一定的环境条件影响下产生的变异,其基因结构未改变,称为表型变异。
易受到环境因素的影响,凡在此环境因素作用下的所有细菌都出现变异,而且当环境中的影响因素去除后,变异的性状又可复原,表型变异不能遗传。
第一节细菌的遗传物质●DNA的结构与功能:结构——两条互相平行而方向相反的多核苷酸链功能——储存、复制和传递遗传信息复制——半保留复制特点——复制中易发生错误—基因突变蛋白合成——分子生物学中心法则(DNA-RNA-蛋白质)●基因与基因的转录结构基因——编码结构蛋白质基因结构非结构基因——编码功能蛋白质基因转录●遗传信息的翻译第二节细菌的遗传与变异一、染色体(chromosome)①一条环状双螺旋DNA长链,按一定构型反复回旋形成松散的网状结构;②缺乏组蛋白,无核膜包裹;③约含有5000个基因;二、质粒——是细菌染色体以外的遗传物质,是闭合环状的双链DNA。
1、质粒的特征:①质粒具有自我复制的能力。
②质粒DNA所编码的基因产物赋予细菌某些性状特征。
③质粒可自行丢失与消除。
④质粒的转移性。
⑤质粒可分为相容性与不相容性两种。
2、质粒的分类(1)根据质粒能否通过细菌的接合作用进行传递①接合性质粒②非接合性质粒(2)根据质粒在细菌内拷贝数多少①严紧型质粒②松弛型质粒(3)根据相容性①相容性——几种质粒同时共存于同一菌体内②不相容性——不能同时共存*可借此对质粒进行分组、分群。
遗传学知识:微生物的遗传和抗生素
遗传学知识:微生物的遗传和抗生素微生物的遗传和抗生素随着人类对微生物的研究逐渐深入,我们发现了微生物在遗传学和抗生素方面的独特性。
这对于我们深入了解微生物,并在医学、农业等方面应用微生物具有重要的意义。
在本文中,我们将探讨微生物的遗传和抗生素。
微生物的遗传微生物的遗传是指微生物在自然条件下传递和维持遗传物质,包括基因突变、水平基因转移、嵌合病毒等多种遗传方式。
1.基因突变基因突变是微生物进化中最常见的遗传方式之一。
期间发生的单个核苷酸的改变,如碱基替换、插入、缺失等会影响基因表达和蛋白质编码,可能会导致微生物的繁殖不佳,或是让微生物对一些农药以及抗生素产生抗药性。
基因突变研究帮助人们理解抗生素抗药性的发生和发展,这种现象对医学卫生工作产生了重要的影响。
2.水平基因转移水平基因转移是指把遗传物质从一个细胞移动到另一个细胞的过程,是微生物进化和适应环境的最主要途径之一。
它包括转化、转导、共轭等多种方式,其中共轭是最普遍的水平基因转移方式。
共轭是常见的细菌间基因转移方式,它利用细菌质粒(plasmid)在不同菌株间进行基因信息交换,导致的结果是很多细菌耐受抗生素、产生致病因子等进行进化适应。
3.嵌合病毒嵌合病毒是一种在病原微生物中广泛存在的一种DNA或RNA分子。
它们可以在物种间传递,几个病毒或细菌之间产生“重组”现象,就像人类DNA产生突变一样。
而这种嵌合可以导致一些病原微生物对抗生素的抗药性。
微生物遗传学的研究有助于人们更深入地了解微生物在抗药性和感染等方面的演变历程,以便更好地对抗它们。
抗生素抗生素是指一类具有抑制、破坏或杀死细菌、真菌、原虫等微生物的药物。
抗生素的发现和使用已经对人类健康产生了深远的影响。
但是抗生素不是万能药,其中一个重要的原因就是因为微生物抗药性的发展和加强。
现在的医学专家都强调过度使用抗生素可能会带来严重的后果,例如一些菌株的抗药性会逐渐增强,这种情况可能导致严重的流行病而无法治愈。
微生物学-第六章微生物的遗传
2,T2噬菌体感染实验
用 32P 标 记 病 毒 的 DNA , 35S 标 记 病 毒 的 蛋白质外壳。然后将这两种不同标记的病毒
分别与宿主大肠杆菌混合,结果发现:用含 有35S蛋白质的T2噬菌体感染大肠杆菌时,大 多数放射性留在宿主细胞的外边,而用含有 32PDNA的T2噬菌体感染大肠杆菌时,32PDNA 注入宿主细胞,并产生噬菌体后代,这些T2 噬菌体后代的蛋白质外壳的组成、形状大小
• 2) 如果转导DNA不能进行重组和复制,其上的基 因仅经过转录而得到表达,就成为流产转导 (abortive transduction),其特点是在选择培养 基平板上形成微小菌落。DNA不能复制,因此群 体中仅一个细胞含有DNA,而其它细胞只能得到 其基因产物,形成微小菌落。
• 3)被降解, 转导失败,在选择平板上无菌落形成。
大肠杆菌基因组特点:
1,遗传信息是连续的。
2,功能相关的结构基因组成操纵子结构, 有些功能相关的RNA基因也串联在一起。4100 个 基 因 , 2584 个 操 纵 子 , 16SrRNA 基 因 ---23SrRNA基因----5SrRNA基因串联在一起。
3,结构基因在基因组中多为单拷贝。rRNA 基因多拷贝,7个rRNA操纵子。
将待测样品与从老鼠肝脏抽提的酶混合在 一起适当保温后,用直径约2~3mm的圆形滤纸 片吸取待测样品,放置在含有鼠伤寒沙门氏细 菌组氨酸缺陷型突变株的基本培养基平板中央, 370C培养16~24小时。如有诱变作用,则在滤纸 片周围即可长出回复突变的菌落,由于试验纸 片的化学药剂向四周扩散而形成自然的浓度梯 度,故在浓度最高即离试验纸片近的地方,细 菌会全部被杀死,因而无菌落形成;而离试验 滤纸片较远的适宜地方形成回复突变的菌落最 多。
微生物学主要知识点08微生物的遗传
微生物学主要知识点08微生物的遗传微生物的遗传是微生物学中的一个重要知识点,包括微生物的基因组结构、遗传物质的复制和转录、重组以及突变等方面。
了解微生物的遗传不仅可以帮助科学家研究微生物的进化和适应能力,还可以应用于微生物的工业生产和疾病防治等领域。
1.微生物的基因组结构:微生物的基因组由DNA组成,DNA通过多个螺旋体嵌入细胞的细胞核或质粒中。
微生物的基因组可以分为染色体和质粒两部分,质粒是一种较小的环状DNA。
染色体和质粒中都含有基因,基因通过编码蛋白质的方式决定了微生物的特征和功能。
2.遗传物质的复制和转录:微生物的DNA通过复制和转录的方式进行遗传物质的复制。
DNA复制是指将一个DNA分子复制成两个完全相同的DNA分子,从一个细胞传递到另一个细胞。
DNA转录是指根据DNA模板合成RNA的过程,RNA复制的结果是生成一个与DNA模板相对应的RNA分子。
这些RNA分子可以进一步转录成蛋白质。
3.重组:微生物的重组是指在微生物遗传物质中发生DNA片段的重新组合。
这种重组可以发生在同一染色体上的两个相同或不同的DNA片段之间,也可以发生在不同染色体或质粒之间。
微生物的重组有助于增加遗传多样性,并提高微生物的适应能力和进化速度。
4.突变:微生物的遗传中还会发生突变现象,突变是指DNA序列的改变。
突变可以是点突变,即DNA中的一个碱基替换为另一个碱基;也可以是插入和缺失,即DNA序列中添加或删除一个或多个碱基。
突变可能对微生物的生长和繁殖产生负面影响,也可能带来新的适应优势。
5.横向基因转移:微生物的遗传中还存在横向基因转移的现象。
横向基因转移是指将一个细胞(供体)中的基因转移到另一个细胞(受体)中,无需通过细胞分裂进行。
横向基因转移可以发生在同一物种的细菌之间,也可以发生在不同物种的细菌之间。
横向基因转移是微生物进化和适应性演化的重要驱动因素之一6.基因调控:微生物的基因表达受到一系列调控机制的控制。
第八章 微生物的遗传和变异 复习题解
第八章微生物的遗传和变异习题与题解一、填空题1、证明DNA是遗传物质的事例很多,其中最直接的证明有1928年Griffith的细菌转化实验、Avery等的1944年发表的细菌细胞抽提物的降解、转化实验和1952年Alfred等进行的35S、32P标记的T2噬菌体繁殖实验。
而1956年,H.Fraenkel-Conrat 用RNA病毒(烟草花叶病毒TMV)所进行的拆分和重建实验,证明了RNA也是遗传物质。
2、细菌在一般情况下是一套基因,即单倍体;真核微生物通常是有两套基因又称二倍体。
3、大肠杆菌基因组为双链环状的在细胞中以紧密缠绕成的较致密的不规则小体形式存在于细胞中,该小体被称为拟核。
4、酵母菌基因组最显著的特点是高度重复。
酵母基因组全序列测定完成后,在其基因组上发现了许多较高同源性的DNA重复序列,称之为遗传丰余。
5、质粒DNA分子存在于细胞中,但从细胞中分离的质粒大多是3种构型,即CCC型、OC型和L型。
6、转座因子1)是细胞中位于染色体或质粒上能改变自身位置(如从染色体或质粒的一个位点转到另一个位点,或者在两个复制子之间转移)的一段DNA序列。
2)原核微生物中的转座因子有三种类型:插入序列(IS)、转座子(Tn)和某些特殊病毒(如Mu)。
3)转座因子可引发多种遗传变化,主要包括插入突变、产生染色体畸变、基因的移动和重排。
7、在普遍性转导中,噬菌体可以将供体细菌染色体的任何部分转导到受体细菌中;而在局限性转导中,噬菌体总是携带同样的片段到受体细胞中。
8、细菌的结合作用是指细菌与细菌的直接接触而产生的遗传信息的转移和重组过程9、线粒体遗传特征的遗传发生在核外,且在有丝分裂和减数分裂过程以外,因此它是一种细胞质遗传。
10、丝状真菌遗传学研究主要是借助有性过程和准性生殖过程,并通过遗传分析进行的,而准性生殖是丝状真菌,特别是不产生有性孢子的丝状真菌特有的遗传现象。
准性生殖是指不经过减数分裂就能导致基因重组的生殖过程。
微生物遗传育种知识点汇总
微生物遗传育种知识点汇总1.微生物基因组学:微生物基因组学是研究微生物基因组结构、功能和表达的学科。
通过对微生物基因组的测序、比较分析和功能注释,可以了解微生物的遗传特性和功能。
2.微生物突变:微生物突变是指微生物在自然环境或实验室中发生的基因突变。
突变可以是基因变异、插入突变、缺失突变等,这些突变可能会导致微生物表型的变化。
3.微生物选择:微生物选择是通过对微生物的生长条件进行调控,选择出具有其中一种特定性状的菌株。
例如,可以通过对耐盐性的选择培养基进行培养,选择出具有耐盐性的微生物菌株。
5.基因工程微生物:基因工程微生物是指经过人工改造的微生物,具有特定基因表达或基因功能改变的能力。
基因工程微生物可用于生产重要医药、酶类、化学品等。
6.自然变异与人工选择:微生物在自然环境中会发生一定程度的自然变异,这些变异可以通过人工选择进行进一步改良。
例如,选择耐药性菌株进行生产抗生素。
7.反向遗传学:反向遗传学是指通过与传统遗传学相反的方式研究生物体的遗传特性。
利用反向遗传学可以探索微生物基因的功能和作用。
9.高通量筛选技术:高通量筛选技术是指通过自动化设备对大量微生物进行快速筛选和分析的技术。
这些技术可以大大提高筛选效率和准确性,用于微生物遗传育种中。
10.代谢工程:代谢工程是指通过改造微生物的代谢路径和基因表达调控来提高目标产物的产量和选择性。
代谢工程可通过基因工程、突变、选择和培养条件优化等手段实现。
11.微生物系统发育学:微生物系统发育学是研究微生物演化和亲缘关系的学科。
通过比较分析微生物基因组,确定其进化关系和分类地位。
以上是微生物遗传育种的一些基本知识点汇总。
微生物遗传育种是一个综合性学科,涉及到多个学科的知识和技术,对于改良微生物品种和开发新的微生物应用具有重要意义。
微生物知识点整理
微生物知识点整理微生物知识点整理协议一、关键信息1、微生物的定义:微生物是指个体难以用肉眼观察,需要借助显微镜才能看清的微小生物的总称。
2、微生物的分类:包括细菌、真菌、病毒、支原体、衣原体、立克次氏体、螺旋体、放线菌等。
3、微生物的特点:体积小、结构简单、生长繁殖快、代谢类型多样、适应能力强等。
4、微生物的营养类型:自养型和异养型。
5、微生物的生长曲线:迟缓期、对数生长期、稳定期、衰亡期。
二、微生物的形态结构1、细菌11 形态:球菌、杆菌、螺旋菌等。
12 结构:细胞壁、细胞膜、细胞质、核质体等。
13 特殊结构:荚膜、鞭毛、菌毛、芽孢等。
2、真菌21 形态:单细胞真菌(酵母菌)和多细胞真菌(霉菌、蕈菌)。
22 结构:细胞壁、细胞膜、细胞质、细胞核等。
23 繁殖方式:无性繁殖和有性繁殖。
3、病毒31 形态:球形、杆形、蝌蚪形等。
32 结构:由核酸(DNA 或 RNA)和蛋白质外壳组成。
33 繁殖方式:吸附、侵入、复制、装配、释放。
三、微生物的生理特性1、微生物的营养物质:水、碳源、氮源、无机盐、生长因子等。
2、微生物的营养方式:21 自养微生物:能够利用无机物合成自身所需的有机物。
22 异养微生物:需要从外界摄取有机物作为营养物质。
3、微生物的代谢类型:31 产能代谢:有氧呼吸、无氧呼吸、发酵等。
32 合成代谢:合成蛋白质、核酸、多糖等生物大分子。
4、微生物的生长影响因素:温度、pH 值、氧气、渗透压等。
四、微生物的遗传变异1、微生物的遗传物质:DNA 是主要的遗传物质,部分病毒以RNA 作为遗传物质。
2、微生物的基因突变:包括点突变、染色体畸变等。
3、微生物的基因重组:转化、转导、接合等方式。
4、微生物的遗传变异在实际应用中的意义:如菌种选育、疾病诊断和防治等。
五、微生物与人类的关系1、有益方面11 工业应用:发酵生产食品、药品、化工产品等。
12 农业应用:生物肥料、生物防治病虫害等。
13 环境保护:污水处理、土壤修复等。
微生物的遗传
在同源重组过程中,DNA的断裂、交 换和重连导致基因的遗传物质的重新 排列。
同源重组在细菌、酵母和某些原生生 物中广泛存在,对于维持基因组的稳 定性、修复DNA损伤以及产生遗传多 样性具有重要意义。
转化
转化是指一个细胞将其DNA传 递给另一个细胞的过程。
在转化过程中,DNA通过内源 性或外源性途径进入受体细胞 ,并在其中进行复制和表达。
转化是细菌和某些原生生物中 常见的基因转移方式之一。
转化对于细菌的适应性进化、 基因组的重排以及细菌之间的 基因交流具有重要意义。
转导
01
转导是指由病毒介导的DNA转移过程。
02
在转导过程中,病毒将自身的基因组整合到宿主细胞的基因组中,并 通过病毒的复制和表达将基因传递给其他细胞。
06
CATALOGUE
微生物遗传学的前沿研究与展望
表观遗传学研究进展
总结词
表观遗传学研究揭示了基因表达的调控机制,在微生物 遗传学中具有重要意义。
详细描述
表观遗传学研究关注基因表达的调控机制,如DNA甲基 化、组蛋白修饰等,这些机制可以影响基因的表达水平 ,进而影响微生物的性状和功能。近年来,随着高通量 测序技术的发展,对微生物表观遗传学的研究取得了重 要进展,为深入理解微生物生命活动提供了新的视角。
诱变育种与基因工程育种
诱变育种
利用物理、化学或生物诱变因素处理微生物,诱发基因突变,从中选择具有优良性状的 突变体。
基因工程育种
通过基因克隆、载体构建、转化等技术手段,将目的基因导入受体细胞或个体,实现遗 传物质的重新组合,定向改造微生物的性状。
05
CATALOGUE
微生物遗传学
微生物遗传学微生物遗传学是研究微生物的遗传现象、遗传变异以及遗传信息传递的科学领域。
微生物遗传学对于理解微生物的进化、适应能力以及对疾病和环境的响应至关重要。
本文将介绍微生物遗传学的基本概念、重要实验方法,以及在微生物研究和应用中的意义。
一、微生物遗传学概述微生物遗传学是遗传学学科中的一个重要分支,主要研究微生物的遗传变异、基因传递以及基因调控等现象。
微生物遗传学与人类和其他生物的遗传学类似,但由于微生物的特殊性,研究方法和技术也有一些独特之处。
微生物包括细菌、真菌、病毒和原生动物等单细胞或少细胞的微小生物。
不同的微生物具有不同的遗传特征和基因组结构,因此微生物遗传学的研究对象非常广泛。
微生物遗传学的发展不仅能够深化对微生物多样性和进化的理解,还对药物的研发、疾病的治疗以及环境的保护等方面有着重要的应用价值。
二、微生物遗传学的重要实验方法1. 转化(Transformation)转化是一种常用的基因传递方式,通过外源DNA片段的吸收和整合,使细菌或其他微生物细胞的遗传信息发生改变。
转化可以导入一些有益的基因,提高微生物的生物合成能力或抗生素产生能力;也可以导入一些抗菌基因,提高微生物对抗生物胁迫的能力。
2. 转座子(Transposon)插入转座子是一类可以在基因组中移动的DNA片段,转座子插入是一种特定的基因突变方式。
通过转座子插入实验,可以研究特定基因的功能、表达模式以及基因组的结构和稳定性。
转座子插入还可以用于菌株的遗传修饰,通过插入转座子来改变目标基因的表达水平。
3. 基因工程基因工程是一种利用遗传技术对微生物进行定向改造的方法。
通过重组DNA技术,可以将外源的基因导入微生物细胞中,使其表达所需的特定蛋白质。
基因工程在微生物制药、农业生产以及环境修复等领域有着广泛的应用。
三、微生物遗传学的意义和应用1. 微生物进化和多样性研究微生物遗传学研究可以揭示微生物的进化路径和多样性。
通过对不同微生物菌株和基因组的比较,可以了解它们的亲缘关系以及与环境的关联性,进一步推测微生物的进化历史和适应策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章微生物的遗传概述:遗传(heredity or inheritance)和变异(variation)是生物体的最本质的属性之一。
遗传即生物的亲代将一整套遗传因子传递给子代的行为或功能。
变异指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。
基因型(genotype)某一生物个体所含有的全部基因的总和。
表型(phenotype)某一生物所具有的一切外表特征及内在特性的总和。
饰变(modification)不涉及遗传物质结构改变而发生在转录、翻译水平上的表型变化。
8.1 遗传变异的物质基础8.1.1三个经典实验1. 经典转化实验:1928年F.Griffith以Streptococcus pneumoniae为研究对象进行转化(transformation)实验。
1944年O.T.Avery等人进一步研究得出DNA是遗传因子。
2.噬菌体感染实验:1952年Alfred D.Hershey和Martha Chase用32P标记病毒的DNA,用35S标记病毒的蛋白质外壳,证实了T2噬菌体的DNA是遗传物质。
3.植物病毒的重建实验:1956年H.Fraenkel-Conrat用含RNA的烟草花叶病毒(tobacco mosaic virus,TMV)与TMV近源的霍氏车前花叶病毒(Holmes ribgrass mosaic virus,HRV)所进行的拆分与重建实验证明,RNA也是遗传的物质基础。
8.2 微生物的基因组结构:基因组(genome)是指存在于细胞或病毒中的所有基因。
细菌在一般情况下是一套基因,即单倍体(haploid);真核微生物通常是有两套基因又称二倍体(diploid)。
基因组通常是指全部一套基因。
由于现在发现许多非编码序列具有重要的功能,因此目前基因组的含义实际上是指细胞中基因以及非基因的DNA序列的总称,包括编码蛋白质的结构基因、调控序列以及目前功能还尚不清楚的DNA序列。
微生物基因组随不同类型表现出多样性。
8.2.1大肠杆菌的基因组:大肠杆菌基因组为双链环状的DNA分子。
在细胞中以紧密缠绕成的较致密的不规则小体(拟核,nucloid)形式存在于细胞中,其上结合有类组蛋白蛋白质和少量RNA分子,使其压缩成脚手架形的(scaffold)致密结构(大肠杆菌DNA分子长度是其菌体长度的1000倍,必须以一定的形式压缩进细胞中)。
基因组全序列测定于1997年由Wisconsin大学的Blattner 等人完成。
大肠杆菌基因组结构特点:1.遗传信息的连续性:个别细菌(鼠沙门氏菌和犬螺杆菌)和古生菌的rRNA 和tRNA 含有内含子或间隔序列,其他绝大部分原核生物不含内含子,遗传信息是连续的而不是中断的。
2.功能相关的结构基因组成操纵子:大肠杆菌共有2584个操纵子,基因组测序推测出2190个操纵子。
如此多的操纵子结构可能与原核基因表达多采用转录调控有关。
此外,有些功能相关的RNA基因也串联在一起,如构成核糖体的三种RNA基因转录在同一转录产物中,依次是16S rRNA-23S rRNA-5S rRNA 。
三种RNA在核糖体中的比例是1∶1 ∶1。
3.结构基因的单拷贝及rRNA 基因的多拷贝:大肠杆菌有7个rRNA操纵子其特征都与基因组的复制方向有关即按复制方向表达。
7个rrn 就有6个分布在双向复制起点oric(83min)附近,有利于核糖体的快速组装。
4.基因组的重复序列少而短:原核生物基因组存在一定数量的重复序列,但比真核生物少得多,重复序列一般为4~40 bp,重复程度十多次、上千次不等。
8.2.2啤酒酵母的基因组:啤酒酵母是单细孢真核生物,1997年,有欧洲、美国、加拿大和日本共96个实验室的633为科学家是艰苦努力完成了全基因组的测序工作。
是第一个完成测序的真核生物基因组。
基因组大小13.5×106 bp,分布在17个不连续的染色体中。
酵母菌的DNA与四种主要的组蛋白(H2A、H2B、H3 、H4)结合构成染色质(chromatin)的14bp核小体核心DNA;染色体DNA上有着丝粒(centromere)和端粒(telomere)没有明显的操纵子结构,有间隔区或内含子序列。
酵母菌基因组的特点:高度重复;tRNA有250个拷贝。
rRNA 只位于Ⅻ号染色体的近端粒处,每个长9137 bp,有100~200个拷贝。
较高同源性的DNA重复序列称为遗传丰余(genetic redundancy)——一种进化的策略(有备无患)。
8.2.3詹氏甲烷球菌的基因组:詹氏甲烷球菌(Methanococcus jannaschii)属于古菌,发现于1982年。
生活在2600m深,2.63×107 Pa(260个大气压),94℃的海底火山口附近。
1996年由美国基因组研究所(The Institute for Genomic Research,简称TIGER)和其他5个单位共40人联合完成了该菌的基因组全测序工作。
这是完成的第一个古菌和自养型生物的基因组序列。
根据对该菌全基因组序列分析结果完全证实了1977年由Woese等人提出的三界学说。
詹氏甲烷球菌基因组的特点:詹氏甲烷球菌只有40%左右的基因与其他二界生物有同源性,其中有的类似于真细菌,有的类似于真核生物,有的二者融合。
古菌在基因组结构上类似于细菌。
詹氏甲烷球菌有 1.66×106bp的环形染色体DNA,具有1682个编码蛋白质ORF;功能相关的基因组成操纵子共转录成一个多顺反子转录子;有2个rRNA 操纵子;37个tRNA 基因,基本上无内含子;无核膜。
负责信息传递的基因类似于真核生物。
转录起始系统、RNA聚合酶的亚基组成及序列、启动子结构、翻译延伸因子、复制起始因子均与真核生物相似。
古菌还含有5个组蛋白基因。
8.3 质粒和转座因子:质粒(plasmid)和转座因子(transposable element)都是细胞中除染色体以外的另外两类遗传因子。
前者是一种独立于染色体外,能进行自主复制的细胞质遗传因子,主要存在于各种微生物细胞中;后者是位于染色体或质粒上的一段能改变自身位置的DNA序列,广泛分布于原核和真核细胞中。
8.3.1质粒1.质粒的分子结构:通常以共价闭合环状(covalently closed circular,CCC)的超螺旋双链DNA分子存在于细胞中,从细胞中分离的质粒大多是三种构型即CCC型、OC型(open circular)、L型(linear form)。
近年来在疏螺旋体、链霉菌和酵母菌中也发现了线形双链DNA质粒和RNA质粒。
质粒分子大小范围 1 kb~1000 kb。
2.质粒的主要类型:质粒所含有的基因对宿主细胞一般是非必须的,只是在某些特殊条件下,质粒能赋予宿主细胞以特殊的机能,从而使宿主得到生长优势。
根据质粒所编码的功能和赋予宿主的表型效应,可将其分为不同的类型。
1、致育因子(fertility factor,F因子):又称F质粒,大小约100kb,是最早发现的一种与大肠杆菌的有性生殖现象(结合作用)有关的质粒。
2、抗性因子(resistance factor,R因子):包括抗药性和抗重金属两大类。
3、Col质粒(colicinogenic factor):产大肠杆菌素因子,能编码大肠杆菌素(colicin)属于细菌毒素(bacteriocin)。
4、Ti质粒(tumor inducing plasmid )5、代谢质粒(metabolic plasmid )6、隐秘质粒(cryptic plasmid ):不显示任何表型效应。
只有通过物理的方法,如凝胶电泳检测细胞抽提液等方法才能发现。
酵母的2µm 质粒。
根据质粒的拷贝数、宿主范围分:高拷贝数质粒(high copy number plasmid ):每个宿主细胞中可以有10~100个拷贝。
又称松弛型质粒(relaxed plasmid )。
低拷贝数质粒(low copy number plasmid ):每个宿主细胞中可以有1~4个拷贝。
又称严谨型质粒(stringent plasmid)。
窄宿主范围质粒(narrow host range plasmid ):复制起始点(origin of replication)较特异。
广宿主范围质粒(broad host range plasmid ):复制起始点不太特异。
附加体(episome):能整合进染色体而随染色体的复制而进行复制且又能脱离的质粒。
3.质粒的不亲和性(incompatibility):细菌通常含有一种或多种稳定遗传的质粒,这些质粒即为彼此亲和的(compatible)。
如果将一种类型的质粒通过接合或其他方式(转化)导入某一合适的但已含另一种质粒的宿主细胞,只经少数几代后,大多数子细胞只含有其中一种质粒,那么这两种质粒是不亲和的(incompatibility )。
根据某些质粒在同一细菌中能否并存的情况,可将质粒分成许多不亲和群(incompatibility group),能在同一细菌中并存的质粒属于不同的不亲和群,而在同一细菌中不能并存的质粒属于同一不亲和群。
当两种同一不亲和群的质粒共处同一细胞时,其中一种由于不能复制因而在细胞的不断分裂过程中被稀释(diluted out)或被消除(curing)。
8.3.2转座因子:转座因子(transposable element)是细胞中能改变自身位置的一段DNA序列。
广泛存在于原核和真核细胞中。
原核和真核生物中的转座因子原核生物中的转座因子有三种类型:插入序列(insertion sequence,IS);转座子(transposon,Tn);某些特殊病毒(Mu、D108)。
转座的遗传学效应:1、插入突变;2、产生染色体畸变;3、基因的移动和重排。
8.4 基因突变和诱变育种8.4.1基因突变(gene mutation):生物体内遗传物质的分子结构发生的可遗传的变化。
1、突变类型:营养突变型(auxotroph);抗性突变型(resistant mutant);条件致死突变型(conditional lethal mutant);形态突变型(morphological mutant);抗原突变型(antigenic mutant);产量突变型。
2、突变率(mutation rate):每一细胞在每一世代中发生某一性状突变的几率。
突变率一般为10-6~10-9。
3、突变的特点:不对应性、自发性、稀有性、独立性、诱变性、稳定性、可逆性。
4、基因突变的自发性和不对应性的证明:变量试验(fluctuation test);涂布试验(Newcombe experiment);平板影印培养试验(replica plating)。