高三复习直线与圆的方程复习PPT3
合集下载
高三数学二轮复习 138直线与方程、圆与方程课件 理 人教版
类型二 两条直线的位置关系与点到直线的距离 【例 2】 (全国卷Ⅰ)若直线 m 被两平行线 l1:x-y +1=0 与 l2:x-y+3=0 所截得的线段的长为 2 2,则 m 的倾斜角可以是 ①15° ②30° ③45° ④60° ⑤75° 其中正确答案的序号是________.(写出所有正确答 案的序号)
(2)代数法:用“待定系数法”求圆的方程,其一般 步骤是:①根据题意选择方程的形式——标准形式或一般 形式(本例题中涉及圆心及切线,故设标准形式较简单); ②利用条件列出关于 a,b,r 或 D,E,F 的方程组;③ 解出 a,b,r 或 D,E,F,代入标准方程或一般方程.
类型四 直线与圆、圆与圆的位置关系 【例 4】 (2011·江西)若曲线 C1:x2+y2-2x=0 与 曲线 C2:y(y-mx-m)=0 有四个不同的交点,则实数 m 的取值范围是( )
时,应该根据条件选用合适的圆的方程,一般来说,求圆 的方程有两类办法:①几何法,即通过研究圆的性质进而 求出圆的基本量;②代数法,即设出圆的方程,用待定系 数法求解.
注:Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆⇔A= C≠0 且 B=0 且 D2+E2-4AF>0.
8.点、直线与圆的位置关系:(主要掌握几何法) (1)点与圆的位置关系:(d 表示点到圆心的距离) ①d=R⇔点在圆上;②d<R⇔点在圆内;③d>R⇔点 在圆外. (2)直线与圆的位置关系:(d 表示圆心到直线的距离) ①d=R⇔直线与圆相切;②d<R⇔直线与圆相交;③ d>R⇔直线与圆相离.
(1)求证 P(1,1)到线段 l:x-y-3=0(3≤x≤5)的距离 d(P,l);
(2)设 l 是长为 2 的线段,求点的集合 D={P|d(P,l)≤1} 所表示的图形面积;
高三复习直线与圆的方程复习教学课件
直线与圆相交、相切、相离的应用举例
相交
求两圆公共弦的方程,两圆相交的弦 长。
相切
相离
求两圆外离的条件,两圆内含的结论 。
求圆的切线方程,两圆外切的条件。
04
直线与圆的综合应用复习
利用直线与圆的方程解决实际问题的方法与技巧
01
02
03
建立数学模型
根据实际问题,建立相应 的直线或圆方程,通过解 方程得到答案。
参数方程与普通方程的转换
可以通过消去参数 $t$ 将参数方程转换为普通方程,或者通过代入参数 $t$ 的值将普通方程转 换为参数方程
02
圆的方程复习
圆的基本概念与性质
01
圆的基本定义
平面上所有与给定点(圆心)距离等于给定正数 (半径)的点的集合。
02
圆的基本性质
圆是中心对称图形,具有旋转不变性;圆是轴对 称图形,具有对称性。
方程组求解
当直线与圆有交点时,可 以通过解方程组得到交点 坐标。
参数方程法
对于一些特殊情况,可以 通过参数方程来表示直线 或圆,从而简化计算。
直线与圆在几何、代数、三角函数等领域的综合应用举例
几何应用
利用直线与圆的方程解决 几何问题,如求两圆相交 的公共弦等。
代数应用
利用直线与圆的方程解决 代数问题,如求直线与圆 相切的条件等。
02 相切
直线与圆只有一个交点。
03 相离
直线与圆没有交点。
圆的参数方程与极坐标方程
圆的参数方程
$(x = a + rcostheta, y = b + rsintheta)$,其中(a,b)为圆心,r为 半径,$theta$为参数。
圆的极坐标方程
《直线和圆方程》课件
《直线和圆方程》 ppt课件
目录
• 直线方程的概述 • 圆的方程 • 直线与圆的交点求解 • 直线和圆的几何性质 • 直线和圆的方程在实际问题中的应
用
01
直线方程的概述
直线的定义
直线是由无数个点组成的几何图形,这些点沿着同一直 线排列,形成一条无限延伸的线。
在平面几何中,直线是连接两个点的最短路径,它没有 宽度和厚度。
圆的参数方程
$x = a + rcostheta, y = b + rsintheta$,其中$(a, b)$是圆心坐 标,$r$是半径,$theta$是参数。
圆的标准方程
圆的标准方程为$(x - a)^{2} + (y b)^{2} = r^{2}$,其中$(a, b)$是圆
心坐标,$r$是半径。
圆的基本性质
01 02
圆的定义
圆是一个平面图形,由所有到定点(圆心)的距离等于定长(半径)的 点组成,表示为 $(x - h)^2 + (y - k)^2 = r^2$,其中 $(h, k)$ 是圆 心坐标,$r$ 是半径。
圆的半径
连接圆心到圆上任意一点的线段的长度称为半径。
03
圆的直径
通过圆心且两端点在圆周上的线段称为直径,长度是半径的两倍。
圆心和半径
直径
通过圆心且两端点在圆上的线段称为 直径。
圆心是圆的中心点,半径是从圆心到 圆上任一点的线段。
圆的方程表示
圆的一般方程
$(x - h)^{2} + (y - k)^{2} = r^{2}$,其中$(h, k)$是圆心坐标
,$r$是半径。
圆的标准方程
$(x - a)^{2} + (y - b)^{2} = r^{2}$,其中$(a, b)$是圆心坐标 ,$r$是半径。
目录
• 直线方程的概述 • 圆的方程 • 直线与圆的交点求解 • 直线和圆的几何性质 • 直线和圆的方程在实际问题中的应
用
01
直线方程的概述
直线的定义
直线是由无数个点组成的几何图形,这些点沿着同一直 线排列,形成一条无限延伸的线。
在平面几何中,直线是连接两个点的最短路径,它没有 宽度和厚度。
圆的参数方程
$x = a + rcostheta, y = b + rsintheta$,其中$(a, b)$是圆心坐 标,$r$是半径,$theta$是参数。
圆的标准方程
圆的标准方程为$(x - a)^{2} + (y b)^{2} = r^{2}$,其中$(a, b)$是圆
心坐标,$r$是半径。
圆的基本性质
01 02
圆的定义
圆是一个平面图形,由所有到定点(圆心)的距离等于定长(半径)的 点组成,表示为 $(x - h)^2 + (y - k)^2 = r^2$,其中 $(h, k)$ 是圆 心坐标,$r$ 是半径。
圆的半径
连接圆心到圆上任意一点的线段的长度称为半径。
03
圆的直径
通过圆心且两端点在圆周上的线段称为直径,长度是半径的两倍。
圆心和半径
直径
通过圆心且两端点在圆上的线段称为 直径。
圆心是圆的中心点,半径是从圆心到 圆上任一点的线段。
圆的方程表示
圆的一般方程
$(x - h)^{2} + (y - k)^{2} = r^{2}$,其中$(h, k)$是圆心坐标
,$r$是半径。
圆的标准方程
$(x - a)^{2} + (y - b)^{2} = r^{2}$,其中$(a, b)$是圆心坐标 ,$r$是半径。
直线和圆的方程复习课PPT课件
1
一、知识框架
直线与直线方程
直
线
与
圆
的
方
圆与圆方程
程
直线的倾斜角和斜率 直线的方程
两直线的位置关系 线性规划及应用 求曲线方程 圆的标准方程 圆的一般方程
圆的参数方程
直线与圆、圆与圆的位置关系
2
1、直线的倾斜角
倾斜角的取值范围是 0 180.
2、直线的斜率
k tan, ( 90 )
4.两点间的距离
5.点到直线的距离
d Ax0 By0 C A2 B2
6.平行直线间距离
d C1 C2 A2 B2
11
两直线特殊位置关系练习
1、如果直线ax+2y+2=0与直线3x-y-2=0
平行,则a=( B )
A.-3
B.-6
C.
3 2
2
D. 3
2、若直线x+ay+2=0和2x+3y+1=0互相垂直,
返回
7
点与直线
1、点与直线的位置关系 2、点关于直线对称的点坐标 3、直线关于点对称的直线方程 4、点到直线的距离
练习
8
点与直线练习
1、已知直线 l1 : A1x B1 y 1和 l2 : A2 x B2 y 1
相交于点P(2,3),则过点 P1( A1, B1), P2 ( A2 , B2 )的直线 方程为 2x+3y=1_.
2、点P(2,5)关于直线x+y=1的对称点的坐标是( A )
A(-4,-1) B(-5,-2) C(-6,-3) D(-4,-2)
3、已知△ABC的一个顶点为A(3,-1),∠B被y轴平分,∠C 被直线y=x平分,则直线BC的方程是 ( A )
一、知识框架
直线与直线方程
直
线
与
圆
的
方
圆与圆方程
程
直线的倾斜角和斜率 直线的方程
两直线的位置关系 线性规划及应用 求曲线方程 圆的标准方程 圆的一般方程
圆的参数方程
直线与圆、圆与圆的位置关系
2
1、直线的倾斜角
倾斜角的取值范围是 0 180.
2、直线的斜率
k tan, ( 90 )
4.两点间的距离
5.点到直线的距离
d Ax0 By0 C A2 B2
6.平行直线间距离
d C1 C2 A2 B2
11
两直线特殊位置关系练习
1、如果直线ax+2y+2=0与直线3x-y-2=0
平行,则a=( B )
A.-3
B.-6
C.
3 2
2
D. 3
2、若直线x+ay+2=0和2x+3y+1=0互相垂直,
返回
7
点与直线
1、点与直线的位置关系 2、点关于直线对称的点坐标 3、直线关于点对称的直线方程 4、点到直线的距离
练习
8
点与直线练习
1、已知直线 l1 : A1x B1 y 1和 l2 : A2 x B2 y 1
相交于点P(2,3),则过点 P1( A1, B1), P2 ( A2 , B2 )的直线 方程为 2x+3y=1_.
2、点P(2,5)关于直线x+y=1的对称点的坐标是( A )
A(-4,-1) B(-5,-2) C(-6,-3) D(-4,-2)
3、已知△ABC的一个顶点为A(3,-1),∠B被y轴平分,∠C 被直线y=x平分,则直线BC的方程是 ( A )
高考数学一轮总复习课件:圆的方程及直线与
所以圆的方程为x2+y2-4x-235y-5=0. 将D(a,3)代入得a2-4a-21=0. 解得a=7或a=-3(舍).
(2)(2021·辽宁大连模拟)在直线l:y=x-1上有两个点A, B,且A,B的中点坐标为(4,3),线段AB的长度|AB|=8,则过 A,B两点且与y轴相切的圆的方程为____(_x_-_4_)_2+__(y_-__3)_2=__1_6___
解析 (x+2m)2+(y-1)2=4m2-5m+1表示圆,则 4m2-5m+1>0,解得m<14或m>1.
3.(2021·成都七中月考)圆心在y轴上,且过点(3,1)的圆与
x轴相切,则该圆的方程是( B )
A.x2+y2+10y=0
B.x2+y2-10y=0
C.x2+y2+10x=0
D.x2+y2-10x=0
第3课时 圆的方程及直线与 圆的位置关系
[复习要求] 1.掌握确定圆的几何要素.2.掌握圆的标准方 程和一般方程.3.掌握直线与圆的位置关系.
课前自助餐
圆的定义 平面内到定点的距离__等_于__定_长___的点的集合(轨迹)是圆,定点 是圆心,定长是半径. 注:平面内动点 P 到两定点 A,B 距离的比值为 λ,即||PPAB||= λ, ①当 λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当 λ≠1 时,P 点轨迹是圆.
A=B≠0,
__D_2+__E_2_-_4_A_F_>_0.
圆的参数方程 圆心为(a,b),半径为 r 的圆的参数方程为xy==ab++rrcsoinsθθ,(θ 为参数).
确定圆的方程的方法和步骤 确定圆的方程的主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于 a,b,r 或 D,E,F 的方程组; (3)解出 a,b,r 或 D,E,F 代入标准方程或一般方程.
(2)(2021·辽宁大连模拟)在直线l:y=x-1上有两个点A, B,且A,B的中点坐标为(4,3),线段AB的长度|AB|=8,则过 A,B两点且与y轴相切的圆的方程为____(_x_-_4_)_2+__(y_-__3)_2=__1_6___
解析 (x+2m)2+(y-1)2=4m2-5m+1表示圆,则 4m2-5m+1>0,解得m<14或m>1.
3.(2021·成都七中月考)圆心在y轴上,且过点(3,1)的圆与
x轴相切,则该圆的方程是( B )
A.x2+y2+10y=0
B.x2+y2-10y=0
C.x2+y2+10x=0
D.x2+y2-10x=0
第3课时 圆的方程及直线与 圆的位置关系
[复习要求] 1.掌握确定圆的几何要素.2.掌握圆的标准方 程和一般方程.3.掌握直线与圆的位置关系.
课前自助餐
圆的定义 平面内到定点的距离__等_于__定_长___的点的集合(轨迹)是圆,定点 是圆心,定长是半径. 注:平面内动点 P 到两定点 A,B 距离的比值为 λ,即||PPAB||= λ, ①当 λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当 λ≠1 时,P 点轨迹是圆.
A=B≠0,
__D_2+__E_2_-_4_A_F_>_0.
圆的参数方程 圆心为(a,b),半径为 r 的圆的参数方程为xy==ab++rrcsoinsθθ,(θ 为参数).
确定圆的方程的方法和步骤 确定圆的方程的主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于 a,b,r 或 D,E,F 的方程组; (3)解出 a,b,r 或 D,E,F 代入标准方程或一般方程.
直线和圆的方程复习课资料-2023年学习资料
1.曲线与方程-1曲线上的点的坐标都是这个方程的解;-2以这个方程的解为坐标的点都是曲线上的点,-2.求曲 方程-1建立适当的坐标系,用x,y表示曲线上任意一-点M的坐标;-2用坐标x,y表示关系式,即列出方程fx y=0;-3化简方程fx,y=0;-4验证x、y的取值范围。
方程注意点-1、特殊形式的方程都有一定的限制条件。-2、解题时应根据实际情况选用合适的形-式以利解题。-3 当我们决定选用某一特殊形式的方程-时,而又不知道其是否满足限制条件,-应加以讨论,或用特殊形式的变式。-返
点与直线-1、点与直线的位置关系-2、点关于直线对称的点坐标-3、直线关于点对称的直线方程-4、点到直线的 离-练习
高考题选-1、设k心1,fx=kx-1x∈R.在平面直角坐标系-xOy中,函数y=fx的图象与x轴交于A点 它的-反函数y=f-x的图象与y轴交于B点,并且这两-个函数的图象交于P点.已知四边形OAPB的面积-是3 则k等于-0-A3-D-2、已知点P到两定点M-1,0,N1,0距离的比为√2-点N到直线PM的距离为1, 直线PN的方程。-略解:直线PN的方程为:y=-x+1-分析:画图利用解三角形知识,先求∠PMN,再由正弦 理,-求出∠PNM,于是可得直线PN的斜率
两直线相交相关练习-1、光线自右上方沿直线y=2x-1射到x轴上一点M,-被x轴反射,则反射光线所在直线的 程是-y=-2x+1-2、已知△ABC的三边方程是AB:5x一y一12=0,-BC:x+3y+4=0,CA x一5y+12=0,则∠A-π-atctan-3、△ABC的三个顶点是A0,3,B3,3,C2,-0,直线 x=a将△ABC分割成面积相等的两部分,-则a的值是-返回
点与直线练习-1、已知直线☑十和☑-相交于点P2,3,则过点三的直线-方程为-2x+3y=1.-2、点P2 5关于直线x+y=1的对称点的坐标是A-A-4,-1B-5,-2C-6,-3D-4,-2)-3、已知△AB 的一个顶点为A3,-1,∠B被y轴平分,∠C-被直线y=x平分,则直线BC的方程是-A.2x-y+5=0B 2x-y+3=0C.3x-y+5=0D.x+2y-5=0-4、已知点a,2a>0到直线l:x一y+3=0的 离为1,则-a等于v2-1-返回
高三数学复习课件:圆与方程(共12张PPT)
作业:
学业水平考试试题选编(8)
一个交点 无交点
相切 相离
直线与圆的位置关系
1.位置关系:相交、相切、相离 2.判别方法(代数法)
联立直线与椭圆的方程 消元得到二元一次方程组 (1)△>0直线与椭圆相交有两个公共点; (2)△=0 直线与椭圆相切有且只有一个公共点; (3)△<0 直线与椭圆相离无公共点.
通法
小结:
本节课你学到了什么?
圆心坐标(- , - ), 半径 r=
1、点和圆的位置关系有几种?如何判定?
答:三种。点在圆外;点在圆上;点在圆内。
设点P(x0,y0),圆(x-a)2+(y-b)2=r2, 圆心(a,b)到P(x0,y0)的距离为d,则:
几何法:点在圆内d<r 点在圆上d=r 点在圆外d>r
代数法:点在圆内(x0 -a)2+(y0 -b)2<r2 点在圆上(x0 -a)2+(y0 -b)2=r2 点在圆外(x0 -a)2+(y0 -b)2>r2
圆与方程
复习课
默写:
1、圆的标准方程,并写出圆心坐标和半径 2、圆的一般方程,并写出圆心坐标和半径 3、点与圆的位置关系性质 4、直线与圆 的位置关系及性质
学习目标:
1、掌握圆的标准方程和一般方程的特征和应用 2、掌握直线与圆的位置关系和性质,并能应用性质解决 相关问题 3、掌握空间坐标和空间中两点间距离公式
2.直线与圆的位置关系
1、直线和圆相离
•C2
2、直线和圆相切
•C2
3、直线和圆相交
•C2
判定方法
d r 0
d r 0
d r
几何法
0
代数法
直线和圆课件
圆的参数方程
圆的参数方程通常表示为 (x, y) = (a, b) + r(cosθ, sinθ),其中 (a, b) 是圆心, r 是半径,θ 是参数。
参数方程的应用实例
物理学中的应用
在物理学中,许多物理量都是通 过参数方程来描述的,例如简谐 振动的振动曲线、电磁波的传播
等。
工程设计中的应用
在工程设计中,参数方程被广泛 应用于各种曲线和曲面的描述, 例如机械零件的轮廓曲线、建筑
通过圆的半径和直径,可以计算出圆 的弧长和圆周长。
通过比较两个圆的半圆心角和扇形面积
通过圆心角和半径,可以计算出扇形 的面积。
直线和圆在实际生活中的应用
建筑设计
在建筑设计中,直线和圆是非常 重要的元素,它们可以用来确定 建筑物的平面布局、窗户和门的
物的三维模型等。
数学教育中的应用
在数学教育中,参数方程是描述 复杂函数和曲线的重要工具,有 助于学生更好地理解函数的性质
和曲线的几何意义。
THANKS
感谢您的观看
直线和圆 PPT 课件
• 直线和圆的基本概念 • 直线和圆的交点 • 直线和圆的几何应用 • 直线和圆的解析方法 • 直线和圆的参数方程
目录
Part
01
直线和圆的基本概念
直线的定义和性质
直线的定义
直线是无限长的,且在平面内, 可以由两点确定一条直线。
直线的性质
直线具有方向性,可以由斜率表 示;直线是连续的,没有中断; 直线可以无限延伸。
圆的定义和性质
圆的定义
圆是一个平面图形,由一个点(圆心 )和一段固定长度(半径)决定,所 有点都与圆心保持相同距离。
圆的基本性质
圆是中心对称图形,有固定的周长和 面积;圆内的任意一点到圆心的距离 等于半径。
圆的参数方程通常表示为 (x, y) = (a, b) + r(cosθ, sinθ),其中 (a, b) 是圆心, r 是半径,θ 是参数。
参数方程的应用实例
物理学中的应用
在物理学中,许多物理量都是通 过参数方程来描述的,例如简谐 振动的振动曲线、电磁波的传播
等。
工程设计中的应用
在工程设计中,参数方程被广泛 应用于各种曲线和曲面的描述, 例如机械零件的轮廓曲线、建筑
通过圆的半径和直径,可以计算出圆 的弧长和圆周长。
通过比较两个圆的半圆心角和扇形面积
通过圆心角和半径,可以计算出扇形 的面积。
直线和圆在实际生活中的应用
建筑设计
在建筑设计中,直线和圆是非常 重要的元素,它们可以用来确定 建筑物的平面布局、窗户和门的
物的三维模型等。
数学教育中的应用
在数学教育中,参数方程是描述 复杂函数和曲线的重要工具,有 助于学生更好地理解函数的性质
和曲线的几何意义。
THANKS
感谢您的观看
直线和圆 PPT 课件
• 直线和圆的基本概念 • 直线和圆的交点 • 直线和圆的几何应用 • 直线和圆的解析方法 • 直线和圆的参数方程
目录
Part
01
直线和圆的基本概念
直线的定义和性质
直线的定义
直线是无限长的,且在平面内, 可以由两点确定一条直线。
直线的性质
直线具有方向性,可以由斜率表 示;直线是连续的,没有中断; 直线可以无限延伸。
圆的定义和性质
圆的定义
圆是一个平面图形,由一个点(圆心 )和一段固定长度(半径)决定,所 有点都与圆心保持相同距离。
圆的基本性质
圆是中心对称图形,有固定的周长和 面积;圆内的任意一点到圆心的距离 等于半径。
新课标高考数学题型全归纳 理科 第九章 直线和圆的方程第3节精品PPT课件
,解得
x0 y0
4 3
或
x0 y0
3 , 4
故所求切线方程为4x 3y 25 0或3x 4y 25 0.
【分析】 (2)如图所示,
y
P H
O
x
Q O1 R (3,-2)
【解析】(1)圆C 化为(x 2)2 ( y 1)2 1,故圆心C(2,1)到直线l:y x 1
二、直线与圆的位置关系的判断
1.几何法
圆心a,b到直线 Ax By C 0的距离d Aa Bb C ,则:
A2 B2 d r 直线与圆相交,交于两点 P,Q, PQ 2 r2 d 2 ; d r 直线与圆相切; d r 直线与圆相离.
2.代数方法
由
Ax By xa 2
直线与圆相交问题.
【解析】(1)圆的方程可化为 x2 (y 4)2 4,故圆心为C(0,4) ,因直线l 与圆
C 相切,故圆心C(0,4)到直线l 的距离d | 4 2a | 2,解得a 3 .
a2 1
4
(2)由题意,直线l 与圆C 相交,又 AB 2 2 ,故有( 2)2 (| 4 2a |)2 4 ,化简可得 a2 1
d R r 两圆外离;d R r 两圆外切; R r d R r 两圆相交;d R r 两圆内切; 0 d R r 两圆内含(d 0且 R r 时两圆为同心圆).
五、关于圆的切线的几个重要结论:
(1)过圆 x2 y2 r2 上一点 P(x0 , y0 ) 的圆的切线方程为 x0x y0 y r2 .
(2)过圆 x a2 y b2 r2上一点 P(x0, y0 ) 的圆的切线方程为:
(x0 a)(x a) ( y0 b)( y b) r2;
(3)过圆 x2 y2 Dx Ey F 0上一点 P(x0, y0 ) 的圆的切线方程为:
第18讲直线与圆的位置关系复习课件(共41张PPT)
同理可得圆与直线第二次相切时圆心N的坐标为(-5, 0),
所以当⊙P′与直线l相交时,横坐标为整数的点P′的横 坐标可以是-2,-3,-4,共3个.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
直线与圆的位置关系 判断直线与圆的位置关系,根据圆心到直线的距离与圆的 半径的大小确定: ①若d<r,直线与圆相交; ②若d=r,直线与圆相切; ③若d>r,直线与圆相离.
全效优等生
图6-18-7
大师导航 归类探究 自主招生交流平台 思维训练
解:(1)证明:如答图,连结OD.
∵BC是⊙O的切线,
∴∠ABC=90°.
∵CD=CB,∴∠CBD=∠CDB.
∵OB=OD, ∴∠OBD=∠ODB,
变式跟进6答图
∴∠ODC=∠ABC=90°,∴CD是⊙O的切线.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵∠ACD=60°,∴∠ABD=60°.
又∵OB=OD,
∴△OBD为等边三角形,∴∠BOD
=∠ABD=60°.
又∵∠APD=30°,
∴∠ODP=90°,∴OD⊥DP.
例4答图
又∵点D在⊙O上,∴DP是⊙O的切线.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
(2)由(1)知△ODP为直角三角形,∠APD=30°.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
切线的性质 切线的性质:圆的切线垂直于经过切点的半径. 推论:(1)经过切点且垂直于圆的切线的直线必经过圆心; (2)经过圆心且垂直于圆的切线的直线必过切点. 切线的性质的辅助线:有切线,连结切点与圆心,是解决 图中有关相切问题的常用辅助线.
所以当⊙P′与直线l相交时,横坐标为整数的点P′的横 坐标可以是-2,-3,-4,共3个.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
直线与圆的位置关系 判断直线与圆的位置关系,根据圆心到直线的距离与圆的 半径的大小确定: ①若d<r,直线与圆相交; ②若d=r,直线与圆相切; ③若d>r,直线与圆相离.
全效优等生
图6-18-7
大师导航 归类探究 自主招生交流平台 思维训练
解:(1)证明:如答图,连结OD.
∵BC是⊙O的切线,
∴∠ABC=90°.
∵CD=CB,∴∠CBD=∠CDB.
∵OB=OD, ∴∠OBD=∠ODB,
变式跟进6答图
∴∠ODC=∠ABC=90°,∴CD是⊙O的切线.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∵∠ACD=60°,∴∠ABD=60°.
又∵OB=OD,
∴△OBD为等边三角形,∴∠BOD
=∠ABD=60°.
又∵∠APD=30°,
∴∠ODP=90°,∴OD⊥DP.
例4答图
又∵点D在⊙O上,∴DP是⊙O的切线.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
(2)由(1)知△ODP为直角三角形,∠APD=30°.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
切线的性质 切线的性质:圆的切线垂直于经过切点的半径. 推论:(1)经过切点且垂直于圆的切线的直线必经过圆心; (2)经过圆心且垂直于圆的切线的直线必过切点. 切线的性质的辅助线:有切线,连结切点与圆心,是解决 图中有关相切问题的常用辅助线.
直线与圆的方程复习PPT课件课件
的斜率
k
y2
y1
x2 x1
(3)直线的横截距是直线与x轴交点的横坐标,直线的纵截
距是直线与 y 轴交点的纵坐标.
2.直线方程的五种形式.
(1)点斜式:设直线l过定点P(x0,y0),斜率为k,则直线 l 的方程为y-y0=k(x-x0) (2)斜截式:设直线 l 斜率为k,在y 轴截距为b,则直 线l 的方程为y=kx+b (3)两点式:设直线 l 过两点P1(x1,y1),P2(x2,y2) x1≠ x2,y1≠y2则直线 l 的方程为(y-y1)/(y2-y1)=(xx1)/(x2-x1) (4)截距式:设直线 l 在x、y轴截距分别为a、b(ab≠0) 则直线l的方程为x/a+y/b=1. (5)一般式:直线l的一般式方程为Ax+By+C=0(A2+B2≠0)
(
)
(A
(C)2x+y-7=0
(D)2y-x-4=0
6 曲线y=2x-x3在点(-1,-1)处的切线方程是( A )
A x+y+2=0 B x+y+3=0 C x+y+4=0 D x+y+5=0
能力·思维·方法
1.过点P(2,1)作直线l交x、y轴的正半轴于A、B两点, 当|PA|·|PB|取到最小值时,求 直线l的方程.
3.经过点(2,1),且方向向量为v=(-2,2)的直线l的方程 是__x_+_y_-_3_=_0_____.
4.过点(-1,1)在x轴与y轴上截距的绝对值相等的直线 有___2_条____.
5.A、B是x轴上两点,点P的横坐标为2,且|PA|=|PB|,
若 直 线 PA 的 方 程 为 x-y+1=0 , 则 直 线 PB 的B方 程 为
圆的方程复习PPT精品课件
羽毛动物: 和
没有羽毛动物:
还可以根据其他特征,将他们进行分类
例如 有足和无足 胎生和卵生 有脊柱和无脊柱
根据体内有无脊椎骨
我们可以将所有动物分为两大类
脊椎动物 和
无脊椎动物
脊椎动物
常见的6类动物:
哺乳类动物: 像猫那样, 身体表面长毛, 胎生、小时侯吃奶。
鸟类动物: 像鸽子、鹰那样身体表面长羽毛、 有一对翅膀、 一 对脚、 产卵、 由大鸟孵化出来的动物。
则方程: (X2+Y2+D1X+ E1Y+F1)+λ(X2+Y2+D2X+E2Y+F2)=0(λ≠ -1)
表示过圆C1 ,C2交点的圆的方程 当λ= -1 时,方程为(D1 – D2)x+ (E1 – E2)Y+ F1 – F2=0表示圆C1 ,C2的 公共弦所在的直线方程
直线直线:Ax+By+C=0;圆: (x-a)2 + (y-b)2 =r2,
圆心到直线的距离 d=
方法二:判别式法
直线:Ax+By+C=0;圆:x2 + y2 +Dx+Ey+F=0
一元二次方程
圆与圆位置关系的判定方法:几何法
设两圆的半径分别为R和r (R>r), 圆心距为d ,那么:
(1)两圆外离 (2)两圆外切 (3)两圆相交 (4)两圆内切 (5)两圆内含
动物的共同特点:
1、都会运动; 2、都需要食物、空气和水; 3、都能繁殖后代; 4、都有生长的能力; 5、都能够对外界变化做出反应。
D2 E 2 4F 0
圆心(
D 2
,-
E 2
没有羽毛动物:
还可以根据其他特征,将他们进行分类
例如 有足和无足 胎生和卵生 有脊柱和无脊柱
根据体内有无脊椎骨
我们可以将所有动物分为两大类
脊椎动物 和
无脊椎动物
脊椎动物
常见的6类动物:
哺乳类动物: 像猫那样, 身体表面长毛, 胎生、小时侯吃奶。
鸟类动物: 像鸽子、鹰那样身体表面长羽毛、 有一对翅膀、 一 对脚、 产卵、 由大鸟孵化出来的动物。
则方程: (X2+Y2+D1X+ E1Y+F1)+λ(X2+Y2+D2X+E2Y+F2)=0(λ≠ -1)
表示过圆C1 ,C2交点的圆的方程 当λ= -1 时,方程为(D1 – D2)x+ (E1 – E2)Y+ F1 – F2=0表示圆C1 ,C2的 公共弦所在的直线方程
直线直线:Ax+By+C=0;圆: (x-a)2 + (y-b)2 =r2,
圆心到直线的距离 d=
方法二:判别式法
直线:Ax+By+C=0;圆:x2 + y2 +Dx+Ey+F=0
一元二次方程
圆与圆位置关系的判定方法:几何法
设两圆的半径分别为R和r (R>r), 圆心距为d ,那么:
(1)两圆外离 (2)两圆外切 (3)两圆相交 (4)两圆内切 (5)两圆内含
动物的共同特点:
1、都会运动; 2、都需要食物、空气和水; 3、都能繁殖后代; 4、都有生长的能力; 5、都能够对外界变化做出反应。
D2 E 2 4F 0
圆心(
D 2
,-
E 2
高三数学高考第一轮复习课件:直线与圆的方程PPT文档共156页
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
ቤተ መጻሕፍቲ ባይዱ
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
高三数学高考第一轮复习课 件:直线与圆的方程
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
ቤተ መጻሕፍቲ ባይዱ
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
高三数学高考第一轮复习课 件:直线与圆的方程
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 堂 题 型 设 计
3.线性规划问题——求线性目标函数在约束条件下的
最大值或者最小值问题. 4.可行解——满足线性约束条件 的解(x,y). 5.可行域——所有可行解的集合. 6.最优解——使目标函数 取得最大值或最小值的可行
规 律 方 法 提 炼
课 后 强 化 作 业
解.
首页 上页 下页 末页
第7章
.分别作出直线x-2y+1=0和x+y-3=0.
取原点(0,0),即可判断出所表示的平面区域.故选C.
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
课 堂 题 型 设 计
规 律 方 法 提 炼
(1)z=x+2y-4的最大值; (2)z=x2+y2-10y+25的最小值;
第7章
知 识 梳 理
直线和圆的方程
●回归教材 1.下列各对点中,都在不等式x+y+1<0表示的平 面区域内的是 A.(-2,-1),(1,1) ( )
课 堂 题 型 设 计
B.(-1,0),(1,-2)
C.(-1,-1),(-5,3) D.(1,2),(3,0) 解析:依次代入检验可知C正确. 答案:C
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
3.若Ax0+By0+C>0,则包含此点P的半平面为不等 式Ax+By+C>0所表示的平面区域,不包含此点P的半平 面为不等式Ax+By+C<0所表示的平面区域.
课 堂 题 型 设 计
规 律 方 法 提 炼
A.1
B.2
C.3
D.4
解析:将原点(0,0)依次代入各不等式,因③④⑤中的 字母C正负不定,所以③、④、⑤无法判断.故经检验可 知只有①是正确的.故选A.
课 堂 题 型 设 计
答案:A
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
3.(教材P652题改编)不等式组 面区域是
[解析] 除A;
解法一:把(1,1)代入x+y-1<0不成立,排
课 堂 题 型 设 计
把(-1,1)代入x-y+1>0不成立,排除B; 而(1,-1)到直线x-y+1=0的距离为 ,排除D.
故选C.
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
课 堂 题 型 设 计
规 律 方 法 提 炼
答案:B
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
课 堂 题 型 设 计
两点连线的斜率.由图可知,
规 律 方 法 提 炼
课 后 强 化 作 业
当P在(2,0)时,zmin= ,当P′取(0,1)时,zmax=2.
首页
上页
课 后 强 化 作 业
线斜率等.
首页
上页
下页
末页
第7章
知 识 梳 理
直线和圆的方程
课 堂 题 型 设 计
(2009· 湖南名校一模)已知点P(x,y)在不等式组
表示的平面区域内运动,则z=
值范围是
的取
规 律 方 法 提 炼
(
)
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
规 律 方 法 提 炼
课 后 强 化 作 业
首页
上页
下页
末页
第7章
知 识 梳 理
直线和圆的方程
2.下列说法正确的个数是
(
)
①图中表示的区域是不等式2x-y+1≤0的解集;②图 中表示的区域是不等式3x+2y-1<0的解集;③图中表示 的区域是不等式Ax+By+C≥0的解集;④图中表示的区域
课 堂 题 型 设 计
课 堂 题 型 设 计
在线段AC上,故z的最小值是|MN|=
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
课 堂 题 型 设 计
规 律 方 法 提 炼
[总结评述]
充分理解目标函数的几何意义,诸如两
点间的距离(或平方)、点到直线的距离、过已知两点的直
规 律 方 法 提 炼
课 后 强 化 作 业
答案:C
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
Hale Waihona Puke 5.(2009·天津,2)设变量x、y满足约束条件 则目标函数z=2x+3y的最小值为
课 堂 题 型 设 计
(
A.6 B.7 C.8 D.23
)
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
课 堂 题 型 设 计
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
课 堂 题 型 设 计
●基础知识 一、二元一次不等式Ax+By+C>0(或Ax+By+C<0)
表示的平面区域
1.在平面直角坐标系中作出直线Ax+By+C=0; 2.在直线的一侧任取一点P(x0,y0),特别地,当C≠0 时,常把原点作为此特殊点.
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
[解析]
作出可行域如图,并求出顶点的坐标
A(1,3)、B(3,1)、C(7,9).
课 堂 题 型 设 计
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
(1)易知可行域内各点均在直线x+2y-4=0的上方, 故x+2y-4>0,将C(7,9)代入得z的最大值为21. (2)z=x 2 +(y-5) 2 表示可行域内任一点(x,y)到定点 M(0,5)的距离的平方,过M作直线AC的垂线,易知垂足N
+C=0的上方;若满足B(Ax+By+C)<0 ,则点P(x,y)在 直线Ax+By+C=0的下方.
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
二、线性规划的有关概念 1.线性约束条件——由条件列出的一次不等式(或方 程)组. 2.线性目标函数——由条件列出的一次函数表达式.
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
四、利用线性规划解决实际问题的一般步骤 1.认真分析实际问题的背景,并收集有关数据(必要 时可通过列表完成). 2.确定未知量和建立目标函数.
课 堂 题 型 设 计
3.利用三中的相关步骤确定最优解.
第7章
知 识 梳 理
直线和圆的方程
解析:约束条件 如图:
表示的平面区域
课 堂 题 型 设 计
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
易知过C(2,1)时,目标函数z=2x+3y取得最小 值.∴zmin=2×2+3×1=7,故选B. 答案:B
课 堂 题 型 设 计
(
)
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
课 堂 题 型 设 计
规 律 方 法 提 炼
课 后 强 化 作 业
答案:A
首页
上页
下页
末页
第7章
知 识 梳 理
直线和圆的方程
二、数形结合思想应用失误
课 堂 题 型 设 计
课 堂 题 型 设 计
规 律 方 法 提 炼
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
课 堂 题 型 设 计
【例1】
(2007·全国Ⅰ,6)下面给出的四个点中, ,且位于 ( ) 表
到直线x-y+1=0的距离为
规 律 方 法 提 炼
示的平面区域内的点是
课 后 强 化 作 业
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
提醒
用二元一次不等式确定平面区域的方法是:线
定边界,点定区域.定边界时须分清虚实(带等号者画为 实线,不带等号者画为虚线),定区域时常选原点(C≠0时) 或(1,0)点或(0,1)点(C=0时).
课 堂 题 型 设 计
若满足 B(Ax+By+C)>0 ,则点P(x,y)在直线Ax+By
解法二:到直线x-y+1=0的距离为 两条直线:x-y=0,x-y+2=0. 又由 由图形得,故选C.
的点的轨迹为
课 堂 题 型 设 计
规 律 方 法 提 炼
[答案] C
课 后 强 化 作 业
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程
不等式(x-2y+1)(x+y-3)<0表示的平面区域为 ( )
首页 上页 下页 末页
第7章
知 识 梳 理
直线和圆的方程