FLUENT教程
fluent教程
fluent教程Fluent是一款由Ansys开发的计算流体动力学(CFD)软件,广泛应用于工程领域,特别是在流体力学仿真方面。
本教程将介绍一些Fluent的基本操作,帮助初学者快速上手。
1. 启动Fluent首先,双击打开Fluent的图形用户界面(GUI)。
在启动页面上,选择“模拟”(Simulate)选项。
2. 创建几何模型在Fluent中,可以通过导入 CAD 几何模型或使用自带的几何建模工具来创建模型。
选择合适的方法,创建一个几何模型。
3. 定义网格在进入Fluent之前,必须生成一个网格。
选择合适的网格工具,如Ansys Meshing,并生成网格。
确保网格足够精细,以便准确地模拟流体力学现象。
4. 导入网格在Fluent的启动页面上,选择“导入”(Import)选项,并将所生成的网格文件导入到Fluent中。
5. 定义物理模型在Fluent中,需要定义所模拟流体的物理属性以及边界条件。
选择“物理模型”(Physics Models)选项,并根据实际情况设置不同的物理参数。
6. 设置边界条件在模型中,根据实际情况设置边界条件,如入口速度、出口压力等。
选择“边界条件”(Boundary Conditions)选项,并给出相应的数值或设置。
7. 定义求解器选项在Fluent中,可以选择不同的求解器来解决流体力学问题。
根据实际情况,在“求解器控制”(Solver Control)选项中选择一个合适的求解器,并设置相应的参数。
8. 运行仿真设置完所有的模型参数后,点击“计算”(Compute)选项,开始运行仿真。
等待仿真过程完成。
9. 后处理结果完成仿真后,可以进行结果的后处理,如流线图、压力分布图等。
选择“后处理”(Post-processing)选项,并根据需要选择相应的结果显示方式。
10. 分析结果在后处理过程中,可以进行结果的分析。
比较不同参数的变化,探索流体流动的特点等。
以上是使用Fluent进行流体力学仿真的基本流程。
Fluent基础教程实例1
2 建模与网格划分
1、建立工程文件,Droplet.prj 2、建立角点及边线,A(-9.8,0)、B(9.8,0)、C(-9.8,4.9)、D(9.8,4.9)
C(-9.8,4.9) A(-9.8,0)
D(9.8,4.9) B(9.8,0)
2 建模与网格划分
3、建立边界,底边为Wall,其余边为Openwall
10、显示初始化结果
2
3
4
1
5
3 Fluent仿真计算与后处理
10、显示初始化结果
2
3
4
1
5
3 Fluent仿真计算与后处理
11、设置动画
5
4
2
3
6 1
3 Fluent仿真计算与后处理
12、设置迭代时长
2
3 1
4 计算结果
4 计算结果
7、设置主相和次相
1 2 3
3 Fluent仿真计算与后处理
7、设置主相和次相
1 2
3 4 5 设置表面张力
3 Fluent仿真计算与后处理
8、设置边界条件
右击,Type里选择Outflow
3 Fluent仿真计算与后处理
8、设置边界条件
右击,编辑
设置接触角
3 Fluent仿真计算与后处理
9、建立局部初始化区域
Fluent基础教程实例
实例1
1 问题描述
几何结构:
物理参数:
Gas Glycerin
密度kg/m3 1.204 1220
粘度Pa▪S 1.814e-5
0.116
表面张力N/m __
0.063
1 问题描述
学习内容: ➢ 二维网格绘制及Fluent计算过程 ➢ VOF计算气液两相流动 ➢ 局部区域初始化 ➢ 动画录制
FLUENT中文全教程
FLUEN教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting 第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引( Bibliograp)hy 第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUEN的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。
本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。
第二和第三部分包含物理模型,解以及网格适应的信息。
第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUEN所使用的流场函数与变量的定义。
下面是各章的简略概括第一部分:z 开始使用:本章描述了FLUEN的计算能力以及它与其它程序的接口。
介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。
在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。
z 使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。
同时也提供了远程处理与批处理的一些方法。
(请参考关于特定的文本界面命令的在线帮助)z 读写文件:本章描述了FLUENT以读写的文件以及硬拷贝文件。
z单位系统:本章描述了如何使用FLUENTS提供的标准与自定义单位系统。
z 读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale、分区(partition等方法对网格的修改。
FLUENT中文全教程
FLUENT中文全教程1.FLUENT简介2.安装和启动FLUENT3.建立几何模型在FLUENT中,可以使用多种方法来建立几何模型,包括导入现有的CAD文件、绘制单个几何体或使用几何建模工具。
建立几何模型时,应注意几何的准确性和合理性。
4.网格生成几何模型建立好后,需要生成网格。
FLUENT提供了多种网格生成工具,可以根据需要选择合适的方法。
生成的网格应该具有一定的精度和合适的网格尺寸,以确保计算结果的准确性。
5.设置物理模型在开始计算之前,需要设置相应的物理模型。
FLUENT支持多种物理模型,包括流体流动、传热、化学反应等。
根据实际问题选择合适的物理模型,并进行相应的设定。
6.边界条件在FLUENT中,需要为模型的各个边界设置适当的边界条件。
边界条件描述了流体在该边界上的运动规律和特性。
根据实际问题选择合适的边界条件,并进行相应的设定。
7.数值求解器数值求解器是FLUENT中的核心组件,用于求解流体流动、传热和化学反应等方程。
FLUENT提供了多种数值求解器,可以根据问题类型和计算精度选择合适的求解器。
8.设置求解控制参数在开始求解之前,需要设置一些求解控制参数,包括迭代次数、收敛准则和时间步长等。
这些参数的设定直接影响到求解的精度和计算效率。
9.运行计算所有设置和参数设定完成后,可以开始运行计算。
FLUENT会自动根据设置进行迭代计算,直到满足设定的收敛准则为止。
计算时间的长短取决于模型的复杂程度和计算机性能。
10.结果分析计算完成后,可以对计算结果进行分析和后处理。
FLUENT提供了丰富的后处理工具,可以可视化流场、温度场和压力场等信息,并进行数据提取和报告生成。
11.优化和改进根据分析结果,可以对模型进行优化和改进。
可以调整边界条件、网格密度和物理模型等,进一步提高计算精度和计算效率。
12.汇报和展示最后,根据实际需要,可以将计算结果进行汇报和展示。
可以生成图片、动画和报告,以便更好地与他人交流和分享。
FLUENT中文全教程
P6计划你的CFD分析当你决定使FLUENT 解决某一问题时,首先要考虑如下几点问题:定义模型目标:从CFD 模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使用什么样的边界条件?二维问题还是三维问题?什么样的网格拓扑结构适合解决问题?物理模型的选取:无粘,层流还湍流?定常还是非定常?可压流还是不可压流?是否需要应用其它的物理模型?确定解的程序:问题可否简化?是否使用缺省的解的格式与参数值?采用哪种解格式可以加速收敛?使用多重网格计算机的内存是否够用?得到收敛解需要多久的时间?在使用CFD 分析之前详细考虑这些问题,对你的模拟来说是很有意义的。
当你计划一个CFD 工程时,请利用提供给FLUENT 使用者的技术支持。
.解决问题的步骤确定所解决问题的特征之后,你需要以下几个基本的步骤来解决问题:1.创建网格.2.运行合适的解算器:2D、3D、2DDP、3DDP。
3.输入网格4.检查网格5.选择解的格式6.选择需要解的基本方程:层流还是湍流(无粘)、化学组分还是化学反应、热传导模型等7.确定所需要的附加模型:风扇,热交换,多孔介质等。
8..指定材料物理性质8.指定边界条件9.调节解的控制参数10.初始化流场11.计算解12.检查结果13.保存结果14.必要的话,细化网格,改变数值和物理模型。
P14网格检查是最容易出的问题是网格体积为负数。
如果最小体积是负数你就需要修复网格以减少解域的非物理离散。
你可以在Adapt 下拉菜单中选中Iso-Value...来确定问题之所在,其它关于网格检查的信息请参阅“网格检查”一章。
P84数值耗散多维条件下主要的误差来源就是数值耗散又被称为虚假耗散(之所以被称为虚假的,是因为耗散并不是真实现象,而是它和真实耗散系数影响流动的方式很类似)。
关于数值耗散有如下几点:1. 当真实耗散很小时,即对流占主导地位时,数值耗散是显而易见的。
FLUENT中文全教程
FLUENT 教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引(Bibliography)第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。
本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。
第二和第三部分包含物理模型,解以及网格适应的信息。
第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。
下面是各章的简略概括第一部分:z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。
介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。
在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。
z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。
同时也提供了远程处理与批处理的一些方法。
(请参考关于特定的文本界面命令的在线帮助)z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。
z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。
z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。
FLUENT教程--20-27章
20.通用多相流模型(General Multiphase Models)本章讨论了在FLUENT中可用的通用的多相流模型。
第18章提供了多相流模型的简要介绍。
第19章讨论了Lagrangian离散相模型,第21章讲述了FLUENT中的凝固和熔化模型。
20.1选择通用多相流模型(Choosing a General Multiphase Model)20.2VOF模型(Volume of Fluid(VOF)Model)20.3混合模型(Mixture Model)20.4欧拉模型(Eulerian Model)20.5气穴影响(Cavity Effects)20.6设置通用多相流问题(Setting Up a General Multiphase Problem)20.7通用多相流问题求解策略(Solution Strategies for General Multiphase Problems)20.8通用多相流问题后处理(Postprocessing for General Multiphase Problems)20.1选择通用的多相流模型(Choosing a General Multiphase Model)正如在Section 18.4中讨论过的,VOF模型适合于分层的或自由表面流,而mixture和Eulerian 模型适合于流动中有相混合或分离,或者分散相的volume fraction超过10%的情形。
(流动中分散相的volume fraction小于或等于10%时可使用第19章讨论过的离散相模型)。
为了在mixture模型和Eulerian模型之间作出选择,除了Section18.4中详细的指导外,你还应考虑以下几点:★ 如果分散相有着宽广的分布,mixture模型是最可取的。
如果分散相只集中在区域的一部分,你应当使用Eulerian模型。
★ 如果应用于你的系统的相间曳力规律是可利用的(either within FLUENT or through a user-defined function),Eulerian模型通常比mixture模型能给出更精确的结果。
FLUENT教程
FLUENT教程FLUENT是一种流体动力学(CFD)软件,用于模拟各种流体行为和流体-结构相互作用。
它是由ANSYS开发的,并广泛应用于工程设计和科学研究领域。
本教程将介绍FLUENT的基本操作和一些常用的模拟技术。
首先,我们需要了解FLUENT的界面和主要功能。
FLUENT的界面包括几个主要的区域:预处理器、求解器和后处理器。
预处理器用于创建和修改模型,包括定义几何形状、边界条件和物理模型。
求解器用于执行模拟,并计算流体参数如速度、压力、温度等。
后处理器用于分析并可视化模拟结果。
开始使用FLUENT之前,我们需要准备一个几何模型。
FLUENT支持导入多种格式的几何模型,如.STL和.IGES。
一旦导入模型,我们可以使用预处理器进行一些几何操作,如修复几何错误、划分网格等。
划分网格是一个重要的步骤,它将模型分成多个小单元,用于计算流体参数。
在划分网格之后,我们可以设置边界条件。
边界条件定义了流体的入口、出口和固体表面的性质,如速度、压力、温度等。
根据实际情况,我们可以选择不同的边界条件类型,如强制入口、自由出口或壁面。
此外,我们还可以定义流体的物理属性,如密度、粘度、热传导系数等。
在准备工作完成后,我们可以开始进行模拟。
首先,我们需要选择一个求解器类型,如稳态模拟或非稳态模拟。
对于稳态模拟,我们需要定义求解器设置,如收敛标准、迭代次数等。
对于非稳态模拟,我们还需要定义时间步长和模拟时间。
在设置求解器后,我们可以执行模拟并观察结果。
FLUENT提供了多种可视化工具,如矢量图、剖面图和动画。
我们可以选择不同的参数进行可视化,并对结果进行分析。
此外,我们还可以导出结果数据,以便在其他软件中进行进一步处理。
除了基本的模拟技术,FLUENT还支持其他高级功能。
例如,我们可以使用多相流模型来模拟多个相的流体行为,如气-液两相流或骨料-流体两相流。
我们还可以使用动网格模型来模拟流体和结构的相互作用。
此外,FLUENT还支持耦合模拟,如流体-热传导耦合或流体-固体耦合。
FLUENT中文全教程(下)
第三章读写文件在使用FLUENT时你需要输入和输出几种类型的文件,其中读入的文件包括grid, case, data, profile, Scheme,以及journal文件,还有包括包含case, data, profile, journal,以及transcript 的文件。
FLUENT也可以保存面板的布局以及图形窗口的硬拷贝。
使用各种可视化以及后处理工具可以输出数据。
下面详细介绍一下上述内容。
FLUENT读写的文件表一列出了FLUENT所能读写的文件。
关于各种文件的使用,哪一代码写哪一类型的文件,每一类型的文件的更多信息都可以参阅这个表。
(注意:下表中的一些文件格式并不是FLUENT的格式,但是当它们被读入的时候格式会被自动转换)表一:FLUENT读写的文件文件类型创建文件的程序使用该文件的程序Grid GAMBIT, TGrid GeoMesh,FLUENTpreBFCFLUENTThird-Party Grid ANSYS, PATRAN, I-DEAS,NASTRAN, etc.Case FLUENT FLUENTData FLUENT FLUENTFLUENT/UNS Case FLUENT/UNS 3 or 4 FLUENTFLUENT/UNS Data FLUENT/UNS 4 FLUENTRAMPANT Case RAMPANT 2, 3, or 4 FLUENTRAMPANT Data RAMPANT 4 FLUENTFLUENT 4 Case FLUENT 4 FLUENTFIDAP 7 Neutral FIDAP 7 FLUENTRay FLUENT FLUENTPDF prePDF FLUENTJournal FLUENT FLUENTTranscript FLUENT userHardcopy FLUENT assortedPlot FLUENT FLUENTProfile user, FLUENT FLUENTData Export FLUENT Other codesScheme user FLUENT读写文件的捷径FLUENT有几个功能使得读写文件很方便,它们分别为:自动添加和检测文件的后缀;二进制文件的读写;文件格式的自动检测(文本文件和二进制文件);压缩文件的读写;Tilde expansion;文件自动编号;使文件覆盖确认的提示失效;默认文件后缀;二进制文件;检测文件格式FLUENT读写的各种类型文件都有默认的后缀(见表一中的FLUENT读写的文件)。
FLUENT教程
Fluent 使用指南步骤一:网格1.读入网格(*.msh)File → Read → Case读入网格后,在窗口显示进程2.检查网格Grid → CheckFluent对网格进行多种检查,并显示结果。
注意最小容积,确保最小容积值为正。
3.显示网格Display → Grid① 以默认格式显示网格可以用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作对于同样类型的多个区域情况非常有用,以便快速区别它们。
4.网格显示操作Display →Views(a) 在Mirror Planes面板下,axis(b) 点击Apply,将显示整个网格(c) 点击Auto scale, 自动调整比例,并放在视窗中间(d) 点击Camera,调整目标物体位置(e) 用鼠标左键拖动指标钟,使目标位置为正(f) 点击Apply,并关闭Camera Parameters 和Views窗口步骤二:模型1. 定义瞬时、轴对称模型Define → models→ Solver(a) 保留默认的,Segregated解法设置,该项设置,在多相计算时使用。
(b) 在Space面板下,选择Axisymmetric(c) 在Time面板下,选择Unsteady2. 采用欧拉多相模型Define→ Models→ Multiphase(a) 选择Eulerian作为模型(b)如果两相速度差较大,则需解滑移速度方程(c)如果Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛(d)保留设置不变3. 采用K-ε湍流模型(采用标准壁面函数)Define → Models → Viscous(a) 选择K-ε ( 2 eqn 模型)(b) 保留Near wall Treatment面板下的Standard Wall Function设置(c)在K-ε Multiphase Model面板下,采用Dispersed模型,dispersed湍流模型在一相为连续相,而材料密度较大情况下采用,而且Stocks数远小于1,颗粒动能意义不大。
2023年fluent教程讲解模板
2023年fluent教程讲解模板第一部分:介绍Fluent是一款流体动力学仿真软件,广泛应用于航空航天、汽车、能源和环境工程等领域。
本教程旨在帮助初学者了解和使用Fluent。
通过本教程,您将学习如何进行模型准备、网格划分、边界和边界条件的设定,以及模拟运行和结果分析等基本操作。
以下是本教程的详细讲解。
第二部分:模型准备在使用Fluent进行仿真之前,首先需要准备好模型。
模型的准备包括选择合适的几何形状、导入或创建几何模型,并进行必要的前处理操作。
在本教程中,我们将介绍如何导入和创建几何模型,并对其进行修复和优化。
1.导入几何模型Fluent可以导入多种几何模型格式,如STL、STEP、IGES等。
我们将展示如何导入不同格式的几何模型,并介绍如何处理不完整或有错误的几何模型。
2.创建几何模型如果无法找到或导入合适的几何模型,我们可以使用Fluent的几何建模功能来创建几何体。
我们将介绍几何建模的基本操作,包括创建基本几何体、合并和切割几何体等。
3.修复几何模型导入的几何模型中可能存在不完整或有错误的部分。
我们将展示如何使用Fluent的几何修复工具来修复几何模型,以保证后续的网格划分和仿真计算的准确性。
第三部分:网格划分网格划分是进行仿真计算的关键步骤。
合理的网格划分可以极大地影响仿真结果的准确性和计算效率。
在本部分,我们将介绍不同类型的网格划分方法和常用的划分工具。
1.网格类型Fluent支持结构化网格和非结构化网格。
我们将介绍这两种网格类型的优缺点,并在实例中展示如何选择合适的网格类型。
2.网格划分工具Fluent提供了多种网格划分工具,包括GAMBIT和TGrid。
我们将展示如何使用这些工具进行网格划分,并介绍划分参数的设置和调整。
3.网格质量控制合理的网格质量是保证仿真结果准确性的关键。
我们将介绍如何使用Fluent的网格质量评估工具来检查和改进网格质量,并介绍一些常用的网格质量指标。
fluent中文简明教程
第一章Fluent 软件的介绍 fluent 软件的组成:软件功能介绍:GAMBIT专用的CFD 前置处理器(几何/网格生成)Fluent4.5 基于结构化网格的通用CFD 求解器Fluent6.0 基于非结构化网格的通用CFD 求解器Fidap 基于有限元方法的通用CFD 求解器Polyflow 针对粘弹性流动的专用CFD 求解器Mixsim 针对搅拌混合问题的专用CFD 软件Icepak 专用的热控分析CFD 软件软件安装步骤:前处 理 gambit 软件Fluent6.0 Fluent5.5&4.5 Fidap Polyflow Mixsim Icepack 通用软件专用软件step 1: 首先安装exceed软件,推荐是exceed6.2版本,再装exceed3d,按提示步骤完成即可,提问设定密码等,可忽略或随便填写。
step 2: 点击gambit文件夹的setup.exe,按步骤安装;step 3: FLUENT和GAMBIT需要把相应license.dat文件拷贝到FLUENT.INC/license目录下;step 4:安装完之后,把x:\FLUENT.INC\ntbin\ntx86\gambit.exe命令符拖到桌面(x为安装的盘符);step 5: 点击fluent源文件夹的setup.exe,按步骤安装;step 6: 从程序里找到fluent应用程序,发到桌面上。
注:安装可能出现的几个问题:1.出错信息“unable find/open license.dat",第三步没执行;2.gambit在使用过程中出现非正常退出时可能会产生*.lok文件,下次使用不能打开该工作文件时,进入x:\FLUENT.INC\ntbin\ntx86\,把*.lok文件删除即可;3.安装好FLUENT和GAMBIT最好设置一下用户默认路径,推荐设置办法,在非系统分区建一个目录,如d:\usersa)win2k用户在控制面板-用户和密码-高级-高级,在使用fluent用户的配置文件修改本地路径为d:\users,重起到该用户运行命令提示符,检查用户路径是否修改;b)xp用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式在快捷方式-起始位置加入D:\users,重起检查。
Fluent 教程
Fluent 教程1。
启动FLUENT以WINDOWS NT 为内核的操作系统包括WINDOWS 2000 和WINDOWS XP,其启动方式有两种:(1)从WINDOWS 的开始菜单中进行启动,即顺序点击:开始-> 程序-> Fluent Inc. -> FLUENT 6.1就可以启动FLUENT。
(2)从DOS 终端窗口启动,即在命令行中:1)键入“fluent 2d”,启动二维单精度计算。
2)键入“fluent 3d”,启动三维单精度计算。
3)键入“fluent 2ddp”,启动二维双精度计算。
4)键入“fluent 3ddp”,启动三维双精度计算。
如果想启动并行计算模式,可以在上述4 个命令后面加上-tx 参数,其中x 是并行计算的CPU 数量,例如键入“fluent 3d –t3”意思是在三个处理器上运行三维计算。
单精度和双精度求解器在所有的操作系统上都可以进行单精度和双精度计算。
对于大多数情况来说,单精度计算已经足够,但在下面这些情况下需要使用双精度计算:(1)计算域非常狭长(比如细长的管道),用单精度表示节点坐标可能不够精确,这时需要采用双精度求解器。
(2)如果计算域是许多由细长管道连接起来的容器,各个容器内的压强各不相同。
如果某个容器的压强特别高的话,那么在采用同一个参考压强时,用单精度表示其他容器内压强可能产生较大的误差,这时可以考虑使用双精度求解器。
(3)在涉及到两个区域之间存在很大的热交换,或者网格的长细比很大时,用单精度可能无法正确传递边界信息,并导致计算无法收敛,或精度达不到要求,这时也可以考虑采用双精度求解器。
2 计算步骤工作计划确定下来后,就可以按照下面的基本步骤开始计算:(1)定义流场的几何参数并进行网格划分。
(2)启动相关的求解器。
(3)输入网格。
(4)检查网格。
(5)选择求解器格式。
(6)选择求解所用的基本方程:层流还是湍流?有没有化学反应?是否考虑传热?是否需要其它的物理模型,比如是否使用多孔介质模型?是否使用风扇模型?是否使用换热器模型?(7)定义物质属性。
FLUENT教程--10-18章
最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT 中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。 适用范围广、经济、合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的 应用了。它是个半经验的公式,是从实验现象中总结出来的。
ui = ui +ui' """(10.2−1)
这里
u
i
和
u
' i
时时均速度和波动分量。
相似的,像压力和其它的标量
φi =φi +φi' """(10.2−2)
这里φ 表示一个标量如压力,动能,或粒子浓度。
用这种形式的表达式把流动的变量放入连续性方程和动量方程并且取一段一段时间的 平均,这样可以写成一下的形式:
带旋流修正的 k-e 模型是近期才出现的,比起标准 k-e 模型来有两个主要的不同点。 ·带旋流修正的 k-e 模型为湍流粘性增加了一个公式。 ·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。 带旋流修正的 k-e 模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。 而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。 带旋流修正的 k-e 模型和 RNG k-e 模型都显现出比标准 k-e 模型在强流线弯曲、漩涡和 旋转有更好的表现。由于带旋流修正的 k-e 模型是新出现的模型,所以现在还没有确凿的证 据表明它比 RNG k-e 模型有更好的表现。但是最初的研究表明带旋流修正的 k-e 模型在所有 k-e 模型中流动分离和复杂二次流有很好的作用。 带旋流修正的 k-e 模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然 的湍流粘度。这是因为带旋流修正的 k-e 模型在定义湍流粘度时考虑了平均旋度的影响。这 种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准 k-e 模型。由于 这些修改,把它应用于多重参考系统中需要注意。 10.2.8 标准 k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而 修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱 绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变 形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 10.2.9 剪切压力传输(SST) k-ω模型 SST k-ω模型由Menter发展,以便使得在广泛的领域中可以独立于k-e模型,使得在近壁 自由流中k-ω模型有广泛的应用范围和精度。为了达到此目的,k-e模型变成了k-ω公式。SST k-ω模型和标准k-ω模型相似,但有以下改进: ·SST k-ω模型和k-e模型的变形增长于混合功能和双模型加在一起。混合功能是为近壁 区域设计的,这个区域对标准k-ω模型有效,还有自由表面,这对k-e模型的变形有效。 ·SST k-ω模型合并了来源于ω方程中的交叉扩散。 ·湍流粘度考虑到了湍流剪应力的传波。 ·模型常量不同 这些改进使得SST k-ω模型比标准k-ω模型在在广泛的流动领域中有更高的精度和可信 度。 10.2.10 雷诺压力模型(RSM) 在FLUENT中RSM是最精细制作的模型。放弃等方性边界速度假设,RSM使得雷诺平均 N-S方程封闭,解决了关于方程中的雷诺压力,还有耗散速率。这意味这在二维流动中加入 了四个方程,而在三维流动中加入了七个方程。 由于RSM比单方程和双方程模型更加严格的考虑了流线型弯曲、漩涡、旋转和张力快速 变化,它对于复杂流动有更高的精度预测的潜力。但是这种预测仅仅限于与雷诺压力有关的 方程。压力张力和耗散速率被认为是使RSM模型预测精度降低的主要因素。 RSM模型并不总是因为比简单模型好而花费更多的计算机资源。但是要考虑雷诺压力的
FLUENT简明中文教程
FLUENT简明中文教程一、概览《FLUENT简明中文教程》旨在为初学者和专业人士提供对FLUENT软件的全面而简洁的指导。
本教程不仅介绍了FLUENT软件的基础知识和操作,还深入探讨了其在实际应用中的使用方法和技巧。
通过本教程的学习,您将能够掌握FLUENT软件的核心功能,并能够独立完成各种流体动力学模拟和分析任务。
FLUENT软件是一款功能强大的流体动力学模拟软件,广泛应用于航空航天、汽车、能源、环境等多个领域。
该软件能够模拟复杂的流体流动、传热和化学反应等现象,为工程师和研究人员提供了强大的分析工具。
本教程通过简洁明了的文字和丰富的实例,帮助您快速掌握FLUENT软件的基本操作和高级功能。
本教程的内容涵盖了FLUENT软件的安装与启动、基本界面介绍、模型选择与设置、网格生成与处理、求解器设置与求解、后处理与结果分析等方面。
通过逐步的学习和实践,您将能够掌握FLUENT软件的各个模块,并能够灵活地应用于实际工程中。
本教程还注重实用性和可操作性。
通过丰富的实例和案例分析,帮助您更好地理解FLUENT软件在实际应用中的使用方法和技巧。
本教程还提供了详细的步骤和注意事项,帮助您避免常见的错误和误区,提高学习效率。
《FLUENT简明中文教程》是一本全面、简洁、实用的指南,帮助您快速掌握FLUENT软件的核心功能和实际应用。
无论您是初学者还是专业人士,本教程都将是您学习和应用FLUENT软件的必备参考书。
软件简介Fluent软件是一款功能强大的计算流体动力学(CFD)软件,广泛应用于航空、汽车、能源、环境科学等多个领域。
该软件的强大之处在于其灵活的模拟能力和广泛的物理模型库,能够解决复杂的流体流动和传热问题。
通过Fluent软件,用户可以分析各种流体现象,如流动、传热、化学反应等,帮助设计和优化相关产品的性能。
随着计算技术的发展和流体动力学研究的深入,Fluent软件的功能也在不断更新和扩展。
该软件采用先进的数值算法和求解器技术,能够在不同的硬件平台上实现高效的模拟计算。
FLUENT中文全教程
P6计划你的CFD分析当你决定使FLUENT 解决某一问题时,首先要考虑如下几点问题:定义模型目标:从CFD 模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使用什么样的边界条件?二维问题还是三维问题?什么样的网格拓扑结构适合解决问题?物理模型的选取:无粘,层流还湍流?定常还是非定常?可压流还是不可压流?是否需要应用其它的物理模型?确定解的程序:问题可否简化?是否使用缺省的解的格式与参数值?采用哪种解格式可以加速收敛?使用多重网格计算机的内存是否够用?得到收敛解需要多久的时间?在使用CFD 分析之前详细考虑这些问题,对你的模拟来说是很有意义的。
当你计划一个CFD 工程时,请利用提供给FLUENT 使用者的技术支持。
.解决问题的步骤确定所解决问题的特征之后,你需要以下几个基本的步骤来解决问题:1.创建网格.2.运行合适的解算器:2D、3D、2DDP、3DDP。
3.输入网格4.检查网格5.选择解的格式6.选择需要解的基本方程:层流还是湍流(无粘)、化学组分还是化学反应、热传导模型等7.确定所需要的附加模型:风扇,热交换,多孔介质等。
8..指定材料物理性质8.指定边界条件9.调节解的控制参数10.初始化流场11.计算解12.检查结果13.保存结果14.必要的话,细化网格,改变数值和物理模型。
P14网格检查是最容易出的问题是网格体积为负数。
如果最小体积是负数你就需要修复网格以减少解域的非物理离散。
你可以在Adapt 下拉菜单中选中Iso-Value...来确定问题之所在,其它关于网格检查的信息请参阅“网格检查”一章。
P84数值耗散多维条件下主要的误差来源就是数值耗散又被称为虚假耗散(之所以被称为虚假的,是因为耗散并不是真实现象,而是它和真实耗散系数影响流动的方式很类似)。
关于数值耗散有如下几点:1. 当真实耗散很小时,即对流占主导地位时,数值耗散是显而易见的。
FLUENT中文全教程500-750
解及精度)。
f的化学当量值的确定在下面讨论。
注:不应将中心点设得高于0.8或低于0.2。
Mixture Fraction Variance Points (混合分数变化量点):为将要建立的查询表上的2f′的离散值的数量。
混合分数变化量点数应大体上为需要的s平均混合分数点数的一半。
因为通常沿查询表的2f′轴变化量比沿f轴s慢,因此需要低解。
Secondary Partial Fraction (次要部分分数):包含与(可选的)次要部分分数相关的参数:Secondary Partial Fraction Points (次要部分分数点):为将要建立的查询表上的p的离散值数量。
像“Fuel Mixture Fraction Points”,如果为一个sec二混合分数模型在PDF选项上(见14.3.3节)FLUENT将使用次要部分分数点计算PDF。
点数越大,给出的PDF分布越精确,单是计算时间越长。
Automatic Distribution (自动分布):允许对次要部分分数及其变化量进行自动离散。
多数情况下推荐使用自动离散。
Distribution Center Point (分布中心点)(仅当“Automatic Distribution”不可用时才可用):决定了p离散值的需要数目分布。
需要的点数将分sec布在中心点的任何一边,多数点集中在近中心地,少数点在端点上。
如果中心点定义为0.5(默认),值将在在范围内0均匀分布在0到1之间。
对一种氧化剂或非反应次要流,应保持该默认值。
对次要流,通常应在p的化学当量值的富边选择该值。
这将会在化学当量范围及以下——sec在该范围内,计算将更加关键,建立更多的点(因此,会有更好的解及精度)。
f的化学当量值的确定在下面讨论。
所以可用方程14.1-3决定secp的相应值。
注:不应将中心点设为高于0.8或低于0.2。
secEquilibrium Chemistry Model (平衡化学模型):包括与平衡化学模型(见14.1.2节)相关的参数。
FLUENT中文全教程751-986
使用这个公式,select Implicit as the VOF Scheme, and enable an Unsteady calculation in the Solver panel (opened with the Define/Models/Solver... menu item).!!上面为the Euler explicit time-dependent formulation讨论的结果也适用于the implicit time-dependent formulation。
为了提高相界面的清晰度,你应慎重考虑以上所述。
5.Steady-state with the implicit interpolation scheme:如果你要寻找稳态解和中间的瞬态行为不感兴趣,并且最终的稳态解不被初始流动条件影响而每相有明显的inflow boundary,这个公式可以使用。
使用这个公式,select Implicit as the VOF Scheme.!!上面为Euler explicit time-dependent formulation讨论的结果也适用于the implicit steady-state formulation。
为了提高相界面的清晰度,你应慎重考虑以上所述。
!!对于the geometric reconstruction 和 donor-acceptor schemes,如果你使用了conformal grid(也就是,在两个子边界相交的边界上网格节点的位置是一样(identical)的),你必须保证在这个区域内没有双边(0厚度)壁面。
如果有,你必须split them, as described in Section 5.7.8.例子为了帮助为你的问题选择最好的公式,使用不同公式的例子列举如下:1.jet breakup:time-dependent with the geometric reconstruction scheme(or the donor-acceptor or Euler explicit scheme if problems occur with the geometric reconstruction scheme)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆Fluent 软件应用gambit单独的完整的CFD前处理器●建立几何体和导入几何体●生成网格●检查网格质量●设置边界类型和介质类型Grid●在已知边界网格(由GAMBIT或者第三方CAD/CAE软件产生的)产生三角网格,四面体网格或者混合网格用其他软件(ANSYS)一、利用GAMBIT建立计算区域和指定边界条件类型gambit单独的完整的CFD前处理器1.启动GAMBIT软件(窗口布局)2.创建控制点3.创建边 (Ctrl+鼠标左键拖动)4.创建面5.划分网格◆ 在几何形状复杂的区域上要生成好的网格相当困难 ◆ Meshing grid numbergrid quality◆ 超过90%的精力要用在生成合适的网格上 ◆ 网格生成质量对计算精度与稳定性影响极大。
策略◆ Boundary layers◆ Pre-meshing ◆ Sizing functions◆ 为降低离散误差,减少单元数量,最好使用hex(六面体网格) ◆ 对形状复杂的几何体可分解成几个简单几何体再用六面体网格◆ Gambit 可读入其它CFD 软件生成的图形 ◆ 也可读入autocad proE 等cad 软件生成的图形◆ CAD 中创建的图形要输出为.sat 文件,要满足一定的条件。
● 对于二维图形来说,它必须是一个region ,也就是说要求是一个联通域。
● 对于三维图形而言,要求其是一个ASCI body◆ 由于各软件设置的最小识别尺寸不同, 导入后的几何体可能会出现:● 不完整、有缝隙的几何体● 有一些CFD 分析时不需要的一些细小的几何结构◆ 清理过程主要采用gambit 中的虚几何操作。
Example :unconnected real edges/facesconnected virtual edges/faces◆Gambit中有三类几何体:●Real:●Virtual:根据一个或多个实体(real,称为宿主)来确定其几何描述●Faceted geometry(有小面的几何体):象virtual 一样处理◆一些实几何操作对虚几何体不能正常使用Boundary layers◆在边界处◆对2D问题,附着在edges◆对3D问题,附着在faces线网格划分面网格体网格◆ Hex/Wedge:Cooper◆Tet/Hybrid: TGrid顶点类型✓ Formula for map scheme: 4*End+N*Side✓ Formula for submap scheme:4*End+ L*Side + M*(E+C) + N* (2*E+R)✓ How to Make a V olume CooperableManually change the vertex types on the side faces so they are mappable and/orsubmappableEESSCCRR◆ End (E)◆0 < Default Angle < 120 ◆zero internal grid lines ◆ Side (S)◆120 < Default Angle < 216 ◆one internal grid line ◆ Corner (C)◆216 < Default Angle < 309 ◆two internal grid lines ◆ Reverse (R)◆309 < Default Angle < 360 ◆three internal grid linesMap: 4*End + 4*SideEEEECEEC Default EESSSSEEEEECExample: manually change the vertex types6.边界条件类型的指定Flow inlet and exit boundaries: General :Pressure inlet 给定流动入口的总压和其他标量Pressure outlet 给定出口处的静压◆Incompressible:Velocity inlet 给定入口处的流速和其他标量Outflow 对于出口处流速和压力不知道的情况不能与pressure outlet一起用◆Compressible flows:Mass flow inlet 规定入口的质量流量Pressure far-field 无穷远处的自由流条件◆Special:Inlet vent, outlet vent, 指定损失系数intake fan, exhaust fan,指定压力跳跃◆wall, symmetry, periodic, axis◆Internal cell zones:fluid, solid (porous is a type of fluid zone)◆Internal face boundaries:引入流动参数阶梯变化fan, radiator, porous jump, wall, interior7.mesh网格文件的输出二.利用Fluent求解器求解1.Fluent求解器的选择2d—二维、单精度求解器;2ddp—二维、双精度求解器;3d—三维、单精度求解;3ddp—三维双精度。
双精度,对于几何结构或计算域包含的长度尺度范围很大;几何结构是由许多直径很小的支管道包围一个空腔而成;包含有很大热传导率和高纵横比网格的问题。
2.读入网格文件网格操作3.检查网格文件4.设置计算区域尺寸Fluent 默认长度单位是米,如果作图时用了别的单位,就可以在这一步中通过Scale Grid 对话框对计算域进行缩放,调整下面的X 和Y 比例因子,或者选择Grid was created in 网格创建时使用的时什么单位;然后点scale 图标就可缩放。
之后需要在进行一次网格检查,看计算域尺寸是否修改正确了。
5.显示网格选择计算模型6.求解器的定义(Defin e →Models →Solver ﹍)其中压力基(Pressure Based )方法用于不可压缩流动的求解;而密度基(Density Based )主要针对可压缩流动而设计。
7.其他计算模型的选定。
在实际问题中,除了要计算流场,有时还要计算温度场(Energy传热)或浓度场等,因此可能会用到其他物理模型(Multiphase多相流,Radiation辐射,Species组分输运与化学反应,Discrete phase离散相,Solidification&Melting凝固和融化,Acoustics声学)。
Fluent提供的粘性模型有:Inviscid无粘模型;Laminar层流模型;Spalart-Allmaras单方程湍流模型(S-A模型);k-epsilion双方程模型(k-ε模型);k-omega双方程模型以及雷诺应力模型;如果是三维问题,还有DES离散涡湍流模型和LES大涡模拟供用户选择。
无粘模型适用于粘性对流场可以忽略的计算中。
另一个用途是为复杂流动计算提供一个初始流场。
层流模型用于需要考虑粘性且流动类型为层流的情况。
DES和LES是最精细的湍流模型,精度高,但需要的网格数量大,计算机要求高。
湍流模式仍然只是计算工程问题常选用的方法。
S-A模型适合用于翼型、壁面边界层流等流动,不适合射流类等自由剪切湍流问题。
k-ε模型适合高雷诺数湍流,但不适合旋流等各项异性较强的流动;重整化群RNG k-ε模型可以计算低雷诺数湍流,考虑旋转效应,对强旋流动计算精度有所提高;可实现性Realizable k-ε模型可保持雷诺应力与真实湍流一致,可精确模拟平面圆形射流的扩散速度,同时对旋流计算、带方向压强梯度的边界层计算和分离流计算更符合真实情况,同时在带二次流的复杂流动计算中表现出色。
但是它在同时存在旋转和静止区的流场计算中,比如多重参考系、旋转滑移网格等计算中,会产生非物理湍流粘性,因此在类似计算中应该慎重选用。
标准k-ω模型包含了低雷诺数影响、可压缩性影响和剪切流扩散,适用于尾迹流动、混合层、射流、以及受壁面限制的流动附着边界层湍流和自由剪切流计算;剪切应力运输(SSTk-ω)模型综合了k-ω模型在近壁区计算的优点和k-ε模型在远场计算的优点,同时增加了横向耗散导数项,在湍流粘度定义中考虑了湍流剪切应力的运输过程,可以用于带压梯度的流动计算、翼型计算、跨声速带激波计算等。
雷诺应力模型没有采用涡粘性各向同性假设,在理论上比前面的湍流模式理论要精确的多,直接求解雷诺应力分量(二维5个,三维7个)的运输方程,适用于强旋流动,比如龙卷风、旋流燃烧室内流动等。
在受壁面限制的流动中,因为壁面附近流场变量的梯度较大,所以壁面对湍流计算的影响很大,因此在壁面附近要进行特殊处理。
一种办法是用半经验公式将自由流中的湍流与壁面附近的流动连接起来,叫壁面函数法。
其适用于高雷诺数流动。
其中标准壁面函数法可适用于大多数流动问题,因此是Fluent中默认设置的方法。
非平衡壁面函数法适用于流场变量在壁面附近存在很大梯度的流动问题。
另一种方法是在壁面附近加密网格,同时调整湍流模型以包含壁面附近低雷诺数流动的影响,这种方法称近壁模型法。
适用于低雷诺数流动。
◆Spalart-Allmaras:一方程模型●不适于自由剪切流动、分离流动,多用于外流,如航空航天问题。
准2D问题,如翼型绕流◆Standard κ-ε:●应用最为广泛的湍流模型,高Re数模型,不适于分离流动,◆RNG (renormalization group重正规化群) κ-ε:●考虑了旋流、低雷诺数的作用,●适于自由剪切流动。
主要应用于旋转机械,主要用于旋转坐标系下的流动问题◆Realizable κ-ε :●主要用于射流、大分离、回流等问题◆Standard κ-ω :●适于剪切流动,低、高Re数均可◆SST (shear-stress transport ) κ-ω:●对近壁和远场都适用,对剪切流动的处理不如Standard κ-ω◆Reynolds Stress:●可以计算各向异性旋涡,难于收敛,适于计算弯曲流道、强的旋涡或旋转近壁处理及第一个网格的位置◆κ-ε和RSM适用于离开壁面一定距离的湍流区域◆两种方法:●壁面函数法⏹Standard wall functions⏹Non-equilibrium wallfunctions大的压力梯度和非平衡流动⏹Enhanced wall functionsυρτyyw/=+300~30≈+y1≈+y8.操作环境的设置(是否考虑重力和浮力)Operating pressure:●不可压理想流体: = Poperating/RT●低马赫数可压流体:舍入误差高马赫数,习惯上使用绝对压力,Pop=09.定义流体的物理性质10.设置边界条件Flow inlet and exit boundaries:◆General:Pressure inlet 给定流动入口的总压和其他标量Pressure outlet 给定出口处的静压◆Incompressible:Velocity inlet 给定入口处的流速和其他标量Outflow 对于出口处流速和压力不知道的情况不能与pressure outlet一起用◆Compressible flows:Mass flow inlet 规定入口的质量流量Pressure far-field 无穷远处的自由流条件◆Special:Inlet vent, outlet vent, 指定损失系数intake fan, exhaust fan,指定压力跳跃◆wall, symmetry, periodic, axis◆Internal cell zones:fluid, solid (porous is a type of fluid zone)◆Internal face boundaries:引入流动参数阶梯变化fan, radiator, porous jump, wall, interior求解方法的设置及其控制11.求解参数设置FLUENT offers a number of interpolation schemes:◆First-Order Upwind Scheme●easiest to converge, only first order accurate.◆Power Law Scheme●more accurate than first-order for flows when Recell< 5 (typ. low Re flows).◆Second-Order Upwind Scheme●uses larger ‘stencil’ for 2nd order accuracy, essential with tri/tet mesh or whenflow is not aligned with grid; slower convergence◆Quadratic Upwind Interpolation (QUICK)●applies to quad/hex and hyrbid meshes (not applied to tri’s), useful forrotating/swirling flows, 3rd order accurate on uniform mesh.12.初始化13.打开残差监控图14.保存当前的case文件15.开始迭代计算16.保存计算后的case和data文件计算结果显示17.显示速度等值线图18.绘制速度矢量图19.显示某边上的速度剖面XY点线图。