直角三角形性质应用(直角 中点)(含答案)

合集下载

上海初中数学八年级上---19.8直角三角形的性质(含答案)

上海初中数学八年级上---19.8直角三角形的性质(含答案)

19.8(1)直角三角形的性质一、填空题1.若直角三角形的两个锐角之差为24度,则较大的锐角的度数是_________ . 2. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D , (1)若∠B =50°,则∠A =__________; (2)若∠B -∠A =50°,则∠A =__________; (3)与∠A 互余的角有________________;(4)与∠A 相等的角有________________. 第2题图3.已知直角三角形面积等于24平方厘米,斜边上的高为4厘米,则斜边上的中线长 为 厘米.4.等腰直角三角形中,若斜边和斜边上的高的和是6cm ,则斜边长是 cm . 5. 若直角三角形的斜边上的高与斜边上的中线长分别为2 cm 和3 cm ,则这个直角三角形的面积为__________cm 2.6. 在Rt △ABC 中,∠C =90°,周长为24 cm ,三边长的比为3∶4∶5,则斜边上的中线长为__________cm ,斜边上的高为__________cm.二、解答题7.如图,已知△ABC 中,∠ ABC=∠ ACB ,D 、E 为△ABC 外两点,AD ⊥BD ,AE ⊥CE ,F 、G 分别为AB 、AC 的中点.求证:DF =GE .8.如图,已知:在ABC ∆中,D BC AC AD C B 于交,,⊥=∠=∠2040. 求证:AB CD 2=.ABCD9. 如图,已知在Rt △ABC 中,∠C =90°,M 是AB 的中点,AM =AN ,MN ∥AC . 求证:MN =AC .10. 如图,已知HE 、AG 相交于点D ,点B 、C 、F 分别是线段DG 、HD 、AE 的中点,若AH =AD ,DE =EG .求证:CF =BF .三、提高题11.如图,已知:在ΔABC 中, ∠ABC=2∠C,AD ⊥BC 于D,E 是AC 中点,ED 的延长线与AB 的延长线交于点F .求证:BF=BD .CBAEDF19.8(2)直角三角形的性质一、填空题1. 在Rt△ABC中,∠C=90°,∠B=60°,若BC=4 cm,则AB=__________cm.2. 在△ABC中,若∠C∶∠B∶∠A=1∶2∶3,BC=16,则AB=__________.3.在Rt△ABC中,若∠ACB=90°,CD⊥AB于D,∠A=30°,若BD=4cm,则BC=__________cm,AD=__________cm.4. 等腰三角形的顶角为30°,腰长为4 cm,则这个等腰三角形的面积为__________cm 5.△ABC中,AB=AC,∠BAC=120°,AB=12cm,则BC边上的高AD= cm..6.等腰三角形一腰上的高等于腰长的一半,则此等腰三角形的顶角度数是__________.7.如图,在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿CM翻折,点A落在点D处,如果CD恰好与AB垂直,那么∠A=__________度.二、解答题8.已知:如图,△ABC中,AB=AC,点D在BC边上,∠DAC=90° , AD= 12 CD.求:∠BAC的度数.9.已知:如图,在△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12 AB.AB CDAB CD10. 如图,已知等边三角形中,E 是AC 上的一点,CE =14AC ,过E 作DE ⊥AC 交BC 于点D . 求证:D 是BC 的中点.11. 如图,已知△ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 为AB 边上的中线,若AC =AE .求证:BC =2CD .三、提高题12.已知:等腰三角形一腰上的高是另一腰长度的12,求这个等腰三角形的底角的度数。

初三数学利用三角函数解直角三角形含答案

初三数学利用三角函数解直角三角形含答案

解直角三角形中考要求知识要点模块一 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题.cb CBA六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来转化为四种基本类型求解;(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等.例题精讲【例2】 如图所示,O 的直径4AB =,点P 是AB 延长线上的一点,过P 点作O 的切线,切点为C ,连接AC .(1)若30CPA ∠=︒,那么PC 的长为 .为O 的切线,tan303=︒的大小没有变化七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位. (一)仰角与俯角图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线30,400DCB CD ∠=︒=米),测得A 的仰角为60︒,求山的高度AB .【答案】作DE AB ⊥于E ,作DF BC ⊥于F ,在Rt CDF ∆中30400DCF CD ∠=︒=,米,1sin304002002DF CD =⋅︒=⨯=(米)cos30400CF CD =⋅︒=米) 在Rt ADE ∆中,60ADE ∠=︒,设DE x =米, ∴tan 60AE x =︒⋅(米)在矩形DEBF 中,200BE DF ==米,在Rt 45ACB ACB ∆∠=︒中,,∴AB BC =, 200x +=,解得200x =,∴200AB AE BE =+=()米【巩固】如图,某电信部门计划架设一条连结B C ,两地的电缆,测量人员在山脚A 地测得B C , 两地在同一方向,且两地的仰角分别为3045︒︒,,在B 地测得C 地的仰角为60︒,已知C 地比A 地高200米,且由于电缆的重力导致下坠,实际长度是两地距离的1.2倍,求电缆的长(精确到0.1米)【解析】过点C 作CH AD ⊥于H ,过B 作BE AH ⊥于E ,BF CH ⊥于F ,由题意得604530CBF CAH BAH ∠=︒∠=︒∠=︒,,200CH m =, 设BC x =米,在Rt BFC ∆中,由cos BF CBF BC ∠=,sin CFCBF BC∠=1cos sin 2BF BC CBF x CF BC CBF =∠==∠=,,易得 FE D BCADCB AACH ∆是等腰直角三角形,所以200AH CH ==,从而12002002AE AH EH x BE FH =-=-==,,在Rt ABE ∆中,tan30BE AE =︒,由此得12002002x ⎫=-⎪⎝⎭,解得200146.4x =≈,根据题意,电缆的实际长度约为 146.4 1.2175.7⨯≈米【答案】175.7(二)坡度与坡角图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.(1)请你帮助小王在下图中把图形补画完整;(2)由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.【答案】(1)图形补全如右图所示:O CA(2) ∵1:0.754:3i ==∴:4:3CH EH =在Rt CHE ∆中,5CE = ∴43CH EH ==, ∴437DH DE EH =+=+= 在Rt ODH ∆中,222HO DH OD += 即()()222477r r ++=+,解得83r =.(三)方向角【例8】 如图,AC 是某市环城路的一段,AE BF CD ,,都是南北方向的街道,其与环城路AC 的交叉路口分别是A B C ,,.经测量花卉世界D 位于点A 的北偏东45︒方向、点B 的北偏东30︒方向上, 2AB km =,15DAC ∠=︒.(1)求B D ,之间的距离; (2)求C D ,之间的距离.【解析】(1)如图,由题意得,4530EAD FBD ∠=︒∠=︒,.∴ 451560EAC EAD DAC ∠=∠+∠=︒+︒=︒. ∵ AE BF CD ∥∥, ∴ 60FBC EAC ∠=∠=︒. ∴ 30DBC ∠=︒.又∵ DBC DAB ADB ∠=∠+∠, ∴ 15ADB ∠=︒.∴ DAB ADB ∠=∠. ∴ 2BD AB ==. 即B D ,之间的距离为2km .(2)过B 作BO DC ⊥,交其延长线于点O 在Rt DBO ∆中,260BD DBO =∠=︒,.∴2sin 6022cos60DO BO =⨯︒===⨯︒ 在Rt CBO ∆中,30tan30CBO CO BO ∠=︒=⋅︒, ∴CD DO CO =-==km ). 即C D ,之间的距离为km 【答案】(1)之间的距离为2km ; (2)之间的距离为km .332B D ,C D ,332和平路文化路中山路30°15°45°FEDCBA 和平路文化路中山路ABC DEF45°15°30°O【巩固】台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A 的正南方向220km 的B 处有一台风中心,其中心最大风力为12级,每远离台风中心20km ,风力就减弱一级,该台风中心现在以15km/h 的速度沿北偏东30︒方向往C 移动,且台风中心风力不变,若城市所受风力达到四级,则称受台风影响. (1)该城市是否会受这次台风影响?请说明理由.(2)若受台风影响,那么台风影响该城市的持续时间会有多长? (3)该城市受台风影响的最大风力是几级?【答案】⑴ 过A 作AD BC ⊥于D ,∵220AB =,30B ∠=︒, ∴110AD =由题意A 距台风中心不超过(124)20160-⨯=km 时,将会受到台风影响, ∴该城市会受到台风影响.⑵ 在BD 上取点E ,DC 上取点F ,使160AE AF ==,则由题意知:台风中心到达点E 时,该城市即开始受台风影响;台风中心到达点F 时,该城市即结束影响.由勾股定理得,DE∴EF =∵该台风中心以15km/h 的速度移动, ∴=. ⑶ 当台风中心位于D 时,A 市所受这次台风影响的风力最大,其最大风力为11012 6.520-=级(四)其它【例9】 小明发现在教学楼走廊上有一拖把以15︒的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75︒,如果拖把的总长为1.80m ,则小明拓宽了行路通道_________m .(结果保留三个有效数字,参考数据:sin150.26︒≈,cos150.97︒≈)【解析】在Rt ABO ∆中,可求得cos15 1.80.97 1.75AO AB =⋅︒=⨯≈米,在Rt CDO ∆中,可求得sin150.468DO AB =⋅︒≈米 ∴ 1.750.468 1.28AD =-=米【答案】1.28米【巩固】如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为60︒.(1)求AO 与BO 的长;(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.① 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且:2:3AC BD =,试计算梯子顶端A 沿NO 下滑多少米;② 如图3,当A 点下滑到'A 点,B 点向右滑行到'B 点时,梯子AB 的中点P 也随之运动到'P 点.若'15POP ∠=︒,试求'AA 的长.【答案】⑴ Rt AOB ∆中,90O ∠=︒,60α∠=︒∴30OAB ∠=︒,又4AB =米, ∴122OB AB ==米.sin 604OA AB =⋅==米 ⑵ 设2AC x =,3BD x =,在Rt COD ∆中,2OC x =,23OD x =+,4CD =根据勾股定理:222OC OD CD +=∴()()2222234xx ++=∴(213120x x +-=∵0x ≠∴13120x +-,∴x =2AC x == 即梯子顶端A 沿NO米 ⑶ ∵点P 和点P '分别是Rt AOB ∆的斜边AB 与Rt ''A OB ∆的斜边''A B 的中点∴PA PO =,'''P A P O = ∴PAO AOP ∠=∠,P A O A OP ''''∠=∠ ∴P A O PAO A OP AOP ''''∠-∠=∠-∠ ∴15P A O PAO POP '''∠-∠=∠=︒∵30PAO ∠=︒,∴45P A O ''∠=︒∴cos454A O A B '''=⨯︒==∴AA OA A O ''=-=米【例10】 关于三角函数有如下的公式:sin()sin cos cos sin αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=-tan tan tan()(1tan tan 0)1tan tan αβαβαβαβ++=-⋅≠-⋅利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如图1图2图3tan 45tan 60tan105tan(4560)(21tan 45tan 60︒+︒︒=︒+︒===--︒⋅︒根据上面的知识,你可以选择适当的公式解决下面实际问题:如图,直升飞机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60︒,底端C 点的俯角β为75︒,此时直升飞机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高. 【解析】过点D 作DE AB ⊥于E ,依题意在Rt ADE △中,60ADE α∠=∠=︒,tan 60tan 60AE ED BC =⋅︒=⋅︒=.在Rt ACB △中,75tan75ACB AB BC β∠=∠=︒=⋅︒, ∵tan 45tan 30tan 75tan(4530)21tan 45tan 30︒+︒︒=︒+︒==-︒⨯︒∴42(284AB =⨯+=+∴8484CD BE AB AE ==-=+(米)【答案】建筑物的高为84米.课堂检测1. (2011•遵义)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长6AB cm =,45ABC ∠=︒,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使30ADC ∠=︒(如图所示) (1)求调整后楼梯AD 的长; βαDCBAE βαDCBAACB∠=.【解析】过点C作CD PB∥,则6045ACD BCD∠=︒∠=︒,所以6045105ACB∠=︒+︒=︒【答案】105°课后作业水坡CD 的坡度为2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30︒,D 、E 之间是宽为2m 的人行道,试问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心.以AB 的长为半径的圆形区域为危险区域).【解析】过点C 作CH AB ⊥于点H ,得矩形HBFC 连接DF∵21CF DF =,2CF =(m) ∴1DF =(m)∴2CF HB ==(m),15HC BF ==(m) 在Rt AHC ∆中,tan3015tan30AH HC =⋅︒=⨯︒=,∵210.66(m)AB AH HB =+=≈ 12(m)BE BD ED =-=F E人行道DCB AFE人行道30︒H DCBA∴,AB BE∴不需将此人行道封上.【答案】不需将此人行横道封上。

“直角三角形斜边上的中线”的性质及其应用

“直角三角形斜边上的中线”的性质及其应用

“直角三角形斜边上的中线”的性质及其应用“直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明.一、有直角、有中点,利用垂直平分线性质【例1】如图,BD 、CE 是△ABC 的两条高,M 是BC 的中点,N 是DE 的中点.求证:MN 垂直平分DE .二、有直角、无中点,取中点,连线出中线【例2】如图,在Rt △ABC 中,∠C=90°,AD ∥BC ,∠CBE=21∠ABE ,求证:DE=2AB .三、有中点、无直角,造直角【例3】如图,梯形ABCD 中,AB ∥CD ,M 、N 是AB 、CD 的中点,∠ADC+∠BCD=270°,求证:MN=21(AB -CD ).四、逆用性质解题【例4】如图,延长矩形ABCD 的边CB 至E ,使CE=CA ,P 是AE 的中点.求证:BP ⊥DP .【习题练习】1、如图,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥DE 于D ,DE 交BC 于E ,求证:CD=21BE .2、如图,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是BC 的中点,求证:AB=2DM .3、如图,在四边形ABCD 中,∠DAB=∠DCB=90°,点M 、N 分别是BD 、AC 的中点.确定MN 、AC 的位置关系.直角三角形斜边上中线性质的应用一、直角三角形斜边上中线的性质1、性质:直角三角形斜边上的中线等于斜边的一半.如图,在Rt △BAC 中,∠BAC=90°,D 为BC 的中点,则BC 21AD =.2、性质的拓展:如图:因为D 为BC 中点,所以BC 21DC BD ==, 所以AD=BD=DC=BC 21, 所以∠1=∠2,∠3=∠4,因此∠ADB=2∠1=2∠2,∠ADC=2∠3=2∠4.因而可得如下几个结论:①直角三角形斜边上的中线将直角三角形分成两个等腰三角形;②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍.二、性质的应用1、21倍关系求值 例1、如图,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= .2、证明线段相等例2、如图,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB 21AD =,点E 、F 分别为边BC 、AC 的中点.(1)求证:DF=BE ;(2)过点A 作AG ∥BC ,交DF 于G .求证:AG=DG .3、证明角相等及角的倍分关系例3、已知,如图,在△ABC中,∠BAC 90°,BD、CE分别为AC、AB上的高,F为BC的中点,求证:∠FED=∠FDE.例4、已知:如图,在△ABC中,AD是高,CE是中线。

直角三角形性质应用(直角 中点)(含答案)

直角三角形性质应用(直角 中点)(含答案)

学生做题前请先回答以下问题问题1:从边与角的角度来考虑直角三角形的性质都有哪些?问题2:遇到斜边上的中点怎么想?问题3:直角三角形斜边上的中线等于__________;如果一个三角形__________________,那么这个三角形是直角三角形.直角三角形性质应用(直角+中点)一、单选题(共7道,每道12分)1.如图,在△ABC中,∠BAC=90°,斜边BC上的高AD=5cm,斜边BC上的中线AE=8cm,那么△ABC的面积为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半2.如图,在Rt△ABC中,CD是斜边AB上的中线,EF过点C且平行于AB.若∠BCF=35°,则∠ACD的度数是( )A.35°B.45°C.55°D.65°答案:C解题思路:试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半3.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )A.20B.14C.13D.10答案:B解题思路:试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半4.如图,∠ABC=∠ADC=90°,E是AC的中点,若∠BCD=75°,则∠BDE=( )A.25°B.20°C.15°D.10°答案:C解题思路:试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半5.如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E,F分别是对角线AC,BD的中点,则下列结论成立的是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:等腰三角形三线合一性质6.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )A.2.5B.C. D.2答案:B解题思路:试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半7.如图,BD,BE是Rt△ABC斜边AC上的中线与高线.已知AB=4,BC=3,则AD:DE:EC等于( )A.5:3:4B.25:9:16C.25:7:18D.3:2:1答案:C解题思路:试题难度:三颗星知识点:等积公式二、填空题(共1道,每道16分)8.如图,在四边形ABCD中,BC⊥AC于点C,BE⊥AD于点E,∠BAC=60°,点G是AB的中点,已知,则GE的长是____.答案:1解题思路:试题难度:知识点:含30°的直角三角形。

(完整版)直角三角形的判定和性质

(完整版)直角三角形的判定和性质

直角三角形全等的判定【知识点总结】直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)【典型例题讲解】例1:已知:如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE 求证:OB=OC.例2:已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE:例3:已知△ABC中,CD⊥AB于D,过D作DE⊥AC,F为BC中点,过F作FG⊥DC求证:DG=EG。

【随堂练习】1.选择:(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是()个①这两个三角形全等; ②相等的角为锐角时全等③相等的角为钝角对全等; ④相等的角为直角时全等A.0 B.1 C.2 D.3(2)在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形(3)如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC则AC:BD=()A.1:1 B.3:1 C.4:1 D.2:3(4)如图,在Rt△ABC中,∠ACB=90°,CD、CE,分别是斜边AB上的高与中线,CF 是∠ACB的平分线。

则∠1与∠2的关系是()A.∠1<∠2 B.∠1=∠2; C.∠1>∠2 D.不能确定(5)在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB 的度数是()A.30°B.60°C.120°D.150°2.解答:(1已知:如图AB⊥BD,CD⊥BD,AB=DC求证:AD//BC.(2)如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F 求证:CE=DF.B MC【课后习题】一、填空题:(每题5分,共20分)1.有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角边”或用字母表示为“___________”. 2.如图,△ABC 中,∠C=90°,AM 平分∠CAB,CM= 20cm, 那么M 到AB 的距离是____cm.3.已知△ABC 和△A ′B ′C ′,∠C=∠C ′=90°,AC=A ′C ′,要判定△ABC ≌△A ′B ′C ′,必须添加条件为①________或②________或③________或④_________. 4.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F,DE ⊥BC 于E,AB=DC,BE=CF, 若要说明AB ∥CD,理由如下:∵AF ⊥BC 于F,DE ⊥BC 于E(已知)∴△ABF,△DCE 是直角三角形∵BE=CF(已知)∴BE+_____=CF+_______(等式性质) 即_______=___________(已证)∴Rt △ABF ≌Rt △DCE( )二、选择题:(每题5分,共25分) 5.两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等 6.要判定两个直角三角形全等,需要满足下列条件中的()①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等. A.6个 B.5个 C.4个 D.3个7.如图,AB ∥EF ∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形( ) A.5对; B.4对; C.3对; D.2对8.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF9.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A.AASB.SASC.HLD.SSS三、解答题:(共55分)10.如图,△ABC 中,∠C=90°,AB=2AC,M 是AB 的中点,点N 在BC 上,MN ⊥AB.求证:AN 平分∠BAC.(7分)BA21N MCB A E FC B AEF C D11已知:如图,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.(8分)B AE F D12知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE ⊥AE于E,求证:BD=DE+CE.(8分)BAE CD13已知如图,在△ABC中,∠BAC=2∠B,AB=2AC,求证:△ABC是直角三角形?( 8分)C14已知如图,在△ABC中,以AB、AC为直角边, 分别向外作等腰直角三角形ABE、ACF,连结EF,过点A作AD⊥BC,垂足为D,反向延长DA交EF于点M.(1)用圆规比较EM与FM的大小.(2)你能说明由(1)中所得结论的道理吗?(8分)B AE MFC D直角三角形的性质【知识点精讲】直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半; ②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,则这条直角边所对的角为30°.【典型例题讲解】例1:已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E ,∠A=30°,求BC ,CD 和DE 的长例2:已知:△ABC 中,AB=AC=BC (△ABC 为等边三角形)D 为BC 边上的中点, DE ⊥AC 于E.求证:AC CE 41.例3:已知:如图AD ∥BC ,且BD ⊥CD ,BD=CD ,AC=BC. 求证:AB=BO.【随堂练习】1.△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。

直角三角形性质的应用练习题(含答案)

直角三角形性质的应用练习题(含答案)

专题6:直角三角形性质的应用【典例引领】例:如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2√2,CE=1,求△CGF的面积.【强化训练】1.在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.2.综合与实践:如图1,将一个等腰直角三角尺ABC的顶点C放置在直线l上,∠ABC=90°,AB=BC,过点A作AD⊥l于点D,过点B作BE⊥l于点E.观察发现:(1)如图1.当A,B两点均在直线l的上方时,①猜测线段AD,CE与BE的数量关系,并说明理由;②直接写出线段DC,AD与BE的数量关系;操作证明:(2)将等腰直角三角尺ABC绕着点C逆时针旋转至图2位置时,线段DC,AD与BE又有怎样的数量关系,请写出你的猜想,并写出证明过程;拓广探索:(3)将等腰直角三用尺ABC绕着点C继续旋转至图3位置时,AD与BC交于点H,若CD=3,AD=9,请直接写出DH的长度.3.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.4.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.5.如图,在△ABC中,∠ABC=90°,AB=BC,点E是直线BC上一点,连接AE,过点C作CF⊥AE于点F,连接BF.如图①,当点E在BC上时,易证AF﹣CF=√2BF(不需证明),点E在CB的延长线上,如图②:点E在BC的延长线上,如图③,线段AF,CF,BF之间又有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.专题6:直角三角形性质的应用【典例引领】例:如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.(1)如图1,求证:∠CAE=∠CBD;(2)如图2,F是BD的中点,求证:AE⊥CF;(3)如图3,F,G分别是BD,AE的中点,若AC=2√2,CE=1,求△CGF的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△CFG=78.【解析】(1)直接判断出△ACE≌△BCD即可得出结论;(2)先判断出∠BCF=∠CBF,进而得出∠BCF=∠CAE,即可得出结论;(3)先求出BD=3,进而求出CF=32,同理:EG=32,再利用等面积法求出ME,进而求出GM,最后用面积公式即可得出结论.【解答】(1)在△ACE和△BCD中,{AC=BC∠ACB=∠ACB=90°CE=CD,∴△ACE≌△BCD,∴∠CAE=∠CBD;(2)如图2,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠BAC=90°,∴∠AMC=90°, ∴AE ⊥CF ; (3)如图3,∵AC=2√2, ∴BC=AC=2√2, ∵CE=1, ∴CD=CE=1,在Rt △BCD 中,根据勾股定理得,BD=√CD 2+BC 2=3, ∵点F 是BD 中点, ∴CF=DF=12BD=32,同理:EG=12AE=32,连接EF ,过点F 作FH ⊥BC , ∵∠ACB=90°,点F 是BD 的中点, ∴FH=12CD=12,∴S △CEF =12CE•FH=12×1×12=14,由(2)知,AE ⊥CF ,∴S △CEF =12CF•ME=12×32ME=34ME ,∴34ME=14, ∴ME=13,∴GM=EG-ME=32-13=76, ∴S △CFG =12CF•GM=12×32×76=78.【强化训练】1.在正方形ABCD 中,E 是边CD 上一点(点E 不与点C 、D 重合),连结BE . (感知)如图①,过点A 作AF ⊥BE 交BC 于点F .易证△ABF ≌△BCE .(不需要证明) (探究)如图②,取BE 的中点M ,过点M 作FG ⊥BE 交BC 于点F ,交AD 于点G . (1)求证:BE=FG .(2)连结CM ,若CM=1,则FG 的长为 .(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.【答案】(1)证明见解析;(2)2,9.【解析】【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(2)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【解答】感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=90°,∴∠ABE+∠CBE=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠BAF=∠CBE,在△ABF和△BCE中,{∠BAF=∠CBEAB=BC∠ABC=∠BCE=90°,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=90°,∴四边形ABPG是矩形,∴PG=AB ,∴PG=BC ,同感知的方法得,∠PGF=∠CBE , 在△PGF 和△CBE 中, {∠PQF =∠CBEPQ =BC∠PFG =∠ECB =90° , ∴△PGF ≌△CBE (ASA ), ∴BE=FG ;(2)由(1)知,FG=BE , 连接CM ,∵∠BCE=90°,点M 是BE 的中点, ∴BE=2CM=2, ∴FG=2, 故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6, ∴ME=3,同探究(1)得,CG=BE=6, ∵BE ⊥CG ,∴S 四边形CEGM =12CG×ME=12×6×3=9,故答案为:9.2.综合与实践:如图1,将一个等腰直角三角尺ABC 的顶点C 放置在直线l 上,∠ABC =90°,AB =BC ,过点A 作AD ⊥l 于点D ,过点B 作BE ⊥l 于点E . 观察发现:(1)如图1.当A ,B 两点均在直线l 的上方时, ①猜测线段AD ,CE 与BE 的数量关系,并说明理由; ②直接写出线段DC ,AD 与BE 的数量关系; 操作证明:(2)将等腰直角三角尺ABC 绕着点C 逆时针旋转至图2位置时,线段DC ,AD 与BE 又有怎样的数量关系,请写出你的猜想,并写出证明过程; 拓广探索:(3)将等腰直角三用尺ABC 绕着点C 继续旋转至图3位置时,AD 与BC 交于点H ,若CD =3,AD =9,请直接写出DH 的长度.【答案】(1)①AD+CE=BE.理由见解析;②DC+AD=2BE;(2)CD−AD=2BE;证明见解析;(3)DH的长度为32.【分析】(1)过点B作BF⊥AD,根据已知条件结合直角三角形性质证明ΔCBE≅ΔABF,从而得到四边形DEBF为正方形,最后得出①AD+CE=BE,直接写出②DC+AD=2BE(2)过点B作BG⊥AD,先证明ΔBCE≅ΔBAG,证明四边形DEBG为正方形,根据正方形的性质求解(3)过点B作BF⊥AD,证明ΔBAF≅ΔBCE,四边形DEBF为正方形,再求解.【解答】解:(1)①AD+CE=BE.理由如下:如图,过点B作BF⊥AD,交DA的延长线于点F,∵BE⊥l,BF⊥AD,∴∠BEC=∠F=90°.又∵AD⊥l∴∠FDE=90°∴四边形DEBF为矩形.∴∠FBE=90°.又∵∠ABC=90°,∴∠ABC−∠ABE=∠FBE−∠ABE.即∠CBE=∠ABF.在ΔCBE和ΔABF中,{∠CBE=∠ABF,∠CEB=∠AFB=90°,CB=AB,∴ΔCBE≅ΔABF(AAS).∴CE=AF,BE=BF.又∵四边形DEBF为矩形,∴四边形DEBF为正方形.∴BE=DE=FD=FB.∴AD+CE=AD+AF=FD=BE.②DC+AD=2BE.(2)如图,过点B作BG⊥AD,交AD延长线于点G,∵BE⊥l,BG⊥AD,∴∠BEC=∠G=90°.又∵AD⊥l,∴∠GDE=90°.∴四边形DEBF为矩形.∴∠GBE=90°.又∵∠ABC=90°,∴∠ABC−∠ABE=∠GBE−∠ABE,即∠CBE=∠ABG.在ΔBCE和ΔBAG中,{∠CBE=∠ABG,∠CEG=∠AGB=90°,CB=AB,∴ΔBCE≅ΔBAG(AAS).∴CE=AG,BE=BG.又∵四边形DEBG为矩形,∴四边形DEBG为正方形.∴DE=BE=GB=DG.∵CD=CE+DE,∴CD=AG+BE=AD+DG+BE=AD+2BE.∴CD−AD=2BE.(3)如图,过点B作BF⊥AD,交DA于点F,同理可证,ΔBAF≅ΔBCE,四边形DEBF为正方形.∴CE=AF,ED=BE=DF.∵CD=CE−ED,∴CD=AF−BE=AD−DF−BE=AD−2BE.∴AD−CD=2BE.∵CD=3,AD=9,∴BE=ED=3,CE=CD+ED=6.∵DH∥EB,∴DHEB =CDCE.∴DH3=36.∴DH=32.3.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.【答案】(1)AF=√2AE;(2)AF=√2AE,证明详见解析;(3)结论不变,AF=√2AE,理由详见解析.【分析】(1)如图①中,结论:AF=√2AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=√2AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=√2AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF 是等腰直角三角形即可.【解答】(1)如图①中,结论:AF=√2AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=√2AE.(2)如图②中,结论:AF=√2AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,{EK=DK∠EKF=∠ADEKF=AD,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=√2AE.(3)如图③中,结论不变,AF=√2AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,{DF=AC∠EDF=∠ACEDE=CE,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,4.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.【答案】(1)PM=PN,PM⊥PN,理由见解析;(2)理由见解析;(3)PM=kPN;理由见解析【分析】(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)PM=kPN,由已知条件可证明△BCD∽△ACE,所以可得BD=kAE,因为点P、M、N分别为AD、AB、DE的中点,所以PM=BD,PN=AE,进而可证明PM=kPN.【解答】(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.5.如图,在△ABC中,∠ABC=90°,AB=BC,点E是直线BC上一点,连接AE,过点C作CF⊥AE于点F,连接BF.如图①,当点E在BC上时,易证AF﹣CF=√2BF(不需证明),点E在CB的延长线上,如图②:点E在BC的延长线上,如图③,线段AF,CF,BF之间又有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【答案】证明AF=CF+√2BF.如图②中,结论:CF﹣AF=√2BF.理由见解析;②如图③中,结论:CF+AF=√2BF.理由见解析.【分析】如图①中,作BH⊥BF交AF于H.只要证明△BAH≌△BCF,即可解决问题.①如图②中,结论:CF-AF=√2BF.作BH⊥BF交AF于H.只要证明△BAH≌△BCF,即可解決问題.②如图③中,结论:CF+AF=√2BF,只要证明△BAH≌△BCF,即可解決问题.【解答】证明:如图①中,作BH⊥BF交AF于H.∵∠ABC=∠FBH,∴∠FBC=∠ABH,∵∠EFC=∠EBA=90°,∠CEF=∠AEB,∴∠ECF=∠EAB,在△BAH和△BCF中,,∴△BAH≌△BCF,∴AH=CF,BH=BF,∵∠FBH=90°,∴△BFH是等腰直角三角形,∴FH=BF,∵FH=AF﹣AH=AF﹣CF,∴AF﹣CF=BF,∴AF=CF+BF.①如图②中,结论:CF﹣AF=BF.理由:作BH⊥BF交AF于H.∵∠ABC=∠FBH,∴∠FBC=∠ABH,∵∠AFC=∠ABC=90°,∴∠CEF+∠FCB=90°,∠AEB+∠BAH=90°∴∠ECF=∠EAB,在△BAH和△BCF中,,∴△BAH≌△BCF,∴AH=CF,BH=BF,∵∠FBH=90°,∴△BFH是等腰直角三角形,∴FH=BF,∵FH=AH﹣AF=CF﹣AF,∴CF﹣AF=BF.②如图③中,结论:CF+AF=BF.理由:作BH⊥BF交AF于H.∵∠ABC=∠FBH,∴∠FBC=∠ABH,∵∠AFC=∠ABC=90°,∴∠BCF+∠BAF=180°,∵∠BAF+∠BAH=180°∴∠BCF=∠BAH,在△BAH和△BCF中,,∴△BAH≌△BCF,∴AH=CF,BH=BF,∵∠FBH=90°,∴△BFH是等腰直角三角形,∴FH=BF,∵FH=AH+AF=CF+AF,∴CF+AF=BF.。

直角三角形的性质及其应用(初二)

直角三角形的性质及其应用(初二)

直角三角形的性质及其应用一、直角三角形的定义与性质:知识回顾:1、 叫直角三角形,直角三角形ABC 用几何符号表示为 。

说明一个三角形是直角三角形时,一般必须说明哪个内角是直角或哪条边是斜边,不然的话就要分类讨论。

2、直角三角形的性质: ① 直角三角形中有一个角是 ; ② 直角三角形中两个锐角 ;③ 直角三角形中,斜边上的中线等于斜边的 ;④ 直角三角形中,如果有一角等于30°,那么这个角所对的直角边是斜边的 ;⑤ 直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角等于 ;⑥ 勾股定理: ,用几何语言叙述为 。

注意:勾股定理是在三角形为直角三角形的前提下描绘三边之间关系的,利用勾股定理,已知直角三角形的任意两边可求第三边。

计算中一定要注意找准斜边和直角边,同时要熟悉公式的变形:22222222,,bac a cbb ca+=-=-=2222,acb b ca -=-=⑦ 直角三角形面积计算方法是: 。

⑧ 直角三角形斜边上的高线长度公式: 。

二、范例解析:例1、如图,在△ABC 中,AC=AB ,D 是BC 上的一点,AD ⊥AB ,AD=9cm ,BD=15cm ,求AC 的长。

例2、矩形ABCD 如图折叠,使点D 落在BC 边上的点F 处,已知AB=8,BC=10,求折痕AE 的长。

A B C DCBAACD E三、过关检测(100分):(一)填空题(60分) 1、直角三角形的两直角边为9、12,则斜边为 ;直角三角形的斜边为13,其中一条直角边为5,则另一条直角边为 。

2、在直角三角形中,有一锐角为25°10′,则另一锐角为 。

3、在Rt △ABC 中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。

4、如上图:Rt △ABC 中,∠C =900,∠B =300,AB =10cm ,则AC = ,BC= ,S △ABC = 。

5、如右图,在△ABC 中,∠C =90°,∠B =15°,DE 垂直平分AB , 垂足为点E ,交BC 边于点D ,BD =16cm ,则AC 的长为______。

直角三角形的性质经典题 (所有题目都有答案有知识点归纳)

直角三角形的性质经典题 (所有题目都有答案有知识点归纳)

第1章直角三角形1.1直角三角形的性质和判定(Ι)第1课时直角三角形的性质和判定要点感知1直角三角形的性质:(1)直角三角形的两个锐角__________.(2)直角三角形斜边上的中线等于斜边的__________.预习练习1-1在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.120°B.90°C.60°D.30°1-2如图,在Rt△ABC中,∠ACB=90°,AB=10cm,点D为AB的中点,则CD=__________cm.要点感知2直角三角形的判定:有两个角__________的三角形是直角三角形.预习练习2-1在△ABC中,∠A=70°,∠B=20°,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定知识点1直角三角形的两个锐角互余1.若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是()A.24°B.34°C.44°D.46°2.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于()A.60°B.75°C.90°D.105°3.如图,在△ABC中,CE、BF是两条高,若∠A=65°,∠BCE=35°,则∠ABF的度数是__________,∠FBC的度数是__________.4.过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较小的角的度数是__________.知识点2有两个角互余的三角形是直角三角形5.若一个三角形的三个内角的度数之比为1∶2∶3,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.下列条件:(1)∠A=25°,∠B=65°;(2)3∠A=2∠B=∠C;(3)∠A=5∠B;(4)2∠A=3∠B=4∠C中,其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个知识点3直角三角形斜边上的中线等于斜边的一半7.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC=()A.30°B.40°C.45°D.60°8.如果一个三角形一边的中线等于这边的一半,那么这个三角形为__________三角形.9.如图,Rt△ABC中,DC是斜边AB上的中线,EF 过点C且平行于AB.若∠BCF=35°,求∠ACD的度数.10.如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个B.1个C.2个D.3个11.如图,AB∥DF,AC⊥BC于点C,BC与DF交于点E,若∠A=20°,则∠CEF等于()A.110°B.100°C.80°D.70°12.如果一个三角形的一个内角等于其他两个内角的差,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定13.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3B.3.5C.4D.4.514.如图,BE、CF分别是△ABC的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是__________.15.如图,在△ABC中,∠B=∠C,D、E分别是BC、AC的中点,AB=8,求DE的长.16.如图,在△ACD与△ABC中,∠ABC=∠ADC=90°,E 是AC的中点.(1)试说明DE=BE;(2)图中有哪些等腰三角形,请写出来.(不需要证明)17.如图,AD∥BC,∠DAB和∠ABC的平分线相交于AB. CD边上的一点E,F为AB边的中点.求证:EF=1218.如图,已知M是Rt△ABC斜边AB的中点,CD=BM,DM与CB的延长线交于点E.求证:∠E=1∠A.详细答案在后面,所有题目都有答案,所有大题都有规范详细过程,同学们可以模仿学习。

直角三角形性质应用与直角三角形相关的证明导学案及习题(含答案))

直角三角形性质应用与直角三角形相关的证明导学案及习题(含答案))

直角三角形性质应用(导学案)一、知识过关1. 直角三角形两锐角 ,且任一直角边长小于 .2. 勾股定理:直角三角形两直角边的 等于斜边的 ;勾股定理逆定理:如果三角形的三边长a ,b ,c 满足 ,那么这个三角形是 三角形.3. ①直角三角形斜边上的中线等于 ;②如果一个三角形 ,那么这个三角形是直角三角形.4. ①30°角所对的直角边是 ;②在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于 .5. 常用直角三角形的三边关系6. 等面积法二、精讲精练1. 下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x >y ),下列四个说法:①x 2+y 2=49,②x -y =2,③2xy +4=49,④x +y =9.其中说法正确的是( )A C B45°1130°234211BCA BCACAy xABCC B Aa 2+b 2=c 2AC BAβαCA B30°C B A CBA2mmab=chD h C BAc baA .①③B .①②③C .②④D .①②③④2. 如图,在正方形ABCD 中,E 是DC 的中点,F 为BC 上的一点且BC =4CF ,试说明△AEF 是直角三角形.3. 如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:AD 2+DB 2=DE 2.4. 在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长是_______.5. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A .10 B.C .10或 D .10或6. 直角三角形斜边上的中线长是6.5,一条直角边长是5,则另一直角边长等于( )A .13B .12C .10D .57. 如图,在△ABC 中,∠ACB =90°,∠ABC =60°,BD 平分∠ABC ,P 点是BD 的中点,若AD =6,则CP 的长为( ) A .3 B .3.5 C .4 D .4.58. △ABC 周长是24,M 是AB 的中点,MC =MA =5,则△ABC 的面积是 .EDCBAFEDCBAPDCBA234234ABCDE9. 如图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( ) AB.C. D.10. 如图,四边形ABCD 中,∠DAB =∠DCB =90o ,点M 、N 分别是BD 、AC 的中点.MN 、AC 的位置关系如何?证明你的猜想.11. 如图,在Rt △ABC 中,AC ≠AB ,AD 是斜边BC 上的高,DE ⊥AC ,DF⊥AB ,垂足分别为E 、F ,则图中与∠C (除∠C 外)相等的角的个数是( )A .2B .3C .4D .512. 如图,已知DE =m ,BC =n ,∠EBC 与∠DCB 互余,求BD 2+CE 2的值.13. 在△ABC 中,∠C =90°,AB =6,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是( )A .3.5B .4.2C .5.8D .2 14. 如图,在Rt △ABC 中,∠A =30°,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD ,若BD =1,则AC 的长是( ) A.B .2C. D .415. 某市在旧城改造中,计划在一块如图所示的△ABC 空地上种植草皮以美化环境,已知∠A =150°,这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A .300a 元 B .150a 元 C .450a 元 D .225a 元16. 放风筝是大家喜爱的一种运动.星期天的上午小明在绿城广场上放风筝,如图他在A 处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D 处,NMCD BAFECB ABEDCABCDECBA 30m20mABCD30°45°P CBA此时风筝线AD 与水平线的夹角为30°.为了便于观察,小明迅速向前边移动边收线到达了离A 处6米的B 处,此时风筝线BD 与水平线的夹角为45°.已知点A 、B 、C 在同一条直线上,∠ACD =90°.求DC 的长度.17. 已知,在△ABC 中,∠A =45°,AC,AB+1,则边BC 的长为 .18. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离是( )A .B .C .D . 19. 如图所示,等边△ABC 内一点P 到三边距离分别为h 1,h 2,h 3,且h 1+h 2+h 3=3,其中PD =h 1,PE =h 2,PF =h 3,则△ABC 的面积S △ABC =( ) A. B. C. D.20. 如图,△ABC 中,∠C =90°,两直角边AC =8,BC =6,在三角形内有一点P ,它到各边的距离相等,则这个距离是( ) A .1 B .2 C .3 D .无法确定21. 在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______.22. 如图,△ABC 中,∠ACB =90°,点E 为AB 的中点,点D在BC 上,且AD =BD ,AD 、CE 相交于点F ,若∠B =20°,3651225944l321S 4S 3S 2S 1ABCD EFCBAP FED CBACBA则∠DFE 等于( ) A .70° B .60° C .50° D .40°23. 在锐角△ABC 中,∠BAC =60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP =MP ;②当∠ABC =60°时,MN ∥BC ;③BN =2AN ;④::AN AB =AM AC ,一定正确的有( ) A .1个 B .2个 C .3个 D .4个【参考答案】 一、 知识过关1.互余,斜边长2.平方和,平方,a 2+b 2=c 2,直角3.斜边的一半,一边上的中线等于这边的一半4.斜边的一半,30°二、精讲精练1.B 2.(略) 3.(略) 4. 42或32 5.C 6.B 7.A 8.24 9.D 10.MN ⊥AC ,证明(略) 11.B 12.m 2+n 2,证明(略) 13.D 14.A 15.B 16.8m ,求解(略) 17.2 18.A 19.B 20.B 21.4 22.B 23.C直角三角形性质应用(当堂过关)1. 如图,将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,求三角板的最大边的长是多少.2. 如图,已知P 是边长为2的等边三角形ABC 内的一个动点,如果PE ⊥AB 于E ,PF ⊥BC 于F ,PD ⊥AC 于D ,求PD+PE+PF 的值.3. 如图是一副三角板拼成的四边形ABCD ,E 为斜边BD 的中点,求∠ACEPNM BA30°D的度数.【参考答案】1. 62cm2.3 3. 15°直角三角形性质应用(作业)1. 如图,在Rt △ABC 中,∠ACB =90°,AB 的垂直平分线DE 交BC 的延长线于F ,若∠F =30°,DE =1,则EF 的长是( ) A .3 B .2 C .3 D .12. 如图,在△ABC 中,CF ⊥AB 于F ,BE ⊥AC 于E ,M 为BC 的中点,EF =7,BC =10,则△EFM 的周长是( )A .17B .21C .24D .27 3. 如图,△ABC 为等边三角形,D 为BC 边上一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,DE +DF =3,则△ABC 的周长为( ) A . 6 B .63 C .8 D .434. 如图所示,在Rt △ABC 中,∠C =90°,∠A =30°,BD 是 ∠ABC 的平分线,CD =5cm ,则AB =_________.5. 将一副三角尺如图所示叠放在一起,若=14cm ,则阴影部分的面积是________cm 2.6. 如图,在矩形ABCD 中,AB >AD ,AB =4,AN 平分∠DAB ,DM ⊥AN ,垂足为M ,CN ⊥AN ,垂足为N ,则DM +CN =______.第5题图 第6题图7. 如图,AB =AC ,DE ⊥AB 于E ,DF ⊥AC 于F ,∠BAC =120°,BC =6cm ,则DE +DF =_______. 8. 如图所示,△ABC 中,CE 平分∠ACB 交AB 于E ,过E 作EF ∥BC 交∠ACD 的平分线于F ,EF 交AC 于M ,若CM =5,则CE 2+CF 2=__________.9. 如图,在四边形ABCD 中,AB =8,BC =1,∠DAB =30°,AB E N MDCBAAC EDBF 30°45°ABCDEFDB CACMBEFADF E CBADC BAA MF ED C B FEDCBA∠ABC =60°,四边形ABCD 的面积为53,求AD 的长.10. 已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别是h 1、h 2、h 3,△ABC 的高为h ,若点P 在边BC 上(图1),此时h 3=0,可得结论h 1+h 2+h 3=h ,请你探索以下问题: 当点P 在△ABC 内(图2)和点P 在△ABC 外(图3)这两种情况时,h 1、h 2、h 3与h 之间有怎样的关系?请写出你的猜想,并简要说明理由.图1 图2 图3【参考答案】1. B2. A3. B4. cm5. 4926. 7. 3 8. 1009.10. (图2) h 1+h 2+h 3=h ,(图3)h 1+h 2 h 3=hDF D PE C BAP EFCBAAD E CB。

中考经典题型--“直角三角形斜边上的中线”的性质及其应用

中考经典题型--“直角三角形斜边上的中线”的性质及其应用

“直角三角形斜边上的中线”的性质及其应用 “直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,而且斜边上的中线将直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,下面举例说明.一、有直角、有中点,利用垂直平分线性质【例1】如图,BD 、CE 是△ABC 的两条高,M 是BC 的中点,N 是DE 的中点.求证:MN 垂直平分DE .二、有直角、无中点,取中点,连线出中线【例2】如图,在Rt △ABC 中,∠C=90°,AD ∥BC ,∠CBE=21∠ABE ,求证:DE=2AB .三、有中点、无直角,造直角【例3】如图,梯形ABCD 中,AB ∥CD ,M 、N 是AB 、CD 的中点,∠ADC+∠BCD=270°,求证:MN=21(AB -CD ).四、逆用性质解题 【例4】如图,延长矩形ABCD 的边CB 至E ,使CE=CA ,P 是AE 的中点.求证:BP ⊥DP .【习题练习】1、如图,△ABC 中,AB=AC ,∠ABD=∠CBD ,BD ⊥DE 于D ,DE 交BC 于E ,求证:CD=21BE .2、如图,△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 是BC 的中点,求证:AB=2DM .3、如图,在四边形ABCD 中,∠DAB=∠DCB=90°,点M 、N 分别是BD 、AC 的中点.确定MN 、AC 的位置关系.直角三角形斜边上中线性质的应用 一、直角三角形斜边上中线的性质 1、性质:直角三角形斜边上的中线等于斜边的一半.如图,在Rt △BAC 中,∠BAC=90°,D 为BC 的中点,则BC 21AD =. 2、性质的拓展:如图:因为D 为BC 中点,所以BC 21DC BD ==, 所以AD=BD=DC=BC 21, 所以∠1=∠2,∠3=∠4,因此∠ADB=2∠1=2∠2,∠ADC=2∠3=2∠4.因而可得如下几个结论:①直角三角形斜边上的中线将直角三角形分成两个等腰三角形;②分成的两个等腰三角形的腰相等,两个顶角互补、底角互余,并且其中一个等腰三角形的顶角等于另一个等腰三角形底角的2倍.二、性质的应用1、21倍关系求值 例1、如图,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= .2、证明线段相等例2、如图,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB 21AD =,点E 、F 分别为边BC 、AC 的中点.(1)求证:DF=BE ;(2)过点A 作AG ∥BC ,交DF 于G .求证:AG=DG .3、证明角相等及角的倍分关系例3、已知,如图,在△ABC中,∠BAC 90°,BD、CE分别为AC、AB上的高,F为BC的中点,求证:∠FED=∠FDE.例4、已知:如图,在△ABC中,AD是高,CE是中线。

中考数学复习专题(五)解直角三角形的实际应用(含答案)

中考数学复习专题(五)解直角三角形的实际应用(含答案)

(湖南株洲第23题)如图示一架水平飞行的无人机AB 的尾端点A 测得正前方的桥的左端点P 的俯角为α其中tanα=23,无人机的飞行高度AH 为5003米,桥的长度为1255米. ①求点H 到桥左端点P 的距离;②若无人机前端点B 测得正前方的桥的右端点Q 的俯角为30°,求这架无人机的长度A B .【答案】①求点H 到桥左端点P 的距离为250米;②无人机的长度AB 为5米.②设BC ⊥HQ 于C .在Rt △BCQ 中,∵BC =AH =5003,∠BQC =30°, ∴CQ =tan 30BC︒=1500米,∵PQ =1255米,∴CP =245米,∵HP =250米,∴AB =HC =250﹣245=5米.答:这架无人机的长度AB 为5米..考点:解直角三角形的应用﹣仰角俯角问题.(内蒙古通辽第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在OA 的位置时俯角030=⊥EOA ,在OB 的位置时俯角060=∠FOB .若EF OC ⊥,点A 比点B 高cm 7.求(1)单摆的长度(7.13≈);(2)从点A 摆动到点B 经过的路径长(1.3≈π).【答案】(1)单摆的长度约为18.9cm(2)从点A摆动到点B经过的路径长为29.295cm则在Rt△AOP中,OP=OAcos∠AOP=12 x,在Rt△BOQ中,OQ=OBcos∠BOQ=32x,由PQ=OQ﹣OP 3﹣12x=7,解得:x3(cm),.答:单摆的长度约为18.9cm;(2)由(1)知,∠AOP=60°、∠BOQ=30°,且OA=OB3,∴∠AOB=90°,则从点A摆动到点B经过的路径长为907+73180π⨯()≈29.295,答:从点A摆动到点B经过的路径长为29.295cm.考点:1、解直角三角形的应用﹣仰角俯角问题;2、轨迹.(湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD 两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【答案】4.2m.考点:解直角三角形的应用.(海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度B C.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..考点:解直角三角形的应用,坡度.(乌鲁木齐第21题)一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救≈≈≈,结果取整数)援的艇的航行速度.(sin370.6,cos370.8,3 1.732【答案】救援的艇的航行速度大约是64海里/小时.【解析】试题分析:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.试题解析:辅助线如图所示:答:救援的艇的航行速度大约是64海里/小时.考点:解直角三角形的应用﹣方向角问题(浙江省绍兴市)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)【答案】(1)38°;(2)20.4m.【解析】试题分析:(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.试题解析:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.考点:1.解直角三角形的应用﹣仰角俯角问题;2.应用题;3.等腰三角形与直角三角形.(·湖北随州·8分)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.解:如图,过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=1620×=810,∵BC=857.5,CF=EG,∴BF=BC﹣CF=47.5,在Rt△BEF中,tan∠BEF=,∴EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=,∴AF=EF×tan∠AEF,∴x+47.5=3×47.5,∴x=95,答:雕像AB的高度为95尺.2. (·吉林·7分)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)解:如图,∠B=α=43°,在Rt△ABC中,∵sinB=,∴AB=≈1765(m).答:飞机A与指挥台B的距离为1765m.3.(·江西·8分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)解:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;(2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.4. (·辽宁丹东·10分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.5.(·四川宜宾)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A 点的仰角β=60°,求树高AB(结果保留根号)解:作CF⊥AB于点F,设AF=x米,在Rt△ACF中,tan∠ACF=,则CF====x,在直角△ABE中,AB=x+BF=4+x(米),在直角△ABF中,tan∠AEB=,则BE===(x+4)米.∵CF﹣BE=DE,即x﹣(x+4)=3.解得:x=,则AB=+4=(米).答:树高AB是米.6.(·湖北黄石·8分)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米.(·湖北荆门·6分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小和小明同时分别从A处和B 处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小的行走速度为米/秒.若小明与小同时到达山顶C处,则小明的行走速度是多少?解:过点C 作CD ⊥AB 于点D ,设AD =x 米,小明的行走速度是a 米/秒, ∵∠A =45°,CD ⊥AB ,∴AD =CD =x 米, ∴AC =x .在Rt △BCD 中, ∵∠B =30°, ∴BC ===2x ,∵小的行走速度为米/秒.若小明与小同时到达山顶C 处,∴=,解得a =1米/秒.答:小明的行走速度是1米/秒.8.(·四川内江)(9分)如图,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B 两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).[考点]三角函数、解决实际问题。

八年级数学直角三角形教师讲义带答案

八年级数学直角三角形教师讲义带答案

直角三角形一、直角三角形的性质重点:直角三角形的性质定理与其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半;②推论:〔1〕在直角三角形中,假如一个锐角等于30°,那么它所对的直角边等于斜边的一半;〔2〕在直角三角形中,假如一条直角边等于斜边的一半,那么这条直角边所对的角为30°.难点:1.性质定理的证明方法.2.性质定理与其推论在解题中的应用.二、直角三角形全等的推断重点:驾驭直角三角形全等的断定定理:斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等〔HL〕难点:创立全等条件与三角形中各定理联络解综合问题。

三、角平分线的性质定理:角平分线上的点到这个角的两边的间隔相等.定理的数学表示:如图4,∵ OE是∠AOB的平分线,F是OE上一点,且CF⊥OA于点C,DF⊥OB于点D,∴ CF=DF.定理的作用:①证明两条线段相等;②用于几何作图问题;角是一个轴对称图形,它的对称轴是角平分线所在的直线.2.关于三角形三条角平分线的定理:〔1〕关于三角形三条角平分线交点的定理:图4三角形三条角平分线相交于一点,并且这一点到三边的间隔 相等.定理的数学表示:如图6,假如AP 、BQ 、CR 分别是△ABC 的内角∠BAC 、 ∠ ABC 、∠ACB 的平分线,那么: ① AP 、BQ 、CR 相交于一点I ;② 假设ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,那么DI =EI =FI. 定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题. 〔2〕三角形三条角平分线的交点位置与三角形形态的关系:三角形三个内角角平分线的交点肯定在三角形的内部.这个交点叫做三角形的内心〔即内切圆的圆心〕.3.关于线段的垂直平分线和角平分线的作图:〔1〕会作线段的垂直平分线; 〔2〕会作角的角平分线; 〔3〕会作与线段垂直平分线和角平分线有关的简洁综合问题的图形. 四、勾股定理的证明与应用 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:假如直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五〞形式的勾股定理,后来人们进一步发觉并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方勾股定理的证明方法许多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会变更 ②依据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理cba HG FEDCBA常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理提示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因此在应用勾股定理时,必需明了所考察的对象是直角三角形4.勾股定理的应用①直角三角形的随意两边长,求第三边在ABC ∆中,90C ∠=︒,那么c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题假如三角形三边长a ,b ,c 满意222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是断定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形〞来确定三角形的可能形态,在运用这肯定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,假设它们相等时,以a ,b ,c 为三边的三角形是直角三角形;假设222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;假设222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 与222a b c +=只是一种表现形式,不行认为是唯一的,如假设三角形三边长a ,b ,c 满意222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描绘时,不能说成:当斜边的平方等于两条直角边的平方和时,bacbac cabcaba bcc baE D CBA这个三角形是直角三角形①可以构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以进步解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+〔2,n ≥n 为正整数〕;2221,22,221n n n n n ++++〔n 为正整数〕2222,2,m n mn m n -+〔,m n >m ,n 为正整数〕7.勾股定理的应用勾股定理可以扶植我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在运用勾股定理时,必需把握直角三角形的前提条件,理解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进展计算,应设法添加协助线〔通常作垂线〕,构造直角三角形,以便正确运用勾股定理进展求解.8..勾股定理逆定理的应用勾股定理的逆定理能扶植我们通过三角形三边之间的数量关系推断一个三角形是否是直角三角形,在详细推算过程中,应用两短边的平方和与最长边的平方进展比较,切不行不加思索的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理与其逆定理的应用勾股定理与其逆定理在解决一些实际问题或详细的几何问题中,是密不行分的一个整体.通常既要通过逆定理断定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:AB C30°D C BA ADB C10、互逆命题的概念假如一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

直角三角形

直角三角形

教学内容知识点讲解/梳理知识点一、直角三角形的性质1、直角三角形的性质定理2、定理:1、直角三角形的两个锐角互余。

2、直角三角形斜边上的中线等于斜边的一半。

例1. 在直角三角形中,有一个锐角为520,那么另一个锐角度数为____。

考点:直角三角形的性质,三角形内角和。

分析:利用直角三角形的性质:直角三角形的两个锐角互余,即可算出。

解答:解:根据直角三角形性质,两个锐角互余;题目已知条件已经给出其中一个锐角为52°,即:90°-52°=48°点评:熟悉掌握直角三角形的性质,是解题的关键。

例2、在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

考点:直角三角形的性质,等腰三角形的性质。

分析:利用直角、等腰三角形性质,直角三角形斜边上的中线等于斜边上的一半和等腰三角形两底角相等,即可算出。

解答:解:因为△ABC为直角三角形,并且CE为斜边AB的中线,根据直角三角形性质可得,CE=AE=BE。

∴△ACE和△CBE是等腰三角形,即∠A=∠ACE;又∵∠A=35°,∠ECB=∠B,则∠AEC=110°,而∠AEC=∠ECB+∠B 即∠ECB=55°。

点评:熟悉掌握直角三角形和等腰三角形的性质,是解题的关键。

即时训练:1、已知,Rt△ABC中,∠C=90°,∠A=50°,则∠B=;2、在Rt△ABC中,∠C=90°,则∠A与∠B;3、在△ABC中,若∠B与∠C互余,则△ABC是三角形。

4.Rt△ABC中,∠C=90°,∠B=54°,则∠A=()A.66°B.36°C.56°D.46° 5.在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,CD =4 cm ,则AB =________cm.。

直角三角形的性质及应用

直角三角形的性质及应用

有一个角是直角的三角形叫做直角三角形,这是初中阶段研究的一个特殊三角形,它的性质和判定是常考内容,也是解决初中几何问题的常用手段.一、直角三角形1. 直角三角形的性质:⑴ 两锐角互余;⑵ 三边满足勾股定理;⑶ 斜边上的中线等于斜边的一半;⑷ 30︒角所对的直角边等于斜边的一半.另外,直角三角形中还有一个重要的结论:两直角边的乘积等于斜边与斜边上高的乘积,即ab ch =.2. 直角三角形的判定:⑴ 有一个角是直角;⑵ 两锐角互余;⑶ 勾股定理的逆定理;⑷ 一条边上的中线等于这条边的一半.二、等腰直角三角形等腰直角三角形是集等腰三角形和直角三角形为一体的特殊图形,除具备等腰三角形和直角三角形的所有性质以外,它的底边中线也同时具备了“三线合一”和“斜边中线”的共同特点,可谓“集大成者”.另外,等腰直角三角形还可以看成是正方形的“半成品”,因此“还原正方形”也是等腰直角三角形常用的辅助线做法之一.思路导航知识互联网题型一:直角三角形的性质及判定特殊三角形之直角三角形【引例】 如图,正方形ABCD 的边长为4,E F 、分别在BC CD 、上,且3BE CF ==,AE BF 、相交于M ,求BM 的长.【解析】 ∵ABCD 是正方形,∴4AB BC ==,90ABC C ∠=∠=︒,∵3BE CF ==,∴ABE BCF △≌△, ∴BAE CBF ∠=∠,∴90BME ∠=︒ 又由勾股定理可知5AE =, 在Rt ABE △中,BM AE ⊥, ∴AB BE AE BM ⋅=⋅,∴125AB BE BM AE ⋅==.【例1】 1. 在ABC △中,若35A ∠=︒,55B ∠=︒,则这个三角形是__________三角形.2. 如图,在ABC △中,90ACB ∠=︒,CD AB ⊥,若28A ∠=︒,则B ∠=_______,ACD ∠=________,BCD ∠=________.3. 如图,已知图中每个小正方形的边长为1, 则点C 到AB 所在直线的距离等于 .(十三中分校期中)4. 如图,在四边形ABCD 中,∠A =60°,∠B =∠D =90°,BC =2,CD =3,则AB = .EABCDDCBA5. 已知Rt △ABC 中,∠C =90°,AB 边上的中线长为2,且AC +BC =6, 则S △ABC = .【例2】 若直角三角形的两条直角边长为a b 、,斜边为c ,斜边上的高为h ,典题精练例题精讲图2图1AMF DE FM D CBADCBAABC求证:⑴ 222111a b h +=;⑵ a b c h +<+.特殊的直角三角形是指()306090︒︒︒,,和()454590︒︒︒,,的直角三角形,它们的三条边之间有特殊的比例关系,分别是1:3:2和1:1:2,熟练运用这种特殊的比例关系,能够在解题过程中大幅提高解题的速度与正确率.【引例】 已知,Rt ABC △中,90C ∠=︒,30A ∠=︒,6AC =,求BC AB 、的长.【解析】 解法一:∵90C ∠=︒,30A ∠=︒,∴12BC AB =,设BC x =,则2AB x =,那么()()22262x x +=,解得2x =(舍负)∴2BC =,22AB =.解法二:∵90C ∠=︒,30A ∠=︒,∴::1:3:2BC AC AB =,∴6233AC BC ===,∴222AB BC ==.例题精讲思路导航典题精练题型二:特殊直角三角形的边角关系【例3】 ⑴ 在ABC △中,a b c 、、分别是A B C ∠∠∠、、的对边,且::1:2:3A B C ∠∠∠=,则a 与c 的关系是____________.⑵ 如图,把两块相同的含30︒角的三角尺如图放置, 若66AD =cm ,则三角尺的最长边长为 .⑶ 如图,以等腰直角三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,…,如此作下去,若1OA OB ==,则第8个等腰直角三角形的面积是 .【例4】 如图,点D 、E 是等边△ABC 的BC 、AC 上的点,且CD =AE ,AD 、BE 相交于P 点,BQ ⊥AD 。

直角三角形的性质应用(弦图)(人教版)(含答案)

直角三角形的性质应用(弦图)(人教版)(含答案)

直⾓三⾓形的性质应⽤(弦图)(⼈教版)(含答案)学⽣做题前请先回答以下问题问题1:古⼈采⽤拼图的⽅法证明勾股定理,⽐较著名的是赵爽弦图和毕达哥拉斯弦图,补全下列弦图.问题2:根据特殊直⾓三⾓形的三边关系,求出下列直⾓三⾓形的斜边长,并记忆背诵.问题3:如图,在直线上依次摆放着七个正⽅形.已知斜放置的三个正⽅形的⾯积分别为1,3,5,正放置的四个正⽅形的⾯积分别为则______________.以下是问题及答案,请对⽐参考:问题1:古⼈采⽤拼图的⽅法证明勾股定理,⽐较著名的是赵爽弦图和毕达哥拉斯弦图,补全下列弦图.答:问题2:根据特殊直⾓三⾓形的三边关系,求出下列直⾓三⾓形的斜边长,并记忆背诵.答:问题3:如图,在直线上依次摆放着七个正⽅形.已知斜放置的三个正⽅形的⾯积分别为1,3,5,正放置的四个正⽅形的⾯积分别为则.答:直⾓三⾓形的性质应⽤(弦图)(⼈教版)⼀、单选题(共7道,每道14分)1.如图所⽰是⽤4个全等的直⾓三⾓形与1个⼩正⽅形镶嵌⽽成的正⽅形图案,已知⼤正⽅形的⾯积为64,⼩正⽅形的⾯积为9,若⽤x,y表⽰直⾓三⾓形的两直⾓边,下列四个说法:①,②,③,④.其中正确的是( )A.①②B.①②③C.①②④D.①②③④答案:B解题思路:试题难度:三颗星知识点:弦图2.如图,过正⽅形ABCD的顶点B作直线,分别过点A,C作直线的垂线,垂⾜分别为E,F.若AE=2,CF=3,则AB的长为( )A.5B.C. D.答案:C解题思路:试题难度:三颗星知识点:弦图3.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,以斜边AC为边作正⽅形ACDE,连接BE,则BE的长是( )A.10B.C. D.答案:B解题思路:试题难度:三颗星知识点:弦图4.如图,四个全等的直⾓三⾓形围成⼀个⼤正⽅形和⼀个⼩正⽅形,若直⾓三⾓形较长的直⾓边为4,⼩正⽅形的⾯积为9,现向⼤正⽅形内随机撒⼀枚幸运⼩星星,则⼩星星落在⼩正⽅形内的概率为( )A. B. C. D.答案:B解题思路:试题难度:三颗星知识点:弦图5.勾股定理是⼏何中的⼀个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的⼩正⽅形和直⾓三⾓形构成的,可以⽤其⾯积关系验证勾股定理.图2是将图1放⼊矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的⾯积为( )A.90B.100C.110D.121答案:C解题思路:试题难度:三颗星知识点:等腰直⾓三⾓形的性质6.如图,四边形ABCD为正⽅形,O为AC,BD的交点,△DCE为直⾓三⾓形,∠CED=90°,∠DCE=30°,若,则正⽅形ABCD的⾯积为( )A.5B.4C.3D.2答案:B解题思路:试题难度:三颗星知识点:等腰直⾓三⾓形的性质7.如图,在Rt△ABC中,∠ACB=90°,AC=BC=10,CD是射线,∠BCF=60°,点D在AB上,AF,BE分别垂直于CD(或延长线)于F,E,则EF的长为( )A.5B.C. D.答案:C解题思路:试题难度:三颗星知识点:等腰直⾓三⾓形的性质。

2020届中考数学专题:解直角三角形及其应用知识点及典型例题(含答案)

2020届中考数学专题:解直角三角形及其应用知识点及典型例题(含答案)

解直角三角形及其应用【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,角锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a=4; (2)a=1,3b=.【答案】(1)∠A=90°-∠B=90°-60°=30°.由tanbBa=知,tan4tan6043b a B==⨯=g°.由cosaBc=知,48cos cos60acB===°.(2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°. ∵ 222a b c +=,∴ 2242c a b =+==.2.如图所示,在Rt △ABC 中,∠C =90°,∠B =30°,b =20,解这个直角三角形.【答案】由∠C =90°知,∠A+∠B =90°,而∠B =30°, ∴ ∠A =90°-30°=60°.又 sin 30b c=°,∴ 1202c =.∴ c =40.由勾股定理知222a cb =-.∴ 2224020a =-,203a =.举一反三:(1)已知a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=25 类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是»AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CD =52,求sin ∠AEB 的值;(3)在(2)的条件下,求弦AB 的长.【答案】(1)∵ »»AD CD =,∴ ∠1=∠2,又BC是⊙O的直径,∴∠BAC=∠BDC=90°.∴△ABE∽△DBC.(2)由△ABE∽△DBC,∴∠AEB=∠DCB.在Rt△BDC中,BC=52,CD=52,∴ BD=225BC CD-=,∴ sin∠AEB=sin∠DCB=525552BDBC==.(3)在Rt△BDC中,BD=5,又∠1=∠2=∠3,∠ADE=∠BDA,∴△AED∽△BAD.∴AD DEDB AD=,∴2AD DE DB=g.又∵52CD AD==,∴ CD2=(BD-BE)·BD,即25(5)52BE⎛⎫=-⎪⎪⎝⎭g,∴354BE=.在Rt△ABE中,AB=BE.sin∠AEB=32355452⨯=.举一反三:如图,在△ABC中,AC=12cm,AB=16cm,sinA=13.(1)求AB边上的高CD;(2)求△ABC的面积S;(3)求tanB.【答案】(1)CD=4cm;(2)S=32 cm2;(3)tanB=+224.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD的坡度为1:3i=(i=1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52, CE =AC ·cos ∠ACE =5×cos 30°=532,在Rt △BCE 中,∵ ∠BCE =45°, ∴ 5553(31)222AB AE BE =+=+=+≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【巩固练习】一、选择题1.在△ABC 中,∠C =90°,4sin 5A =,则tan B =( ). A .43 B .34 C .35 D .452.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ).A .7sin 35°B .7cos35°C .7cos 35°D .7tan 35°3.河堤、横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ).A .53米B .10米C .15米D .103米4.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点, 则cos ∠OMN 的值为( ).A .12B .22C .32D .1第3题 第4题 第5题5.如图所示,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 ( )A .sin h α B .tan h α C .cos h αD .sin h αg6.如图所示,在△ABC 中,∠C =90°,AC =16 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若3cos5BDC∠=,则BD的长是( ).A.4 cm B.6 cm C.8 cm D.10 cm7.如图所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距( ).A.30海里 B.40海里 C.50海里 D.60海里第6题第7题第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是( ).A.2003m B.20033m C.1003m D.100m二、填空题9.如图所示,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=35,则tan∠B的值为______.10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AGAF的值为________.第9题第10题第11题11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE 沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=__ __米.第12题第13题第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:3(即AB:BC=1:3),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. 如图所示,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(3≈1.732,结果保留一位小数).17.如图所示是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度.(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:2≈1.41,3≈1.73)【答案与解析】 一、选择题 1.【答案】B ;【解析】如图,sin A =45BC AB =,设BC =4x .则AB =5x .根据勾股定理可得AC =223AC AB BC x =-=,∴ 33tan 44AC x B BC x ===. 2.【答案】C ;【解析】在Rt △ABC 中,cos BCB AB=.∴ BC =ABcosB =7cos 35°. 3.【答案】A ; 【解析】由tan BCi A BC===1:3知,353AC BC ==g (米). 4.【答案】B ;【解析】由题意知MN ∥BC ,∠OMN =∠OBC =45°,∴ 2cos 2OMN ∠=. 5.【答案】A ;【解析】由定义sin h l α=,∴ sin h l α=. 6.【答案】D ;【解析】∵ MN 是AB 的中垂线, ∴ BD =AD .又3cos 5DC BDC BD ∠==, 设DC =3k ,则BD =5k ,∴ AD =5k ,AC =8k .∴ 8k =16,k =2,BD =5×2=10.7.【答案】B ;【解析】 连接AC ,∵ AB =BC =40海里,∠ABC =40°+20°=60°, ∴ △ABC 为等边三角形,∴ AC =AB =40海里. 8.【答案】A【解析】依题意PM ⊥MN ,∠MPN =∠N =30°,tan30°200PM=,2003PM =.二、填空题9.【答案】23;【解析】在Rt△ACM中,sin∠CAM=35,设CM=3k,则AM=5k,AC=4k.又∵ AM是BC边上的中线,∴ BM=3k,∴ tan∠B=4263 AC kBC k==.10.【答案】32;【解析】由已知条件可证△ACE≌△CBD.从而得出∠CAE=∠BCD.∴∠AFG=∠CAE+∠ACD=∠BCD+∠ACD=60°,在Rt△AFG中,3sin602 AGAF==°.11.【答案】40403+;【解析】在Rt△APC中,PC=AC=AP·sin∠APC=2 402402⨯=.在Rt△BPC中,∠BPC=90°-30°=60°,BC=PC·tan∠BPC=403,所以AB=AC+BC=40403+.12.【答案】12;【解析】如图,连接BD,作DF⊥BC于点F,则CE⊥BD,∠BCE=∠BDF,BF=AD=2,DF=AB=4,所以21 tan tan42BFBCE BDFDF∠=∠===.13.【答案】58;【解析】α=45°,∴ DE=AE=BC=30,EC=AB=28,DE=DE+EC=58 14.【答案】200;【解析】由已知∠BAC=∠C=30°,∴ BC=AB=200.三、解答题15.【答案与解析】过点A作AF⊥DE于F,则四边形ABEF为矩形,∴ AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,3tan tan603DE DECE xDCE===∠°.在Rt △ABC 中,∵ 13AB BC =,AB =2,∴ 23BC =. 在Rt △AFD 中,DF =DE-EF =x-2.∴ 23(2)tan tan 30DF x AF x DAF -===-∠°∵ AF =BE =BC+CE . ∴ 33(2)233x x -=+,解得6x =. 答:树DE 的高度为6米.16.【答案与解析】根据题意可知:∠BAD =45°,∠BCD =30°,AC =20m .在Rt △ABD 中,由∠BAD =∠BDA =45°,得AB =BD .在Rt △BDC 中,由tan ∠BCD =BD BC ,得3tan 30BD BC BD ==°. 又∵ BC-AB =AC .∴ 320BD BD -=,∴ BD =2031-≈27.3(m). 答:该古塔的高度约为27.3m .17.【答案与解析】(1)在Rt △DCE 中,∠CED =60°,DE =76,∵ sin ∠CED =DC DE,∴ DC =DE ×sin ∠CED =383(厘米) 答:垂直支架CD 的长度为383厘米.(2)设水箱半径OD =x 厘米,则OC =(383)x +厘米,AO =(150)x +厘米,∵ Rt △OAC 中,∠BAC =30°∴ AO =2×OC ,即:150+x =2(383)x +厘米,AO =(150+x)厘米, 解得:150763x =-≈18.52≈18.5(厘米)答:水箱半径OD 的长度约为18.5厘米.。

直角三角形斜边上的中线的性质及其应用

直角三角形斜边上的中线的性质及其应用

“直角三角形斜边上的中线”的性质及其应用“直角三角形斜边上的中线等于斜边的一半” 是直角三角形的重要性质之一, 而且斜边上的中线将直角三角形分割成两个顶角互补、 底角互余的两个等腰三角形,如能善于把握图形特征,恰当地构造并借助直角三角形斜边上的中线, 往往能帮助我们迅速打开解题思路, 明. 一、有直角、有中点,连线出中线,用性质 例1.如图1 , BD N 是DE 的中点.试问:猜想:MN B 直平分 1ME MD 在 Rt △ BEC 中,•••点 M 是斜边BC 的中点,• ME^ BC,又 NE = ND •2直线MN 是线段DE 的垂直平分线,• NMLDE 即 MN 垂直平分 DE. 评析:题目中给出了三角形的两条高与两个中点, 联想“直角三角形斜边上的中线等于斜边的一半” ,证明:DE 的中点F ,连AF ,贝U AF=FD 」DE,所以/ DAF=Z ADF,又因为 AD// BC,所以/ CBE Z ADF, 21又因为/ CBEd Z ABE 所以/ ABF=/ AFB,所以 AF=AB 即 DE=2AB2评析:本题是有直角、无中点的情况,这时要取直角三角形的斜边上的中点,再连结该点与直角顶 点,然后用性质来解决问题.三、有中点、无直角,造直角,用性质 PM 交DC 于 K 下证N 和K 重合,贝U P 、N M 三点共线,PDC △ PAB 斜边上的中线,• PN=CN=DlN=CD PM=BM=D M=AB,2 2•••/ PNC=2/ PDN=2/ A Z PMB Z PKC=2/ A, •/ PNC / PKC •- N 、K 重合,问题便迎刃而解. 2△ ABF 均为等腰三角形,由此结论得证. CE 是厶ABC 的两条高,M 是BC 的中点,MN 与 DE 有什么关系?证明你的猜想.DE.证明:如图:连接例 3.如图 3,梯形 ABCD 中, AB// CD M / ADC+Z BCD=270,1求证:MN — (AB-CD .2证明:延长AD BC 交于 •••/ APB=9(°,连结 PN 连结P,vZ ADC y BCD=270,••• PN PM 分别是直角三角形△ B• MN=PM-PN= (AB-CD).2评析:本题只有中点,而没有直角,这时要想方设法构造直角,应用性质,而条件中正好有角的关系“Z ADC-Z BCD=270 ” ,这样问题就易以解决了四、逆用性质解题例4.如图4,延长矩形ABCD的边CB至E,使CE=CA , P是AE的中点.求证:BP丄DP .证明:如图3,连结BD交AC于点0,连结PO,•••四边形ABCD 是矩形,••• A0=0C=0B=0D ,1 1••• PA=PE ,• P0= — EC ,T EC=AC , • P0= — BD ,2 2即0P=0B=0D , • BP丄DP.评析:“直角三角形斜边上的中线等于斜边的一半”这个性质是众所周知的,而它的逆定理往往被大家所忽视,本题就是利用这个性质构造厶PBD ,请同学们试一试吧!1. 如图5,A ABC中, AB=AC 厶1求证:CD= BE22. 如图6,A ABC中,/ B=2/ C, 中点,求证:AB=2DM证BD边的中线等于BD的一半.1. 提示:结论中的BE是直角三角形的斜边,由半”,故应取BE的中点F,连结DF,只需证明1— BE应想到“直角三角形斜边上的中线等于斜边的一2DC=DF,即证/ C=Z DFC2 .提示:取AB的中点N,连结DN、MN即可.直角三角形斜边上中线性质的应用直角三角形斜边上中线的性质是直角三角形的一个重要性质, 同时也是常考的知识点. 它为证明线段相等、角相等、线段的倍分等问题提供了很好的思路和理论依据。

八年级上册北师版直角三角形性质利用直角中点含答案

八年级上册北师版直角三角形性质利用直角中点含答案

A.
C.
答案:C 解题思路:
B.
D.
试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半 2.如图,在 Rt△ABC 中,CD 是斜边 AB 上的中线,EF 过点 C 且平行于 AB.若∠BCF=35°,则∠ACD 的度数是( )
第 1 页共 7 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

1.1直角三角形的性质和判定(I)

1.1直角三角形的性质和判定(I)
第1章 直角三角形
1.1 直角三角形的性质和判定(Ⅰ)
第2课时 含30°角的直角三角形的性质及其应用
目标导学
新知探究
巩固提升
学后反思
学习目标
1.理解和掌握有关30°角的直角三角形的性质和应用; (重点)
2.通过定理的证明和应用,初步了解转化思想,并培 养学生逻辑思维能力、分析问题和解决问题的能力.
(难点)
新知探究
含30°角的直角三角形的性质
活动探究 动手:用刻度尺测量含30°角的直角三角形的斜 边和短直角边,比较它们之间的数量关系.
结论:短直角边=斜边 1 2
合作探究
如图,△ADC是△ABC的轴对称图形,
因此AB=AD, ∠BAD=2×30°=60°,
A
从而△ABD是一个等边三角形.
再由AC⊥BD,
可得BC=CD=
1 2
AB.
B
C
D
证法1
证明:取线段AB的中点D,连接CD.
∵CD为Rt△ABC斜边AB上的中线,
CD
1 2
AB
=
BD
C
∵∠BCA =90°,且∠A=30°,
∴∠B=60°,
B
∴△CBD为等边三角形,
BC
=
BD
1 2
AB.
证明方法: 中线法
30° A D
知识要点 含30°角的直角三角形的性质
(4)直角三角形的斜边是30°角所对直角边的2倍.√
思考:如图,在Rt△ABC中,如果BC= 1 AB,那么
2
∠A等于多少?
解:如图,取线段AB的中点D,连接CD.
∵CD是Rt△ABC斜边AB上的中线,
C
∴CD= 1AB=BD=AD,
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生做题前请先回答以下问题
问题1:从边与角的角度来考虑直角三角形的性质都有哪些?
问题2:遇到斜边上的中点怎么想?
问题3:直角三角形斜边上的中线等于__________;
如果一个三角形__________________,那么这个三角形是直角三角形.
直角三角形性质应用(直角+中点)
一、单选题(共7道,每道12分)
1.如图,在△ABC中,∠BAC=90°,斜边BC上的高AD=5cm,斜边BC上的中线AE=8cm,那么△ABC的面积为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半
2.如图,在Rt△ABC中,CD是斜边AB上的中线,EF过点C且平行于AB.
若∠BCF=35°,则∠ACD的度数是( )
A.35°
B.45°
C.55°
D.65°
答案:C
解题思路:
试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半
3.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )
A.20
B.14
C.13
D.10
答案:B
解题思路:
试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半
4.如图,∠ABC=∠ADC=90°,E是AC的中点,若∠BCD=75°,则∠BDE=( )
A.25°
B.20°
C.15°
D.10°
答案:C
解题思路:
试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半
5.如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E,F分别是对角线AC,BD的中点,则下列结论成立的是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:等腰三角形三线合一性质
6.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )
A.2.5
B.
C. D.2
答案:B
解题思路:
试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半
7.如图,BD,BE是Rt△ABC斜边AC上的中线与高线.已知AB=4,BC=3,则AD:DE:EC等于( )
A.5:3:4
B.25:9:16
C.25:7:18
D.3:2:1
答案:C
解题思路:
试题难度:三颗星知识点:等积公式
二、填空题(共1道,每道16分)
8.如图,在四边形ABCD中,BC⊥AC于点C,BE⊥AD于点E,∠BAC=60°,点G是AB的中点,已知,则GE的长是____.
答案:1
解题思路:
试题难度:知识点:含30°的直角三角形。

相关文档
最新文档