高考数学玩转压轴题专题7.3临界知识问题

合集下载

概率中的应用问题 -玩转压轴题,(原卷版)

概率中的应用问题 -玩转压轴题,(原卷版)

【方法综述】概率与统计的问题在高考中的地位相对稳定,而由于概率与统计具有较强的现实应用背景,在近几年的高考中,概率与统计问题在高考中所占的地位有向压轴题变化的趋势。

概率与统计的热点问题主要表现在一是:以数学文化和时代发展为背景设置概率统计问题 ,二是概率统计与函数、方程、不等式及数列等相结合的问题。

此类问题的解决,需要考生由较强的阅读理解能力,体现考生的数学建模、数据分析、数学运算及逻辑推理等核心素养。

先就此类问题进行分析、归类,以帮助考生提升应试能力。

【解答策略】类型一 以数学文化和时代发展为背景的概率问题【例1】5.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则,A C 区域涂色不相同的概率为( )A .17B .27C .37D .47【来源】湖南省衡阳市第一中学2019-2020学年高三上学期7月第一次月考理科数学试题【例2】(2020全国模拟)冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征(MERS )和严重急性呼吸综合征(SARS )等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV )是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n (n *∈N )份血液样本,有以下两种检验方式: 方式一:逐份检验,则需要检验n 次.方式二:混合检验,将其中k (k *∈N 且2k ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为专题7 概率中的应用问题1k +.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p (01p <<).现取其中k (k *∈N 且2k ≥)份血液样本,记采用逐份检验方式,样本需要检验的总次数为1ξ,采用混合检验方式,样本需要检验的总次数为2ξ.(1)若()()12E E ξξ=,试求p 关于k 的函数关系式()p f k =;(2)若p 与干扰素计量n x 相关,其中12,,,n x x x (2n ≥)是不同的正实数, 满足11x =且n N *∀∈(2n ≥)都有1222113221121n n n i i i x x x e x x x x --=+-⋅=-∑成立. (i )求证:数列{}n x 等比数列;(ii )当3411p x =-时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k 的最大值【举一反三】1.(2020·宁夏高考模拟(理))根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为( ) A .16 B .14 C .13 D .122.(2020·河北高三期末(理))我国历法中将一年分为春、夏、秋、冬四个季节,每个季节有六个节气,如夏季包含立夏、小满、芒种、夏至、小暑以及大暑.某美术学院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,现四位同学抽签确定各自完成哪个季节中的六幅彩绘,在制签及抽签公平的前提下,甲没有抽到绘制春季六幅彩绘任务且乙没有抽到绘制夏季六幅彩绘任务的概率为_________.3.(2020•湖北模拟)据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、候、公, 共五级.现有每个级别的诸侯各一人,共五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多 分m 个(m 为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是类型二 概率与函数、方程、不等式及数列等相结合的问题【例3】(2020•浙江模拟)甲乙两人进行乒乓球比赛,现采用三局两胜的比赛制度,规定每一局比赛都没 有平局(必须分出胜负),且每一局甲赢的概率都是p ,随机变量X 表示最终的比赛局数,若0<p <,则 ( )A .E (X )=B .E (X )>C .D (X )> D .D (X )<【例4】(2020 •开福区模拟)设一个正三棱柱ABC ﹣DEF ,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为P 10,则P 10为( )A .B .C .D .【举一反三】1.(2020 •越城区模拟)随机变量ξ有四个不同的取值,且其分布列如下:ξ2sin αsin β 3cos αsin β 3sin αcos β cos αcos β P t 则E (ξ)的最大值为( )A .﹣1B .﹣C .D .12.(2020 •天心区模拟)已知函数f (x )=,若,则方程[f (x )]2﹣af (x )+b =0有五个不同根的概率为( )A .B .C .D .【强化训练】1.(2020·安徽高考模拟(理))2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”. 现有4 名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游, 假设每名同学均从这四个地方中任意选取一个去旅游, 则恰有一个地方未被选中的概率为( )A .2764B .916C .81256D .7162.设函数()()11x f x ax x x =+>-,若a 是从0,1,2三个数中任取一个,b 是从1,2,3,4,5五个数中任取一个,那么()f x b >恒成立的概率是( )A. 35B. 715C. 25D. 123.(2020·湖北高考模拟(理))生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )A .760B .16C .1360D .144.(2020•富阳区模拟)已知数列{a n }满足a 1=0,且对任意n ∈N *,a n +1等概率地取a n +1或a n ﹣1,设a n 的值为随机变量ξn ,则( )A .P (ξ3=2)=B .E (ξ3)=1C .P (ξ5=0)<P (ξ5=2)D .P (ξ5=0)<P (ξ3=0)5.(2019·四川成都七中高考模拟(理))如果{}n a 不是等差数列,但若k N *∃∈,使得212k k k a a a +++=,那么称{}n a 为“局部等差”数列.已知数列{}n x 的项数为4,记事件A :集合{}{}1234,,,1,2,3,4,5x x x x ⊆,事件B :{}n x 为“局部等差”数列,则条件概率()|P B A =( )A .415B .730C .15D .166.某校高一年级研究性学习小组利用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,其工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同,当横向速度不为零时,反射光相对探测光会发生频移2sin p f νϕλ=,其中v 为测速仪测得被测物体的横向速度,λ为激光波长,ϕ为两束探测光线夹角的一半,如图,若激光测速仪安装在距离高铁1m 处,发出的激光波长为1500nm (91nm 10m -=),某次检验中可测频移范围为99.50010⨯(1/h )至910.00010⨯(1/h ),该高铁以运行速度(337.5km /h 至375km /h )经过时,可测量的概率为( )A.12B.13C.23D.56【来源】江苏省南京市2020-2021学年高三上学期1月供题数学试题7.新冠疫情期间,网上购物成为主流.因保管不善,五个快递ABCDE上送货地址模糊不清,但快递小哥记得这五个快递应分别送去甲乙丙丁戊五个地方,全部送错的概率是()A.310B.13C.1130D.25【来源】浙江省2020届高三下学期6月新高考进阶数学试题8.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.15B.815C.35D.3209.某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A.514B.1528C.914D.6710.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止OCR),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.11.我国历法中将一年分为春、夏、秋、冬四个季节,每个季节有六个节气,如夏季包含立夏、小满、芒种、夏至、小暑以及大暑.某美术学院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,现四位同学抽签确定各自完成哪个季节中的六幅彩绘,在制签及抽签公平的前提下,甲没有抽到绘制春季六幅彩绘任务且乙没有抽到绘制夏季六幅彩绘任务的概率为_________.【来源】2020届河北省张家口市高三上学期期末教学质量监测数学(理)试题12.欧阳修《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌滴沥之,自钱孔入,而钱不湿.已知铜钱是直径为4 cm 的圆面,中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴整体落在铜钱内),则油滴整体(油滴是直径为0.2 cm 的球)正好落入孔中的概率是_____.(不作近似计算)【来源】云南省峨山彝族自治县第一中学2021届高三三模数学(文)试题13.甲乙两位同学玩游戏,对于给定的实数1a ,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把1a 乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把1a 除以2后再加上6,这样就可得到一个新的实数2a ,对实数2a 仍按上述方法进行一次操作,又得到一个新的实数3a ,当31a a 时,甲获胜,否则乙获胜,若甲胜的概率为34,则1a 的取值范围是____.14.某动漫公司推出漫画角色盲盒周边售卖,每个盲盒中等可能的放入该公司的3款经典动漫角色玩偶中的一个.小明购买了4个盲盒,则他能集齐3个不同动漫角色的概率是______________.【来源】安徽省马鞍山市2021届高三下学期第三次教学质量监测理科数学试题15.某公司根据上年度业绩筛选出业绩出色的A ,B ,C ,D 四人,欲从此4人中选择1人晋升该公司某部门经理一职,现进入最后一个环节:A ,B ,C ,D 四人每人有1票,必须投给除自己以外的一个人,并且每个人投给其他任何一人的概率相同,则最终仅A 一人获得最高得票的概率为___________.【来源】江苏省南通市如皋市2021届高三下学期4月第二次适应性考试数学试题16.2020年新冠肺炎肆虐,全国各地千千万万的医护者成为“最美逆行者”,医药科研工作者积极研制有效抗疫药物,中医药通过临床筛选出的有效方剂“三药三方”(“三药”是指金花清感颗粒、连花清瘟颗粒(胶囊)和血必净注射液;“三方”是指清肺排毒汤、化湿败毒方和宜肺败毒方)发挥了重要的作用.甲因个人原因不能选用血必净注射液,甲、乙两名患者各自独立自主的选择一药一方进行治疗,则两人选取药方完全不同的概率是___________.【来源】黑龙江省大庆铁人中学2021届高三下学期第一次模拟考试 数学(理)试试题17.某校甲、乙、丙三名教师每天使用1号录播教室上课的概率分别是0.6,0.6,0.8,这三名教师是否使用1号录播教室相互独立,则某天这三名教师中至少有一人使用1号录播教室上课的概率是______.【来源】2021年全国高中名校名师原创预测卷 理科数学 (第二模拟)18.(2020雁塔区校级模拟)为了解某次测验成绩,在全年级随机地抽查了100名学生的成绩,得到频率分布直方图(如图),由于某种原因使部分数据丢失,但知道后5组的学生人数成等比数列,设90分以下人数为38,最大频率为b ,则b 的值为 .19.(2020•宁波校级模拟)某保险公司新开设了一项保险业务,规定该份保单在一年内如果事件E 发生,则该公司要赔偿a 元,假若在一年内E 发生的概率为p ,为使公司受益的期望值不低于a 的,公司应要求该份保单的顾客缴纳的保险金最少为 元.20.(2020·江苏高三(理))乒乓球比赛,三局二胜制.任一局甲胜的概率是(01)p p <<,甲赢得比赛的概率是q ,则q p -的最大值为_____.。

高三物理上学期临界问题专题

高三物理上学期临界问题专题

例1:(见题目第四页)两个过程 例2:(见题目第四页)两个状态 例3:在平面直角坐标系原点上有一个质量为 1kg的物体,原来静止,受到沿x正方向的合 外力Fx=1N,作用时间2s,后此力撤去,同时 受到沿y轴正向的力Fy=2N,作用时间亦为2s, 则撤去Fy时,求物体的位置和速度?(两个 过程互相关联)
图20
点题
“程序法”是我们学好物理必须具备的一 项重要的基本功,在读题或分析时一定要注 意题目中包含的物理过程和物理状态,对于 比较复杂的过程,也要有耐心逐一分析,当 我们把各过程或状态所对应的方程式写出来, 问题也基本就解决了。这样较难的题目我们 也能拿到相当的分数。
;/ 男士养生 ;
例4:如图,当装置以加速度a向右运动时, M1向左偏θ,忽略滑轮的摩擦,求车厢对 m2的支持力和摩擦力。 (同一状态的两个物体)

m1 m2
(高考题)如图20所示,一辆质量m=2千克的平板车 左端放有质量M=3千克的小滑块,滑块与平板车之间 的摩擦因数μ=0.4.开始时平板车和滑块共同以v0=2米/ 秒的速度在光滑水平面上向右运动,并与竖直墙壁发 生碰撞,设碰撞时间极短且撞后平板车速度大小保持 不变,但方向与原来相反.平板车足够长,以至滑块 不会滑到平板车右端.(取g=10米/秒2)求: (1)平板车第一次与墙壁碰撞后向左运动的最大距 离. (2)平板车第二次与墙壁碰撞前瞬间的速度v. (3)为使滑块始终不会滑到平板车右端,平板车至少 多长? 图20
A
V
B
例4:如图,质量为1kg的物块 放在倾角为θ=37º的斜面上,斜 面质量为2kg,斜面与物块的动 摩擦因数μ=0.2,地面光滑,现 对斜面施加一水平推力F,要使 物体能相对斜面静止,力F应为 多大?(设物体与斜面的最大 静摩擦力等于滑动摩擦力,g取 10m/s2)

导数中的构造函数-玩转压轴题(解析版)

导数中的构造函数-玩转压轴题(解析版)

近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结: 和与积联系:()()f x xf x '+,构造()xf x ; 22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=; ()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e x f x F x =,……………… ()()f x nf x '-,构造()()e nxf x F x =, 奇偶性结论:奇乘除奇为偶;奇乘偶为奇。

(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。

给出导函数,构造原函数,本质上离不开积分知识。

【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是专题6.1 导数中的构造函数( ) A .1x y <<B .1y x <<C .1x y <<D .1y x <<【来源】广东省佛山市2021届高三下学期二模数学试题 【答案】B【解析】由已知()2244log log x y y x -=-,因为2log 4x =log 2x ,所以原式可变形222log 4g 2lo x x y y =++令()222log f x x x =+,()24log g x x x =+,函数()f x 与()g x 均为()0,∞+上的增函数,且()()f x g y =,且()()11f g =, 当1x >时,由()1f x >,则()1g y >,可得1y >, 当1x <时,由()1f x <,则()1g y <,可得1y <,要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222224log 2log 2log g x g y g x f x x x x x x x x -=-=+--=-+设()()222log 0h x x x x x =-+>,则()212ln 2h x x x '=-+()2220ln 2h x x ''=--<,故()h x '在()0+∞,上单调递减, 又()2110ln 2h '=-+>,()1230ln 2h '=-+<, 则存在()01,2x ∈使得()0h x '=,所以当()00,x x ∈时,()0h x '>,当()0,x x ∈+∞时,()0h x '<, 又因为()()()()010,10,412480h h x h h =>==-+=-<, 所以当1x <时,()0h x <,当1x >时,()h x 正负不确定,故当1,1x y <<时,()0h x <,所以()()()1g x g y g <<,故1x y <<, 当1,1x y >>时,()h x 正负不定,所以()g x 与()g y 的正负不定,所以,,111x y x y y x ><<>>>均有可能,即选项A ,C ,D 均有可能,选项B 不可能. 故选:B .【点睛】本题考查了不等关系的判断,主要考查了对数的运算性质以及对数函数性质的运用,解答本题的关键是要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222log g x g y g x f x x x x -=-=-+,设()()222log 0h x x x x x =-+>,求导得出其单调性,从而得出,x y 的大小可能性. 【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=( )A .2B C .2D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题 【答案】C 【解析】()ln 1g x x x =--,1()1g x x'=-, ()0g x '>(1,)x ⇒∈+∞,()0g x '<⇒(0,1)x ∈, ∴()g x 在(0,1)x ∈单调递减,在(1,)x ∈+∞单调递增,∴()(1)1ln110g x g =--=,∴1ln 0x x x -≥>,恒成立,1x =时取等号,2211a b +-2221a b -21a b =-, 221ln ln(2)ln a a a bb b-=-, ()221ln 2ln 1a b a b-+-≥,∴2211ln(2)ln a a b b+-=-,又21ab =(不等式取等条件),解得:a b ==,2a b ∴+=, 故选:C.2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为( )A .11[,]22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞- D .1[,)2+∞【答案】D【解析】由()()1f m f m -- ()33113m m ⎡⎤≥--⎣⎦得:3311(1)(1)()33f m m f m m ---≥-,构造函数31()()3g x f x x =-,2()()0g x f x x '=-<'故g (x )在()0,+∞单调递减,由函数()f x 为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减,故112m m m -≤⇒≥选D点睛:本题解题关键为函数的构造,由()2'f x x <要想到此条件给我们的作用,通常情况下是提示我们需要构造函数得到新函数的单调性,从而得不等式求解;3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为( )A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞【答案】D 【解析】【分析】构造函数()()1F x f x x=+,利用已知条件求得()'0F x >,即函数()F x 为增函数,而()23F =,由此求得e 2x <,进而求得不等式的解集.【详解】构造函数()()1F x f x x =+,依题意可知()()()222110x f x F x f x x x-=-=''>',即函数在()0,∞+上单调递增.所求不等式可化为()()1e e 3e x x x F f =+<,而()()12232F f =+=,所以e 2x <,解得ln 2x <,故不等式的解集为(),ln 2-∞.【点睛】本小题主要考查利用导数解不等式,考查构造函数法,考查导数的运算以及指数不等式的解法,属于中档题.题目的关键突破口在于条件()21x f x '>的应用.通过观察分析所求不等式,转化为()1e 3e x x f +<,可发现对于()()1F x f x x=+,它的导数恰好可以应用上已知条件()21x f x '>.从而可以得到解题的思路.4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】令11()()22g x f x x =--,则1()'()0'2g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到2cos 1x >,又3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________. 【答案】()112,【解析】()()ln F x f x x =-,则()11()()xf x F x f x xx-=-=''',而()10xf x '-<,且0x >,∴()0F x '<,即()F x 在()0+,∞上单调递减,不等式()()21ln 211f x x ->-+可化为()()21ln 2111ln1f x x --->=-,即()()211F x F ->,故210211x x ->-<⎧⎨⎩,解得:112x <<,故解集为:()112,. 类型二 巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是fx ,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为( )A .(1,1)-B .(),1-∞-C .1,D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟) 【答案】A【解析】当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,即有()()()10f x x f x '++>.令()()()1F x x f x =+,则当1x <-时,()()()()10F x f x x f x ''=++>,故()F x 在(),1-∞-上单调递增.∵()()()()()()22121F x x f x x f x F x --=--+--=---=⎡⎤⎣⎦, ∴()F x 关于直线1x =-对称,故()F x 在()1,-+∞上单调递减,由()()10xf x f ->等价于()()()102F x F F ->=-,则210x -<-<,得11x -<<. ∴()()10xf x f ->的解集为(1,1)-. 故选:A. 【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<【答案】D .【解析】令()()F x xf x =,则()F x 为奇函数,且当0x <时,()()()0F x f x xf x '+'=<恒成立,即函数()F x 在()0-,∞,()0+,∞上单调递减,又(2)0f =,则(2)(2)0F F -==,则()0xf x >可化为()(2)F x F >-或()(2)F x F >,则2x <-或02x <<.故选D .2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是( )A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤【答案】A【解析】令()()xg x e f x = ,则()(()())0xg x e f x f x '+'=<, 所以(2)(3),g g > 即()()2323e f e f >,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x <'构造()()xf xg x e=,()()0f x f x '+<构造()()xg x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等 3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是( ) A .(0)02(1)f f << B .0(0)2(1)f f << C .02(1)(0)f f << D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>,所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<.故选B . 4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当 成立(是函数的导数),若,则的大小关系是( )A .B .C .D .【答案】A 【解析】令,则当,因为函数的图象关于直线对称,所以函数的图象关于直线对称,即为偶函数,为奇函数,因此当,即为上单调递减函数,因为,而,所以,选A.5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+,,∞∞ B .()()2002-,,C .()()202-+,,∞D .()()202--,,∞【答案】C .【解析】构造函数()2()1()g x x f x =+,则()2()1()g x x f x ''=+.又()f x 是定义在R 上的奇函数,所以()2()1()g x x f x =+为奇函数,且当0x >时,()2()1()2()0g x x f x xf x ''=++<,()g x 在()0+,∞上函数单减, ()0()0f x g x <⇒<.又(2)0g =,所以有()0f x <的解集()()202-+,,∞.故选C . 点睛:本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<-,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001-,,B .()()11--+,,∞∞C .()()101-+,,∞D .()()101--,,∞ 【答案】D.【解析】设()ln ()g x x f x =,当0x >时,1()()ln ()0g x f x xf x x'=+<',()g x 在()0+,∞上为减函数,且(1)0g =,当()01x ∈,时,()0g x >,ln 0x <∵,()0f x <∴,2(1)()0x f x ->; 当()1x ∈+,∞时,()0g x <,ln 0x >∵,()0f x <∴,()21()0x f x -<, ∵()f x 为奇函数,∴当()10x ∈-,时,()0f x >,()21()0x f x -<;当()1x ∈--,∞时,()0f x >,()21()0x f x ->. 综上所述:使得()21()0x f x -<成立的x 的取值范围是()()101--,,∞ 【点睛】构造函数,借助导数研究函数单调性,利用函数图像解不等式问题,是近年高考热点,怎样构造函数,主要看题目所提供的导数关系,常见的有x 与()f x 的积或商,2x 与()f x 的积或商,e x 与()f x 的积或商,ln x 与()f x 的积或商等,主要看题目给的已知条件,借助导数关系说明导数的正负,进而判断函数的单调性,再借助函数的奇偶性和特殊点,模拟函数图象,解不等式.7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则( ) A .()0f x > B .()0f x < C .()f x 为减函数 D .()f x 为增函数【答案】A【解析】令()e [()]x g x xf x =,则由题意,得()e [(1)()()]0xg x x f x xf x '+'=+>,所以函数()g x 在(,)-∞+∞上单调递增,又因为(0)0g =,所以当0x >时,()0>g x ,则()0f x >,当0x <时,()0<g x ,则()0f x >,而()()()1'0x f x xf x ++>恒成立,则(0)0f >;所以()0f x >;故选A.点睛:本题的难点在于如何利用()()()1'0x f x xf x ++>构造函数()e [()]xg x xf x =。

一般解决临界问题的基本解决方法及例题介绍

一般解决临界问题的基本解决方法及例题介绍

一般解决临界问题的基本解决方法及例题介绍一般解决临界问题的基本解决方法及例题介绍1.演绎法:以原理、定理和定律为依据,先找出所研究问题的一般规律和一般解,然后分析讨论其特殊规律和特殊解,即采用从一般到特殊的推理方法。

2.临界法:以原理、定理或定律为依据,直接从临界状态和相应的临界量入手,求出所研究问题的特殊规律和特殊解,以此对一般情况进行分析讨论和推理,即采用林特殊到一般的推理方法。

由于临界状态比一般状态简单,故解决临界问题时用临界法比演绎法简捷。

在找临界状态和临界量时,常常用到极限分析法:即通过恰当地选取某个物理量(临界物理量)推向极端(“极大”和“极小”,“极左”和“极右”等),从而把隐蔵的临界现象(或“各种可能性”)暴露出来,找到解决问题的“突破口”。

因此,先分析临界条件物理学中临界问题题1 如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动。

现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是A.处为拉力,为拉力B.处为拉力,为推力C.处为推力,为拉力D.处为推力,为推力解析因为圆周运动的物体,向心力指向圆心,小球在最低点时所需向心力沿杆由a指向O,向心力是杆对小球的拉力与小球重力的合力,而重力方向向下,故杆必定给球向上的拉力,小球在最高点时若杆恰好对球没有作用力,即小球的重力恰好对球没有作用力,即小球的重力恰好提供向心力,设此时小球速度为vb,则:mg = m vb =当小球在最高点的速度vvb时,所需的向心力Fmg,杆对小球有向下的拉力;若小球的'速度vvb时,杆对小球有向上推力,故选A、B正确评析本题关键是明确越过临界状态vb = 时,杆对球的作用力方向将发生变化。

题2 在光滑的水平轨道上有两个半径都是r的小球A和B,质量分别为m和2m,当两球心间距离大于L(L比2r大得多)时,两球之间无相互作用力;当两球心间距离等于或小于L时,两球间存在相互作用的恒定斥力F。

高三数学压轴题知识点

高三数学压轴题知识点

高三数学压轴题知识点在高三数学中,压轴题常常是一个重要的评估方式,旨在考查学生对于各个知识点的掌握程度。

下面将介绍一些高三数学压轴题中常见的知识点。

一、函数与导数1. 函数与导数的概念函数是一种映射关系,将自变量的取值通过规定的方式映射到因变量上。

导数是函数在某一点处的变化率,用于描述函数在该点附近的变化趋势。

2. 导数的计算常见函数的导数计算规则包括常函数的导数、幂函数的导数、指数函数与对数函数的导数、三角函数的导数等等。

3. 图像的变化与导数导数可以描述函数图像的切线斜率,通过判断导数的正负可以确定函数在某一点的增减性及极值情况。

二、平面几何1. 三角形与三角函数三角函数包括正弦、余弦和正切函数等,用于描述三角形内角与边之间的关系。

2. 圆的性质与圆心角圆是由一个固定点到平面上任意一点距离相等的点的集合,圆心角是由圆心所对应的圆弧所夹的角。

3. 向量的运算与应用向量是具有大小和方向的量,常用于描述平面上的位移、速度和力等物理量。

三、解析几何1. 平面直角坐标系与函数图像平面直角坐标系是由横纵坐标轴组成的平面,用于描述二维空间中的点的位置。

函数图像是在坐标系上绘制的函数的曲线。

2. 直线与曲线的方程通过给定的条件或已知的一点和斜率,可以确定直线的方程。

曲线的方程可以用于描述平面上的曲线形状。

3. 二次函数与常见函数图像二次函数是一个含有二次项的函数,常见的二次函数图像包括抛物线、开口向上或向下的情况。

四、概率与统计1. 古典概型与条件概率古典概型是指所有可能结果的个数相等的概率问题。

条件概率是指在已知一些相关信息的前提下,某一事件发生的概率。

2. 随机变量与概率分布随机变量是一个随机事件的结果,概率分布则是用于描述随机变量取值的可能性分布情况。

3. 统计分析与统计推断统计分析用于对数据进行整理和分析,统计推断则是通过样本数据推断总体特征。

以上是一些高三数学压轴题中常见的知识点。

通过对这些知识点的学习和理解,可以更好地应对压轴题,提高数学成绩。

牛顿定律应用临界问题.

牛顿定律应用临界问题.

F kx
0.2s内走的距离就是弹簧原来压缩
的长度。
mg
kxo=mg ∴xo=mg/k=3/20m
k
xo=at2/2 ∴a=2xo/t2=7.5m/s2
由牛顿定律:
F-mg+kx=ma 当kx最大时(最下端kx0), F最小, F= mg+ma-kx0
=ma=12×7.5 =90N 当kx最小时(最上端kx=0), F=mg+ma =120+90 =210N
隔等物条离件于 体NA就AA:c的 将o是s重 会N6水0A力 相平时 对0力M,BF滑g地为动面某。0对一②显③值A而的时易支,见持N恰,力好为本使零题A沿,的﹚此临A6B0°后界面F , 向上F 滑 动N ,sin即6物0体AM对a地④面的压力恰好为G 零.
联立上式解得:F 2 3Mg
而Amax 1+ 2 ,与 此 相 对 应 的 角 为
F
=900-arcsin 1 21.80 1+ 2
所 以 加 速 度 的 最 大 值 为:amax F
1+ 2 g 6.8m / s 2
M
此 时木 块离 定滑 轮 的水平 距离 为:s hcot 25cm
弹簧类临界状态问题
将 a=g 代入 得 F=-0.2mg
ya
FN F
FN=1.4mg
x
F的负号表示绳已松弛,故 F=0
θG
[此小时结a=]gta绳n θ子=3g松/4 弛的临界条件是:绳中 拉而a力=g刚,故好绳为已松零弛。,绳上拉力为零
解 决 (1)认真审题,仔细分析研究对象所经历 临 的变化的物理过程, 找出临界状态。 界 (2)寻找变化过程中相应物理量的变化规 问 律,找出临界条件。 题 的 (3)以临界条件为突破口,列临界方程, 基 求解问题。 本 思 路

解析几何中的定值与定点问题-玩转压轴题(解析版)

解析几何中的定值与定点问题-玩转压轴题(解析版)

专题5.4 解析几何中的定值与定点问题一.方法综述解析几何中的定值与定点问题近年高考中的热点问题,其解决思路下;(1)定值问题:解决这类问题时,要运用辩证的观点,在动点的“变”中寻求定值的“不变”性;一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。

(2)定点问题:定点问题是动直线(或曲线)恒过某一定点的问题;一般方法是先将动直线(或曲线)用参数表示出来,再分析判断出其所过的定点.定点问题的难点是动直线(或曲线)的表示,一旦表示出来,其所过的定点就一目了然了.所以动直线(或曲线)中,参数的选择就至关重要.解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。

二.解题策略类型一定值问题【例1】(2020•青浦区一模)过抛物线y2=2px(p>0)的焦点作两条相互垂直的弦AB和CD,则+的值为()A.B.C.2p D.【答案】D【解析】抛物线y2=2px(p>0)的焦点坐标为(),所以设经过焦点直线AB的方程为y=k(x﹣),所以,整理得,设点A(x1,y1),B(x2,y2),所以,所以,同理设经过焦点直线CD的方程为y=﹣(x﹣),所以,整理得,所以:|CD|=p+(p+2k2p),所以,则则+=.故选:D.【点评】求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.【举一反三】1.(2020•华阴市模拟)已知F是抛物线y2=4x的焦点,过点F的直线与抛物线交于不同的两点A,D,与圆(x﹣1)2+y2=1交于不同的两点B,C(如图),则|AB|•|CD|的值是()A.2B.2C.1D.【答案】C【解析】设A(x1,y1),D(x2,y2),抛物线方程为y2=4x的焦点为F(1,0),准线方程为x=﹣1,圆(x﹣1)2+y2=1的圆心为F(1,0),圆心与焦点重合,半径为1,又由直线过抛物线的焦点F,则|AB|=x1+1﹣1=x1,|CD|=x2+1﹣1=x2,即有|AB|•|CD|=x1x2,设直线方程为x=my+1,代入抛物线方程y2=4x,可得y2﹣4my﹣4=0,则y1y2=﹣4,x1x2==1,故选:C.2.(2020温州高三月考)如图,P为椭圆上的一动点,过点P作椭圆的两条切线P A,PB,斜率分别为k1,k2.若k1•k2为定值,则λ=()A.B.C.D.【答案】C【解析】取P(a,0),设切线方程为:y=k(x﹣a),代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2a3k2x+a4k2﹣a2b2λ=0,令△=4a6k4﹣4(b2+a2k2)(a4k2﹣a2b2λ)=0,化为:(a2﹣a2λ)k2=b2λ,∴k1•k2=,取P(0,b),设切线方程为:y=kx+b,代入椭圆椭圆方程可得:(b2+a2k2)x2﹣2kba2x+a2b2(1﹣λ)=0,令△=4k2b2a4﹣4(b2+a2k2)a2b2(1﹣λ)=0,化为:λa2k2=b2(1﹣λ),∴k1•k2=,又k1•k2为定值,∴=,解得λ=.故选:C.3.(2020•公安县高三模拟)已知椭圆的离心率为,三角形ABC的三个顶点都在椭圆上,设它的三条边AB、BC、AC的中点分别为D、E、F,且三条边所在直线的斜率分别为k1,k2,k3(k1k2k3≠0).若直线OD、OE、OF的斜率之和为﹣1(O为坐标原点),则=.【答案】2【解析】∵椭圆的离心率为,∴,则,得.又三角形ABC的三个顶点都在椭圆上,三条边AB、BC、AC的中点分别为D、E、F,三条边所在直线的斜率分别为k1、k2,k3,且k1、k2,k3均不为0.O为坐标原点,直线OD、OE、OF的斜率之和为﹣1,设A(x1,y1),B(x2,y2),C(x3,y3),则,,两式作差得,,则,即,同理可得,.∴==﹣2×(﹣1)=2.类型二定点问题【例2】(2020•渝中区高三模拟)已知抛物线C:x2=4y的焦点为F,A是抛物线C上异于坐标原点的任意一点,过点A的直线l交y轴的正半轴于点B,且A,B同在一个以F为圆心的圆上,另有直线l′∥l,且l′与抛物线C相切于点D,则直线AD经过的定点的坐标是()A.(0,1)B.(0,2)C.(1,0)D.(2,0)【答案】A【解析】设A(m,m2),B(0,n),∵抛物线C:x2=4y的焦点为F(0,1)又A,B同在一个以F为圆心的圆上,∴|BF|=|AF|∴n﹣1==m2+1∴n=m2+2∴直线l的斜率k==﹣∵直线l′∥l,∴直线l′的斜率为k,设点D(a,a2),∵y=x2,∴y′=x,∴k=a,∴a=﹣,∴a=﹣∴直线AD的斜率为===,∴直线AD的方程为y﹣m2=(x﹣m),整理可得y=x+1,故直线AD经过的定点的坐标是(0,1),故选:A.【点评】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 【举一反三】1.(2020·全国高考模拟(理))已知抛物线28x y =,过点(),4P b 作该抛物线的切线PA ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( )A .()4,0B .()3,2C .()0,4-D .()4,1【答案】C【解析】设A B ,的坐标为()11x y ,,()22x y ,28x y =,4x y '=, PA PB ,的方程为()1114x y y x x -=-,()2224xy y x x -=- 由22118x y =,22228x y =,可得114x y x y =-,224x y x y =-切线PA PB ,都过点()4P b ,1144x b y ∴=⨯-,2244xb y =⨯-, 故可知过A ,B 两点的直线方程为44bx y =-, 当0x =时,4y =∴直线AB 恒过定点()04-,,故选C2.(2020·重庆高考模拟(理))已知圆22:1C x y +=,点P 为直线142x y+=上一动点,过点P 向圆C 引两条切线,,,PA PB A B 为切点,则直线AB 经过定点.( )A .11,24⎛⎫⎪⎝⎭ B .11,42⎛⎫⎪⎝⎭ C.⎫⎪⎪⎝⎭D.⎛ ⎝⎭ 【答案】B【解析】设()42,,,P m m PA PB -是圆C 的切线,,,CA PA CB PB AB ∴⊥⊥∴是圆C 与以PC 为直径的两圆的公共弦,可得以PC 为直径的圆的方程为()()22222224m m x m y m ⎛⎫⎡⎤--+-=-+ ⎪⎣⎦⎝⎭, ① 又221x y += , ②①-②得():221AB m x my -+=, 可得11,42⎛⎫⎪⎝⎭满足上式,即AB 过定点11,42⎛⎫⎪⎝⎭,故选B. 3.(2020大理一模)已知椭圆221164x y +=的左顶点为A ,过A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,满足122k k ⋅=-,则直线MN 经过的定点为___________. 【答案】28,09T ⎛⎫-⎪⎝⎭【解析】 由()2221211141616414=+4M x y k x k y k x ⎧+=-⎪⇒=⎨+⎪⎩, 同理222122214164641416N k k x k k --==++. 121814M k y k =+,1211616Nk y k -=+, 取11k =,由对称性可知,直线MN 经过x 轴上的定点28,09T ⎛⎫-⎪⎝⎭.【归纳总结】在平面直角坐标系xOy 中,过椭圆()222210x y a b a b+=>>上一定点A 作两条弦AM 、AN 分别交椭圆于M 、N 两点,直线AM 、AN 的斜率记为12,k k ,当12k k ⋅为非零常数时,直线MN 经过定点.三.强化训练1.(2020·黑龙江高三模拟)直线l 与抛物线x y C 2:2=交于B A ,两点,O 为坐标原点,若直线OB OA ,的斜率1k ,2k 满足3221=k k ,则l 的横截距( ) A .为定值3- B .为定值3 C .为定值1- D .不是定值 【答案】A【解析】设直线l 的方程为y kx b =+,由题意得22y kx b y x=+⎧⎨=⎩,则得()222220k x kb x b +-+=; 设A ,B 两点的坐标为()11,A x y ,()22,B x y ,则得12222kb x x k-+=,2122b x x k =; 又因为3221=k k ,即121223y y x x =,所以()2222222121222221222222222223k x x kb x x b kb k b k k b k b k k b k k k k x x b b b b +++--+-=++=+=== ,则得3b k =,直线l 的方程为()33y kx b kx k k x =+=+=+; 当0y =时,3x =-,所以直线l 的横截距为定值3-.故选A.2.(2020·辽宁省朝阳市第二高级中学高二期中(文))如果直线7ax by +=(0a >,0b >) 和函数()1log m f x x =+(0m >,1m ≠)的图象恒过同一个定点,且该定点始终落在圆22(1)(1)25x b y a +-++-=的内部或圆上,那么ba的取值范围是( )A .3443⎡⎤⋅⎢⎥⎣⎦B .30,4⎛⎤ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .340,,43⎛⎤⎡⎫⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】A【解析】根据指数函数的性质,可得函数()1log ,(0,1)m f x x m m >≠=+,恒过定点(1,1). 将点(1,1)代入7ax by +=,可得7a b +=.由于(1,1)始终落在所给圆的内部或圆上,所以2225a b +.又由227,25,a b a b +=⎧⎨+=⎩解得34a b =⎧⎨=⎩或43a b =⎧⎨=⎩,所以点(,)a b 在以(3,4)和(4,3)为端点的线段上运动, 当取点(3,4)时,43b a =,取点(4,3)时,34b a,所以b a 的取值范围是34,43⎡⎤⎢⎥⎣⎦.3.(2020·全国高三模拟)过x 轴上的点(),0P a 的直线与抛物线28y x =交于,A B 两点,若2211||||AP BP +为定值,则实数a 的值为( )A.1B.2 C .3 D .4 【答案】D【解析】设直线AB 的方程为x my a =+,代入28y x =,得2880y my a --=, 设()()1122,,,A x y B x y ,则12128,8y y m y y a +=⋅=-.()()()2222222111111AP x a y my y m y =-+=+=+,同理,()22221BP m y =+,∴()21212222222221212211111111y y y y m y y m y y AP BP+-⎛⎫+=+= ⋅⎪++⎝⎭ ()()22222264284164114m a m am a a m -⨯-+=+⋅=+,∵2211||||AP BP +为定值, 是与m 无关的常数,∴4a =.故选D .4.(2020•越城区高三期末)已知A 、B 是抛物线y 2=4x 上异于原点O 的两点,则“•=0”是“直线AB 恒过定点(4,0)”的( ) A .充分非必要条件 B .充要条件C .必要非充分条件D .非充分非必要条件【答案】B【解析】根据题意,A 、B 是抛物线y 2=4x 上异于原点O 的两点,设A (x 1,y 1),B (x 2,y 2), 若“•=0”,则设直线AB 方程为x =my +b ,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣4b =0,则y 1+y 2=4m ,y 1y 2=﹣4b , 若•=0,则•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=b 2﹣4b =0,解可得:b =4或b =0,又由b ≠0,则b =4,则直线AB 的方程为x =my +4,即my =x ﹣4,则直线AB 恒过定点(4,0), “•=0”是“直线AB 恒过定点(4,0)”的充分条件;反之:若直线AB 恒过定点(4,0),设直线AB 的方程为x =my +4,将直线AB 方程代入抛物线方程y 2=4x ,可得y 2﹣4my ﹣16=0,则有y 1y 2=﹣16, 此时•=x 1x 2+y 1y 2=()+y 1y 2=+y 1y 2=0,故“•=0”是“直线AB 恒过定点(4,0)”的必要条件;综合可得:“•=0”是“直线AB 恒过定点(4,0)”的充要条件;故选:B .5.(2020·湖北高考模拟)设12(,0),(,0)F c F c -是双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点,点P 是C 右支上异于顶点的任意一点,PQ 是12F PF ∠的角平分线,过点1F 作PQ 的垂线,垂足为Q ,O 为坐标原点,则||OQ 的长为( ) A .定值a B .定值bC .定值cD .不确定,随P 点位置变化而变化【答案】A【解析】依题意如图,延长F 1Q ,交PF 2于点T , ∵PQ 是∠F 1PF 2的角分线.TF 1是PQ 的垂线, ∴PQ 是TF 1的中垂线,∴|PF 1|=|PT |,∵P 为双曲线2222x y a b-=1上一点,∴|PF 1|﹣|PF 2|=2a , ∴|TF 2|=2a ,在三角形F 1F 2T 中,QO 是中位线, ∴|OQ |=a . 故选:A .6.(2020·浙江省杭州第二中学高三)设点(),P x y 是圆22:2210C x y x y ++-+=上任意一点,若212x y x y a -+++--为定值,则a 的值可能为( )A .3-B .4-C .5-D .6-【答案】D【解析】圆C 标准方程为22(1)(1)1x y ++-=,圆心为(1,1)C -,半径为1r =,直线:20l x y a --=2115a---=,35a =-当35a =-+C 在直线l 上方,20x y a --≤,当=--35a C 在直线l 下方,20x y a --≥,若212x y x y a -+++--为定值,则20x y a --≥,因此35a ≤-D 满足. 故选:D.7.(2020·湖北高考模拟(理))已知圆C : 224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )A .48,99⎛⎫⎪⎝⎭ B .24,99⎛⎫⎪⎝⎭C .()2,0D .()9,0 【答案】A【解析】设()()()112200,,,,,,A x y B x y P x y 则1122:4;:4;PA x x y y PB x x y y +=+= 即101020204;4;x x y y x x y y +=+=因此A 、B 在直线004x x y y +=上,直线AB 方程为004x x y y +=, 又00290x y +-=,所以()()0009242940y x y y y y x x -+=⇒-+-= 即8420,940,99y x x y x -=-=⇒==,直线AB 经过定点48,99⎛⎫⎪⎝⎭,选A. 8.(2020·全国高三期末(理))已知圆O :2214x y +=,直线l :y =kx +b (k ≠0),l 和圆O 交于E ,F 两点,以Ox 为始边,逆时针旋转到OE ,OF 为终边的最小正角分别为α,β,给出如下3个命题: ①当k 为常数,b 为变数时,sin (α+β)是定值; ②当k 为变数,b 为变数时,sin (α+β)是定值; ③当k 为变数,b 为常数时,sin (α+β)是定值. 其中正确命题的个数是( ) A .0 B .1C .2D .3【答案】B【解析】设点11()E x y ,,22()F x y ,,由三角函数的定义得111cos 21sin 2x y αα⎧=⎪⎪⎨⎪=⎪⎩,,221cos 21sin 2x y ββ⎧=⎪⎪⎨⎪=⎪⎩,, 将直线EF 的方程与的方程联立2214y kx b x y =+⎧⎪⎨+=⎪⎩,, 得2221(1)204k x kbx b +++-=, 由韦达定理得122212221141kb x x k b x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩,,所以2112sin()sin cos cos sin 44x y x y αβαβαβ+=+=+=222112121222188244()4()84()11k b kb k x kx b x kx b kx x b x x k k ⎛⎫-- ⎪⎝⎭+++=++==-++,因此,当k 是常数时,sin()αβ+是常数,故选B (特值法可秒杀)9.(2020·浙江高三期末)斜率为k 的直线l 过抛物线22(0)y px p =>焦点F ,交抛物线于,A B 两点,点00(,)P x y 为AB 中点,作OQ AB ⊥,垂足为Q ,则下列结论中不正确的是( )A .0ky 为定值B .OA OB ⋅为定值C .点P 的轨迹为圆的一部分D .点Q 的轨迹是圆的一部分【答案】C【解析】设抛物线22(0)y px p =>上,A B 两点坐标分别为()()1122,,,A x y B x y ,则2211222,2,y px y px ==两式做差得,121212()()2()y y y y p x x +-=-,整理得1201212022,,2.y y p pk ky p x x y y y -=∴=∴=-+为定值,所以A 正确.因为焦点(,0)2p F ,所以直线AB 方程为()2p y k x =-.由2()22p y k x y px⎧=-⎪⎨⎪=⎩得2222244(2)0k x p k x p k -++=,则22121222(2),,4p k p x x x x k ++== 222212121212()()[()]2224p p p p y y k x x k x x x x p =--=-++=-.2121234OA OB x x y y p ∴⋅=+=-为定值.故B 正确. ,OQ AB ⊥∴点Q 的轨迹是以OF 为直径的圆的一部分,故D 正确.本题选择C 选项.10.(2020·安徽高三月考(理))已知抛物线2:8C y x =,圆22:(2)4F x y -+=,直线:(2)(0)l y k x k =-≠自上而下顺次与上述两曲线交于1234,,,M M M M 四点,则下列各式结果为定值的是( ) A .1324M M M M ⋅ B .14FM FM ⋅ C .1234M M M M ⋅ D .112FM M M ⋅【答案】C 【解析】由()228y k x y x⎧=-⎨=⎩消去y 整理得2222(48)40(0)k x k x k k -++=≠,设111422(,),(,)M x y M x y ,则21212248,4k x x x x k++==. 过点14,M M 分别作直线:2l x '=-的垂线,垂足分别为,A B , 则11422,2M F x M F x =+=+.对于A ,13241412(2)(2)(4)(4)M M M M M F M F x x ⋅=++=++12124()16x x x x =+++,不为定值,故A 不正确.对于B ,14121212(2)(2)2()4FM FM x x x x x x ⋅=++=+++,不为定值,故B 不正确. 对于C ,12341412(2)(2)4M M M M M F M F x x ⋅=--==,为定值,故C 正确.对于D ,1121111(2)(2)FM M M M F M F x x ⋅=⋅-=+,不为定值,故D 不正确.选C .11.(2020·南昌县莲塘第一中学高三月考(理))在平面直角坐标系中,两点()()111222,,,P x y P x y 间的“L -距离”定义为121212|||||.PP x x y y =-+-‖则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于12|F F )的点的轨迹可以是( )A .B .C .D .【答案】A【解析】设12(,0),(,0)F c F c -,再设动点(,)M x y ,动点到定点12,F F 的“L­距离”之和等于(20)m m c >>,由题意可得:x c y x c y m ++-++=,即2x c x c y m -+++=, 当,0x c y <-≥时,方程化为220x y m -+=; 当,0x c y <-<时,方程化为220x y m ++=;当,0c x c y -≤<≥时,方程化为2my c =-; 当,0c x c y -≤<<时,方程化为2my c =-;当,0x c y ≥≥时,方程化为220x y m +-=; 当,0x c y ≥<时,方程化为220x y m --=;结合题目中给出四个选项可知,选项A 中的图象符合要求,故选A . 12.(2020·东北育才学校高三月考(理))有如下3个命题;①双曲线22221(0,0)x y a b a b-=>>上任意一点P 到两条渐近线的距离乘积是定值;②双曲线2222222211(0,0)x y x y a b a b b a-=-=>>与的离心率分别是12e e 、,则22122212e e e e +是定值;③过抛物线22(0)x py p =>的顶点任作两条互相垂直的直线与抛物线的交点分别是A B 、,则直线AB 过定点;其中正确的命题有( ) A .3个 B .2个C .1个D .0个【答案】A【解析】①双曲线22221x y a b-=(a >0,b >0)上任意一点P ,设为(m ,n ),两条渐近线方程为y=±ba x=222222b m a n a b -+, 由b 2m 2﹣a 2n 2=a 2b 2,可得两个距离乘积是定值2222a b a b+; ②双曲线2222x y a b -=1与22221x y b a -=(a >0,b >0)的离心率分别是e 1,e 2,即有e 12=222a b a +,e 22=222a b b +,可得22122212e e e e +为定值1;③过抛物线x 2=2py (p >0)的顶点任作两条互相垂直的直线与抛物线的交点分别是A ,B ,可设A (s ,22s p),B (t ,22t p ),由OA ⊥OB 可得st+2224s t p=0,即有st=﹣4p 2, k AB =()222t s p t s --=2t s p +,可得直线AB 的方程为y ﹣22s p=2t s p +(x ﹣s ),即为y=2t s p +x+2p , 则直线AB 过定点(0,2p ).三个命题都正确.故选A .13.已知O 为坐标原点,点M 在双曲线22:C x y λ-=(λ为正常数)上,过点M 作双曲线C 的某一条渐近线的垂线,垂足为N ,则ON MN ⋅的值为( ) A .2λB .λC .2λD .无法确定【来源】四川省南充市2021届高三第三次模拟考试数学(文)试题 【答案】A【解析】设(,)M m n ,即有22m n λ-=,双曲线的渐近线为y x =±,可得MN =,由勾股定理可得ON ===,可得2222m n ON MN λ-⋅=== .故选:A .14.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ).A .13B .12C .2D .3【来源】河南省豫南九校2020-2021学年高三上学期期末联考理数试题 【答案】C 【解析】1a =,2b =,∴c =1(F,2F, 设点)P m ,∴2222()(1))1504m OP OFF P m m m +⋅=⋅=+-+=, ∴2165m =,m =,则P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C.15.已知1F ,2F 是双曲线221169x y -=的焦点,PQ 是过焦点1F 的弦,且PQ 的倾斜角为60︒,那么22||+-PF QF PQ 的值为A .16B .12C .8D .随α变化而变化【答案】A【解析】由双曲线方程221169x y -=知,28a =,双曲线的渐近线方程为34y x 直线PQ 的倾斜角为60︒,所以334PQ k =>,又直线PQ 过焦点1F ,如图 所以直线PQ 与双曲线的交点都在左支上.由双曲线的定义得,2128PF PF a -==…………(1),2128QF QF a -== (2)由(1)+(2)得2211()16PF QF QF PF +-+=,2216PF QF PQ ∴+-=. 故选:A16.已知椭圆()2221024x y b b+=<<,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,()2,1M ,1MF 平分角12PF F ∠,则1MPF 与2MPF 的面积之和为( ) A .1B .32C .2D .3【来源】中学生标准学术能力诊断性测试2020-2021学年高三上学期1月测试理文数学(一卷)试题 【答案】C【解析】如图,椭圆()222210x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆上一点,作一圆与线段F 1P ,F 1F 2的延长线都相切,并且与线段PF 2也相切,切点分别为D ,A ,B ,1111221122||||||||||||||||||||F D F A PF PD F F F A PF PB F F F A =⇔+=+⇔+=+, 12122212122||||||||||||||||||2||PF PB F B F F F A F B PF PF F F F A ⇔++=++⇔+=+,所以2||F A a c =-(c 为椭圆半焦距),从而点A 为椭圆长轴端点,即圆心M 的轨迹是直线x =a (除点A 外). 因点M (2,1)在12PF F ∠的平分线上,且椭圆右端点A (2,0),所以点M 是上述圆心轨迹上的点,即点M 到直线F 1P ,PF 2,F 1F 2的距离都相等,且均为1,1MPF 与2MPF 的面积之和为1212111||1||1(||||)2222PF PF PF PF ⋅⋅+⋅⋅=+=.故选:C17.已知椭圆2214x y +=的上顶点为,A B C 、为椭圆上异于A 的两点,且AB AC ⊥,则直线BC 过定点( ) A .(1,0) B .(3,0)C .10,2⎛⎫ ⎪⎝⎭D .30,5⎛⎫- ⎪⎝⎭【答案】D【解析】设直线BC 的方程为x ky m =+,()()1122,,B x y C x y 、,则由2214x ky m x y =+⎧⎪⎨+=⎪⎩整理得()2224240k y mky m +++-=, 所以212122224,44mk m y y y y k k --+==++, ()22222121212224244m mkx x k y y mk y y m k mk m k k --=+++=++++,因为()0,1A ,()()1122,1,1A x y B C x y A --==,,AB AC ⊥, 所以()()()1212121212111x x y y x x y y y y AB AC +-=-=++⋅-+22222222224242125304444m mk m mk k mk m km m k k k k k ---=+++++=+-=++++解得m k =-或35m k =, 当m k =-时,直线BC 的方程为()1x ky k k y =-=-,直线过()0,1点而()0,1A ,而,A B C 、不在同一直线上,不合题意; 当35m k =时,直线BC 的方程为3355x ky k k y ⎛⎫=+=+ ⎪⎝⎭,直线过30,5⎛⎫- ⎪⎝⎭,符合题意.故选:D.18.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54B .45C .43D .34【来源】安徽省宣城市第二中学2020-2021学年高三下学期第一次月考理科数学试题 【答案】D【解析】设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=,所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x +=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D19.已知椭圆22:142x y C +=的左右顶点分别为,A B ,过x 轴上点(4,0)M -作一直线PQ 与椭圆交于,P Q 两点(异于,A B ),若直线AP 和BQ 的交点为N ,记直线MN 和AP 的斜率分别为12,k k ,则12:k k =( ) A .13B .3C .12D .2【来源】湖北省“大课改、大数据、大测评”2020-2021学年高三上学期联合测评数学试题 【答案】A【解析】设(),N x y ,()11,P x y ,()22,Q x y ,设直线PQ 的方程:4x my =-由,,P N A 和,,Q N B 三点共线可知11222222y y x x y y x x ⎧=⎪++⎪⎨⎪=⎪--⎩ , 解得:()()()()()()()()1221122112211221222226222262y x y x y my y my x y x y x y my y my -++-+-==--++--+-1212122623my y y y x y y --∴=-,12121226643my y y y x y y +-+=-,(*)联立224142x my x y =-⎧⎪⎨+=⎪⎩ ,得()2228120m y my +-+=,22226448(2)16(6)0,6m m m m ∆=-+=->>,12121212228123,,()222m y y y y my y y y m m +==∴=+++, 代入(*)得121293433y y x y y -+==-,14y k x =+,22y k x =+ ,122211443k x k x x +∴==-=++.故选:A20.(2020·北京市第二中学分校高三(理))抛物线24y x =上两个不同的点A ,B ,满足OA OB ⊥,则直线AB 一定过定点,此定点坐标为__________. 【答案】(4,0).【解析】设直线l 的方程为x ty b =+代入抛物线24y x =,消去x 得2440y ty b --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y b =-,∴()()()221212121212OA OB ty b ty b y y t y y bt y y b y y ⋅=+++=++++222444bt bt b b =-++- 24b b =-=0,∴0b =(舍去)或4b =, 故直线l 过定点()4,0.21.(2020·江苏扬州中学高三月考)已知点(2,0),(4,0)A B -,圆,16)()4(:22=+++b y x C 点P 是圆C 上任意一点,若PAPB为定值,则b =________.【答案】0【解析】设(,)P x y ,PAk PB =k =, 整理得222222(1)(1)(48)4160k x k y k x k -+-+++-=, 又P 是圆C 上的任意一点,故1k ≠,圆C 的一般方程为222820x y x by b ++++=,因此20b =,22222484168,11k k b k k+-==--,解得0b =. 22.(2020·江苏海安高级中学高三)在平面直角坐标系xOy 中,A ,B 为x 轴正半轴上的两个动点,P (异于原点O )为y 轴上的一个定点.若以AB 为直径的圆与圆x 2+(y -2)2=1相外切,且∠APB 的大小恒为定值,则线段OP 的长为_____.【解析】设O 2(a ,0),圆O 2的半径为r (变量),OP=t (常数),则222222221)222tan ,tan ,2tan 141,(4,22tan 3232r a r a rOPA OPB t t a r a rrtt t APB a r t a r t a r a rt tAPB t t r r +-+∠=∠=+--∴∠==-+-++=+∴=-∴∠==-+-+∵∠APB 的大小恒为定值,∴t23.在平面直角坐标系xOy 中,椭圆22184x y +=上一点A ,点B 是椭圆上任意一点(异于点A ),过点B 作与直线OA 平行的直线l 交椭圆于点C ,当直线AB 、AC 斜率都存在时,AB AC k k +=___________. 【答案】0【解析】取特殊点B ()0,2-,则BC的方程为22y x +=,由22242y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩得C ()所以202AB AC k k +==. 24.(2020·河北定州一中高三月考)P 为圆()22:15C x y -+=上任意一点,异于点()2,3A 的定点B 满足PBPA为常数,则点B 的坐标为______. 【答案】33,22⎛⎫⎪⎝⎭【解析】设()()00,,,,PA P x y B x y PBλ=,则()2215x y -+=,可得2242x y x +=+,① ()()()()222220023x x y y x y y λ⎡⎤-+-=-+-⎣⎦,②由①②得()2200002224x x y y x y --+++2222617x y λλλ=--+,可得202002220022226417x y x y λλλ⎧-=-⎪-=-⎨⎪++=⎩,解得002323212x y λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,B ∴点坐标为33,22⎛⎫ ⎪⎝⎭,故答案为33,22⎛⎫ ⎪⎝⎭. 25.(2020·上海长岛中学高三)在平面直角坐标系中,O 为坐标原点,M 、N 是双曲线22124x y -=上的两个动点,动点P 满足2OP OM ON =-,直线OM 与直线ON 斜率之积为2,已知平面内存在两定点1F 、2F ,使得12PF PF -为定值,则该定值为________【答案】【解析】设P (x ,y ),M (x 1,y 1),N (x 2,y 2),则由2OP OM ON =-,得(x ,y )=2(x 1,y 1)-(x 2,y 2), 即x=2x 1-x 2,y=2y 1-y 2,∵点M ,N 在双曲线22124x y -=上,所以2211124x y -=,2222124x y -=,故2x 2-y 2=(8x 12+2x 22-8x 1x 2)-(4y 12+y 22-4y 1y 2)=20-4(2x 1x 2-y 1y 2), 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =2, ∴y 1y 2-2 x 1x 2=0, ∴2x 2-y 2=20,所以P 在双曲线2x 2-y 2=20上; 设该双曲线的左,右焦点为F 1,F 2,由双曲线的定义可推断出12PF PF -为定值,该定值为26.(2020·江苏高三月考)椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k-+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k+-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为:(1,0).27.已知双曲线22:13y C x -=的右焦点为F ,过点F 的直线l 与双曲线相交于P 、Q 两点,若以线段PQ为直径的圆过定点M ,则MF =______.【来源】金科大联考2020届高三5月质量检测数学(理科)试题 【答案】3【解析】点F 的坐标为()2,0,双曲线的方程可化为2233x y -=,①当直线l 的斜率不存在时,点P 、Q 的坐标分别为()2,3、()2,3-, 此时以线段PQ 为直径的圆的方程为()2229x y -+=;②当直线l 的斜率存在时,设点P 、Q 的坐标分别为()11,x y ,()22,x y , 记双曲线C 的左顶点的坐标为()1,0A -,直线l 的方程为()2y k x =-,联立方程()22332x y y k x ⎧-=⎪⎨=-⎪⎩,消去y 后整理为()()222234340kxk x k -+-+=,2422230164(3)(34)36(1)0k k k k k ⎧-≠⎨∆=+-+=+>⎩,即k ≠ 有2122212243343k x x k k x x k ⎧+=⎪⎪-⎨+⎪=⎪-⎩,()()()22121212122224y y k x x k x x x x =--=-++⎡⎤⎣⎦,222222234894333k k k k k k k ⎛⎫+=-+- ⎪---⎝⎭,()111,AP x y =+,()221,AQ x y =+,()()()1212121212111AP AQ x x y y x x x x y y ⋅=+++=+++⎡⎤⎣⎦ 22222222344931103333k k k k k k k k +-=+-+=+=----. 故以线段PQ 为直径的圆过定点()1,0M -,3MF =.28.双曲线22:143x y C -=的左右顶点为,A B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连接PA 交圆O 于点Q ,设直线,PB QB 的斜率分别为12,k k ,若12k k λ=,则λ=_____. 【答案】34-【解析】设()()()00,,2,02,0P x y A B - 2200143x y -=,()222000331444x y x ⎛⎫=-=- ⎪⎝⎭2000200032424PA PBy y y x x k k x =⋅=+--= PA 交圆O 于点Q ,所以PA QB ⊥ 易知:33441PA PB PB QBPA QB k k k k k k λ⎧=⎪⇒==-⎨⎪⋅=-⎩即1234k k λ==-. 故答案为:34-29.过双曲线22221x y a b-=的右焦点(,0)F c 的直线交双曲线于M 、N 两点,交y 轴于P 点,若1PM MF λ=,2PN NF λ=,规定12λλ+=PM PN MF NF +,则PM PNMF NF +的定值为222a b .类比双曲线这一结论,在椭圆22221(0)x y a b a b +=>>中,PM PN MF NF+的定值为________. 【来源】贵州省铜仁市思南中学2020-2021学年高三上学期期末考试数学(理)试题【答案】222a b-【解析】如图,设椭圆()222210x y a b a b+=>>的右焦点为(),0F c ,过点(),0F c 的直线为()y k x c =-,代入椭圆的方程得:()2222222222220b a kxa k cx a k c ab +-+-=,设()11,M x y ,()22,N x y ,则22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k-⋅=+, 过点,M N 分别作x 轴的垂线,垂足为,D E ,则111x PM x c MF λ==--,222=x PNx c NFλ=--,所以()()()()()1221121212122212121212122x x c x x c x x c x x x x x c x c x x c x x c x x c x x c λλ-+--+⎛⎫+=-+=-=-⎪---++-++⎝⎭将22122222a k c x x b a k +=-+,2222212222a k c ab x x b a k -⋅=+代入化简得:21222a b λλ+=-. 故答案为:222a b-.30.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.【来源】四川省资阳市2020-2021学年高三上学期期末数学文科试题 【答案】4 【解析】设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭()2222414a c a c -==- 31.椭圆E :22143x y +=的左顶点为A ,点,B C 是椭圆E 上的两个动点,若直线,AB AC 的斜率乘积为定值14-,则动直线BC 恒过定点的坐标为__________. 【答案】(1,0)【解析】当直线BC 的斜率存在时,设直线BC 的方程为y=kx+m ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:(3+4k 2)x 2+8kmx+4m 2﹣12=0, 设B (x 1,y 1),C (x 2,y 2),则x 1+x 2=28km 34k -+,x 1x 2=2241234m k -+, 又A (﹣2,0),由题知k AB •k AC =121222y y x x ++=﹣14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠﹣2, 则x 1•x 2+2(x 1+x 2)+4+4(kx 1+m )(kx 2+m ) =(1+4k 2)x 1x 2+(2+4km )(x 1+x 2)+4m2+4=()()2221441234k m k +-++(2+4km )28km 34k -++4m2+4=0则m 2﹣km ﹣2k 2=0, ∴(m ﹣2k )(m+k )=0, ∴m=2k 或m=﹣k .当m=2k 时,直线BC 的方程为y=kx+2k=k (x+2). 此时直线BC 过定点(﹣2,0),显然不适合题意.当m=﹣k 时,直线BC 的方程为y=kx ﹣k=k (x ﹣1),此时直线BC 过定点(1,0). 当直线BC 的斜率不存在时,若直线BC 过定点(1,0),B 、C 点的坐标分别为(1,32),(1,﹣32),满足k AB •k AC =﹣14. 综上,直线BC 过定点(1,0). 故答案为(1,0).。

圆周运动专题复习——临界问题实用教案

圆周运动专题复习——临界问题实用教案
第5页/共35页
第六页,共35页。
8.如图所示,OO′为竖直轴,MN为固定在OO′上的水平
(shuǐpíng)光滑杆,有两个质量相同的金属球A、B套在水平
(shuǐpíng)杆上,AC和BC为抗拉能力相同的两根细线, C端固定在
转轴OO′上.当绳拉直时,A、B两球转动半径之比恒为2∶1,当转
轴的角速度逐渐增大时
面做圆周运动,在最高点时,杯口朝下,但杯
中水却不会流下来,为什么?
当对zh杯vōn中ɡ()b水gēr:i时m,g FNF=N
0
m
v2 r
FN
G
水恰好(qiàhǎo)不流出
表演“水流星” ,需要保证杯子 在圆周运动最高点的线速度不得
小于 gr
即:v gr 重力的效果——全部提供向心力
第18页/共35页
第十页,共35页。
例:如图3-5所示,在电机(diànjī)距轴O为r处固定一质量 为m的铁块.电机(diànjī)启动后,铁块以角速度ω绕轴O 匀速转动.则电机(diànjī)对地面的最大压力和最小压力之 差为___.
(1)若m在最高点时突然与电机脱离,它将 如何运动? (2)当角速度ω为何(wèihé)值时,铁块在 最高点与电机恰无作用力? (3)本题也可认为是一电动打夯机的原理示 意图。若电机的质量为M,则ω多大时,电机 图3-5 可以“跳”起来?此情况下,对地面的最大压 力是多少?
向下的拉力(lālì),或轨道对物体只能产生向下的弹力;若速 度太小物体会脱离圆轨道——无支持物模型
①临界条件:绳子或轨道对小球恰好没有弹力的 作用,重力提供向心力,即 mg=mvR2临界, 解得小球恰能通过最高点的临界速度为: v = 临界 Rg. ②能过最高点的条件:v≥ gR,当 v> gR时,绳对 球产生拉力,轨道对球产生压力.

高考压轴题知识点汇总

高考压轴题知识点汇总

高考压轴题知识点汇总在人生的道路上,高考无疑是一个重要的节点。

对于大多数学生而言,高考是他们追求人生理想的关键一步。

为了应对这个重要的考试,学生们通常会通过背诵书本知识来备战。

然而,高考的压轴题往往会超出课本范围,要求学生在较短时间内掌握并灵活运用更深入的知识。

下面将为大家汇总一些高考压轴题的知识点,帮助大家更好地备战高考。

1. 数学在数学科目中,常见的高考压轴题知识点包括概率统计、向量和三角函数应用等。

概率统计:概率统计是高考数学中的重要内容,其中涉及到的知识点包括条件概率、事件概率、样本空间等。

掌握这些知识点可以帮助学生解决概率统计题目。

向量:向量是几何学中的重要内容,而在高考中的应用也相当广泛。

在解决向量问题时,学生需要掌握向量的加减法、数量积和向量积等基本概念,同时还需要学习如何运用向量解决几何问题。

三角函数应用:三角函数是数学课程中的重点内容,而在高考中的应用也较为常见。

学生需要掌握三角函数的基本概念和性质,同时还需要学会如何运用三角函数求解实际问题,如航空、测量等方面的应用。

2. 物理物理是理科生必考的科目之一,而在高考压轴题中,常见的知识点包括光学、电磁感应和力学应用等。

光学:光学是物理学中的一门重要分支,而在高考中的考察也较为深入。

学生需要掌握光的反射、折射和干涉等基本概念,同时还需要了解光学仪器的原理和使用方法。

电磁感应:电磁感应是物理中的重要知识点之一,也是高考压轴题中的常见内容。

学生需要了解电场和磁场的基本概念,同时还需要学习电磁感应现象的产生和应用。

力学应用:力学是物理中的基础学科,也是高考中的重点内容之一。

在高考压轴题中,常见的力学应用包括平衡条件、作用力和摩擦力等。

学生需要掌握这些知识点,以便解决与力学相关的问题。

3. 化学化学是理科生必考的科目之一,而在高考压轴题中,常见的知识点包括化学反应、离子反应和化学平衡等。

化学反应:化学反应是化学中的基本概念,而在高考中的应用也相当广泛。

高考物理解题方法:临界状态的假设压轴题知识归纳总结附答案解析

高考物理解题方法:临界状态的假设压轴题知识归纳总结附答案解析

高考物理解题方法:临界状态的假设压轴题知识归纳总结附答案解析一、高中物理解题方法:临界状态的假设1.如图所示,七块完全相同的砖块按照图示的方式叠放起来,每块砖的长度均为L ,为保证砖块不倒下,6号砖块与7号砖块之间的距离S 将不超过( )A .3115L B .2L C .52L D .74L 【答案】A 【解析】试题分析:因两部分对称,则可只研究一边即可;1砖受2和3支持力而处于平衡状态,则可由力的合成求得1对2的压力;而2砖是以4的边缘为支点的杠杆平衡,则由杠杆的平衡条件可得出2露出的长度,同理可求得4露出的长度,则可求得6、7相距的最大距离.1处于平衡,则1对2的压力应为2G;当1放在2的边缘上时距离最大;2处于杠杆平衡状态,设2露出的长度为x ,则2下方的支点距重心在()2Lx -处;由杠杆的平衡条件可知:()22L G G x x -=,解得3Lx =,设4露出的部分为1x ;则4下方的支点距重心在1()2L x -处;4受到的压力为2G G +,则由杠杆的平衡条件可知11()()22L GG x G x -=+,解得12L x =,则6、7之间的最大距离应为()13122()3515L L L x x L L ++=++=,A 正确.2.如图所示,轻质杆的一端连接一个小球,绕套在固定光滑水平转轴O 上的另一端在竖直平面内做圆周运动。

小球经过最高点时的速度大小为v ,杆对球的作用力大小为F ,其2F v -图像如图所示。

若图中的a 、b 及重力加速度g 均为已知量,规定竖直向上的方向为力的正方向。

不计空气阻力,由此可求得( )A .小球做圆周运动的半径为g bB .0F =时,小球在最高点的动能为ab gC .22v b =时,小球对杆作用力的方向向下D .22v b =时,杆对小球作用力的大小为a 【答案】D 【解析】 【详解】A .由图象知,当2v b =时,0F =,杆对小球无弹力,此时重力提供小球做圆周运动的向心力,有2v mg m r=解得b r g=故A 错误;B .由图象知,当20v =时,故有F mg a ==解得a m g=当2v b =时,小球的动能为2122k ab E mv g== 故B 错误;C .由图象可知,当22v b =时,有0F <则杆对小球的作用力方向向下,根据牛顿第三定律可知,小球对杆的弹力方向向上,故C错误;D .由图象可知,当22v b =时,则有22v F mg m mg r+==解得F mg a ==故D 正确。

2022年高考数学压轴题及答案

2022年高考数学压轴题及答案

2022年高考数学压轴题1.已知抛物线y 2=2px (p >0)上一点P 的横坐标为4,且P 到焦点F 的距离为5,直线l 交抛物线于A ,B 两点(位于对称轴异侧),且OA →•OB →=94.(Ⅰ)求抛物线的方程;(Ⅱ)求证:直线l 必过定点.【解答】解:(Ⅰ)由题可得点P 到抛物线准线的距离为5,抛物线的准线方程为x =−p 2,由抛物线的定义知4+p 2=5,解得p =2,故抛物线的方程为y 2=4x ;(Ⅱ)证明:易知直线AB 的斜率不为0,设直线AB 的方程为x =my +t , A (y 124,y 1),B (y 224,y 2),且y 1y 2<0,联立方程{x =my +t y 2=4x,消去x 可得y 2﹣4my ﹣4t =0, 则△=16m 2+16t >0,且y 1+y 2=4m ,y 1y 2=﹣4t ,由OA →⋅OB →=94得(y 1y 2)216+y 1y 2=94, 解得y 1y 2=﹣18或2(舍去),所以﹣4t =﹣18,可得t =92,即直线AB 的方程为x =my +92,令y =0,则x =92,所以直线l 必过定点(92,0).2.已知函数f (x )=x 22−xlnx ﹣(a ﹣1)x +a .(Ⅰ)若x 1,x 2是f (x )的两个极值点,求a 的取值范围;(Ⅱ)在(Ⅰ)的条件下,若m >f (x 1)+f (x 2)恒成立,求实数m 的取值范围.【解答】解:(Ⅰ)由题意得f (x )的定义域是(0,+∞),f ′(x )=x ﹣lnx ﹣a , 设g (x )=f ′(x ),则g ′(x )=1−1x =x−1x ,当0<x <1时,g ′(x )<0,函数f ′(x )单调递减,当x >1时,g ′(x )>0,函数f ′(x )单调递增,故f ′(x )的单调递减区间是(0,1),单调递增区间是(1,+∞),∵x 1,x 2是f (x )的两个极值点,即x 1,x 2是f ′(x )的两个不同的零点,故f ′(1)<0,即1﹣a <0,解得:a >1,∵f ′(2a )=2a ﹣ln 2a ﹣a =a ﹣ln 2a =a ﹣lna ﹣ln 2>a ﹣lna ﹣1>0,故存在x 2∈(1,2a )使得f ′(x 2)=0,又∵f ′(e ﹣a )=e ﹣a ﹣lne ﹣a ﹣a =e ﹣a >0, 故存在x 1∈(e ﹣a ,1),使得f ′(x 1)=0, 故当x ∈(0,x 1)时,f ′(x )>0,函数f (x )单调递增,当x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减,当x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增,故当a >1时,x 1是f (x )的极大值点,x 2是f (x )的极小值点;(Ⅱ)不妨设0<x 1<1,x 2>1,由f (x 2)为极小值,2﹣x 1>1得f (x 2)≤f (2﹣x 1),故f (x 1)+f (x 2)≤f (x 1)+f (2﹣x 1),令u (x )=f (x )+f (2﹣x ),(0<x <1),则u ′(x )=f ′(x )﹣f ′(2﹣x ),令φ(x )=x ﹣lnx ﹣a ﹣(2﹣x )+ln (2﹣x )+a =2x ﹣2﹣lnx +ln (2﹣x ),(0<x <1),φ′(x )=2−1x −12−x =4x−2x 2+x−2−x x(2−x)=−2(x−1)2x(2−x)<0, 故函数φ(x )在(0,1)上单调递减,故φ(x )>φ(1)=0,故u ′(x )>0,故函数u (x )在(0,1)上单调递增,故u (x )<u (1)=f (1)+f (1)=3,故f (x 1)+f (x 2)<3,故m ≥3.。

解题方法:临界状态的假设压轴题知识归纳总结及答案

解题方法:临界状态的假设压轴题知识归纳总结及答案

解题方法:临界状态的假设压轴题知识归纳总结及答案一、高中物理解题方法:临界状态的假设1.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求:(1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。

【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】(1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有212AB h gt =,解得2(2.050.8)s 0.5s 10t ⨯-==(2)水平方向匀速运动,则有02m/s 4m/s 0.5x v t === 竖直方向的速度为5m/s y v gt ==则2222045m/s=41m/s 6.4m/s y v v v =+=+≈(3)在A 点根据向心力公式得2v T mg m L-=代入数据解得24(1101)N=30N 0.8T =⨯+⨯2.一辆货车运载着圆柱形光滑的空油桶。

在车厢底,一层油桶平整排列,相互紧贴并被牢牢固定。

上一层只有一只桶C,自由地摆放在A、B之间,和汽车一起保持静止,如图所示,当C与车共同向左加速时A.A对C的支持力变大B.B对C的支持力不变C.当向左的加速度达到32g时,C将脱离AD.当向左的加速度达到33g时,C将脱离A【答案】D【解析】【详解】对C进行受力分析,如图所示,设B对C的支持力与竖直方向的夹角为θ,根据几何关系可得:122RsinRθ==,所以θ=30°;同理可得,A对C的支持力与竖直方向的夹角也为30°;AB.原来C处于静止状态,根据平衡条件可得:N B sin30°=N A sin30°;令C的加速度为a,根据正交分解以及牛顿第二定律有:N′B sin30°-N′A sin30°=ma可见A对C的支持力减小、B对C的支持力增大,故AB错误;CD.当A对C的支持力为零时,根据牛顿第二定律可得:mg tan30°=ma解得:3a g=则C错误,D正确;故选D 。

高考数学玩转压轴题专题7.3临界知识问题

高考数学玩转压轴题专题7.3临界知识问题

专题7.3 临界知识问题一.方法综述对于临界知识问题,其命题大致方向为从形式上跳出已学知识的旧框框,在试卷中临时定义一种新知识,要求学生快速处理,及时掌握,并正确运用,充分考查学生独立分析问题与解决问题的能力,多与函数、平面向量、数列联系考查。

另外,以高等数学为背景,结合中学数学中的有关知识编制综合性问题,是近几年高考试卷的热点之一,常涉及取整函数、最值函数、有界函数、有界泛函数等。

二.解题策略类型一定义新知型临界问题【例1】用C(A)表示非空集合A中的元素个数,定义A*B=()()()()()()()(),{,C A C B C A C BC B C A C A C B-≥-<若A={1,2},B={x|(x2+ax)·(x2+ax+2)=0},且A*B=1,设实数a的所有可能取值组成的集合是S,则C(S)等于( ) A. 1 B. 3 C. 5 D. 7【答案】B【指点迷津】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

对于此题中的新概念,对阅读理解能力有一定的要求。

但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝。

【举一反三】设a ,b ∈R,定义运算“∧”和“∨”如下:a ∧b =,{,a a b b a b≤>,a ∨b =,{,b a b a a b≤>若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则( )A . a ∧b ≥2,c ∧d ≤2 B. a ∧b ≥2,c ∨d ≥2 C . a ∨b ≥2,c ∧d ≤2 D. a ∨b ≥2,c ∨d ≥2 【答案】C【解析】不妨设a ≤b ,c ≤d ,则a ∨b =b ,c ∧d =c .若b <2,则a <2,∴ab <4,与ab ≥4矛盾,∴b ≥2.故a ∨b ≥2. 若c >2,则d >2,∴c +d >4,与c +d ≤4矛盾,∴c ≤2.故c ∧d ≤2. 本题选择C 选项.类型二 高等数学背景型临界问题【例2】设S 是实数集R 的非空子集,若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b 3|a ,b 为整数}为封闭集;②若S 为封闭集,则一定有0∈S ;③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆R 的任意集合T 也是封闭集.其中真命题是________.(写出所有真命题的序号) 【答案】①②【举一反三】【辽宁省沈阳市郊联体2018届上学期期末】定义行列式运算12142334a a a a a a a a =-,将函数()3sin 1cos xf x x=的图像向左平移(0)n n >个单位,所得图像关于y 轴对称,则n 的最小值为( )A .6π B . 3π C . 23π D . 56π 【答案】D【解析】函数()3sin 32cos 61cos x f x cosx sinx x x π⎛⎫==-=+ ⎪⎝⎭的图象向左平移n (n >0)个单位,所得图象对应的函数为y=2cos (x+n+6π),根据所得函数为偶函数,可得n+6π=kπ,k∈z, 则n 的最小值为56π,故选:D . 类型三 立体几何中的临界问题立体几何的高考题中,最主要考查点是几何元素位置关系及角、距离的计算、三视图等,除此之外,还有可能涉及到与立体几何相关的临界知识,如立体几何与其他知识的交汇,面对这些问题,需要有较强的分析判断能力及思维转换能力,还需要我们对这些问题作一些分析归类,加强知识间的联系,才能让所学知识融会贯通.【例3】【河南省南阳市一中2018届第六次考试】点P 为棱长是3的正方体1111ABCD A B C D -的内切球O 球面上的动点,点P 满足1BP AC ⊥,则动点P 的轨迹的长度为__________. 【答案】6π【举一反三】【江西省抚州市临川区一中2018届上学期质检】已知正方体1111ABCD A B C D -的体积为1,点M 在线段BC 上(点M 异于B 、C 两点),点N 为线段1CC 的中点,若平面AMN 截正方体1111ABCD A B C D -所得的截面为四边形,则线段BM 的取值范围为( )A . 10,3⎛⎤ ⎥⎝⎦ B . 10,2⎛⎤ ⎥⎝⎦ C . 2,13⎡⎫⎪⎢⎣⎭ D . 1,12⎡⎫⎪⎢⎣⎭【答案】B 【解析】依题意,当点M 为线段BC 的中点时,由题意可知,截面为四边形1AMND ,从而当102BM <≤时,截面为四边形,当12BM >时,该截面与正方体的上底面也相交,所以截面为五边形,故线段BM 的取值范围是10,2⎛⎤ ⎥⎝⎦,故选B .三.强化训练1.【上海市长宁、嘉定区2018届一模】对任意两个非零的平面向量α和β,定义cos ααβθβ⊗=,其中θ为α和β的夹角.若两个非零的平面向量a 和b 满足:①a b ≥;②a 和b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭;③a b ⊗和b a ⊗的值都在集合|, 2n x x n N ⎧⎫=∈⎨⎬⎩⎭中.则a b ⊗的值为( ). A .52 B . 32 C . 1 D . 12【答案】B2.【北京市西城区2017— 2018第一学期期末】设α为空间中的一个平面,记正方体1111ABCD A B C D -的八个顶点中到α的距离为(0)d d >的点的个数为m , m 的所有可能取值构成的集合为M ,则有( ) A . 4M ∈, 6M ∉ B . 5M ∉, 6M ∉ C . 4M ∉, 6M ∈ D . 5M ∉, 6M ∈ 【答案】D 【解析】当α为面11BB D D 时,A,C, 1C ,1A 到面α的距离相等,即4M ∈,排除C;取E,F,G,H 为1111BC B C C D ,,, CD 的中点,记α为EFGH 时,点111,,,,,B B D D C C ,六个点到面α的距离相等,即6M ∈,排除A,B . 故选D .3.【湖南师大附中2018届上学期月考】狄利克雷函数是高等数学中的一个典型函数,若()1,{0,R x Q f x x C Q∈=∈,则称()f x 为狄利克雷函数.对于狄利克雷函数()f x ,给出下面4个命题:①对任意x R ∈,都有()1f f x ⎡⎤=⎣⎦;②对任意x R ∈,都有()()0f x f x -+=;③对任意1x R ∈,都有2x Q ∈, ()()121f x x f x +=;④对任意(),,0a b ∈-∞,都有(){}(){}x f x a x f x b =.其中所有真命题的序号是( )A . ①④ B. ②③ C. ①②③ D. ①③④ 【答案】D(x )≥0恒成立,∴对任意a ,b∈(-∞,0),都有{|}{|}x f x a x f x b R ==()>()> ,故④正确,故正确的命题是①③④,故选D .4.【北京市朝阳区2018届第一学期期末】如图, PAD ∆为等边三角形,四边形ABCD 为正方形,平面PAD ⊥平面ABCD .若点M 为平面ABCD 内的一个动点,且满足MP MC =,则点M 在正方形ABCD及其内部的轨迹为( )A . 椭圆的一部分B . 双曲线的一部分C . 一段圆弧D . 一条线段 【答案】D【解析】在空间中,存在过线段PC 中点且垂直线段PC 的平面,平面上点到,P C 两点的距离相等,记此平面为α,平面α与平面ABCD 有一个公共点,则它们有且只有一条过该点的公共直线.故点M 在正方形ABCD 及其内部的轨迹为一条线段,选A .5.【湖南省株洲市2018届教学质量统一检测】已知直三棱柱111ABC A B C -的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱111,,AA BB CC ,分别交于三点,,M N Q ,若MNQ ∆为直角三角形,则该直角三角形斜边长的最小值为( ) A . 22. 3 C . 23. 4 【答案】C当a b b c -=-时取等号.故答案为23.故选C .6.【河北省衡水市阜城中学2017-2018上学期第五次月考】定义方程()()f x f x ='的实数根0x 叫做函数()f x 的“新驻点”,若函数()g x x =, ()()ln 1h x x =+,()31x x ϕ=-的“新驻点”分别为,,αβγ,则,,αβγ的大小关系为( )A . αβγ>>B . βαγ>>C . γαβ>>D . βγα>> 【答案】C7.【吉林省实验中学2018届一模】在正四棱柱1111ABCD A B C D -中, 14,2AA AB BC === ,动点,P Q分别在线段1,C D AC 上,则线段PQ 长度的最小值是( )A .223 B . 23 C . 43D . 25【答案】C 【解析】建立如图所示空间直角坐标系, 则A(2,0,0),C(0,2,0),C 1(0,2,4),()()22910160,,2,0,2,2,,0,0,255599m P t t t Q m m m PQ t m ⎛⎫⎛⎫⎡⎤⎤⎡∈-∈∴=-+-+ ⎪ ⎪⎦⎣⎣⎦⎝⎭⎝⎭当且仅当1059t m ==时,PQ 取最小值43,选C . 8.【陕西省西安市长安区一中2017-2018上学期期末】已知正四棱柱1111ABCD A B C D -中,12,22AB CC ==, E 为1CC 的中点,则直线1AC 与平面BED 的距离为( )A . 1B .3C .2D . 2 【答案】A9.【河南省南阳市一中2017-2018上学期第四次月考】已知各项均不为零的数列{}n a ,定义向量()1,n n n c a a +=,(),1n b n n =+, *N n ∈.下列命题中真命题是( )A . 若*N n ∀∈总有n n c b ⊥成立,则数列{}n a 是等比数列B . 若*N n ∀∈总有nn c b 成立,则数列{}n a 是等比数列C . 若*N n ∀∈总有n n c b ⊥成立,则数列{}n a 是等差数列D . 若*N n ∀∈总有n n c b 成立,则数列{}n a 是等差数列【答案】D10.【北京市海淀区2018届第一学期期末】已知正方体1111ABCD A B C D -的棱长为2,点M 是棱BC 的中点,点P 在底面ABCD 内,点Q 在线段11A C 上,若1PM =,则PQ 长度的最小值为_____. 33【解析】 由题意得,过点Q 作QN ⊥平面ABCD ,垂足为N , 在点N 在线段AC 上,分别连接,PQ PN , 在直角PNQ ∆中, ()222242PQ QN PN PN =+=+在平面ABCD 内过点M 作MA AC ⊥,则2MA =,即M 到直线AC 的最短距离为2, 又1PM =,当P MA ∈时,此时min 11PN MA =-=, 所以PQ 的最小值为()22min 42133PQ =+=11.【广西桂林市、贺州市2018届上学期期末联考】把长AB 和宽AD 分别为32的长方形ABCD 沿对角线AC 折成B AC D --的二面角()0θθπ<<,下列正确的命题序号是__________. ①四面体ABCD 外接球的体积随θ的改变而改变; ②BD 的长度随θ的增大而增大;③当2πθ=时,BD 长度最长;④当23πθ=时, BD 长度等于13. 【答案】②④12.【山西省太原十二中2018届上学期1月月考】在四棱锥P ABCD -中, PC ⊥底面ABCD ,底面为正方形, //QA PC , PBC AQB ∠=∠= 60,记四棱锥P ABCD -的外接球与三棱锥B ACQ -的外接球的表面积分别为12,S S ,则21S S =___. 【答案】15713.【辽宁省沈阳市郊联体2017-2018上学期期末考试】对于四面体ABCD ,有以下命题:(1)若AB AC AD ==,则过A 向底面BCD 作垂线,垂足为底面ABC ∆的外心;(2)若AB CD ⊥, AC BD ⊥,则过A 向底面BCD 作垂线,垂足为底面ABC ∆的内心;(3)四面体A BCD -的四个面中,最多有四个直角三角形;(4)若四面体A BCD -的6条棱长都为1,则它的内切球的表面积为6π. 其中正确的命题是__________.【答案】()()()134【解析】对于①,设点A 在平面BCD 内的射影是O ,因为AB=AC=AD ,所以OB=OC=OD ,则点A 在底面BCD 内的射影是△BCD 的外心,故①正确;对于②设点A 在平面BCD 内的射影是O ,则OB 是AB 在平面BCD 内的射影,因为AB⊥CD,根据三垂线定理的逆定理可知:CD⊥OB 同理可证BD⊥OC,所以O 是△BCD 的垂心,故②不正确;对于③:如图:直接三角形的直角顶点已经标出,直角三角形的个数是4.故③正确;14.【湖南师范大学附属中学2018届上学期月考】如图所示,在棱长为6的正方体1111ABCD A B C D 中,点,E F 分别是棱11C D , 11B C 的中点,过A , E , F 三点作该正方体的截面,则截面的周长为__________.【答案】61332+15.【河北衡水金卷2018届高考模拟一】如图,在直角梯形ABCD 中, AB BC ⊥, //AD BC , 112AB BC AD ===,点E 是线段CD 上异于点C , D 的动点, EF AD ⊥于点F ,将DEF ∆沿EF 折起到∆ PEF 的位置,并使PF AF ⊥,则五棱锥P ABCEF -的体积的取值范围为__________.【答案】10,3⎛⎫ ⎪⎝⎭【解析】,,PF EF PF AF EF AF F ⊥⊥⋂=, PF ∴⊥平面ABCEF ,设()01DF x x =<<,则,2,EF x FA x ==- ABCEF ABCD DEF S S S ∆∴=- ()()221111213,222x x =+⨯-=-∴五棱锥P ABCDEF -的体积()()()2311133326V x x x x x =⨯-⋅=-, ()()21'102V x x =-=,得1x =或1x =-(舍去),当01x <<时, ()()'0,V x V x >单调递增,故()()()01V V x V <<,即()V x 的取值范围是10,3⎛⎫ ⎪⎝⎭,故答案为10,3⎛⎫ ⎪⎝⎭. 16.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是线段AB 、AD 、AA 1的中点,又P 、Q 分别在线段A 1B 1、A 1D 1上,且A 1P =A 1Q =x (0<x <1).设平面MEF ∩平面MPQ =l ,现有下列结论:①l ∥平面ABCD ;②l ⊥AC ;③直线l 与平面BCC 1B 1不垂直;④当x 变化时,l 不是定直线.其中不成立的结论是________.(写出所有不成立结论的序号)【答案】④17.【山东省济南市长清第一中学大学科技园校区2017- 2018第三次阶段性质量检测】设平面//α平面β,A 、C a ∈,B 、D β∈,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,8AS =,6BS =,12CS =,则SD =__________.【答案】9【解析】根据题意做出如下图形:∵AB,CD 交于S 点∴三点确定一平面,所以设ASC 平面为n ,于是有n 交α于AC ,交β于DB ,∵α,β平行,∴AC∥DB,∴△ASC∽△DSB, ∴AS SB =CS SD, ∵AS=8,BS=6,CS=12,∴8126SD =解得SD=9. 故答案为918.【湖南师范大学附属中学2017-2018上学期第二次阶段性检测】对定义在区间D 上的函数()f x ,若存在常数0k >,使对任意的x D ∈,都有()()f x k f x +>成立,则称()f x 为区间D 上的“k 阶增函数”.已知()f x 是定义在R 上的奇函数,且当0x ≥ , ()22f x x a a =--.若()f x 为R 上的“4阶增函数”,则实数a 的取值范围是__________.【答案】()1,1-。

高考数学三轮押题冲刺基础知识最后一轮拿分测验数列的应用

高考数学三轮押题冲刺基础知识最后一轮拿分测验数列的应用

图1 图2 图3 图4数列的应用【考点导读】1.能在具体的问题情景中发现数列的等差、等比关系,并能用有关知识解决相应的问题。

2.注意基本数学思想方法的运用,构造思想:已知数列构造新数列,转化思想:将非等差、等比数列转化为等差、等比数列。

【基础练习】1.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10第3行 18 20 22 24第4行 32 30 28 26 … … … … … 则2008在第 251 行 ,第 5 列。

2.图1,2,3,4分别包含1,5,13和25个互不重叠的单位正方形,按同样的方式构造图形,则第n 个图包含 2221n n -+ 个互不重叠的单位正方形.3.若数列{}n a 中,311=a ,且对任意的正整数p 、q 都有q p q p a a a =+,则=n a 13n . 4.设等比数列{}n a 的公比为q ,前n 项和为n S ,若12,,n n n S S S ++成等差数列,则q 的值为2- 。

5.已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,则2a = 6- 。

【范例导析】例1.一种计算装置,有一数据入口A 和一个运算出口B ,按照某种运算程序:①当从A口输入自然数1时,从B 口得到13 ,记为()113f = ;②当从A 口输入自然数()2n n ≥时,在B 口得到的结果()f n 是前一个结果()1f n -的()()211213n n ---+倍。

(1)当从A 口分别输入自然数2 ,3 ,4 时,从B 口分别得到什么数?并求()f n 的表达式;(2)记n S 为数列(){}f n 的前n 项的和。

当从B 口得到16112195的倒数时,求此时对应的n S 的值.分析:根据题意可以知道()f n =()1f n -⋅()()211213n n ---+,所以可以采用迭乘法求出()f n 的表达式,这样就可以解决题目中的问题。

湖北省黄梅县国际育才高级中学高中物理解题方法:临界状态的假设压轴题易错题

湖北省黄梅县国际育才高级中学高中物理解题方法:临界状态的假设压轴题易错题

湖北省黄梅县国际育才高级中学高中物理解题方法:临界状态的假设压轴题易错题一、高中物理解题方法:临界状态的假设1.如图所示,AB为竖直转轴,细绳AC和BC的结点C系一质量为m的小球,两绳能承担的最大拉力均为2mg。

当AC和BC均拉直时∠ABC=90°,∠ACB=53°,BC=1m.ABC能绕竖直轴AB匀速转动,因而C球在水平面内做匀速圆周运动.当小球的线速度增大时,两绳均会被拉断,则最先被拉断那根绳及另一根绳被拉断时的速度分别为(已知g=10m/s2,sin53°=0.8,cos53°=0.6)()A.AC绳 5m/s B.BC绳 5m/sC.AC绳 5.24m/s D.BC绳 5.24m/s【答案】B【解析】【分析】当小球线速度增大时,BC逐渐被拉直,小球线速度增至BC刚被拉直时,对小球进行受力分析,合外力提供向心力,求出A绳的拉力,线速度再增大些,T A不变而T B增大,所以BC绳先断;当BC绳断之后,小球线速度继续增大,小球m作离心运动,AC绳与竖直方向的夹角α增大,对球进行受力分析,根据合外力提供向心力列式求解。

【详解】当小球线速度增大时,BC逐渐被拉直,小球线速度增至BC刚被拉直时,根据牛顿第二定律得:对小球有T A sin∠ACB﹣mg=0 ①T A cos∠ACB+T B=2vml②由①可求得AC绳中的拉力T A=54mg,线速度再增大些,T A不变而T B增大,所以BC绳先断。

当BC绳刚要断时,拉力为T B=2mg,T A=54mg,代入②得225cos2 4v vmg ACB mg m mr l∠+==解得v =5.24m/s当BC 线断后,AC 线与竖直方向夹角α因离心运动而增大,当使球速再增大时,角α随球速增大而增大,当α=60°时,T AC =2mg ,AC 也断, 则有T AC sin53°2sin 60AC v m L =︒代入数据解得v =5m/s故BC 线先断;AC 线被拉断时球速为5.0m/s . 故选B 。

高考理科数学通用版三维二轮专题复习课件:第一部分 层级三 压轴专题 临界知识问题

高考理科数学通用版三维二轮专题复习课件:第一部分 层级三 压轴专题 临界知识问题

“专题过关检测”见“专题检测(二十四)” (单击进入电子文档)
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
l′的方程为216x+132y=1, 即x+2y-8=0, 所以l的方程为y-3=2(x-2), 即2x-y-1=0. 故∠F1AF2的平分线l所在的直线方程为2x-y-1=0. [点评] 本题利用椭圆的光学性质使问题得以简单解决.
[针对训练] 3.已知F1,F2分别为椭圆ax22+by22=1(a>b>0)的左、右焦点,
F1F2的中点,R为F2Q的中点,所以|OR|=
1 2
|F1Q|=a.设R(x,
y),则x2+y2=a2(y≠0),故点R的轨迹方程为x2+y2=a2(y≠0).
高等数学背景型临界问题
以高等数学为背景,结合中学数学中的有关知识编制综合性问 题,这也是近几年高考试卷的热点之一.
1.高斯函数 对任意实数x,[x]表示不超过x的最大整数,称[x]为x的整数部 分,{x}为其相应的小数部分,函数y={x},{x}=x-[x]. 2.最大函数、最小函数 设f(x),g(x)均为定义在I上的函数,记min{f(x),g(x)}为f(x), g(x)中值较小的函数,max{f(x),g(x)}为f(x),g(x)中值较大的函 数.若f(x)=g(x),则min{f(x),g(x)}=max{f(x),g(x)}=f(x).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题7.3 临界知识问题一.方法综述对于临界知识问题,其命题大致方向为从形式上跳出已学知识的旧框框,在试卷中临时定义一种新知识,要求学生快速处理,及时掌握,并正确运用,充分考查学生独立分析问题与解决问题的能力,多与函数、平面向量、数列联系考查。

另外,以高等数学为背景,结合中学数学中的有关知识编制综合性问题,是近几年高考试卷的热点之一,常涉及取整函数、最值函数、有界函数、有界泛函数等。

二.解题策略类型一定义新知型临界问题【例1】用C(A)表示非空集合A中的元素个数,定义A*B=()()()()()()()(),{,C A C B C A C BC B C A C A C B-≥-<若A={1,2},B={x|(x2+ax)·(x2+ax+2)=0},且A*B=1,设实数a的所有可能取值组成的集合是S,则C(S)等于( ) A. 1 B. 3 C. 5 D. 7【答案】B【指点迷津】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

对于此题中的新概念,对阅读理解能力有一定的要求。

但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝。

【举一反三】设a ,b ∈R,定义运算“∧”和“∨”如下:a ∧b =,{,a a b b a b≤>,a ∨b =,{,b a b a a b≤>若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则( )A . a ∧b ≥2,c ∧d ≤2 B. a ∧b ≥2,c ∨d ≥2 C . a ∨b ≥2,c ∧d ≤2 D. a ∨b ≥2,c ∨d ≥2 【答案】C【解析】不妨设a ≤b ,c ≤d ,则a ∨b =b ,c ∧d =c .若b <2,则a <2,∴ab <4,与ab ≥4矛盾,∴b ≥2.故a ∨b ≥2. 若c >2,则d >2,∴c +d >4,与c +d ≤4矛盾,∴c ≤2.故c ∧d ≤2. 本题选择C 选项.类型二 高等数学背景型临界问题【例2】设S 是实数集R 的非空子集,若对任意x ,y ∈S ,都有x +y ,x -y ,xy ∈S ,则称S 为封闭集.下列命题:①集合S ={a +b 3|a ,b 为整数}为封闭集;②若S 为封闭集,则一定有0∈S ;③封闭集一定是无限集;④若S 为封闭集,则满足S ⊆T ⊆R 的任意集合T 也是封闭集.其中真命题是________.(写出所有真命题的序号) 【答案】①②【举一反三】【辽宁省沈阳市郊联体2018届上学期期末】定义行列式运算12142334a a a a a a a a =-,将函数()3sin 1cos xf x x=的图像向左平移(0)n n >个单位,所得图像关于y 轴对称,则n 的最小值为( )A .6π B . 3π C . 23π D . 56π 【答案】D【解析】函数()3sin 32cos 61cos x f x cosx sinx x x π⎛⎫==-=+ ⎪⎝⎭的图象向左平移n (n >0)个单位,所得图象对应的函数为y=2cos (x+n+6π),根据所得函数为偶函数,可得n+6π=kπ,k∈z, 则n 的最小值为56π,故选:D . 类型三 立体几何中的临界问题立体几何的高考题中,最主要考查点是几何元素位置关系及角、距离的计算、三视图等,除此之外,还有可能涉及到与立体几何相关的临界知识,如立体几何与其他知识的交汇,面对这些问题,需要有较强的分析判断能力及思维转换能力,还需要我们对这些问题作一些分析归类,加强知识间的联系,才能让所学知识融会贯通.【例3】【河南省南阳市一中2018届第六次考试】点P 为棱长是3的正方体1111ABCD A B C D -的内切球O 球面上的动点,点P 满足1BP AC ⊥,则动点P 的轨迹的长度为__________. 【答案】6π【举一反三】【江西省抚州市临川区一中2018届上学期质检】已知正方体1111ABCD A B C D -的体积为1,点M 在线段BC 上(点M 异于B 、C 两点),点N 为线段1CC 的中点,若平面AMN 截正方体1111ABCD A B C D -所得的截面为四边形,则线段BM 的取值范围为( )A . 10,3⎛⎤ ⎥⎝⎦ B . 10,2⎛⎤ ⎥⎝⎦ C . 2,13⎡⎫⎪⎢⎣⎭ D . 1,12⎡⎫⎪⎢⎣⎭【答案】B 【解析】依题意,当点M 为线段BC 的中点时,由题意可知,截面为四边形1AMND ,从而当102BM <≤时,截面为四边形,当12BM >时,该截面与正方体的上底面也相交,所以截面为五边形,故线段BM 的取值范围是10,2⎛⎤ ⎥⎝⎦,故选B .三.强化训练1.【上海市长宁、嘉定区2018届一模】对任意两个非零的平面向量αv 和βv ,定义cos ααβθβ⊗=vv v v ,其中θ为αv 和βv 的夹角.若两个非零的平面向量a v 和b v 满足:①a b ≥v v ;②a v 和b v 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭;③a b ⊗v v 和b a ⊗v v 的值都在集合|, 2n x x n N ⎧⎫=∈⎨⎬⎩⎭中.则a b ⊗v v 的值为( ).A .52 B . 32 C . 1 D . 12【答案】B2.【北京市西城区2017— 2018第一学期期末】设α为空间中的一个平面,记正方体1111ABCD A B C D -的八个顶点中到α的距离为(0)d d >的点的个数为m , m 的所有可能取值构成的集合为M ,则有( ) A . 4M ∈, 6M ∉ B . 5M ∉, 6M ∉ C . 4M ∉, 6M ∈ D . 5M ∉, 6M ∈ 【答案】D 【解析】当α为面11BB D D 时,A,C, 1C ,1A 到面α的距离相等,即4M ∈,排除C;取E,F,G,H 为1111BC B C C D ,,, CD 的中点,记α为EFGH 时,点111,,,,,B B D D C C ,六个点到面α的距离相等,即6M ∈,排除A,B . 故选D .3.【湖南师大附中2018届上学期月考】狄利克雷函数是高等数学中的一个典型函数,若()1,{0,R x Q f x x C Q∈=∈,则称()f x 为狄利克雷函数.对于狄利克雷函数()f x ,给出下面4个命题:①对任意x R ∈,都有()1f f x ⎡⎤=⎣⎦;②对任意x R ∈,都有()()0f x f x -+=;③对任意1x R ∈,都有2x Q ∈, ()()121f x x f x +=;④对任意(),,0a b ∈-∞,都有(){}(){}x f x a x f x b =.其中所有真命题的序号是( )A . ①④ B. ②③ C. ①②③ D. ①③④ 【答案】D(x )≥0恒成立,∴对任意a ,b∈(-∞,0),都有{|}{|}x f x a x f x b R ==()>()> ,故④正确,故正确的命题是①③④,故选D .4.【北京市朝阳区2018届第一学期期末】如图, PAD ∆为等边三角形,四边形ABCD 为正方形,平面PAD ⊥平面ABCD .若点M 为平面ABCD 内的一个动点,且满足MP MC =,则点M 在正方形ABCD及其内部的轨迹为( )A . 椭圆的一部分B . 双曲线的一部分C . 一段圆弧D . 一条线段 【答案】D【解析】在空间中,存在过线段PC 中点且垂直线段PC 的平面,平面上点到,P C 两点的距离相等,记此平面为α,平面α与平面ABCD 有一个公共点,则它们有且只有一条过该点的公共直线.故点M 在正方形ABCD 及其内部的轨迹为一条线段,选A .5.【湖南省株洲市2018届教学质量统一检测】已知直三棱柱111ABC A B C -的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱111,,AA BB CC ,分别交于三点,,M N Q ,若MNQ ∆为直角三角形,则该直角三角形斜边长的最小值为( ) A . 22. 3 C . 23. 4 【答案】C当a b b c -=-时取等号.故答案为23.故选C .6.【河北省衡水市阜城中学2017-2018上学期第五次月考】定义方程()()f x f x ='的实数根0x 叫做函数()f x 的“新驻点”,若函数()g x x =, ()()ln 1h x x =+,()31x x ϕ=-的“新驻点”分别为,,αβγ,则,,αβγ的大小关系为( )A . αβγ>>B . βαγ>>C . γαβ>>D . βγα>> 【答案】C7.【吉林省实验中学2018届一模】在正四棱柱1111ABCD A B C D -中, 14,2AA AB BC === ,动点,P Q分别在线段1,C D AC 上,则线段PQ 长度的最小值是( )A .223 B . 23 C . 43D . 25【答案】C 【解析】建立如图所示空间直角坐标系, 则A(2,0,0),C(0,2,0),C 1(0,2,4),()()22910160,,2,0,2,2,,0,0,255599m P t t t Q m m m PQ t m ⎛⎫⎛⎫⎡⎤⎤⎡∈-∈∴=-+-+ ⎪ ⎪⎦⎣⎣⎦⎝⎭⎝⎭当且仅当1059t m ==时,PQ 取最小值43,选C . 8.【陕西省西安市长安区一中2017-2018上学期期末】已知正四棱柱1111ABCD A B C D -中,12,22AB CC ==, E 为1CC 的中点,则直线1AC 与平面BED 的距离为( )A . 1B .3C .2D . 2 【答案】A9.【河南省南阳市一中2017-2018上学期第四次月考】已知各项均不为零的数列{}n a ,定义向量()1,n n n c a a +=u u v ,(),1n b n n =+u u v, *N n ∈.下列命题中真命题是( )A . 若*N n ∀∈总有n n c b ⊥u u v u u v成立,则数列{}n a 是等比数列B . 若*N n ∀∈总有n n c b P u u v u u v成立,则数列{}n a 是等比数列C . 若*N n ∀∈总有n n c b ⊥u u v u u v成立,则数列{}n a 是等差数列D . 若*N n ∀∈总有n n c b P u u v u u v成立,则数列{}n a 是等差数列【答案】D10.【北京市海淀区2018届第一学期期末】已知正方体1111ABCD A B C D -的棱长为2,点M 是棱BC 的中点,点P 在底面ABCD 内,点Q 在线段11A C 上,若1PM =,则PQ 长度的最小值为_____. 33【解析】 由题意得,过点Q 作QN ⊥平面ABCD ,垂足为N , 在点N 在线段AC 上,分别连接,PQ PN , 在直角PNQ ∆中, ()222242PQ QN PN PN =+=+在平面ABCD 内过点M 作MA AC ⊥,则2MA =,即M 到直线AC 的最短距离为2, 又1PM =,当P MA ∈时,此时min 11PN MA =-=, 所以PQ 的最小值为()22min 42133PQ =+=11.【广西桂林市、贺州市2018届上学期期末联考】把长AB 和宽AD 分别为32的长方形ABCD 沿对角线AC 折成B AC D --的二面角()0θθπ<<,下列正确的命题序号是__________. ①四面体ABCD 外接球的体积随θ的改变而改变; ②BD 的长度随θ的增大而增大;③当2πθ=时,BD 长度最长;④当23πθ=时, BD 长度等于13. 【答案】②④12.【山西省太原十二中2018届上学期1月月考】在四棱锥P ABCD -中, PC ⊥底面ABCD ,底面为正方形, //QA PC , PBC AQB ∠=∠= 60o ,记四棱锥P ABCD -的外接球与三棱锥B ACQ -的外接球的表面积分别为12,S S ,则21S S =___. 【答案】15713.【辽宁省沈阳市郊联体2017-2018上学期期末考试】对于四面体ABCD ,有以下命题:(1)若AB AC AD ==,则过A 向底面BCD 作垂线,垂足为底面ABC ∆的外心;(2)若AB CD ⊥, AC BD ⊥,则过A 向底面BCD 作垂线,垂足为底面ABC ∆的内心;(3)四面体A BCD -的四个面中,最多有四个直角三角形;(4)若四面体A BCD -的6条棱长都为1,则它的内切球的表面积为6π. 其中正确的命题是__________.【答案】()()()134【解析】对于①,设点A 在平面BCD 内的射影是O ,因为AB=AC=AD ,所以OB=OC=OD ,则点A 在底面BCD 内的射影是△BCD 的外心,故①正确;对于②设点A 在平面BCD 内的射影是O ,则OB 是AB 在平面BCD 内的射影,因为AB⊥CD,根据三垂线定理的逆定理可知:CD⊥OB 同理可证BD⊥OC,所以O 是△BCD 的垂心,故②不正确;对于③:如图:直接三角形的直角顶点已经标出,直角三角形的个数是4.故③正确;14.【湖南师范大学附属中学2018届上学期月考】如图所示,在棱长为6的正方体1111ABCD A B C D 中,点,E F 分别是棱11C D , 11B C 的中点,过A , E , F 三点作该正方体的截面,则截面的周长为__________.【答案】61332+15.【河北衡水金卷2018届高考模拟一】如图,在直角梯形ABCD 中, AB BC ⊥, //AD BC , 112AB BC AD ===,点E 是线段CD 上异于点C , D 的动点, EF AD ⊥于点F ,将DEF ∆沿EF 折起到∆ PEF 的位置,并使PF AF ⊥,则五棱锥P ABCEF -的体积的取值范围为__________.【答案】10,3⎛⎫ ⎪⎝⎭【解析】,,PF EF PF AF EF AF F ⊥⊥⋂=Q , PF ∴⊥平面ABCEF ,设()01DF x x =<<,则,2,EF x FA x ==- ABCEF ABCD DEF S S S ∆∴=- ()()221111213,222x x =+⨯-=-∴五棱锥P ABCDEF -的体积()()()2311133326V x x x x x =⨯-⋅=-, ()()21'102V x x =-=,得1x =或1x =-(舍去),当01x <<时, ()()'0,V x V x >单调递增,故()()()01V V x V <<,即()V x 的取值范围是10,3⎛⎫ ⎪⎝⎭,故答案为10,3⎛⎫ ⎪⎝⎭. 16.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是线段AB 、AD 、AA 1的中点,又P 、Q 分别在线段A 1B 1、A 1D 1上,且A 1P =A 1Q =x (0<x <1).设平面MEF ∩平面MPQ =l ,现有下列结论:①l ∥平面ABCD ;②l ⊥AC ;③直线l 与平面BCC 1B 1不垂直;④当x 变化时,l 不是定直线.其中不成立的结论是________.(写出所有不成立结论的序号)【答案】④17.【山东省济南市长清第一中学大学科技园校区2017- 2018第三次阶段性质量检测】设平面//α平面β,A 、C a ∈,B 、D β∈,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,8AS =,6BS =,12CS =,则SD =__________.【答案】9【解析】根据题意做出如下图形:∵AB,CD 交于S 点∴三点确定一平面,所以设ASC 平面为n ,于是有n 交α于AC ,交β于DB ,∵α,β平行,∴AC∥DB,∴△ASC∽△DSB, ∴AS SB =CS SD, ∵AS=8,BS=6,CS=12,∴8126SD =解得SD=9. 故答案为918.【湖南师范大学附属中学2017-2018上学期第二次阶段性检测】对定义在区间D 上的函数()f x ,若存在常数0k >,使对任意的x D ∈,都有()()f x k f x +>成立,则称()f x 为区间D 上的“k 阶增函数”.已知()f x 是定义在R 上的奇函数,且当0x ≥ , ()22f x x a a =--.若()f x 为R 上的“4阶增函数”,则实数a 的取值范围是__________.【答案】()1,1-。

相关文档
最新文档