正余弦定理的综合运用

合集下载

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用

余弦定理和正弦定理的应用余弦定理和正弦定理是初中数学中非常重要的定理,它们在解决三角形相关问题时起到了至关重要的作用。

在本文中,我将为大家详细介绍余弦定理和正弦定理的应用,并通过实例来说明它们的实用性和重要性。

一、余弦定理的应用余弦定理是用来求解三角形的边长或角度的定理。

它的数学表达式为:c² = a²+ b² - 2abcosC,其中a、b、c为三角形的边长,C为夹角。

1. 求解三角形的边长假设我们已知一个三角形的两边和它们之间的夹角,想要求解第三边的长度。

这时,我们可以利用余弦定理来解决这个问题。

例如,已知一个三角形的两边长分别为5cm和8cm,夹角为60°,我们可以利用余弦定理来计算第三边的长度。

根据余弦定理,我们可以得到c² = 5² + 8² - 2×5×8×cos60°,即c² = 25 + 64 -80cos60°。

进一步计算可得c² = 89 - 80cos60°,再开方可得c ≈ 2.92cm。

因此,这个三角形的第三边长约为2.92cm。

2. 求解三角形的角度除了求解边长外,余弦定理还可以用来求解三角形的角度。

例如,已知一个三角形的三边长分别为3cm、4cm和5cm,我们可以利用余弦定理来计算它的夹角。

根据余弦定理,我们可以得到cosC = (3² + 4² - 5²) / (2×3×4),即cosC = (9 + 16 - 25) / 24。

计算可得cosC = 0,因此C的值为90°。

通过以上两个例子,我们可以看到余弦定理在求解三角形边长和角度时的实用性和重要性。

它为我们解决各种三角形相关问题提供了有力的工具。

二、正弦定理的应用正弦定理是用来求解三角形的边长或角度的定理。

正、余弦定理及应用举例

正、余弦定理及应用举例

02
余弦定理
定义与性质
定义
余弦定理是三角形中的重要定理,它 描述了三角形三边与其对应角的余弦 值之间的关系。
性质
余弦定理具有对称性,即交换任意两 边及其对应的角,定理仍然成立。此 外,余弦定理还可以用来判断三角形 的形状。
证明方法
证明方法一
利用向量的数量积和向量模长的性质来 证明余弦定理。
VS
定理应用举例
总结词
正弦定理在解决三角形问题中具有广泛的应用,例如求三角形边长、角度等。
详细描述
利用正弦定理,我们可以解决许多三角形问题,例如求三角形的边长、角度等。例如,已知三角形的 两边及其夹角,我们可以利用正弦定理求出第三边的长度。此外,正弦定理还可以用于判断三角形的 解的个数和类型,以及解决一些几何作图问题。
正、余弦定理及应用 举例
目录
• 正弦定理 • 余弦定理 • 正、余弦定理的综合应用 • 正、余弦定理的扩展与推广 • 正、余弦定理在数学竞赛中的应用
01
正弦定理
定义与性质
总结词
正弦定理是三角形中一个基本的定理 ,它描述了三角形边长和对应角的正 弦值之间的关系。
详细描述
正弦定理是指在一个三角形中,任意 一边与其对应的角的正弦值的比等于 三角形外接圆的直径,也等于其他两 边与它们的对应角的正弦值的比。
证明方法二
通过作高线,将三角形转化为直角三角形 ,再利用勾股定理来证明余弦定理。
定理应用举例
应用一
已知三角形的两边及其夹角,求第三边。
应用二
判断三角形的形状。例如,如果一个三角形中存在两个角相等,则 这个三角形是等腰三角形。
应用三
解决一些实际问题,如测量、工程设计等。例如,在测量中,可以 利用余弦定理来计算两点之间的距离。

正、余弦定理及三角函数的综合应用

正、余弦定理及三角函数的综合应用
2.解斜三角形的类型
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角,进而求得其他边、角;
(3)已知三边,求三个角;
(4)已知两边和它们的夹角,求第三边和其他两个角.
在△ABC中,已知a、b和A时,解的情况如下:
考点一:利用正、余弦定理解三角形
8.(2010?宝鸡质检一)如右图,为了计算渭河岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点,现测得AD⊥CD,AD=100 m,AB=140 m,∠BDA=60°,∠BCD=135°,求两景点B与C之间的距离(假设A,B,C,D在同一平面内,测量结果保留整数;参数数据:2=1.414,3=1.732,5=2.236).
针对性练习:
已知△ABC中,sinC=sinA+sinBcosA+cosB,试判断△ABC的形状.考点三:三角形面积公式的应用
典型例题
已知△ABC中,cosA=63,a,b,c分别是角A、B、C的对边.
(1)求tan2A; (2)若sin(π2+B)=223,c=22,求△ABC的面积.知识概括、方法总结与易错点分析
(1)正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理运用,有时还需要交替使用.
(2)条件中出现平方关系多考虑余弦定理,出现一次式,一般要考虑正弦定理.
针对性练习:
1、在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cosA2=255,AB→?AC→=3.
(1)求△ABC的面积; (2)若b+c=6,求a的值.
(2)若sinB+sinC=1,试判断△BC中,角A,B,C所对的边分别为a,b,c,已知cos2C=-14.

正弦定理、余弦定理总结和应用

正弦定理、余弦定理总结和应用

§4.7正弦定理、余弦定理及其应用1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角恒等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R 是三角形外接圆的半径.(2)正弦定理的其他形式:①a=2R sin A,b=,c=;②sin A=a2R,sin B=,sin C=;③a∶b∶c=______________________.2.余弦定理(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a2=,b2=,c2=.若令C=90°,则c2=,即为勾股定理.(2)余弦定理的变形:cos A=,cos B=,cos C=.若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B +C=π.3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用____________定理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b解的个数①②③④(3)已知三边,用____________定理.有解时,只有一解.(4)已知两边及夹角,用____________定理,必有一解.4.三角形中的常用公式或变式(1)三角形面积公式S△===____________=____________=____________.其中R,r分别为三角形外接圆、内切圆半径.(2)A+B+C=π,则A=__________,A2=__________,从而sin A=____________,cos A=____________,tan A=____________;sinA2=__________,cosA2=__________,tanA2=________.tan A+tan B+tan C=__________.(3)若三角形三边a,b,c成等差数列,则2b=____________⇔2sin B=____________⇔2sinB2=cosA-C2⇔2cosA+C2=cosA-C2⇔tanA2tanC2=13.【自查自纠】1.(1)asin A=bsin B=csin C=2R(2)①2R sin B2R sin C②b2Rc2R③sin A ∶sin B ∶sin C2.(1)b 2+c 2-2bc cos A c 2+a 2-2ca cos B a 2+b 2-2ab cos C a 2+b 2(2)b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 22ab > <(3)互化 sin 2C +sin 2A -2sin C sin A cos B sin 2A +sin 2B -2sin A sin B cos C3.(1)正弦 (2)正弦 一解、两解或无解 ①一解 ②二解 ③一解 ④一解(3)余弦 (4)余弦 4.(1)12ab sin C 12bc sin A 12ac sin B abc 4R 12(a +b+c )r(2)π-(B +C ) π2-B +C 2sin(B +C ) -cos(B +C )-tan(B +C ) cos B +C 2 sin B +C21tanB +C 2tan A tan B tan C (3)a +c sin A +sin C在△ABC 中,A >B 是sin A >sin B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C .在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( )A .无解B .一解C .两解D .一解或两解解:由正弦定理知sin C =c ·sin B b =56,又由c >b >c sin B知,C 有两解.也可依已知条件,画出△ABC ,由图知有两解.故选C .(2013·陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若b cos C +c cos B =a sin A, 则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=sin A sin A ,亦即sin A =sin A sin A .因为0<A <π,所以sin A =1,所以A =π2.所以三角形为直角三角形.故选B .(2012·陕西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.解:由余弦定理知b 2=a 2+c 2-2ac cos B =22+()232-2×2×23×cos π6=4,b =2.故填2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解:∵sin B +cos B =2,∴2sin ⎝⎛⎭⎫B +π4=2,即sin ⎝⎛⎭⎫B +π4=1. 又∵B ∈(0,π),∴B +π4=π2,B =π4.根据正弦定理a sin A =b sin B ,可得sin A =a sin B b =12.∵a <b ,∴A <B .∴A =π6.故填π6.类型一 正弦定理的应用△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .解:由a +c =2b 及正弦定理可得sin A +sin C =2sin B .又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =2sin(A +C )=2sin(90°+2C )=2sin2(45°+C ).∴2sin(45°+C )=22sin(45°+C )cos(45°+C ), 即cos(45°+C )=12.又∵0°<C <90°,∴45°+C =60°,C =15°. 【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键.(2012·江西)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.解:(1)证明:对b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a 应用正弦定理得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A , 即sin B ⎝⎛⎭⎫22sin C +22cos C -sin C ⎝⎛⎭⎫22sin B +22cos B =22,整理得sin B cos C -sin C cos B =1,即sin ()B -C =1.由于B ,C ∈⎝⎛⎭⎫0,3π4,∴B -C =π2. (2)∵B +C =π-A =3π4,又由(1)知B -C =π2,∴B =5π8,C =π8.∵a =2,A =π4,∴由正弦定理知b =a sin B sin A =2sin5π8,c =a sin C sin A =2sin π8. ∴S △ABC =12bc sin A =12×2sin 5π8×2sin π8×22=2sin 5π8sin π8=2cos π8sin π8=22sin π4=12.类型二 余弦定理的应用在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c.(1)求B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. 解:(1)由余弦定理知,cos B =a 2+c 2-b 22ac ,cos C=a 2+b 2-c 22ab ,将上式代入cos B cos C =-b 2a +c得a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c , 整理得a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得13=42-2ac -2ac cos 23π,解得ac =3.∴S △ABC =12ac sin B =334.【评析】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1 D.23解:由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ,代入(a +b )2-c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =43.故选A .类型三 正、余弦定理的综合应用(2013·全国新课标Ⅱ)△ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.【评析】(1)化边为角与和角或差角公式的正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.(2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B=79. (1)求a ,c 的值; (2)求sin(A -B )的值.解:(1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2, cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429, 由正弦定理得sin A =a sin B b =223.因为a =c ,所以A 为锐角, 所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.类型四 判断三角形的形状在三角形ABC 中,若tan A ∶tan B =a 2∶b 2,试判断三角形ABC 的形状.解法一:由正弦定理,得a 2b 2=sin 2Asin 2B ,所以tan A tan B =sin 2A sin 2B,所以sin A cos B cos A sin B =sin 2A sin 2B ,即sin2A =sin2B .所以2A =2B ,或2A +2B =π,因此A =B 或A +B =π2,从而△ABC 是等腰三角形或直角三角形.解法二:由正弦定理,得a 2b 2=sin 2A sin 2B ,所以tan Atan B =sin 2A sin 2B ,所以cos B cos A =sin Asin B ,再由正、余弦定理,得a 2+c 2-b 22acb 2+c 2-a22bc=a b ,化简得(a 2-b 2)(c 2-a 2-b 2)=0,即a 2=b 2或c 2=a 2+b 2.从而△ABC 是等腰三角形或直角三角形. 【评析】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.(2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解:在△ABC 中,∵sin 2A +sin 2B <sin 2C ,∴由正弦定理知a 2+b 2<c 2.∴cos C =a 2+b 2-c 22ab <0,即∠C 为钝角,△ABC 为钝角三角形.故选C .类型五 解三角形应用举例某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20 n mile 的A 处,并以30 n mile/h 的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30 n mile/h ,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile ,则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900⎝⎛⎭⎫t -132+300, 故当t =13时,S min =103,此时v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30.故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C 处相遇.在Rt △OAC 中,OC =20cos30°=103,AC =20sin30°=10.又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .又∠OAD =60°,所以AD =DO =OA =20,解得t =23. 据此可设计航行方案如下:航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.证明如下:如图,由(1)得OC =103,AC =10,故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.设∠COD =θ(0°<θ<90°),则在Rt △COD 中, CD =103tan θ,OD =103cos θ.由于从出发到相遇,轮船与小艇所需要的时间分别为t =10+103tan θ30和t =103v cos θ,所以10+103tan θ30=103v cos θ. 由此可得,v =153sin (θ+30°).又v ≤30,故sin(θ+30°)≥32,从而,30°≤θ<90°. 由于θ=30°时,tan θ取得最小值,且最小值为33. 于是,当θ=30°时,t =10+103tan θ30取得最小值,且最小值为23.【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.(2012·武汉5月模拟)如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.解:(1)依题意,∠BAC =120°,AB =12,AC =10×2=20,在△ABC 中,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC =122+202-2×12×20×cos120°=784,BC =28.所以渔船甲的速度为v =282=14(海里/小时).(2)在△ABC 中,AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理得AB sin α=BC sin ∠BAC ,即12sin α=28sin120°,从而sin α=12sin120°28=3314.1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A +B +C =π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A =sin(B +C ),cos A =-cos(B +C ),sinA2=cosB +C2,sin2A =-sin2(B +C ),cos2A =cos2(B +C )等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.。

正余弦定理的综合应用

正余弦定理的综合应用

题型三 正、余弦定理在平面几何中的综合应用 例 3 如图所示,在梯形 ABCD 中,
AD∥BC,AB=5,AC=9, ∠BCA=30°,∠ADB=45°, 求 BD 的长. 思维启迪 由于 AB=5,∠ADB=45°,因此要求 BD, 可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB=5,AC=9,∠ACB=30°, 因此可用正弦定理求出 sin∠ABC,再依据∠ABC 与 ∠BAD 互补确定 sin∠BAD 即可.
又 AD⊥CD,∴∠CDB=30°, ∴BC=sin161035°·sin 30°=80 2≈113 (m). 即两景点 B 与 C 之间的距离约为 113 m.
题型二 测量高度问题 例 2 某人在塔的正东沿着南偏西 60°的方向前进 40 米后,望
见塔在东北方向,若沿途测得塔顶的最大仰角为 30°,求 塔高. 思维启迪 依题意画图,某人在 C 处, AB 为塔高,他沿 CD 前进,CD=40 米, 此时∠DBF=45°,从 C 到 D 沿途测塔的 仰角,只有 B 到测试点的距离最短时,仰 角才最大,这是因为 tan∠AEB=ABBE,AB 为定值,BE 最小时,仰角最大.要求出 塔高 AB,必须先求 BE,而要求 BE,需 先求 BD(或 BC).
解 在△ADC 中,AD=10,AC=14,DC=6, 由余弦定理得 cos∠ADC=AD2+2ADDC·D2-C AC2 =1002+ ×3160- ×1696=-12,∴∠ADC=120°,
∴∠ADB=60°.在△ABD 中,AD=10,∠B=45°,∠ADB=60°,
由正弦定理得sin∠ABADB=sAinDB,
解 在△ABC 中,AB=5,AC=9,∠BCA=30°. 由正弦定理,得sin∠ABBCA=sin∠ACABC, sin∠ABC=AC·sinA∠B BCA=9sin530°=190.

高中数学:正弦定理、余弦定理及应用教案苏教版必修

高中数学:正弦定理、余弦定理及应用教案苏教版必修

教案:高中数学——正弦定理、余弦定理及应用教案编写者:教学目标:1. 理解正弦定理、余弦定理的定义及几何意义;2. 掌握正弦定理、余弦定理的应用方法;3. 能够运用正弦定理、余弦定理解决实际问题。

教学重点:1. 正弦定理、余弦定理的定义及几何意义;2. 正弦定理、余弦定理的应用方法。

教学难点:1. 正弦定理、余弦定理在实际问题中的应用。

教学准备:1. 教师准备PPT、教案、例题及练习题;2. 学生准备笔记本、文具。

教学过程:一、导入(5分钟)1. 复习初中阶段学习的三角函数知识,引导学生回顾正弦、余弦函数的定义及图像;2. 提问:如何利用三角函数解决几何问题?引出正弦定理、余弦定理的学习。

二、正弦定理(15分钟)1. 讲解正弦定理的定义:在一个三角形中,各边和它所对角的正弦的比相等;2. 解释正弦定理的几何意义:三角形任意一边的长度等于这一边所对角的正弦值乘以对边的长度;3. 举例说明正弦定理的应用方法,如已知三角形两边和一边的对角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握正弦定理的应用。

三、余弦定理(15分钟)1. 讲解余弦定理的定义:在一个三角形中,各边的平方和等于两边的平方和减去这两边与它们夹角的余弦的乘积的二倍;2. 解释余弦定理的几何意义:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦值的乘积的两倍;3. 举例说明余弦定理的应用方法,如已知三角形两边和它们的夹角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握余弦定理的应用。

四、应用练习(15分钟)1. 给学生发放练习题,要求学生在纸上完成;2. 学生在纸上完成练习题,教师巡回指导;3. 选取部分学生的作业进行讲解和点评。

1. 回顾本节课学习的正弦定理、余弦定理的定义及应用;2. 强调正弦定理、余弦定理在解决几何问题中的重要性;3. 提醒学生课后复习巩固,做好预习准备。

教学反思:本节课通过讲解正弦定理、余弦定理的定义及几何意义,让学生掌握了这两个重要定理的应用方法。

正弦定理和余弦定理综合

正弦定理和余弦定理综合

正弦定理和余弦定理综合 一、本课时目标要求:正弦定理和余弦定理综合运用二、预习作业1.正弦定理在一个三角形中,各边和它的所对角的正弦的比相等.形式一:________=________=________=2R (解三角形的重要工具),R 为三角形外接圆的半径; 形式二:⎩⎪⎨⎪⎧ a = ,b = ,c = ,R 为三角形外接圆的半径(边角转化的重要工具).2.余弦定理 三角形任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.形式一:a 2=__________________,b 2=__________________,c 2=__________________(解三角形的重要工具);形式二:cos A =________,cos B =________,cos C =_________.3.三角形形状判定方法角的判定、边的判定、综合判定、余弦定理判定;其中余弦定理判定法:如果c 是三角形的最大边,则a 2+b 2>c 2 ⇔ 三角形ABC 是锐角三角形;a 2+b 2<c 2 ⇔ 三角形ABC 是钝角三角形;a 2+b 2=c 2 ⇔三角形ABC 是直角三角形.题型一 判断三角形的形状例1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形(2012年上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定。

正弦定理和余弦定理综合应用

正弦定理和余弦定理综合应用

BC
a sin
a sin
sin 180o ( ) sin( )
α
δ
β
γ
D
C
计算出AC和BC后,再在ABC中,应用余弦定理计
算出AB两点间的距离
AB AC2 BC2 2AC BC cos
测量垂直高度
1、底部可以到达的
测量出角C和BC的长度,解直 角三角形即可求出AB的长。
借助于余弦定理可以计算出A、B两点间的距离。
C
解:测量者可以在河岸边选定两点C、D,测得CD=a, 并且在C、D两点分别测得∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.
在 ∆ADC和∆ BDC中,应用正弦定理得
B
a sin( )
a sin( ) A
AC
sin 180o ( ) sin( )
故sin B AC sin A 5 3 B 38o
BC 14
故我舰航行的方向为北偏东 50o 38o 12o
变式训练1:若在河岸选取相距40米的C、D两
点,测得 BCA= 60, ACD=30,CDB= 45, BDA= 60 求A、B两点间距离 .
注:阅读教材P12,了解基线的概念
1.2.1 应用举例
公式、定理
正弦定理:a b c 2R sin A sinB sinC
余弦定理:
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B
c2 a2 b2 2abcosC
三角形边与角的关系:
cos A b2 c2 a2 , 2bc
cos B c2 a2 b2 , 2ca
即sin9A0C°-α=sinBαC-β,∴AC=sBinCαco-s βα=sihncαo-s αβ. 在Rt△ACD中,CD=ACsin∠CAD=ACsin β=hscionsαα-sinββ.

正余弦定理的综合运用

正余弦定理的综合运用

正余弦定理的综合运用一、教材分析1.教学容:必修5第11.节正弦定理和余弦定理,根据课标要求本书该节共3课时,这是第3课时,其主要容是正余弦定理的综合运用。

2.地位作用:①高考考纲要求:掌握正余弦定理,并能够运用正余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

②高考考察趋势:斜三角形的边角关系以选择题或填空题给出一小题或难度较小的解答题。

二、学生学习情况分析学生在学习本节之前已经分别学习过正弦定理和余弦定理,但学生只是停留在对正弦定理和余弦定理的初步认知阶段,对什么情况下用正弦定理、什么情况下用正弦定理未作进一步的研究,对三角形的边角互换未作进一步的探索。

另外高二学生经过了一年半的高中学习之后,已初步具有了发现和探究问题的能力,这为本节学习奠定了一定的根底。

三、教学过程〔一〕课前预习导学1.学习目标〔1〕、进一步熟悉正余弦定理容,并能运用定理解决一些简单的实际问题。

〔2〕、通过正余弦定理综合运用的学习,提高解决实际问题的能力,进一步体会转化化归的数学思想。

〔3〕、通过一题多解、一题多变的训练,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功。

2.教学重点和难点:〔1〕教学重点:利用正余弦定理进展边角互换。

〔2〕教学难点:利用正余弦定理进展边角互换时的转化方向。

3.教学方法:探析归纳,讲练结合 4.自主预习〔1〕知识梳理:正弦定理:2sin sin sin a b cR A B C===〔R 为ABC ∆的外接圆半经〕 正弦定理常见变形公式:①边化角:2sin ,2sin ,2sin a R A b R B c R C === ②角化边:sin ,sin ,sin 222a b cA B C R R R===③比例:::sin :sin :sin a b c A B C = 余弦定理:2222cos a b c bc A =+- 余弦定理常见变形公式:222cos 2b c a A bc +-=,222cos 2c a b B ca +-=,222cos 2a b c C ab+-=求角、判别角、边角互化 〔2〕预习检测:1.在△ABC 中,30,120c B C ===,那么______b =2.【2012文】在ABC ∆中,角A,B,C 所对应的长分别为,,a b c ,假设2a = ,6B π=,c =,那么________b =3.在ABC ∆中,假设7a =,3b =,5c =,那么_________A = 4.在△ABC 中,cos cos b A a B =,那么三角形为〔 〕A 、直角三角形B 、锐角三角形C 、等腰三角形D 、等边三角形〔二〕预习检测反缋1.在△ABC 中,30,120c B C ===,那么______b =解:由正弦定理sin sin =b cB C得 小结:两角及其中一个角的对边,选用正弦定理.变式1:在△ABC 中,1,30c b B ===,那么_________A =解:由正弦定理sin sin =b cB C得 ∵>c b ,∴>C B ,∴=C 60或120=C . ∴90=A 或30=A .小结:两边和一边对角,用正弦定理求另一个角,但需要进展讨论,有两解的可能。

正弦定理余弦定理综合应用_解三角形经典例题(老师)

正弦定理余弦定理综合应用_解三角形经典例题(老师)

222cos 2b c a A bc +-= 222c o s 2a c b B ac +-= 222c o s 2a b c C ab +-=二、方法归纳(1) (1)已知两角已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b cA B C ==,可求出角C ,再求b 、c .(2) (2)已知两边已知两边b 、c 与其夹角A ,由a 22=b 22+c 22-2b c cosA ,求出a ,再由余弦定理,求出角B 、C .(3) (3)已知三边已知三边a 、b 、c,由余弦定理可求出角A 、B 、C .(4) (4)已知两边已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a bA B =,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a bA B =求B 时,可能出一解,两解或无解的情况时,可能出一解,两解或无解的情况a =b sinA 有一解有一解 b >a >b sinA 有两解有两解 a ≥b 有一解有一解 a >b 有一解三、课堂精讲例题问题一:利用正弦定理解三角形 【例1】在ABC D 中,若5b =,4B pÐ=,1sin 3A =,则a = .523一、知识梳理1.内角和定理:在ABC D 中,A B C ++=p ;sin()A B +=sin C ;cos()A B +=cos C -面积公式:111sin sin sin 222ABCSab Cbc Aac BD ===在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所各边和它的所对角对角的正弦的比相等. 形式一:RCc Bb Aa2sin sin sin ===(解三角形的重要工具) 形式二:ïîïíì===CR c B R b AR a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四:sin ,sin ,sin 222abc A B C RRR ===3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+- 2222c o s b c a c a B =+- 2222cos c a b ab C =+-(解三角形的重要工具) 形式二:sinA=b B a sin =245sin 3°=23, 则A 为6060°或°或120120°°.①当A=60A=60°时,°时,°时,C=180C=180C=180°°-(A+B)=75-(A+B)=75°°,c=B Cb sin sin =°°45sin 75sin 2=°°+°45sin )3045sin(2=226+.②当A=120A=120°时,°时,°时,C=180C=180C=180°°-(A+B)=15-(A+B)=15°°,c=B C b sin sin =°°45sin 15sin 2=°°-°45sin )3045sin(2=226-. 故在△故在△ABC ABC 中,中,A=60A=60A=60°°,C=75,C=75°°,c=226+或A=120A=120°°,C=15,C=15°°, c =226-. 【思考】从所得到式子看,为什么会有两解:sinA 只有2x p=一解。

2022数学集训32正弦定理余弦定理的综合应用理含解析

2022数学集训32正弦定理余弦定理的综合应用理含解析

课后限时集训(三十二)正弦定理、余弦定理的综合应用建议用时:40分钟一、选择题1.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°B[如图所示,由AC=BC得∠CAB=∠CBA=45°.利用内错角相等可知,点A位于点B的北偏西15°,故选B.]2.在200 m高的山顶上,测得山下一塔顶与塔底俯角分别为30°,60°,则塔高为()A.错误!m B.错误!mC.错误!m D.错误!mA[如图,由已知可得∠BAC=30°,∠CAD=30°,∴∠BCA=60°,∴∠ACD=30°,∴∠ADC=120°,又AB=200 m,∴AC=错误!m。

在△ACD中,由正弦定理,得错误!=错误!,即DC=AC·sin 30°sin 120°=错误!(m).]3.(2020·武昌区模拟)一艘海轮从A处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C 处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.62海里B.6错误!海里C.8错误!海里D.8错误!海里A[由题意可知:∠BAC=70°-40°=30°,∠ACD=110°,∴∠ACB=110°-65°=45°,∴∠ABC=180°-30°-45°=105°。

又AB=24×0。

5=12,在△ABC中,由正弦定理得错误!=错误!,即错误!=错误!,∴BC=6错误!,故选A.]4.已知△ABC的内角A,B,C的对边分别为a,b,c,且cos 2A+cos 2B=2cos 2C,则cos C的最小值为()A.错误!B.错误!C.错误!D.-错误!C[因为cos 2A+cos 2B=2cos 2C,所以1-2sin2A+1-2sin2B=2-4sin2C,得a2+b2=2c2,cos C=错误!=错误!≥错误!=错误!,当且仅当a=b时等号成立,故选C.]5.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知(a+b-c)(a+b+c)=3ab,且c=4,则△ABC面积的最大值为()A.8错误!B.4错误!C.2错误!D.错误!B[由已知等式得a2+b2-c2=ab,则cos C=错误!=错误!=错误!。

正、余弦定理在实际中的应用应用题

正、余弦定理在实际中的应用应用题

正、余弦定理在实际中的应用应用题正弦定理和余弦定理是三角形中的重要定理,它们在实际问题中有着广泛的应用。

下面将通过几个例子来说明它们在实际问题中的应用。

例1:一座山的高度是100米,从山顶到山脚的水平距离是500米。

现在我们要在山脚处建造一座高塔,使得从山顶到塔顶的视角恰好等于直角的一半(即45度)。

求塔的高度。

h/sin45° = 500/sin90°因为 sin45° = √2/2, sin90° = 1,例2:一座大桥的桥面宽度为 10米,桥下水流的深度为 2米。

为了使桥下水的流速达到每秒 5米,现要在桥边修建一条人行道,要求人行道的宽度为 3米。

问人行道的长度应该是多少?解:设人行道的长度为 L米。

由余弦定理得:L2 = (10 - 3)2 + (2 + 5)2 - 2 ×(10 - 3)×(2 + 5)× cos30°= 9 + 67 - 2 ×(10 - 3)×(2 + 5)× cos30°= 76 - 2 ×(10 - 3)×(2 + 5)×(√3/2)= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (10 - 3)×(2 + 5)×(√3/2)× 2= 76 - (17 ×√3)×(√3/2)× 2答:人行道的长度为 25米。

本节课是介绍余弦定理和正弦定理的内容。

这两个定理是三角学的基本定理,对于理解三角形的属性和解决三角形的问题有着重要的意义。

余弦定理和正弦定理的发现和证明,也体现了数学中普遍存在的一种方法——归纳法。

通过本节课的学习,学生将更好地理解三角形的属性和解三角形的方法,同时也能提高他们的数学思维能力和推理能力。

专题一(正余弦定理的综合运用)

专题一(正余弦定理的综合运用)
力学问题
涉及力、速度、加速度等物理量的计算,如求解 物体在斜面上的支持力、分析刚体的平衡状态等。
3
电磁学问题
涉及电场、磁场等物理场的计算,如求解带电粒 子在磁场中的运动轨迹、计算电磁感应现象中的 感应电动势等。
建模方法和步骤介绍
确定问题类型
根据实际问题背景,确定问题 的类型和所属领域。
建立数学模型
a:sinA = b:sinB = c:sinC,也可以简单理解为边长与对应角的正弦值成正比。余弦Biblioteka 理定义及表达式余弦定理定义
在一个三角形中,任何一边的平方等于其他两边平方的和减去 这两边与它们夹角的余弦的积的两倍,即 a² = b² + c² 2bc·cosA(其中a、b、c为三角形三边,A为边a所对的角)。
分析题目中的已知条件和所求,明确解题目 标。
灵活转化边角
利用三角函数的基本关系和诱导公式,实现 边角之间的灵活转化。
合理选择公式
根据题目特点,选择适当的正余弦定理公式 进行求解。
细心求解过程
注意计算过程中的细节和技巧,避免计算错 误。
难点和易错点提示
难点
如何准确理解题意并建立数学模 型;如何选择适当的公式进行求 解;如何实现边角之间的灵活转 化。
图形结合法思想介绍
01
图形结合法是一种将几何图形与代数方程相结合来解决问题的 方法。
02
在正余弦定理中,通过绘制三角形或其他相关图形,将已知条
件和未知量直观地表示出来,有助于理解和解决问题。
图形结合法强调直观性和形象性,能够帮助学生更好地理解正
03
余弦定理的几何意义和代数表达。
具体案例分析
案例一
专题一:正余弦定理的综合运用

正余弦定理的综合应用

正余弦定理的综合应用
角度。
06
正余弦定理在其他数学分支中的 应用
在微积分中的应用
01
解决极值问题
利用正余弦定理,可以推导出极 值条件,进而解决一些微积分中 的极值问题。
02
求解面积和体积
03
求解微分方程
正余弦定理可以用于计算一些与 三角函数相关的图形的面积和体 积。
通过正余弦定理,可以建立一些 微分方程的解与三角函数之间的 关系,从而求解微分方程。
详细描述
在三角函数中,正余弦定理可以表示为:对于任意三角 形ABC,有c^2=a^2+b^2-2abcosC, a^2=b^2+c^2-2bccosA,b^2=a^2+c^2-2accosB。 利用这三个公式,我们可以求出三角形的边长和角度, 进一步解决与三角形的边和角相关的问题。
正余弦定理与三角恒等式的关系
详细描述
正弦定理是指在一个三角形ABC中, 边长a、b、c与对应的角A、B、C的正 弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
余弦定理的定义
总结词
余弦定理是另一个重要的三角形定理,它通过三角形的边长来计算角的余弦值。
详细描述
在线性代数中的应用
矩阵运算
正余弦定理可以用于计算一些特殊矩阵的行列式和特 征值。
向量分析
在向量分析中,正余弦定理可以用于计算向量的模长、 向量的点积和向量的叉积。
线性变换
利用正余弦定理,可以研究线性变换的性质和特征。
在概率论和统计学中的应用
概率分布
正余弦定理可以用于推导一些与 三角函数相关的概率分布的性质 和特征。
余弦定理是指在一个三角形ABC中,边长a、b、c与角A、B、C的余弦值之间有 关系式:$c^2 = a^2 + b^2 - 2abcos C$。

正、余弦定理的综合应用

正、余弦定理的综合应用

正、余弦定理的综合应用1.5知识梳理正弦定理:,其中为外接圆的半径。

利用正弦定理,可以解决以下两类有关三角形的问题. 已知两角和任一边,求其他两边和一角;已知两边和其中一边的对角,求另一边的对角.余弦定理:余弦定理:;;.在余弦定理中,令c=90°,这时cosc=0,所以c2=a2+b2. 余弦定理的推论:;;.利用余弦定理,可以解决以下两类有关三角形的问题:已知三边,求三个角;已知两边和它们的夹角,求第三边和其他两个角.三角形面积公式:==三角形的性质:①.A+B+c=,,,②.在中,>c,<c;A>B>,A>BcosA<cosB,a>bA>B③.若为锐角,则>,B+c>,A+c>;>,>,+>若给出那么解的个数为:,几何作图时,存在多种情况.如已知a、b及A,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:A为锐角一解两解一解若,则无解;当A≥90若a>b,则一解若a≤b,则无解典例剖析题型一三角形多解情况的判断例1.根据下列条件,判断有没有解?若有解,判断解的个数.,求;,求;,求;,求;,求.解:∵,∴只能是锐角,因此仅有一解.∵,∴只能是锐角,因此仅有一解.由于为锐角,而,即,因此仅有一解.由于为锐角,而,即,因此有两解,易解得.由于为锐角,又,即,∴无解.评析:对于已知两边和其中一边的对角,解三角形问题,容易出错,一定要注意一解、两解还是无解。

这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。

题型二正、余弦定理在函数中的应用例2在△ABc中,AB=5,Ac=3,D为Bc中点,且AD =4,求Bc边长.分析:此题所给题设条件只有边长,应考虑在假设Bc 为x后,建立关于x的方程.而正弦定理涉及到两个角,故不可用.此时应注意余弦定理在建立方程时所发挥的作用.因为D为Bc中点,所以BD、Dc可表示为x2,然后利用互补角的余弦互为相反数这一性质建立方程.解:设Bc边为x,则由D为Bc中点,可得BD=Dc=x2,在△ADB中,cosADB=AD2+BD2-AB22AD•BD=42+2-522×4×x2在△ADc中,cosADc=AD2+Dc2-Ac22AD•Dc=42+2-322×4×x2又∠ADB+∠ADc=180°∴cosADB=cos=-cosADc.∴42+2-522×4×x2=-42+2-322×4×x2解得,x=2所以,Bc边长为2.评述:此题要启发学生注意余弦定理建立方程的功能,体会互补角的余弦值互为相反数这一性质的应用,并注意总结这一性质的适用题型.备选题例3在△ABc中,已知,求△ABc的面积.解法1:设AB、Bc、cA的长分别为c、a、b,故所求面积解法3:同解法1可得c=8.又由余弦定理可得故所求面积评析:本小题主要考查正弦定理、余弦定理和三角形面积公式等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力.点击双基一.选择题:在中,,则A为解:答案:A在解:由题意及正弦定理可得答案:B以4、5、6为边长的三角形一定是A.锐角三角形B.直角三角形c.钝角三角形D.锐角或钝角三角形解::长为6的边所对角最大,设它为则答案A在中,化简___________解:利用余弦定理,得原式答案:a在中,,则_______,________解:又答案:课外作业一、选择在中,,则A等于解:由余弦定理及已知可得答案:c在△ABc中,已知b=40,c=20,c=60,则此三角形的解的情况是A.有一解B.有两解c.无解D.有解但解的个数不确定解:bsinc=20>c,无解答案:c在中,,则三角形为A.直角三角形B.锐角三角形c.等腰三角形D.等边三角形解:由余弦定理可将原等式化为答案c在中,,则是A.锐角三角形B.直角三角形c.钝角三角形D.正三角形解:原不等式可变形为答案:c在△ABc中,若,则其面积等于ABcD解:答案:D在△ABc中,角均为锐角,且则△ABc的形状是A直角三角形B锐角三角形c钝角三角形D等腰三角形解:都是锐角,则答案:c在△ABc中,cos=,则△ABc的形状是A.正三角形B.直角三角形c.等腰三角形或直角三角形D.等腰直角三角形解:原式可化为=,cosA+1=cosA=由余弦定理,得,a△ABc为直角三角形答案:B在△ABc中,A=,Bc=3,则△ABc的周长为A.4B.4c.6D.6解:,==2=2,b+c==2)==2=6a+b+c=6答案:D二.填空题:在中,已知,则___________解:由正弦定理得设1份为,则再由余弦定理得答案:0.在中,A、B均为锐角,且,则是_________解:由得A、B均为锐角,而在上是增函数即答案:钝角三角形1.三角形的两边分别为5和3,它们夹角的余弦是方程的根,则三角形的另一边长为解:由题意得或2答案:2三.解答题:.根据下列条件,判断是否有解?有解的做出解答.①a=7,b=8,A=105②a=10,b=20,A=80③b=10,c=5,c=60④a=2,b=6,A=30解:①a=7,b=8,a90本题无解②a=10,b=20,a20sin60=10absinA本题有两解由正弦定理得sinB===B=60或120当B=60时,c=90,c===4当B=120时,c=30,c===2B=60,c=90,c=4或B=120,c=30,c=23:在中,,,,求的值和的面积.解,又14.已知的外接圆半径是,且满足条件。

知识讲解_正余弦定理在解三角形中的应用_基础

知识讲解_正余弦定理在解三角形中的应用_基础

3、正弦、余弦定理在三角形中的应用【学习目标】1.进一步巩固正弦定理和余弦定理,并能综合运用两个定理解决三角形的有关问题;2.学会用方程思想解决有关三角形的问题,提高综合运用知识的能力和解题的优化意识.【要点梳理】要点一、正弦定理和余弦定理的概念①正弦定理公式:2sin sin sin a b c R A B C===(其中R 表示三角形的外接圆半径) ②余弦定理公式:第一形式:2222222222cos 2cos 2cos a b c bc Ab ac ac Bc a b ab C=+-=+-=+-第二形式: 222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab+-=+-=+-= 要点二、三角形的面积公式① 111222ABC a b c S a h b h c h ∆=⋅=⋅=⋅; ②111sin sin sin 222ABC S bc A ab C ac B ∆===; 要点三、利用正、余弦定理解三角形已知两边和一边的对角或已知两角及一边时,通常选择正弦定理来解三角形;已知两边及夹角或已知三边时,通常选择余弦定理来解三角形.特别是求角时尽量用余弦定理来求,尽量避免分类讨论.在ABC ∆中,已知,a b 和A 时,解的情况主要有以下几类:①若A 为锐角时:a bsin A a bsin A ()bsin A a b ()a b ()<⎧⎪=⎪⎨<<⎪⎪≥⎩无解一解直角二解一锐,一钝一解锐角A b a sin = b a ≥一解 一解b a A b <<sin sin a b A <两解 无解②若A 为直角或钝角时:a b a b ()≤⎧⎨>⎩无解一解锐角要点四、三角形的形状的判定特殊三角形的判定:(1)直角三角形勾股定理:222a b c +=,互余关系:090A B +=,cos 0C =,sin 1C =;(2)等腰三角形 a b =,A B =;用余弦定理判定三角形的形状(最大角A 的余弦值的符号)(1)在ABC ∆中,22200222090cos 02b c a A A b c a bc +-<<⇔=>⇔+>; (2)在ABC ∆中,22222290cos 02b c a A A b c a bc +-=⇔==⇔+=; (3)在ABC ∆中,22222290cos 02b c a A A b c a bc +-<⇔=<⇔+<; 要点五、解三角形时的常用结论在ABC ∆中,0180A B C ++=,0902A B C ++= (1)在ABC ∆中sin sin cos cos ;A B a b A B A B >⇔>⇔>⇔<(2)互补关系:0sin(A+B)=sin(180)sinC C -=,0cos(A+B) cos (180)cosC C =-=-,0tan(A+B) tan(180)tan C C =-=-;(3)互余关系:0sin sin (90)cos 222A B C C +=-=, 0cos cos(90)sin 222A B C C +=-=, 0tan tan (90)cot 222A B C C +=-=.【典型例题】类型一:利用正、余弦定理解三角形例1. 在ABC ∆中,已知下列条件,解三角形.(1)10a =, b =, 45A =︒;(2)=a c 45B =︒.【思路点拨】(1)题中利用正弦定理先求B ,再求C 和c ;(2)题中利用余弦定理求b ;求A 可以利用余弦定理,也可以利用正弦定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2
2
求C角的大小。
解:由已知得
1 2ab cos C ab sin C 2 4
sin C cosC,即 tan C 1
C 45

题型三、关于三角形的综合问题
例、在△ABC 中,a,b,c 分别是角 A,B,C 的对边,
3 →· → =-21. cos B= ,且AB BC 5 (1)求△ABC 的面积; (2)若 a=7,求角 C.
3 sin A A 60 或120 2
1 变式2、在△ABC中,a 2, b 3,cos C , 3 求△ABC的面积。
S ABC 2 2
a b c 变式3、已知△ABC的面积 S 4
2 2
2
求C角的大小。

a b c 变式3、已知△ABC的面积 S 4
我来试试
在△ABC 中,内角 A、B、C 的对边分别为 a、b、c,已知 3 2 b =ac 且 cos B= . 4 1 1 (1)求 + 的值; tan A tan C 3 → → (2)设BA· BC= ,求 a+c 的值. 2 3 3 7 2 解 (1)由cos B= ,得sin B= 1- 4 = . 4 4
3 3 → → (2)由BA· BC= 得ca· cos B= , 2 2
3 由 cos B= ,可得 ca=2,即 b2=2. 4 由余弦定理b2=a2+c2-2ac· cos B,
得a2+c2=b2+2ac· cos B=5, ∴(a+c)2=a2+c2+2ac=5+4=9,∴a+c=3.
小结:
我来试试
根据下列条件,分别判断 ABC 的形状.
(1)
sin 2 A sin 2 B sin 2 C
a cos B b cos A
(2)
(3) a cos A b cos B
题型二、面积问题


3 变式1、△ABC的面积为 , 且b 2, c 3 求A。 2
3.余弦定理及其推论
2 2 b + c -2bccos A. (1)a =
2
b2+c2-a2 (2)cos A= 2bc . 直角 ;c2>a2+b2⇔C 为 (3)在△ABC 中, c2=a2+b2⇔C 为
钝角;c2<a2+b2⇔C 为锐角 . _____
4.三角形常用面积公式
1 (1)S= 2aha (ha 表示 a 边上的高); 1 1 1 ac sin B ab sin C (2)S= 2 = 2 = 2bcsin A ;
(4) a
3 120 sABC =___ 7,则C=___, 2

0
3或5 sABC =___ 8, b 7, B 60 ,则c =___,
6 3或 10 3
题型一:判断三角形形状
例、在△ABC 中,已知(a+b+c)(b+c-a)=3bc,
且 sin A=2sin Bcos C,试确定△ABC 的形状.
由b2=ac及正弦定理得sin2B=sin Asin C.
1 1 cos A cos C sin Ccos A+cos Csin A 于是tan A+tan C= sin A + sin C = sin Asin C
sinA+C sin B 1 4 7 = sin2B =sin2B=sin B= 7 .
1、学会利用正弦、余弦定理解决两类题型: (1) 判断三角形的形状; (2) 三角形中的求面积问题。 2、两种题型思路的共同点就是从“统一”着眼, 或统一转化为三角函数,作三角变换;
或统一转化为边,作代数变换。 3、解三角形中的求值题时还要注意综合运用 三角形的有关性质和三角公式进行变形。 4、本节课渗透的主要数学思想:
正弦定理、余弦定理
综合运用
1.在△ABC 中,边 a、b、c 所对的角分别为 A、B、C,则有 A+B π-C (1)A+B+C= π , = 2 2. 2 (2)sin(A+B)= sin C ,cos(A+B)=-cos C , tan(A+B)=-tan C . C A+B A+B sin C cos 2 (3)sin = ,cos = 2 2 2
转换的思想和方程的思想
.
2.正弦定理及其变形 a b c (1) = = = . sin A sin B sin C 2R
2Rsin C . (2)a= 2Rsin A ,b=2Rsin B ,c=
b c a (3)sin A= 2R ,sin B= 2R ,sin C= 2R . (4)sin A∶sin B∶sin C= a∶b∶c .
小题巧练
在ABC 中,解决下列问题
3 3 4 =___
3 s (1) b 2, A 600 , C 750, 则a =___, ABC
4 3 6 =___, sABC =___ (2) a 5, b 4, cos C ,则c 5
(3) a 1, b 2, c
相关文档
最新文档