求解函数解析式的几种常用方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解函数解析式的几种常用方法 高考要求 求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力 重难点归纳 求解函数解析式的几种常用方法主要有
1、换元法:已知))((x g f 的表达式,欲求)(x f ,我们常设)(x g t =,从而求得)(1t g x -=,然后代入))((x g f 的表达式,从而得到)(t f 的表达式,即为)(x f 的表达式。
2、凑配法
若已知))((x g f 的表达式,欲求)(x f 的表达式,用换元法有困难时,(如)(x g 不存在反函数)可把)(x g 看成一个整体,把右边变为由)(x g 组成的
3、待定系数法
若已知)(x f 的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得)(x f 的表达式。 式子,再换元求出)(x f 的式子。
4、赋值法
在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法
5、消元法
若已知以函数为元的方程形式,若能设法构造另一个方程,组成
方程组,再解这个方程组,求出函数元,称这个方法为消元法。 典型题例示范讲解 例1 如果45)1(2+-=+x x x f ,那么f(x)=______________________.
例2 设二次函数f(x)满足f(x-2)=f(-x-2),且图像在y 轴上的截距为1,被x 轴截得的线段长为22,求f(x)的解析式。
例 3 设y=f(x)是实数函数,且x x
f x f =-)1(2)(,求证:23
2|)(|≥x f 。 例4 已知bx x f x af n n =-+)()(,其中n a ,12≠奇数,试求)(x f 。 例5 已知)12()()(+++=+b a a b f b a f ,且,1)0(=f 求)(x f 的表达式。
解:令0=b ,由已知得:.1)1()0()(2a a a a f a f ++=++=
1)(2++=∴x x x f
例6 (1)已知函数f (x )满足f (log a x )=)1(1
2x x a a -- (其中a >0,a ≠1,x >0),求f (x )的表达式
(2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求
f (x )的表达式
命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应法则,以及计算能力和综合运用知识的能力
知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域
错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错
技巧与方法 (1)用换元法;(2)用待定系数法
解 (1)令t=log a x (a >1,t >0;0 因此f (t )=1 2-a a (a t -a -t ) ∴f (x )=1