钢板桩围堰设计

合集下载

钢板桩围堰设计计算书

钢板桩围堰设计计算书

钢板桩围堰设计计算书钢板桩围堰设计计算书1 ⼯程概况本⽅案陆地承台基坑开挖深度在3.0-5.0⽶之间,基坑开挖⽀护结构受⼒计算选择基坑最深、地质条件最差的最不利⼯况条件下进⾏受⼒计算。

本线路沿线地层以冲积、洪积、海积及海陆交互相沉积的粘性⼟、粉⼟、各类砂、软⼟为主,局部夹淤泥。

⼟层分层计算⼟压⼒,粘性⼟和粉⼟采⽤总应⼒法,即⽔⼟合算,强度指标采⽤快剪试验指标;对中、粗砂、碎⽯⼟,则应采⽤⽔⼟分算。

承台开挖⾼程范围内主要为⼈⼯填⼟、黏⼟、粉⼟,局部夹有淤泥质黏⼟,各⼟层已知条件:(1)⼈⼯填⼟:内摩擦⾓7? =?,粘聚⼒8kPa c =;(2)粘⼟:内摩擦⾓14?=?,粘聚⼒25kPa c =;(3)粉⼟:内摩擦⾓22?=?,粘聚⼒12kPa c =;(4)砂⼟:内摩擦⾓32?=?,粘聚⼒0kPa c =。

⼟的天然重度γ取319kN/m 。

⾮承压地下⽔位在地⾯下0.2~5.5处(承压⽔位不明)。

2 钢板桩围堰⽀撑结构受⼒计算2.1钢板桩围堰钢板桩围堰基坑开挖最⼤深度为5.0⽶,此类基坑承台最⼤⾼度为4.0⽶,设⼀道内⽀撑位于基坑底⾯以上3⽶,计算钢板桩围堰受⼒情况。

结合现场现有材料,拟采⽤WRU12a 钢板桩,其技术指标为:单根钢板桩宽B=600mm,⾼H=360mm,厚t=9mm,每⽶截⾯积A=147.3cm2,单根钢板桩每⽶的重量69.5kg,每延⽶墙⾝每⽶的重量115.8kg,每延⽶墙⾝钢板桩惯性矩Ix=22213cm4,每延⽶的截⾯模量(抵抗矩)Wx=1234cm3,取钢板桩的允许拉应⼒σ=140Mpa,允许剪应⼒τ=80 Mpa。

钢板桩长12m。

由于钢板桩刚度较⼩,需加强内⽀撑。

拟设置⼀道⽔平钢⽀撑,在距承台底⾯3.0m处设置,不设竖向⽀撑。

⽔平钢⽀撑采⽤I40b型⼯字钢,沿钢板桩内壁设置长⽅形围檩,并在四⾓设置加强斜撑。

考虑施⼯堆载,假设基坑顶部(地⾯)作⽤有⽆限均布荷载q1=10kN/m2;在桩顶平台距离钢板桩桩顶2.0m处的坑外作⽤有宽度为0.6m的局部荷载(汽车荷载及其它荷载总和)q2=80kN/m2。

钢板桩围堰设计

钢板桩围堰设计

钢板桩围堰设计围堰的作用是将施工区域与外面泥的土和/或水隔离开来。

一般情况下没有必要完全排干水,这在某些情况下也是不可能的,但是计算中必须考虑水的渗透积极作用。

对于地下室结构,设计师出去应该将围堰与永久结构结合起来考虑。

将钢板悬臂作为永久结构墙,可以大大降低工期和费用,墙体可以设计成能够承受承受荷载的形式,详见第7章。

相应采用适当的密封系统可以做到完全防渗,有关密封系统的信息可以参阅第8章的内容。

对于地表沉降控制要求较严的区域,应需要考虑逆作法施工。

这样编出的目的是在开挖之前,桩顶的山后位移就被地面处的支撑约束住了,同时也消除了临时支撑拆除后,侧向土压力传递至主体结构而产生的附加。

围堰有两种基本类型,最常见的是单排围堰,但是对于规模很大或开挖较深的工程,以及海洋工程,采用单排围堰或当更重力式格型围堰更合适。

5.2钢板桩围堰设计总则5.2.1设计准备设计围堰前必须要明确施工工序,考虑围堰施工及拆除过程中的荷载情况。

设计师可以根据这个顺序确认临界设计条件,计算最小嵌入深度,弯矩和剪力,并由此求出板桩的截面和在此之后桩长。

作为施工分析的永古约省,设计师应该对任何偏离计划工序的结果进行风险评估。

这种偏离包含多种紧急状况∶某一阶段的超开挖;钢板桩不能达到所需的嵌入深度;支撑安装在错误位置;由于施王设备或材料引起的巨大超载。

绝大多数围堰都是临时结构,因此设计时考虑设计所有可能的荷载是绝不经济的,可能需要根据现场情况,确定填土可接受的风险水平水平,在需要考虑围堰所受的水压时,可能会出现明显这种情况,例如,洪水是季节性的,如果将围堰设计成在任何情况下都能把挡住,就会明显增大钢板桩的尺寸和风速,同时也会增加支撑用量。

极端洪水条件下,围堰设计理念应包含堰内施工、撤离围堰,加以控制洪水淹没围堰等。

这种情况下,设计师必须要考虑洪水雕塑家溢出,包括洪水突然进入围堰造成的影响,以及洪水消退后堰内滞水对稳定的。

开始施工之前,应清理施工场地,以便搭设导向框架及设备就位。

钢板桩围堰方案工程

钢板桩围堰方案工程

钢板桩围堰方案工程一、工程概况钢板桩围堰是一种用于护岸和挖掘深基坑的临时支护结构。

它适用于各种土质条件下的支护工程。

本工程位于某城市的河岸,沿岸线为工业园区和居民区,具有一定的重要性。

工程主要包括河岸钢板桩围堰的设计、施工和监测等。

本方案旨在对该工程进行全面的规划和实施。

二、地质概况该地区地质条件复杂,岩层多变,地下水位较高。

由于工业污水的排放,河道水质较差,对土层有一定的侵蚀和破坏作用。

因此,需要对地质条件进行详细的调查和分析,以确定适合的支护方案。

三、设计原则1.安全保障:确保围堰施工和后期使用的安全性和稳定性。

2.环保节能:减少施工对环境的影响,减少能源消耗。

3.经济合理:在满足安全要求的前提下,尽量降低施工成本。

四、方案选择经过对地质条件的详细分析,结合现场实际情况,我们选择了钢板桩围堰作为支护方案。

其主要考虑如下:1.钢板桩具有良好的刚性和承载能力,在地下水位较高的情况下仍能有效支撑土体,防止土体流失。

2.钢板桩施工周期短,可有效减少对环境和周边生活的影响,并且后期维护成本低。

3.钢板桩施工灵活,适用于各种地质条件。

五、工程施工1. 地质勘察:对工程地点进行详细勘察,获取地质地貌、地下水位、土壤条件等信息。

2. 设计方案:根据地质勘察结果,确定钢板桩围堰的具体方案和参数。

3. 材料采购:根据设计方案,采购符合要求的钢板桩和相关施工材料。

4. 施工准备:进行场地清理、设备调试、安全培训等工作。

5. 施工操作:进行钢板桩的安装、拉拔和连接。

6. 检验验收:对围堰施工质量进行验收,保证施工质量符合设计要求。

七、安全监测1. 钢板桩施工过程中,需对周边建筑和环境进行实时监测,确保施工过程中的安全。

2. 围堰施工完工后,定期对围堰进行安全检测,确保其结构安全性。

八、总结本钢板桩围堰工程方案以其冷弯钢板桩具有廉价性、良好的公知技术和面向市场的应用前景。

根据工程所在地的地质条件、施工现场环境和工程应用要求,钢板桩钢板桩围堰的方案设计是明确不疑的。

承台钢板桩围堰专项工程施工设计方案

承台钢板桩围堰专项工程施工设计方案
的发生。
05 环境保护、节能减排举 措汇报
环境保护法规遵守情况说明
1
严格遵守国家及地方环境保护法律法规,确保施 工过程中的各项环保指标达标。
2
定期对施工现场进行环保检查,及时发现并整改 存在的环保问题。
3
加强环保宣传教育,提高施工人员的环保意识, 确保施工过程中的环境保护措施得到有效执行。
节能减排技术应用案例分享
在施工过程中采用绿色施工技术,如封闭式施工、扬 尘控制等,降低施工对周边环境的影响。
加强施工现场的绿化工作,提高施工现场的绿化率, 营造良好的施工环境。
未来改进方向和目标设定
进一步完善环保管理体系,提高环保管理水平,确保施工 过程中的各项环保指标持续稳定达标。
加大节能减排技术研发和推广应用力度,推动绿色施工技 术的创新和发展。
施工现场周边环境复杂,需考虑对周 边建筑物、道路和管线等设施的影响 。
设计目标与要求
01
02
03
04
确保承台钢板桩围堰在施工过 程中的稳定性、安全性和止水
效果。
满足承台施工的各项工艺要求 ,保证施工质量。
尽可能降低施工成本,提高施 工效率。
减少对周边环境的影响,确保 施工环保。
相关法律法规及标准规范
施工准备
进行场地平整、测量放线、材料准备等工作 。
围堰结构施工
进行围堰内部支撑系统、止水系统、排水系 统等结构的施工。
钢板桩施工
按照布置方案进行钢板桩的插打、拔出和回 收等施工操作。
安全监测与应急处理
在施工过程中进行安全监测,并制定应急处 理预案以应对可能出现的异常情况。
03 结构设计与计算分析
钢板桩结构受力特点分析
针对安全风险点控制不足的问题,建议加强现场安全管理和监控,及 时发现和处理安全隐患。

钢板桩围堰工程方案

钢板桩围堰工程方案

钢板桩围堰工程方案一、项目概述钢板桩围堰工程是一种常用的河道、湖泊等水工建筑工程,用于防止水土流失和保护岸坡安全,具有防洪、排涝、改善土壤条件等功能。

本项目位于某市某河段,河流岸坡较陡峭,存在较多水土流失和岸坡坍塌问题,需要进行钢板桩围堰工程来加固保护。

二、工程内容1. 工程范围:本项目涉及的工程范围主要包括河道两岸的钢板桩围堰、护坡、河床疏浚等工程。

2. 工程特点:本项目所在河段水流湍急,岸坡土质松软,岸坡高差较大,要求围堰工程具有较强的抗冲刷和抗渗透能力。

三、工程设计1. 钢板桩围堰设计:根据实际情况,选择合适的钢板桩规格和长度,采用挤压安装的方式固定在岸坡上,形成一道连续的围堰结构,增强岸坡的稳定性和抗冲刷能力。

2. 护坡设计:在围堰上游和下游设置适当的护坡结构,用以加强岸坡的支撑和防护作用,保护围堰结构不受冲刷和渗透侵蚀。

3. 河床疏浚:对于局部淤积和泥沙堆积严重的地方,需要进行河床疏浚工程,使水流通畅,减少冲刷和渗透对围堰的影响。

四、材料选用1. 钢板桩:选择优质的钢板材料,具有良好的耐腐蚀性和强度,适合在水中长期使用。

2. 护坡材料:选用混凝土、石子等材料,在护坡结构上特别处理,具有良好的抗冲刷和防渗透性能。

3. 基础材料:钢筋混凝土基础,具有坚固的支撑和抗压能力。

五、施工工艺1. 钢板桩安装:采用挤压安装的方式,逐步固定在岸坡上,保证围堰连续性和牢固性。

2. 护坡施工:在围堰上游和下游设置护坡结构,采用混凝土浇筑和铺石工艺,确保护坡的稳定性和防护效果。

3. 河床疏浚:采用机械疏浚和人工清理相结合的方式,清理河床淤积和泥沙堆积。

六、安全监测1. 安全监测:在施工过程中,设立专人负责工程安全监测,及时发现存在的安全隐患并采取相应的安全措施。

2. 工程验收:工程结束后,对围堰结构和护坡工程进行检测和验收,确保工程质量和安全。

七、环保措施1. 环境保护:施工过程中,要严格按照环保要求,避免产生噪音、粉尘和污染,减少对周边环境的影响。

钢板桩围堰计算

钢板桩围堰计算

钢板桩围堰计算钢板桩围堰计算本承台位于水下,长31.3米,宽8.6米,高3.5米,采用钢板桩围堰施工。

围堰为矩形单壁钢板桩围堰,采用钢管桩作为定位桩,用型钢连接作为纵横向支撑。

钢板桩采用拉森Ⅲ型钢板桩,围堰为33.3m×10.6m的单承台围堰方案。

1、计算取值1)现有水位为+4.5m,计算时按照常水位以上一米取值,即水位取+5.5米;淤泥厚度为h2=2.0m,水深为6.0m,水头高度h1=5.5m。

h3为钢板桩入土深度。

2)淤泥力学参数根据含水量情况取值,内摩擦角θ=50,粘聚力c=0kpa,容重r2=16.5kN/m3.3)淤泥质亚粘土力学参数根据含水量及孔隙比情况取值,内摩擦角θ=20,粘聚力c=20kpa,容重r2=18.5kN/m3.4)围堰分五层支撑,标高分别为+0.25m、+1.05m、+1.85m、+2.65m、+3.45m。

开挖底标高为±。

5)钢板桩采用拉森Ⅲ型钢板桩,截面尺寸为宽0.462m,高1.36m,每米长钢板桩参数力学性能为壁厚0.04m,截面积0.123m2,重量14.5kg/m,截面模量为320cm3/m。

6)型钢采用A3钢材,允许应力[δ]=140Mpa;钢板桩允许应力[δ]=200Mpa。

7)设计流水速率V=2.61m/s。

水流冲击力p=0.8Aγv2/2gh,其中A为阻水面积,γ为水容重,取10KN/m3,v为水流速度,g为重力加速度,取9.8m/s,h为水深,单位为米。

p=29.47kN/m。

2、静水压力计算现有水位标高为+4.5m,型钢支撑中心标高分别为+4.25m、+3.45m、+2.65m、+1.85m、+1.05m,承台底标高为0.河水静水压力为10×5.5=55kN/m2,取一米进行计算,±0m处的总压力P=1.25(P净水+P动水)=1.25×(29.47+55)=105.59kN/m,安全系数为1.25.3、按简支连续梁计算内力和弯矩,受力形式及弯矩如下图所示:弯矩图示:15.4KNm。

钢板桩围堰方案

钢板桩围堰方案

钢板桩围堰方案一、方案背景钢板桩围堰是一种常见的隔离水体的围护结构,广泛应用于河道、港口、水库等水利工程以及建筑工程中。

它能有效地保护工程施工现场、加固土壤和土石方,起到隔离和稳定的作用。

二、方案概述钢板桩围堰方案是利用钢板桩作为隔水及抗渗结构,将其拼装精准地围合施工区域,阻止水体进入施工现场。

其主要优点包括施工简便、经济实用、施工效率高,以及可反复使用等。

三、施工流程1. 定位测量:在施工现场确定围堰范围,并进行测量,确保围堰精确安装。

2. 安装钢板桩:按照设计要求,将钢板桩嵌入地面,使其紧密连接,形成闭合结构。

桩的定位和垂直度需通过测量进行控制。

3. 密封处理:将钢板桩之间的间隙用地膜、胶条等材料进行密封,防止渗漏。

4. 施工围堰:将围堰区域内的水排出,确保施工现场干燥。

5. 辅助加固:根据需要,在围堰结构的周围进行辅助加固,如加装横梁或加固支撑桩。

四、方案优势1. 施工简便:钢板桩围堰方案施工简单、效率高,不需要特殊施工技术,适用范围广。

2. 经济实用:采用钢板桩围堰方案相比于传统的围堰结构,成本更低。

3. 施工效率高:钢板桩围堰方案具有施工速度快、易于组装和拆卸的优势,大大缩短了工期。

4. 可反复使用:钢板桩可以反复使用,具有良好的经济和环境效益。

五、方案应用钢板桩围堰方案广泛应用于以下领域:1. 水利工程:河道整治、河堤加固、水库建设等。

2. 港口工程:码头建设、泊位修建等。

3. 基础工程:基坑支护、地下工程开挖等。

4. 建筑工程:施工围护、地下室施工等。

六、方案注意事项1. 安全施工:在进行钢板桩围堰施工时,要加强安全防护措施,确保施工人员的人身安全。

2. 质量控制:在施工过程中,应严格按照设计要求进行施工,并定期检查围堰结构的质量,确保围堰的稳定性和密封性。

3. 环境保护:施工过程中要注意水体的污染防控,采取相应的措施,减少施工对周边环境的影响。

七、方案总结钢板桩围堰方案是一种简单实用、经济高效、易于施工和拆卸的围堰结构方案。

钢板桩围堰施工

钢板桩围堰施工

钢板桩围堰施工1、钢板桩围堰设计1.1、钢板桩围堰结构围堰采用拉森IV钢板桩,钢板桩每根宽度40cm o钢板桩顶标高高出原地面30Cm,在原地面处设置一圈双拼40c工字钢作钢板桩围橡,并兼作钢板桩施工的导向框,顺桥向设置一道内支撑,四周设置角撑。

根据临近墩105#墩开挖基底地质,初步拟定钢板桩围堰内封底混凝土厚度0.1~0.3米,实际封底厚度根据现场地质条件具体确定。

由于钢板桩底位于砂层中,砂无粘聚力易松散,且钢板桩入土深度是按下端简支情况考虑,钢板桩时刻处于不稳定平衡状态,故基坑开挖完后,封底混凝土须及时施工,尽快利用其强度对钢板桩起一道支撑作用,增加钢板桩的稳定性。

承台结构尺寸为9.8χ7m,为满足承台开挖及模板安装施工工作面要求,结合单根钢板桩宽度,钢板桩围堰和承台之间长边每侧留 1.1米的施工工作面距离,承台钢板桩围堰的平面尺寸为:12x9.2m(一个承台需要106根钢板桩)。

103#墩系梁,桩基直径1.8米,桩中心间距8.2米,考虑系梁施工工作面,系梁钢板桩围堰的平面尺寸为12χ4m(一个系梁80根钢板桩)。

1.2、钢板桩围堰结构受力验算由于承台、系梁基坑开挖深度较大,故在钢板桩顶下30cm处设置一道围橡做内支撑,钢板桩下端打入砂层中,按简支考虑。

设钢板桩的入土深度为t,其最不利工况为基坑开挖完成且封底混凝土浇筑前基坑开挖后,钢板桩受土压力作用,发生挠曲变形,上下两个支撑点。

、b均允许自由转动,基坑内撑由于钢板桩向前挤压,故产生被动土压力Ep,基坑夕M则产生主动土压力EA o验算步骤省略。

1.3、钢板桩施工工艺1.3.1、施工准备(1)、主墩的钻孔桩完成后,移走钻机,拆除钻孔平台。

(2)、在桩基施工完成后,对围堰范围内原地面进行清理片岩除桩基筑岛施工时填筑的片石、砖渣等坚硬杂物,避免在钢板桩插打位置遇到障碍物。

(3)、支撑系统材料加工。

主墩承台围堰支撑系统材料包括双工40c工字钢。

(4)、在钢板桩堆放基地对钢板桩进行分类、整理,发现缺陷随时调整,选用同种型号的钢板桩,进行弯曲整形、修正、切割、焊接,整理出施工需要的型号(拉森IV号钢板桩)、规格(400×170×15.5mm)、数量(12mχ214根)的钢板桩。

16m长钢板桩围堰结构计算

16m长钢板桩围堰结构计算

钢板桩围堰结构计算1、设计参数(1)主跨墩处河道内主要为砾砂土,其土体力学性能如下: 土体容重: r=18KN/m3 土体内摩擦角: φ=36° (2)钢板桩力学性能:钢板桩采用IV 型拉森桩,重量75kg/m ,每1米宽截面模量W=2037cm3,允许应力为[σ]=210Mpa 。

(3)承台尺寸:8.4m ×12.3m ×3.5m ,围堰尺寸:10.8m ×15.5m 。

(4)计划采用拉森Ⅳ钢板桩,技术参数:(5)根据地质情况(见图1) 20m 范围加权平均:5.16205.1420410=+γ=⨯⨯5.1420205.14=φ=⨯ 05.1320185.14==⨯C主动土压力系数:Ka =tg2(45-φ/2)=0.60 被动土压力系数:Kp =tg2(45+φ/2)=1.668 2、计算内容(1)内支撑层数及间距按照等弯矩布置确定各层支撑的间距,根据拉森Ⅳ型钢板桩承受的最大弯矩确定板桩顶悬臂端的最大允许跨度:[]3a w f 6h K γ==m 98.2cm 2981060.05.161020372156335==⨯⨯⨯⨯⨯γ:取加权平均16.5, h1=0.88h =2.62m h2=0.77h =2.29m h3=0.65h =1.94m根据具体情况,确定采用的立面布置形式如下图所示:(2)计算板桩墙上土压力零点离开挖面的距离y ,在y 处板桩墙的被动土压力等于板桩后的主动土压力:γKKpy =γKa (H +y )y =81.36.0686.12.19.86.0p =-⨯⨯=-Ka KK KaH式中K-主动土压力修正系数,取1.2 (3)钢板桩零点以下入土深度x 的确定: 由力矩分配法计算的如下: P0=47.7KN P1=8.2KN/m P2=63.3KN/m P3=129KN/m P4=80.1KN/m最大弯矩在8.9m 处,Mmax=98.3KN.M采用等值梁法计算原理,土压力零点处的支撑反力与该点以下钢板桩土压力对桩底的力矩平衡,假设土压力零点以下钢板桩零点以下钢板桩埋深为x ,建平衡方程。

钢板桩围堰工程施工设计方案

钢板桩围堰工程施工设计方案

WORD文档下载可编辑目录第一章、工程概述 (1)一、工程概况 (1)二、工程地质 (1)三、水文气象 (2)第二章围堰施工方案 (3)一、围堰平面布置 (3)二、围堰设计及结构形式 (3)1、施工准备 (4)2、围堰土方填筑 (5)3、钢板桩施工 (5)4、围堰抽水 (6)5、围堰维护及拆除 (6)第三章围堰施工进度计划 (7)第四章资源配置计划 (7)第五章资源配置计划 (8)第六章质量、安全保证措施 (8)一、质量保证措施 (8)二、安全保证措施 (9)第七章施工期安全度汛措施 (11)第八章围堰边坡安全稳定分析计算书 (13)一、外江侧土石围堰计算 (13)二、内涌侧土石围堰计算 (16)围堰专项施工方案第一章、工程概述一、工程概况广州市荔湾区花地河南北水闸(南闸)工程位于距花地河南出口156米处,工程等别均属于Ⅲ等,其主要建筑物级别为3级,次要建筑物为4级,船闸通航等级为Ⅵ级。

水闸总宽80.5米,闸室总长30米。

水闸泄水为两孔,孔口尺寸为33米×6.19米(宽×高)。

边墩厚4.5米,中墩厚6米。

中墩为分缝墩,墩头为半圆形,内涌侧半径为4.5米,外江侧半径为3米。

闸底板高程为-4.0米,泄水孔均不设检修门。

闸门为上翻式拱形液压钢闸门。

船闸布置在花地河航道西岸,上下闸首长度均为31.8米,闸室段有效长度为100米,闸室净宽12米,上下游导航墙长度均为20米,上下游引航道长度均为50米。

船闸主体建筑物均采用整体结构形式,船闸主体建筑物底板高程为-3.8米,引航道底面高程为-3.0米。

船闸主体建筑物顶面高程为3.5米。

上下闸首及闸室段基础均采用直径100厘米灌注桩,桩底高程位于强风化岩层。

工程建设目的主要是景观蓄水、引清调水、挡潮排涝、通航及泄洪安全。

工程投资约1.2亿元。

计划工期330天。

二、工程地质南闸位于花地河南端,与平洲水道相连,区内地势平坦,地面标高为2.86~3.30米,河底呈“V”型。

钢板桩围堰设计计算

钢板桩围堰设计计算

钢板桩围堰设计计算一、土层地质情况根据设计图纸提供的参数,设计洪水位为+5.40M ,12#墩河床高程为-2.00M, 土层地质为淤泥质粉质粘土,土性质为:γ为16.5KN/M 3 ,φ取9.50 ,C 取12.3KPa 。

二、支撑布置围堰中共设三道支撑,第一点支撑标高为+3.19M ,第二支撑标高为+1.19M ,第三道支撑标高为-2.41M, 采用H40型钢进行支撑。

以φ400的钢管进行斜支撑。

支撑图纸如下图:H2=5.625H1=7.4R3R2R1支撑布置图(单位:M )三、体系简化验算:主动土压力系数:Ka=tg 2(450-9.50/2) =0.717 土压力: 取γ浮=9N/M 3Ea=1/2Ka γH 22 =1/2×0.717×9×5.6252 =102.088KN/M水压力:纯水 w 水=1/2ρg(H 1+H 2)2=1/2×10×(7.4+5.625)2=848.253KN/M 总压力 :Ea+E 水=102.088+848.253=950.341KN/M压力计算图单位:压力计算图(单位:M )四、应力计算R 1=1/2×10×(5.4-3.19)2=24.42KN/MR 2=1/2×10×(5.4+0.61)2-24.42=156.18-24.42=131.76KN/MR 3=1/2×10×(5.4+5.018)2-156.18+1/2×0.717×(5.018-2)2×9=415.882KN/M R 4=1/2×10×(5.4+7.625)2-542.674+1/2×0.717×9(7.625-2)2-29.388=378.284KN/M 五、钢板桩验算采用拉森Ⅳ型,宽40cm ,截面系数Wx=2270cm 3 R 1=24.42×0.4=9.768KN R 2=131.76×0.4=52.704KN R 3=415.882×0.4=166.353KN R 4=378.284×0.4=151.314KNN=1/2qH=1/2×0.4×9.8×H ×H=1/2×3.92×H ×H 即 q=3.92×H M E =0M D =-1/2×10×(5.4-3.19)2×1/3×2.21×0.4=-7.196KN.M M C =9.768×2-1/6×10×4.213 ×0.4=-30.21KN.MM B =9.768×5.6+52.704×3.6-1/6×10×7.813 ×0.4-1/6×0.717×9(2.41-2)3×0.4=-73.18M A =9.768×10.815+52.704×8.815+166.353×5.215-1/6×10×0.4×13.0253-1/6×0.717×0.4×9(7.625-2)3=-111.942KN.MM DC 中点=9.768×1-1/6×10×3.213 ×0.4=12.283KN.MM CB 中点=9.768×3.8+52.704×1.8-1/6×10×6.013 ×0.4=54.9KN.MM BA 中点=9.768×8.208+52.704×6.208+166.353×2.608-1/6×10×10.4183 ×0.4-1/6×0.717 ×9×3.0183 ×0.4 =75.574KN.M根据计算结果绘制弯矩图如下:单位:KNMMax=111.942KN.M查表得钢板桩[σ]=180MPa 截面模量w=2270cm3σ=111942/2270=49.3MPa<[σ]=180MPa 满足要求!六、基坑底的安全验算按围堰施工至封底混凝土人顶标高-7.625根据公式'γ>Kj 取安全系数K=1.5土的浮容重'γ=16.5-10=8.0KN/M3最大渗流力j=iγwi=h/(h+2t) =(5.4+7.625)/(5.4+7.625+2t)=13.025/(13.025+2t)t 为钢板桩底部到开挖面的距离所以j = iγw =10×13.025/(13.025+2t)'γ≥K j≥1.5×130.25/(13.025+2t)t≥5.7Mt实施过程中取值为6.5M,大于5.7M,满足要求!根据上面计算设计的钢板桩围堰基坑底满足安全方面要求。

浅谈钢板桩围堰的设计与施工

浅谈钢板桩围堰的设计与施工
钢 板 桩 入 土 深 度 取 最 小 入 土 深 度 的 1 5倍 , t 1 5 . 即 : . h=
3 6I , 4m。 . I取ห้องสมุดไป่ตู้ T
考虑淤泥质亚黏土层 ( 不透水层 ) 土压力 , 土压力按 朗金理论计算 。
围囹 内 的三 道 内支 撑 分 别 于 围堰 顶 部 2 2m 标 高 ( 最 高 水 . 即 位 处 ) 一道 内支 撑 , 台底 部 铺 筑 3 m 厚 C 5混 凝 土 垫 层 , 设 承 0c 2 垫
钢 板桩 主要 承 受 水 压 力 ( 水 压 力 与 动 水 压 力 ) 土 压 力 ( 静 及 外 侧 为 主动 土 压 力 , 内侧 为被 动 土 压 力 )为 简 化 且 偏 于 安 全 计 算 , , 只
数考虑 。 由 M 1 2 =^ , 出 钢 板 桩 最 小 人 土 深 度 为 h=2 4r。 / .5 得 . n
浅 谈 钢 板 桩 围 堰 的 设 计 与 施 工
温 利 强 高顺 平
摘 要 : 要 阐 述 傍 海 大 桥 水 中承 台施 工 中钢 板 桩 围堰 的设 计 与 施 工 , 出采 用 理 论 计 算 法 进 行 钢 板 桩 围堰 的设 计 能够 主 指 较 为真 实地 反 映钢 板 桩 的 实 际 受力 状 态 , 而具 有 较 大 的 安全 性 , 保 了承 台 的施 工 质 量 , 效 加 快 了施 工进 度 。 从 确 有
海底面高程为 一11 . m~ 一 . 桥址范围 内地层为第四系全新统 4 9m;
海 相沉 积细 砂 、 中砂及 冲积 黏土 、 质黏 土 、 、 粉 中 粗砂 , 为 淤泥 。 地表

P = ( +q t 24 。 / ) ca( 5 +9 2 )a (5 十9 2 +2 t 4 。 / ) n n

某桥主桥承台钢板桩围堰施工方案设计及施工

某桥主桥承台钢板桩围堰施工方案设计及施工

某桥主桥承台钢板桩围堰施工方案设计及施工一、项目背景及目的某桥主桥承台钢板桩围堰施工方案设计及施工是为了确保桥梁建设过程中的安全和稳定性,保护主桥承台结构。

本方案旨在通过详细的设计和施工措施,确保施工过程中不对周边环境和现有结构造成影响,并保证施工质量。

二、施工方案设计1. 施工区域划分:根据工程要求,将施工区域划分为A、B两个区域,分别进行施工。

2. 钢板桩围堰的设计:根据桥梁结构和地质条件,设计钢板桩围堰的尺寸和布置。

采用钢板桩的围堰形式,可以有效地避免水土流失和河水渗透,确保施工现场的安全和稳定。

3. 临时支撑设计:为了保证施工期间桥梁结构的稳定性,根据承台的结构和负荷特点,设计合理的临时支撑方案。

4. 施工方法:采用打桩机进行钢板桩的安装工作,保证桩的垂直度和水平度。

钢板桩在达到设计要求后,采用水泥浆封堵漏水,确保围堰的密封性。

5. 垂直控制和水平控制:根据设计要求,对钢板桩的垂直度和水平度进行控制和检测,确保施工质量和围堰的稳定性。

三、施工方案实施1. 施工前准备:组织施工人员进行安全培训,并制定详细的施工计划和安全措施。

2. 施工设备准备:准备打桩机、水泥浆搅拌机等必要施工设备,并进行检查和调试,确保设备的正常运行。

3. 施工现场安全管理:设立施工现场安全警示标志,同时安排专人负责现场的安全管理和监督。

4. 施工过程记录和监测:对施工过程中的关键信息进行记录和监测,包括钢板桩的垂直度和水平度、围堰的密封性等。

5. 施工完成后清场工作:施工完成后,进行整理清除施工现场,确保周边环境的整洁和安全。

四、安全措施1. 施工现场周边设置安全警示标志,保证施工区域的安全。

2. 对施工人员进行安全培训,提高其安全意识和应急处理能力。

3. 严格执行施工现场安全规定,保证各项施工措施的有效执行。

4. 定期检查和维护施工设备,确保其正常运行和安全性能。

五、监测和验收1. 按照设计要求对围堰施工过程中的关键参数进行监测和记录。

钢板桩围堰布置图

钢板桩围堰布置图

112018.091:16041#墩围堰总布置图粉质黏土22承台400015002350200051501500012000300060003000110098001100内支撑5000/2=2500支撑牛腿支撑牛腿封底混凝土钢护筒钢板桩河床面+15.00+0.91围堰底+5.50承台底+12.65封底砼底+10.65内支撑中心线+16.50设计水位+20.00围堰顶+20.501/2 立面图22111---1承台4000150023502000515015000围堰底+5.50承台底+12.65封底砼底+10.65内支撑中心线+16.50设计水位+20.00围堰顶+20.50钢板桩封底混凝土钢护筒280048002800支撑牛腿钢板桩支撑牛腿10400河床面+15.001300内支撑78001300承台桥中线2---2桥中线275032503250275012000275024502450275010400160024002000200024001600120024001600240012005000/2=2500角桩钢板桩支撑牛腿内支撑序号名 称图号/规格数量单重(kg)总重(kg)备 注1357钢板桩SP-U400×170,L=15m 22023621141.513943.132.6249.6m³251130.027886.21173.6499.2m³以41#墩计材料汇总表内支撑支撑牛腿封底混凝土见图“CBQ-03-B-605~608”见图“CBQ-03-B-611”12×10.4×2 m³水下C302角桩SP-U400×170,L=15m 89132.01141.5附注:1、图中尺寸除高程以m计外,其余均以mm计。

2、封底混凝土厚度暂按土层不透水考虑。

施工围堰时可进行抽水实验,根据实际情况反馈设计单位并及时调整封底厚度。

钢板桩围堰设计说明

钢板桩围堰设计说明

N2~N4围堰设计说明书(讨编稿)一、基本资料1、承台平面尺寸24.30×11.30,承台顶高程+10.5,承台厚5.0m,承台底高程+5.5m;2、围堰内净尺寸24.45×11.45m(考虑到位移变形影响,每侧增加75mm);3、围堰顶面高程暂按+20.5 m;4、围堰底高程+4.0,围堰高度20.5-4.0=16.50 m;5、河床底高程+8.85 m;6、分节制造:第一节(底节)高程从4.0~5.5,高1.5m(含起吊梁);第二节(中节)高程从5.5到10.5m,高5.0m(到承台顶面,水平加劲桁架设在外侧);第三节(上节)高程从10.5到20.5m高10.0m(水平加劲桁架高在内侧);7、抽水高程暂按+19.5m时抽水(按10月份的平均水位)。

此时抽水头高差14m(水头差);8、围堰底端入泥高度4.885m,利用吸泥机吸泥和自重下沉到+4.0。

二、吊箱围堰的结构设计1、设计特点:根据目前已完成桩基施工的前提,以及结合桥址处河床地形地质和水文条件,本次钢吊箱在施工下沉前为无底的钢吊箱,下沉到位后转化成有底的钢吊箱的总方案。

a、设计采用单壁式构造;b、根据钢吊箱工况需要中节用外侧桁架,上节用内支撑工字梁的全焊结构设计;c、拼弃传统的分块模式,本设计采用叠层式分块,以利于制造、起吊、拼装和拆除;d、采用特殊的止水带和节段间的联结;e、采用整体拆除钢吊箱的方案,采取特殊的工艺削减承台侧面和箱侧砼的粘结力,以利于整体提升拆除和重复使用;按照目前施工设备浮吊的起吊能力仅为150t,因此N2~N4钢吊箱设计分为底节、中节和上节组成共有三部分,结构尺寸和起吊重量如下表:2、第一节(底节)围堰是一个底部设有井格梁的无底吊箱结构,总高度1.95m。

箱体是由外侧加劲板和4条纵向起吊桁架和8条横向辅助桁架焊接成无底井格形全焊结构。

外侧板用δ=6mm钢板和L75×50×6mm加劲角钢劲肋间距取350mm组成侧板。

钢板桩围堰施工方案

钢板桩围堰施工方案

钢板桩围堰施工方案一、施工概述钢板桩围堰是一种使用钢板桩打入地面形成的临时围堰,用于挡水或控制土方侵蚀。

本文档将介绍钢板桩围堰的设计和施工方案。

二、设计要求钢板桩围堰的设计应满足以下要求:1.考虑地基条件及临近环境,确定围堰的高度和长度。

2.选择合适的钢板桩型号和长度,以满足围堰的结构强度需求。

3.保证围堰完全密闭,防止水流和土方渗透。

三、施工步骤钢板桩围堰的施工包括以下步骤:1.现场准备:清理施工区域,保证施工场地平整。

2.钢板桩的安装:根据设计要求,确定钢板桩的间距和位置。

使用专业设备将钢板桩一根根地打入地面。

3.钢板桩连接:将相邻钢板桩通过连接件连接在一起,保证围堰的完整性。

4.围堰顶部处理:在围堰顶部设置加固梁或设置挡土墙,以增加围堰的稳定性。

5.完善围堰:对围堰进行检查,确保围堰的完整性和稳定性。

6.施工区域清理:清理施工区域,并做好必要的环境保护工作。

四、工程施工安全措施在施工过程中,应注意以下安全事项:1.严格遵守工程安全操作规程,穿戴必要的个人防护装备。

2.安全设施的设置:设置指示牌、警示标志和安全警戒线,保障施工区的安全。

3.严禁施工人员在斜坡或钢板桩上行走,以防坠落事故。

4.在使用施工设备和机械时,要确保操作人员熟悉操作规程,确保设备的安全运行。

5.严禁在施工现场吸烟,以防火灾事故的发生。

6.对施工区域进行定期巡查,及时发现和排除安全隐患。

五、质量控制在钢板桩围堰施工过程中,应注意以下质量控制措施:1.严格按照设计要求选择和安装合适的钢板桩,确保其强度和稳定性。

2.对钢板桩进行质量检测,确保其符合相关标准和规范。

3.在钢板桩安装过程中,注意施工水平和垂直度的控制,保证围堰的平整与稳定。

4.对围堰的连接件进行质量检测,确保其连接紧固可靠。

5.对围堰的完整性进行检查,确保其达到设计要求并满足施工安全要求。

6.在施工过程中进行随时记录和拍照,以便后续质量验收和备案。

六、施工进度与维护钢板桩围堰施工的进度应根据工程量和实际情况合理安排。

钢板桩围堰计算书(2层围檩@15m钢板桩)精选全文

钢板桩围堰计算书(2层围檩@15m钢板桩)精选全文

可编辑修改精选全文完整版钢板桩围堰计算书目录第一章设计条件 (1)1.1工程概况 (1)1.2设计概况 (1)1.3主要计算依据 (2)1.4荷载计算 (3)1.5土体参数 (3)1.6 材料特性 (4)第二章基坑支护结构受力计算 (4)2.1 计算工况 (4)2.2 钢板桩计算 (5)2.2.1工况一 (5)2.2.1工况二 (6)2.3 围檩及支撑 (8)第三章基坑稳定性验算 (11)3.1钢板桩入土深度验算 (11)3.2基坑稳定性计算 (11)3.3基坑承载力计算 (13)第一章设计条件1.1工程概况主线大承台位于陆地上,根据基坑开挖深度,拟定3种类型钢板桩围堰。

对于边墩承台拟定一种类型钢板桩围堰。

对于大承台,开挖6.5m及以上选用15m长钢板桩围堰,2层支撑;开挖6m-6.5m选用12m长钢板桩围堰,2层支撑,开挖6m以下,选用12m长钢板桩,1层支撑。

对于小承台,选用12m长钢板桩,一层支撑。

该计算书验算大承台第一种类型ZX179#(开挖7.45m)承台围堰受力情况。

ZX179#承台水文资料及设计参数计算,统计如下:(1)钢板桩顶标高: +9.0m(2)钢板桩底标高: -6m(3)承台顶标高: +4.8m(4)承台底标高: +1.6m(5)承台高度: 3.2m(6)地面标高: +8.95m(7)地下水位: +5.16m1.2设计概况承台尺寸18.7×10.6×3.2m,钢板桩围堰内轮廓尺寸为20.8×12.5m,高15m。

采用拉森—400×170型钢板桩,承台为一次性浇筑,按照开挖深度设置两道围檩及支撑。

围檁采用2I56,斜撑均采用2I32,内支撑均采用φ426×10钢管。

施工工艺:插打钢板桩并合拢,开挖至桩顶以下1m,安装第一道围檩及支撑;继续开挖并降水至第二层围檁标高,安装第二层围檁及支撑;开挖至基坑底;浇筑10cmC20混凝土垫层;进行承台施工。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据钢板桩围堰的实际受力状况建立力学模型。

通过理论计算确定钢板桩围堰的实际受力,并通过实际施工情况验证该方法的可行性。

比规范中采用的经验算法具有更高的精确性和安全性,能够更好的满足工程施工需要。

关键词:钢板桩围堰;设计;施工 目前,对于钢板桩围堰的设计主要是沿用《公路桥涵施工手册》和教科书中的经验算法。

由于经验算法带有很大的近似性,并不一定能够真实反映钢板桩围堰的实际受力状况,有时会出现较大的偏差,给围堰的使用带来很多不安全因素。

笔者在洪泽苏北灌溉总渠大桥施工中,为避免出现较大的变形,在对钢板桩围堰设计时采用了理论算法。

经实践检验,理论算法能够较为精确的反映围堰的实际受力状况,对于合理设置内支撑和减小封底厚度起到
了重要的保证作用。

下面就钢板桩围堰的设计与施工做详细论述:
1 已知条件 1.1 承台尺寸:10.3m(横桥向)×6.4m(纵桥向)
×2.5m(高度),底部设计有10.7×6.8m×1.0m的封底砼。

1.2 承台及河床高程 承台顶面设计高程为h=5.0m,河床底高程为5.5m,河床淤集深度约为30cm。

1.3 水位情况 正常水位:h常=10.8m(此时水深5.3m),最高水位hmax =11.5m(水深6.0m),围堰设计时按最高水位考虑。

1.4 水流速度 因该桥位于水电站下游,水流较为湍急。

设计时速V=1.0 m/s,不考虑流速沿水深方向的变化,则动水压力为:
P=10KHV2×B×D/2g=53.2KN 式中:P-每延米板桩壁上的动水压力的总值(KN); H-水深(米); V-水流速度(1.0m/s); g-重力加速度(9.8m/s2); B-钢板桩围堰的计算宽度,B=10m; D-水的密度(10KN/m3); K-系数,(槽形钢板桩围堰K=1.8~2.0,此处取1.8)。

(参照《公路施工手册》,假定此力平均作用于钢板桩围堰的迎水面一侧。

) 1.5 河床水文地质条件 河床土质良好,多为粘土、亚粘土,局部有亚砂土,承载力较强。

围堰基底至河床部分土质为粘土(层厚约2m)、亚砂土(硬塑状态,很湿,层间无承压水,层厚约为1m)。

2 拟定方案 结合河床地质情况及施工要求,拟采用日本产钢板桩进行围堰施工,长度为15m,宽度为40cm,厚度为18cm。

围堰顶面标高拟定为12.5m,高出最高水位1.0m。

围堰设计图3,所有内围囹均采用56b工字钢制作,节点采用焊接(施工中严格执行钢结构施工规范)。

为确保整个围囹的刚度和稳定性,对每层中间一道工字钢上面加焊型钢并将上下四道工字刚用25#槽钢焊接连接。

在施工期间安排专人值班以防吊物
碰撞。

3 围堰(支撑)内力计算 3.1 确定受力图式 3.1.1 钢板桩嵌制形式
河床底部土质较为密实,假定钢板桩底部嵌固于(钢板桩入土深度)t/3=1.5 m处,即承台底2.0m处。

(封底砼厚度采用50cm) 3.1.2动水压力 P=10KHV2×B×D/2g=53.2KN 3.1.3 河床土质为亚粘土,为不透水层,但考虑到钢板桩施工中会引起板侧土体的扰动,缝隙里充满水,所以考虑水压力的影响。

土压力计算取用浮容重, Υ’=19.4-9.8=9.6KN/m3,ιj=30~50Kpa,σ=100KPa。

3.1.4 经分析可知迎水面为最不利受力面,以此为计算面。

所承受荷载假定由两根工字钢平均承担,计算两根工字钢的共同受力。

由受力图式可知,此结构为四次超静定结构,因计算较为繁琐,计算过程不在此详细叙述,得出最大支撑力为2734.95KN,最大弯矩为1117.59KN。

4 验算钢板桩的入土深度是否满足要求 钢板桩入土深度达4.5m,从桥位处地质勘探资料分析,持力层中无承压水,如经计算各道支撑的受力均能满足要求,可不验算钢板桩的入土深度。

5 根据求得的内力验算钢板桩的受力状态及变形情况 5.1 应力 由内力
计算结果可知,Mmax=1117.59KN·M。

钢板桩外缘拉应力
σ=Mmax/W=123MPa<340MPa(容许应力),满足要求。

5.2 变形 经计算,各单元跨中变形值如表1所示。

表1 各单元跨中变形值 单元号 横向位移υ(mm) 1 7 2 10 3 2 4 5 5 3 6 3
6 验算工字钢的受力状态 6.1 轴向受力 由计算可知,最大支撑反力发生在第二道围囹处,其数值为2734.95KN,因工字钢与钢板桩连接处均采用焊接,且角撑刚度较大,不考虑其失稳,仅考虑纵向挠曲,系数取ζ=2,此时其承载力 P=292.9×10-4m2×340×106N/m2/2=4980KN, 安全系数n=4980/2734.95=1.8,其承载力满足要求。

6.2 横向工字钢的抗弯能力 假定支撑反力P=2734.95KN平均作用在横向工字钢上(长度按8.8m计算),荷载集度q=2734.95/8.8=310.8KN/M。

经计算,对工字钢
跨中产生的最大弯矩Ml/2=864.5KN·M。

工字钢抵抗弯矩
M`=1000KN·M。

安全系数N=1000/864.5=1.15(此处未考虑钢板桩与工字刚的共同作用,实际情况应更为安全),承载力满足要求。

6.3 工字钢挠度 在上述弯矩的作用下,计算出工字钢的跨中挠度L=14mm,满
足施工及使用要求。

7 钢板桩竖向承载力的验算 因此钢板桩围堰将利用作为钻机平台,其承受的竖向荷载有: 7.1 钻机及其配套设备自重:150KN; 7.2 支架及其他施工荷载:100KN; 7.3 钢板桩自重:1300KN; 7.4 围囹自
重:300KN。

合计:1850KN 上述竖向荷载全部靠钢板桩侧摩阻力及其桩尖反力承担,查相关规范及工程地质报告,计算如下: 桩侧摩阻力P1=(13.8+9.6)×2×5.7×10=2668KN; 桩尖反力P2=117根×8.85E-3M2/根×100KPa=104KN 合计: =2668+104=2772KN 安全系数
N=2772/1850=1.5,承载力满足要求。

8 围堰整体稳定性验算 钢板桩围堰的整体稳定性仅表现围堰在动水压力作用下的抗倾覆能力。

该动水压力与钢板桩入土深度范围内所受的土压力相平衡。

因钢板桩围堰底部嵌入地基中达4.5米,在动水压力作用下所能承受的土压力要比动水压力要大的多,此处可不必验算,其整体
稳定性应能得到很好的保证。

9 施工中注意事项 该钢板桩围堰在整个工程施工中极为顺利,经实测各单元的变形与计算结果相符。

施工中要注意以下几点: 9.1 钢板桩的堵漏 一般的做法是在钢板桩施打过程中用棉絮、黄油等填充物填塞接缝。

刚开始时我们也采用此法,效果不是很理想,后在钢板桩全部插打完毕开始抽水安装围囹时,采用一边抽水一边顺着钢板桩的接缝下溜较干细砂的方法,借助水压力将细砂吸入接逢内而达到堵漏的目的,对于变形较大的接缝在围囹安装后用棉絮塞填。

经现场实施,效果非常明显,施工期间在围堰内仅设置一台潜水泵即可将漏水抽净。

9.2 围囹的安装 围囹的安装应随着抽水的深度逐层实施,安装过程中要密切注意河床水位的变化,并安排专人负责施工期间的抽水工作。

值得注意的是工字钢与钢板桩的连接,由于钢板桩在插打过程中受多方面的影响,整个围堰的侧面顺直度较差,工字钢安装后与钢板桩之间有较大的间隙。

为防止围堰的变形,要求将工字钢与钢板桩之间的间隙全部用型钢焊接支撑连接,围堰的四个角更应加强。

10 结束语 用理论算法进行钢板桩围堰的设计能够较为真实的反映钢板桩的实际受力状态,从而具有较大的安全性。

采用逐层抽水加固的施工方案较为方便,在基底土质良好的条件下可以实现干法施工,不需要采
取水下封底,在质量上易于保证。

相关文档
最新文档