高考数学玩转压轴题专题7.1与数学文化相关的数学考题

合集下载

高考数学压轴题常考题型81页

高考数学压轴题常考题型81页

4
2
(2)当
a
4
Ma
, 即 a 2 时,
2 a, 且 f M a 4.
2 4 6a
令 ax 2 4 x 2 4 ,
x 解得
a
, 此时 Ma 取较小的根, 即
Ma
2 4 6a a
6 4 6a 2 ,
Ma ∵ a 2, ∴
6 4 6a 2
3 . 当且仅当 a 2 时, 取等号.
∵3
1, ∴当 a 2时, M a 取得最小值- 3. 2 复合函数
例 2.
函数 f
x
y 是
10 x
1x 1
R 的反函数,
g x 的图象与函数 y
x 1 的图象关于直线
y x 1 成轴对称图形, 记 F x f x g x 。
(1)求 F x 的解析式及其定义域; (2)试问 F x 的图象上是否存在两个不同的点 AB恰好与 y 轴垂直?若存在, 求出 A、B 的坐标;若不存在, 说明理由。
y 轴, 即 c
lg R 使得方程 1 x
x2
c
有两不等实根
1x t 设 1x
2 1
x 1 , 则 t 在( 1, 1 )上 且 t 0
1t
1 t1
x

1t, x 2 t 3
t1
lg t
c
∴ c R 使得方 程
t 3 有两不等正根
t1
2
lg t c
(c 1)
t3
t3
2
设 h(t ) lg(t ) ,
( 3)在 (2) 的条件下, 若 y f (x) 的图象上 A, B 两点的横坐标是函数 f (x) 的不动点, 且直线

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

2023-2024学年高考数学专项复习——压轴题(附答案)

2023-2024学年高考数学专项复习——压轴题(附答案)

决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。

高考数学压轴突破140 与数学文化相关的高考真题.doc

高考数学压轴突破140 与数学文化相关的高考真题.doc

高考数学压轴突破140 与数学文化相关的高考真题一、方法综述:关注学生数学文化的意识的养成,努力推进数学文化的教育,已经成为当今数学教师与改革的一个重要特征,在新课改的数学命题中,数学文化已经得到足够的重视,但并没由得到应有的落实,造成数学文化教学的缺失的根本原因在于教师自身数学文化素养的缺乏,令人欣喜的是在近几年的高考试题中已经开始有意识的进行尝试和引导,在众多的经典试题中,湖北卷的数学文化题更超凡脱俗和出类拔萃,因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导.二、解答策略:类型一、取材数学游戏游戏可以让数学更加好玩,在游戏中运用数学知识,或蕴含着数学原理的智力游戏可笼统地称为数学游戏,把数学游戏改编为高考试题,既不失数学型,又能增加了考题的趣味性,充分体现了素质教育与大众数学的理念。

例1、五位同学围成一圈依次循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数是3的倍数,则报该数的同学需拍手一次。

已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数为。

探究提高:以数学游戏为素材的命制高考题目,创造了既宽松又竞争的环境,拉近了考生与数学的心理距离,但要注意游戏素材的选择应与考生的实际生活密切相关,便于考生更好地理解游戏。

例如:2012年高考湖北卷第13题“回文数”,考查排列、组合和归纳推理等知识。

本题以此为背景,以简单的游戏为分析计算对象,考查学生的阅读理解能力和合情推理能力。

举一反三:回文数是指从左到右与从右到左读都一样的正整数。

如22,,11,3443,94249等。

显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。

则(Ⅰ)4位回文数有______个;(Ⅱ)2n+1(n∈N+)位回文数有______个。

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列选择题)附答案

2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。

高考数学玩转压轴题专题7.1与数学文化相关的数学考题

高考数学玩转压轴题专题7.1与数学文化相关的数学考题

专题7.1 与数学文化相关的数学考题一、方法综述:关注学生数学文化的意识的养成,努力推进数学文化的教育,已经成为当今数学教师与改革的一个重要特征,在新课改的数学命题中,数学文化已经得到足够的重视,但并没由得到应有的落实,造成数学文化教学的缺失的根本原因在于教师自身数学文化素养的缺乏,令人欣喜的是在近几年的高考试题中已经开始有意识的进行尝试和引导,在众多的经典试题中,湖北卷的数学文化题更超凡脱俗和出类拔萃,因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导.二、解答策略:类型一、取材数学游戏游戏可以让数学更加好玩,在游戏中运用数学知识,或蕴含着数学原理的智力游戏可笼统地称为数学游戏,把数学游戏改编为高考试题,既不失数学型,又能增加了考题的趣味性,充分体现了素质教育与大众数学的理念。

例1、五位同学围成一圈依次循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数是3的倍数,则报该数的同学需拍手一次。

已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数为。

探究提高:以数学游戏为素材的命制高考题目,创造了既宽松又竞争的环境,拉近了考生与数学的心理距离,但要注意游戏素材的选择应与考生的实际生活密切相关,便于考生更好地理解游戏。

例如:2012年高考湖北卷第13题“回文数”,考查排列、组合和归纳推理等知识。

本题以此为背景,以简单的游戏为分析计算对象,考查学生的阅读理解能力和合情推理能力。

举一反三:回文数是指从左到右与从右到左读都一样的正整数。

如22,,11,3443,94249等。

显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。

则(Ⅰ)4位回文数有______个;(Ⅱ)2n+1(n∈N+)位回文数有______个。

2023高考压轴卷——数学(文)(全国乙卷)含解析

2023高考压轴卷——数学(文)(全国乙卷)含解析

KS5U2023全国乙卷高考压轴卷数学试题(文科)(考试时间:120分钟满分:150分)第I 卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是()A.(,1)-∞B.(,1]-∞C.{1,0}- D.{1,0,1}-2.设复数z 满足i 4i 0z ++=,则||z =()A.B.4C.D.3.已知双曲线()222210,0x y a b a b-=>>0y ±=,则双曲线的离心率为()A.B.4C.2D.154.考拉兹猜想是引人注目的数学难题之一,由德国数学家洛塔尔·考拉兹在20世纪30年代提出,其内容是:任意给定正整数s ,如果s 是奇数,则将其乘3加1;如果s 是偶数,则将其除以2,所得的数再次重复上面步骤,最终都能够得到1.下边的程序框图演示了考拉兹猜想的变换过程.若输入s 的值为5,则输出i 的值为()A.4B.5C.6D.75.若1:310l x my --=与23(2)31:0m x l y +-+=是两条不同的直线,则“1m =”是“12l l ∥”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知数列{}n a 为等差数列,其前n 项和为n S ,*n ∈N ,若1020S =,则56a a +=()A .0B .2C .4D .87.中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱,假设空间站要安排甲,乙,丙,丁4名航天员开展实验,其中天和核心舱安排2人,问天实验舱与梦天实验舱各安排1人,则甲乙两人安排在同一个舱内的概率为()A.16B.14C.13D.128.已知角π,π2θ⎛⎫∈ ⎪⎝⎭,角()0,2πα∈,α终边上有一点()cos ,cos θθ,则α=().A.θB.π2θ+ C.π4D.5π49.已知函数()e xf x x =,若()12f x ax a ≥-恒成立,则实数a 的最大值为()A .121e 2-B .e 1+C .2eD .e 4+10.抛物线()2:20C y px p =>的焦点为F ,A 为抛物线C 上一点,以F 为圆心,FA 为半径的圆交抛物线C 的准线l 于M ,N 两点,MN =,则直线AF 的斜率为()A.1±B.C.D.11.设5log 15a =,7log 21b =,252c =,则()A.b a c << B.c<a<b C.c b a<< D.a c b<<12.在直三棱柱111ABC A B C -中,AB AC ⊥,12AB AC AA ===,P 为该三棱柱表面上一动点,若1CP B P =,则P 点的轨迹长度为()A. B.C.D.第II 卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.把KS5U 答案填在答题卡上的相应位置.13.已知向量()1,2AB =-,()2,5B t t C =+ ,若A 、B 、C 三点共线,则t =_____.14.如图,圆柱1OO 的轴截面是正方形,AB 是底面圆的直径,AD 是母线,点C 是AB 的中点,则异面直线AB 与CD 所成角的余弦值为________.15.已知数列{}n a 前n 项和22n n n S +=,记2n an b =,若数列{}n a 中去掉数列{}n b 中的项后,余下的项按原来顺序组成数列{}n c ,则数列{}n c 的前50项和为________.16.已知()f x 是定义在R 上的奇函数,且函数图象关于直线2x =对称,对x ∀∈R ,()()22f x f ≤=,则以下结论:①()4f x +为奇函数;②()2f x +为偶函数;③()42f =-;④在区间()2,0-上,()f x 为增函数.其中正确的序号是______.三、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤.17.《中国统计年鉴2021》数据显示,截止到2020年底,我国私人汽车拥有量超过24千万辆.下图是2011年至2020年十年间我国私人汽车拥有量y(单位:千万辆)折线图.(注:年份代码1-10分别对应年份2011-2020)(1)由折线图能够看出,可以用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的线性回归方程(系数精确到0.01),并预测2022年我国私人汽车拥有量.参考数据:15.5y =,()()101160.1i i i tty y =--=∑,()1021311.4i i y y =-=∑,()102182.5i i t t=-=∑,159.8≈160.3≈.参考公式:相关系数()()nii tty y r --=∑,线性回归方程ˆˆˆy bt a =+中,斜率和截距的最小二乘估计公式分别为()()()1122211ˆnnii i i i i nni ii i tty y t y ntybt t tnt====---==--∑∑∑∑,ˆˆa y bt=-.18.已知函数()()2ππ2sin sin cos 44f x x x x x ⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的对称中心及最小正周期;(2)若π3π,88θ⎛⎫∈-⎪⎝⎭,()65f θ=,求tan θ的值.19.如图,在矩形ABCD 中,2AB AD ==M 为边AB 的中点,以CM 为折痕把BCM 折起,使点B 到达点P 的位置,使得3PMB π∠=,连结PA ,PB ,PD .(1)证明:平面PMC ⊥平面AMCD ;(2)求点M 到平面PAD 的距离.20.已知函数2()sin 1,f x x a x a R =--∈.(1)设函数()()g x f x '=,若()y g x =是区间0,2π⎡⎤⎢⎥⎣⎦上的增函数,求a 的取值范围;(2)当2a =时,证明函数()f x 在区间(0,)π上有且仅有一个零点.21.已知抛物线()2:20C x py p =>的焦点为F ,点E 在C 上,以点E 为圆心,EF 为半径的圆的最小面积为π.(1)求抛物线C 的标准方程;(2)过点F 的直线与C 交于M ,N 两点,过点M ,N 分别作C 的切线1l ,2l ,两切线交于点P ,求点P 的轨迹方程.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑.选修4-4:坐标系与参数方程22.在直角坐标系xOy 中,直线l的参数方程为11x y ⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2(0)cos 2,a a R ρθρ=>∈.(1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)若直线()4R πθρ=∈与直线l 交于点M ,直线()6R πθρ=∈与曲线C 交于点,A B ,且AM BM ⊥,求实数a 的值.选修4-5:不等式选讲23.已知函数()221f x x x =-++.(1)求函数()f x 的最小值;(2)设0a >,0b >,若()f x 的最小值为m ,且221a b m +=-,求2a b +的最大值.【KS5U 答案1】D【分析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得KS5U 答案.【KS5U 解析】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ð,故选:D 【KS5U 答案2】A【分析】由复数的四则运算结合几何意义得出||z .【KS5U 解析】224i 4i 14i,||ii i z z --+===-+=-A 【KS5U 答案3】B【分析】求出ba的值,利用双曲线的离心率公式可求得该双曲线的离心率的值.【KS5U 解析】双曲线的渐近线方程为b y x a=±=,所以,ba =,因此,该双曲线的离心率为4e ===.故选:B.【KS5U 答案4】B【分析】根据程序框图列举出算法循环的每一步,即可得出输出结果.【KS5U 解析】第一次循环,15Z 22s =∈不成立,35116s =⨯+=,011i =+=,1s =不成立;第二次循环,18Z 2s =∈成立,11682s =⨯=,112i =+=,1s =不成立;第三次循环,14Z 2s =∈成立,则1842s =⨯=,213i =+=,1s =不成立;第四次循环,12Z 2s =∈成立,则1422s =⨯=,314i =+=,1s =不成立;第五次循环,11Z 2s =∈成立,则1212s =⨯=,415i =+=,1s =成立.跳出循环体,输出5i =.故选:B.【KS5U 答案5】C【分析】由题意解出12l l ∥时m 的值后判断【KS5U 解析】若12l l ∥,则3(3)3(2)m m ⨯-=-⨯+,解得1m =或3m =-而3m =-时,12l l ,重合,故舍去则“1m =”是“12l l ∥”的充要条件。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

【新高考数学压轴题】新高考实际应用题、涉及数学文化的应用题(主讲人:刘蒋巍)

【新高考数学压轴题】新高考实际应用题、涉及数学文化的应用题(主讲人:刘蒋巍)

W
(
x)
50x ,
1 x
0 x2 ,肥料成本投入为10x 元,其它成
2 x5
本投入(如培育管理、施肥等人工费) 20x 元.已知这种水果的市场售价大约为 15 元/千
克,且销路畅通供不应求.记该水果树的单株利润为 f (x) (单位:元).
(Ⅰ)求 f (x) 的函数关系式;
(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?
【新高考数学压轴题】新高考实际应用题、涉及数学文化的应用题(主讲人:刘蒋巍)
新高考实际应用题、涉及数学文化的应用题
一.单选题
(选择、填空、解答)
主讲人:刘蒋巍
1.《周髀算经》是我国古老的天文学和数学著作,其书中记载:一年有二十四个节气,每个
节气晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测影子的长度),夏至、小
斗从点 A(3, 3 3 )出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时 120 秒.经过 t
秒后,水斗旋转到 P 点,设点 P 的坐标为(x,y),其纵坐标满足 y f (t) R sin(t ) (t ≥0, >0, ),则下列叙述正确的是
2
A. 3
B.当 t (0,60]时,函数 y f (t)单调递增
4 的封闭图形的面积为 ▲ .
答案:64
3
2.某系列智能手机玻璃版有“星河银”、“罗兰紫”、“翡冷翠”、“亮黑色”四种颜色.若甲、 乙等四位市民准备分别购买一部颜色互不相同的同一型号玻璃版的该系列手机,若甲购 买“亮黑色”或“星河银”,则乙不购买“罗兰紫”,则这四位市民不同的购买方案有 种.
答案:20 解析:依题意,就甲实际购买的手机颜色进行分类,第一类,甲实际购买的手机颜色为“亮

新高考题型:数学文化(精选100题)-数学附答案

新高考题型:数学文化(精选100题)-数学附答案

“ 4 − 78 ”,1周角等于 6000 密位,记作1周角= 60 − 00 ,1直角= 15 − 00 .如果一个
半径为 2 的扇形,它的面积为 7 π ,则其圆心角用密位制表示为( ) 6
A.12 − 50
B.17 − 50
C. 21− 00
D. 35 − 00
2.天干地支纪年法源于中国,中国自古便有十天干与十二地支,十天干即甲、乙、
10
5
15
过剩近似值,即 27 < e < 41 ,若每次都取最简分数,那么第二次用“调日法”后可得 e 10 15
的近似分数为( )
68
A.
25
41
B.
15
27
C.
10
14
D.
5
6.如图,洛书(古称龟书),是阴阳五行术数之源.在古代传说中有神龟出于洛水,其 甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五 方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取 3 个数,则选取 的 3 个数之和为奇数的方法数为( )
半球时取正值,直射南半球时取负值).设第 x 天时太阳直射点的纬度值为 y, 该科研小 组通过对数据的整理和分析.得到 y 与 x 近似满足 y = 23.4392911sin0.01720279x .则
每 400 年中,要使这 400 年与 400 个回归年所含的天数最为接近.应设定闰年的个数为
(精确到1)( )
A.30
B.40
C.44
D.70
7.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子
在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦

高考数学高三模拟考试试卷压轴题高等学校招生全国统一考试数学文科

高考数学高三模拟考试试卷压轴题高等学校招生全国统一考试数学文科

高考数学高三模拟考试试卷压轴题高等学校招生全国统一考试数学(文科)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,,A B C {}2320A x x x =-+=,{}05,B x x x =<<∈N ,则满足条件A B C ⊆⊆的集合C 的个数为 ( )A .1B .2C .3D .4 【测量目标】集合的基本运算. 【考查方式】子集的应用. 【参考答案】D【试题解析】求{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.2.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为 ( )A .0.35B .0.45C .0.55D .0.65 【测量目标】频数分布表的应用,频率的计算,对于頻数、频率等统计问题【考查方式】通过弄清楚样本总数与各区间上样本的个数,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.【参考答案】B【试题解析】由频数分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B.3.函数()cos 2f x x x =在区间上[]0,2π的零点的个数为 ( )A .2B .3C .4 D.5【测量目标】函数零点求解与判断.【考查方式】通过函数的零点,要求学会分类讨论的数学思想. 【参考答案】D【试题解析】由()cos 20==f x x x ,得0=x 或cos20=x ;其中,由cos20=x ,得()π22x k k π=+∈Z ,故()ππ24k x k =+∈Z .又因为[]0,2πx ∈,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D.4.命题“存在一个无理数,它的平方是有理数”的否定是 ( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数【测量目标】命题的否定.【考查方式】求解特称命题或全称命题的否定,千万别忽视了改变量词; 【参考答案】B【试题解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B. 5.过点(1,1)P 的直线,将圆形区域分为两部分,使22{(,)4)}x y x y +得这两部分的面积之差最大,则该直线的方程为 ( ) A .0x y += B. 10y -= C.0x y -= D.340x y +-=【测量目标】考查直线、线性规划与圆的综合运,并学会用数形结合思想.【考查方式】通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.【参考答案】A【试题解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为1-.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.6.已知定义在区间(0,2)上的21π-函数的图象()y f x =如图所示,则(2)y f x =--的图象为 ( )【测量目标】函数的图象的识别.【考查方式】利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解【参考答案】B【试题解析】排除法:当1x =时,()()()21211y f x f f =--=--=-=-,故可排除A,C 项;当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;所以由排除法知选B.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则{()}n f a 称为“保等比数列函数”.现有定义在上的如下(,0)(0,)-∞+∞函数: ( )①2()f x x =; ②()2xf x =;③()f x =;④()ln f x x =.则其中是“保等比数列函数”的的()f x 序号为A .① ②B .③ ④C .① ③D .② ④ 【测量目标】等比数列的新应用,函数的概念.【考查方式】读懂题意,然后再去利用定义求解,注意数列的通项. 【参考答案】C【试题解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n n f a f a +===;对于④,11()ln ||()ln ||n n n nf a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C8.设ABC △的内,,A B C 所对的边分别为,,a b c . 若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为 ( )A.4:3:2B.5:6:7C .5:4:3 D.6:5:4【测量目标】正、余弦定理以及三角形中大角对大边的应用.【考查方式】本题需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长,注意正余弦定理与和差角公式的结合应用.【参考答案】D【试题解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20bA a=②.由余弦定理可得222cos 2+-=b c a A bc ③,则由②③可得2223202b b c a a bc+-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.9.设,,R a b c ∈,“1abc =”是a b c++”的 ( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件【测量目标】充要条件的判断,不等式的证明.【考查方式】首先需判断条件能否推得结论,然后需判断结论能否推得条件. 【参考答案】A【试题解析】1abc =时,=+=而()()()()22a b c a b b c c a ab ++=++++++(当且仅当a b c==,且1abc =,即a b c==时等号成立),故a b c+=++;但当取2a b c ===,显然有a b c+++,但1abc ≠,即由a b c ++不可以推得1abc =;综上,1abc =a b c++的充分不必要条件,应选A.10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是 ( ) A .112π-B .1πC . 21π-D .2π【测量目标】古典概型的应用以及观察推理的能力.【考查方式】求解阴影部分的面积,将不规则图形的面积化为规则图形的面积来求解. 【参考答案】C【试题解析】如下图所示,设OA 的中点为1O ,OB 的中点为2O ,半圆1O 与半圆2O 的交点分别为,O F ,则四边形12OO FO 是正方形.不妨设扇形的半径为2,记两块白色区域的面积分别为12,S S ,两块阴影部分的面积分别为34,S S .则212341π2π4OAB S S S S S +++==⨯=扇形, ① 而22132311111π,π1π2222S S S S π+=⨯=+=⨯=,即1232πS S S ++=, ②由①②,得34S S =.又由图象观察可知,12214OO FO OAB O FB O AF S S S S S =---正方形扇形扇形扇形2222221111π1π1π11π11π14422=⨯-⨯-⨯-=⨯-=-.故由几何概型概率公式可得,此点取自阴影部分的概率:3442π221ππOAB OAB S S S P S S +-====-扇形扇形.故选C.二、填空题:本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.一支田径运动队有男运动员56人,女运动员42人. 现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有人. 【测量目标】分层抽样的应用.【考查方式】分层抽样在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比. 【参考答案】6【试题解析】设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人. 12.若21k b -3ii 1ib a b +=+-(a ,b 为实数,i 为虚数单位),则a b +=. 【测量目标】复数代数形式的四则运算.【考察方式】通过考查复数相等来判断学生对复数的掌握. 【参考答案】3 【试题解析】因为3ii 1ib a b +=+-,所以()()()3i i 1i i b a b a b b a +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,a b b a b +=⎧⎨-=⎩解得0,3a b =⎧⎨=⎩所以3a b +=.13已知向量(1,0)=a ,(1,1)=b ,则(Ⅰ)与2+a b 同向的单位向量的坐标表示为;(Ⅱ)向量与3-b a 向量a 夹角的余弦值为.【测量目标】单位向量的概念,平面向量的坐标运算,向量的数量积运算等. 【考查方式】给出两个向量,利用向量的坐标和向量的数量积来运算求值.【参考答案】(Ⅰ)1010⎛⎝⎭;(Ⅱ) 【试题解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得,10x y ⎧=⎪⎪⎨⎪=⎪⎩故⎝⎭c =.即与2+a b同向的单位向量的坐标为1010⎛ ⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()32,11,025cos 3551θ--===--⨯b a a b a a.14.若变量,x y 满足约束条件1133x y x y x y --⎧⎪+⎨⎪-⎩,则目标函数23z x y =+的最小值是.【测量目标】二元线性规划求目标函数最小值.【考查方式】给出约束条件,判断可行域,利用可行域求解. 【参考答案】2【试题解析】作出不等式组1133x y x y x y --⎧⎪+⎨⎪-⎩所表示的可行域(如下图的ABM △及其内部),目标函数23z x y =+在ABM △的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.15.已知某几何体的三视图如图所示,则该几何体的体积为. 【测量目标】考查圆柱的三视图的识别,圆柱的体积.【考查方式】在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法.【参考答案】12π【试题解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是22π212π1412πV =⨯⨯⨯+⨯⨯=.16.阅读如图所示的程序框图,运行相应的程序,输出的结果s =.【测量目标】顺序结构框图和判断结构框图的执行求解.【考查方式】对于循环结构的输出问题,一步一步按规律写程序结果. 【参考答案】9【试题解析】由程序框图可知:第一次:1,0,1,1,23a s n s s a a a ====+==+=,满足判断条件3?n <; 第二次2,4,5n a a ===,满足判断条件3?n <第三次:3,9,7n s a ===,此时不满足判断条件3?n <,故终止运行,输出s 的值. 综上,输出的s 值为9.17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b . 可以推测:(Ⅰ)2012b 是数列{}n a中的第________项; (Ⅱ)21k b -________.(用k 表示) 【测量目标】数学归纳法.【考查方式】本题考查归纳推理,猜想的能力.【参考答案】(Ⅰ)5030;(Ⅱ)()5512k k - 【试题解析】易知(1)2n n n a +=,写出数列{}n a 的若干项依次为:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,…,发现其中能被5整除的为10,15,45,55,105,120,190,210,故142510,15b a b a ====. 同理,39410514615719820,,,,,b a b a b a b a b a b a ======.从而由上述规律可猜想:()255512k k k k b a +==,()()()21515151155122k k k k k k b a ----+-===(k 为正整数).第17题图106 3 1 ···故201221006510065030b b a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.三、解答题:本大题共5小题,共65分. 解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)设函数22()sin cos cos ()f x x x x x x ωωωλ=+-+∈R ,的图象关于直线πx =对称,其中,πω为常数,且1(,1)2ω∈(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 的值域.【测量目标】三角函数的图象的周期性,值域,诱导公式的应用. 【考查方式】给出函数,利用三角函数的性质求最小值和周期.【试题解析】解:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-++π=2sin(2)+6x ωλ-.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2)16x ω-=±, 所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=故5π()2sin()36f x x =-()f x的值域为[22---.19.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -11B D ⊥,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱.2222ABCD A B C D -(Ⅰ)证明:直线11B D ⊥平面22ACC A ;(Ⅱ)现需要对该零部件表面进行防腐处理. 已知10AB =,2220,A B =230AA =,113AA =(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少A 2B 2C 2D 2CB A DA 1B 1C 1D 1第19题图元?【测量目标】线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.【考查方式】通过线线垂直证明面面垂直,并用公式求体积【试题解析】解:(Ⅰ)因为四棱柱2222ABCD A B C D -的侧面是全等的矩形,所以2AA AB ⊥,2AA AD ⊥. 又因为AB AD A =,所以2AA 平面ABCD.连接BD ,因为BD ⊂平面ABCD ,所以2AA BD ⊥. 因为底面ABCD 是正方形,所以AC BD ⊥ 根据棱台的定义可知,BD 与B1 D1共面.又已知平面ABCD ∥平面1111A B C D ,且平面11BB D D平面ABCD BD =,平面11BB D D 平面111111A B C D B D =,所以B1 D1∥BD. 于是由2AA BD⊥,AC BD⊥,B1 D1∥BD ,可得211AA B D ⊥,.11AC B D ⊥又因为2AA AC A =,所以11B D ⊥平面22ACC A .(Ⅱ)因为四棱柱2222ABCD A B C D -的底面是正方形,侧面是全等的矩形,所以2221222()410410301300(cm )S S S A B AB AA =+=+⋅=+⨯⨯=四棱柱上底面四棱柱侧面.又因为四棱台1111A B C D ABCD -的上、下底面均是正方形,侧面是全等的等腰梯形,所以2211111()42S S S A B AB A B h =+=+⨯+四棱台下底面四棱台侧面等腰梯形的高()221204(101120(cm )2=+⨯+=.于是该实心零部件的表面积为212130*********(cm )S S S =+=+=, 故所需加工处理费为0.20.22420484S =⨯=(元).20.(本小题满分13分)已知等差数列{}n a 前三项的和为3-,前三项的积为8. (Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{}n a 的前n 项和. 【测量目标】本题考查等差数列的通项,求和等.【考查方式】考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'nn a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.【试题解析】解:(Ⅰ)设等差数列{}n a 的公差为d ,则21a a d =+,312a a d =+,由题意得1111333,()(2)8.a d a a d a d +=-⎧⎨++=⎩解得12,3,a d =⎧⎨=-⎩或14,3.a d =-⎧⎨=⎩所以由等差数列通项公式可得23(1)35n a n n =--=-+,或43(1)37n a n n =-+-=-.故35n a n =-+,或37n a n =-.(Ⅱ)当35n a n =-+时,2a ,3a ,1a 分别为1-,4-,2,不成等比数列;当37n a n =-时,2a ,3a ,1a 分别为1-,2,4-,成等比数列,满足条件.故37,1,2,|||37|37, 3.n n n a n n n -+=⎧=-=⎨-≥⎩记数列{||}n a 的前n 项和为n S .当1n =时,11||4S a ==;当2n =时,212||||5S a a =+=; 当3n ≥时,2(2)[2(37)]311510222n n n n -+-=+=-+.当2n =时,满足此式.综上,24,1,31110, 1.22n n S n n n =⎧⎪=⎨-+>⎪⎩22.(本小题满分14分)设函数()(1)nf x ax x b =-+,1+1()ex y f x n =<,,n 为正整数,a ,b 为常数. 曲线()y f x =在(1,(1))f 处的切线方程为.+1x y =(Ⅰ)求a ,b 的值;(Ⅱ)求函数()f x 的最大值; (Ⅲ)证明:1()ef x n <. 【测量目标】函数导数的几何意义以及单调性的应用,还考查不等式的证明.【考查方式】通过转化与划归,分类讨论的数学思想以及运算求解的能力.导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等.【试题解析】解:(Ⅰ)因为(1)f b =,由点(1,)b 在=1x y +上,可得11b +=,即0b =.因为1'()(1)n n f x anxa n x -=-+,所以'(1)f a =-.又因为切线1x y +=的斜率为1-,所以1a -=-,即1a =. 故1a =,0b =.(Ⅱ)由(Ⅰ)知,1()(1)nnn f x x x x x+=-=-,1()(1)()1n nf x n xx n -'=+-+. 令()0f x '=,解得1n x n =+,即'()f x 在(0,)+1n n +(0,)+∞上有唯一零点.在(0,)+1nn +上,()0f x '>,故()f x 单调递增; 而在(+)+1n n ∞,上,()0f x '<,()f x 单调递减. 故()f x 在(0,)+∞上的最大值为1()1(1)nn n n f n n +=++. (Ⅲ)令1()ln 1(0)t t t t ϕ'=-+>,则22111()(0)t t t t t tϕ-'=-=>. 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减; 而在(1,)+∞上()0t ϕ'>,()t ϕ单调递增.故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=.所以()0(1)t t ϕ>>, 即1ln 1(1)t t t>->.令11+t n =,得11ln 1n n n +>+,即11ln()ln e n n n++>, 所以11()1n n n++>,即11(1)e n n n n n +<+. 由(Ⅱ)知,1nx n =+,故所证不等式成立..21.(本小题满分14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足DM m DA (M>0,M 1)=≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的,K>0都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.【测量目标】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系.【考查方式】考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论.【试题解析】解:(Ⅰ)如图1,设(,)M x y ,00(,)A x y ,则由DM m DA (m>0,1)=≠且m ,可得0x x =,0y m y =,所以0x x =,. 01y y m=① 因为A 点在单位圆上运动,所以2221(0,1)y x m m m+=>≠且 ②将①式代入②式即得所求曲线C 的方程为.2221(0,1)y x m m m+=>≠且因为(0,1)(1,)m ∈+∞,所以当01m <<时,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(0),0); 当1m >时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,-,(0,.(Ⅱ)1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --, 1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎪⎨+=⎪⎩ 两式相减可得 222221212()()0m x x y y -+-=. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠.于是由③式可得 212121212()()()()y y y y m x x x x -+=--+. ④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+. 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+. 而PQ PH ⊥等价于1PQ PHk k ⋅=-,即212m -=-,又0m >,得m ,故存在m 2212y x +=上,对任意的0k >,都有. PQ PH高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

2020届高考数学压轴必刷题 专题07不等式(文理合卷)(含答案)

2020届高考数学压轴必刷题 专题07不等式(文理合卷)(含答案)

2020届高考数学压轴必刷题专题07不等式(文理合卷)1.【2019年北京理科08】数学中有许多形状优美、寓意美好的曲线,曲线C:x2+y2=1+|x|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A.①B.②C.①②D.①②③【解答】解:将x换成﹣x方程不变,所以图形关于y轴对称,当x=0时,代入得y2=1,∴y=±1,即曲线经过(0,1),(0,﹣1);当x>0时,方程变为y2﹣xy+x2﹣1=0,所以△=x2﹣4(x2﹣1)≥0,解得x∈(0,],所以x只能取整数1,当x=1时,y2﹣y=0,解得y=0或y=1,即曲线经过(1,0),(1,1),根据对称性可得曲线还经过(﹣1,0),(﹣1,1),故曲线一共经过6个整点,故①正确.当x>0时,由x2+y2=1+xy得x2+y2﹣1=xy,(当x=y时取等),∴x2+y2≤2,∴,即曲线C上y轴右边的点到原点的距离不超过,根据对称性可得:曲线C上任意一点到原点的距离都不超过;故②正确.在x轴上图形面积大于矩形面积=1×2=2,x轴下方的面积大于等腰直角三角形的面积1,因此曲线C所围成的“心形”区域的面积大于2+1=3,故③错误.故选:C.2.【2016年浙江理科08】已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100【解答】解:A.设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;B.设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;C.设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;故选:D.3.【2014年浙江理科10】设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【解答】解:由,故1,由,故1,,故I2<I1<I3,故选:B.4.【2013年北京理科08】设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值范围是()A.B.C.D.【解答】解:先根据约束条件画出可行域,要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y x﹣1的上方,且(﹣m,m)在直线y x﹣1的下方,故得不等式组,解之得:m.故选:C.5.【2012年浙江理科09】设a>0,b>0,下列命题中正确的是()A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a<bC.若2a﹣2a=2b﹣3b,则a>b D.若2a﹣2a=2b﹣3b,则a<b【解答】解:∵a≤b时,2a+2a≤2b+2b<2b+3b,∴若2a+2a=2b+3b,则a>b,故A正确,B错误;对于2a﹣2a=2b﹣3b,若a≥b成立,则必有2a≥2b,故必有2a≥3b,即有a b,而不是a>b排除C,也不是a<b,排除D.故选:A.6.【2010年北京理科07】设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是()A.(1,3] B.[2,3] C.(1,2] D.[3,+∞]【解答】解:作出区域D的图象,联系指数函数y=a x的图象,由得到点C(2,9),当图象经过区域的边界点C(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点.故选:A.7.【2019年天津理科13】设x>0,y>0,x+2y=5,则的最小值为.【解答】解:x>0,y>0,x+2y=5,则2;由基本不等式有:224;当且仅当2时,即:xy=3,x+2y=5时,即:或时;等号成立,故的最小值为4;故答案为:48.【2019年北京理科14】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为.【解答】解:①当x=10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元),即有顾客需要支付140﹣10=130(元);②在促销活动中,设订单总金额为m元,可得(m﹣x)×80%≥m×70%,即有x,由题意可得m≥120,可得x15,则x的最大值为15元.故答案为:130,159.【2018年江苏13】在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.【解答】解:由题意得ac sin120°a sin60°c sin60°,即ac=a+c,得1,得4a+c=(4a+c)()5≥25=4+5=9,当且仅当,即c=2a时,取等号,故答案为:9.10.【2018年天津理科13】已知a,b∈R,且a﹣3b+6=0,则2a的最小值为.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a2,当且仅当2a.即a=﹣3时取等号.函数的最小值为:.故答案为:.11.【2017年上海11】设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π(2k1+k2)π|的最小值为.故答案为:.12.【2016年新课标1理科16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.13.【2015年浙江理科14】若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.【解答】解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2x+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用平移可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2x+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用平移可得在A(,)处取得最小值3.综上可得,当x,y时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.14.【2013年江苏13】在平面直角坐标系xOy中,设定点A(a,a),P是函数y(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.【解答】解:设点P,则|P A|,令,∵x>0,∴t≥2,令g(t)=t2﹣2at+2a2﹣2=(t﹣a)2+a2﹣2,①当a≤2时,t=2时g(t)取得最小值g(2)=2﹣4a+2a2,解得a=﹣1;②当a>2时,g(t)在区间[2,a)上单调递减,在(a,+∞)单调递增,∴t=a,g(t)取得最小值g(a)=a2﹣2,∴a2﹣2,解得a.综上可知:a=﹣1或.故答案为﹣1或.15.【2013年天津理科14】设a+b=2,b>0,则当a=时,取得最小值.【解答】解:∵a+b=2,b>0,∴,(a<2)设f(a),(a<2),画出此函数的图象,如图所示.利用导数研究其单调性得,当a<0时,f(a),f′(a),当a<﹣2时,f′(a)<0,当﹣2<a<0时,f′(a)>0,故函数在(﹣∞,﹣2)上是减函数,在(﹣2,0)上是增函数,∴当a=﹣2时,取得最小值.同样地,当0<a<2时,得到当a时,取得最小值.综合,则当a=﹣2时,取得最小值.故答案为:﹣2.16.【2012年浙江理科17】设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.【解答】解:(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y1=(a﹣1)x﹣1,y2=x 2﹣ax﹣1,它们都过定点P(0,﹣1).考查函数y1=(a﹣1)x﹣1:令y=0,得M(,0),∴a>1;考查函数y2=x2﹣ax﹣1,∵x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,∴y2=x2﹣ax﹣1过点M(,0),代入得:,解之得:a,或a=0(舍去).故答案为:.17.【2011年浙江理科16】设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是.【解答】解:∵4x2+y2+xy=1∴(2x+y)2﹣3xy=1令t=2x+y则y=t﹣2x∴t2﹣3(t﹣2x)x=1即6x2﹣3tx+t2﹣1=0∴△=9t2﹣24(t2﹣1)=﹣15t2+24≥0解得∴2x+y的最大值是故答案为18.【2010年江苏12】设实数x,y满足3≤xy2≤8,49,则的最大值是.【解答】解:因为实数x,y满足3≤xy2≤8,49,则有:,,再根据,即当且仅当x=3,y=1取得等号,即有的最大值是27.故答案为:27.1.【2019年新课标3文科11】记不等式组表示的平面区域为D.命题p:∃(x,y)∈D,2x+y ≥9;命题q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题①p∨q②¬p∨q③p∧¬q④¬p∧¬q这四个命题中,所有真命题的编号是()A.①③B.①②C.②③D.③④【解答】解:作出等式组的平面区域为D.在图形可行域范围内可知:命题p:∃(x,y)∈D,2x+y≥9;是真命题,则¬p假命题;命题q:∀(x,y)∈D,2x+y≤12.是假命题,则¬q真命题;所以:由或且非逻辑连词连接的命题判断真假有:①p∨q真;②¬p∨q假;③p∧¬q真;④¬p∧¬q假;故答案①③真,正确.故选:A.2.【2016年北京文科07】已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x﹣y的最大值为()A.﹣1 B.3 C.7 D.8【解答】解:如图A(2,5),B(4,1).若点P(x,y)在线段AB上,令z=2x﹣y,则平行y=2x﹣z当直线经过B时截距最小,Z取得最大值,可得2x﹣y的最大值为:2×4﹣1=7.故选:C.3.【2013年新课标2文科12】若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞)B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)【解答】解:因为2x(x﹣a)<1,所以,函数y是增函数,x>0,所以y>﹣1,即a>﹣1,所以a的取值范围是(﹣1,+∞).故选:D.4.【2011年北京文科07】某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件【解答】解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是这样平均每件的生产准备费用与仓储费用之和为(x为正整数)由基本不等式,得当且仅当时,f(x)取得最小值、可得x=80时,每件产品的生产准备费用与仓储费用之和最小故选:B.5.【2010年新课标1文科11】已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y,平移直线当直线经过点B(3,4)时,最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.6.【2019年天津文科13】设x>0,y>0,x+2y=4,则的最小值为.【解答】解:x>0,y>0,x+2y=4,则2;x>0,y>0,x+2y=4,由基本不等式有:4=x+2y≥2,∴0<xy≤2,,故:22;(当且仅当x=2y=2时,即:x=2,y=1时,等号成立),故的最小值为;故答案为:.7.【2019年北京文科14】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为.【解答】解:①当x=10时,顾客一次购买草莓和西瓜各1盒,可得60+80=140(元),即有顾客需要支付140﹣10=130(元);②在促销活动中,设订单总金额为m元,可得(m﹣x)×80%≥m×70%,即有x,由题意可得m≥120,可得x15,则x的最大值为15元.故答案为:130,158.【2018年天津文科13】已知a,b∈R,且a﹣3b+6=0,则2a的最小值为.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a2,当且仅当2a.即a=﹣3时取等号.函数的最小值为:.故答案为:.9.【2017年北京文科14】某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为.②该小组人数的最小值为.【解答】解:①设男学生女学生分别为x,y人,若教师人数为4,则,即4<y<x<8,即x的最大值为7,y的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x,y人,教师人数为z,则,即z<y<x<2z即z最小为3才能满足条件,此时x最小为5,y最小为4,即该小组人数的最小值为12,故答案为:6,1210.【2017年天津文科13】若a,b∈R,ab>0,则的最小值为.【解答】解:【解法一】a,b∈R,ab>0,∴=4ab24,当且仅当,即,即a,b或a,b时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴44,当且仅当,即,即a,b或a,b时取“=”;∴上式的最小值为4.故答案为:4.11.【2016年新课标1文科16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.12.【2013年天津文科14】设a+b=2,b>0,则的最小值为.【解答】解:∵a+b=2,∴,∴,∵b>0,|a|>0,∴1(当且仅当b2=4a2时取等号),∴1,故当a<0时,的最小值为.故答案为:.。

高考数学压轴卷含解析试题

高考数学压轴卷含解析试题

卜人入州八九几市潮王学校2021年高考数学压轴卷〔含解析〕一、 选择题〔本大题一一共10小题.每一小题45分,一共40分在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕 1.设复数z 满足13izz +=,那么||z =〔〕A .1010B .55C .5D .102.设集合{}1,0,1,2,3A =-,2{|20},B x x x =->那么()R A B =〔〕A .{}1,3- B .{}0,1,2C .{}1,2,3D .{}0,1,2,33.定义域为R 的奇函数()f x 满足(2)()f x f x +=,且当01x ≤≤时,3()f x x =,那么52f ⎛⎫-= ⎪⎝⎭〔〕 A .278-B .18-C .18D .2784.函数()21cos 1xf x x e ⎛⎫=- ⎪+⎝⎭图象的大致形状是〔〕 A . B . C .D .5.坐标原点到直线l 的间隔为2,且直线l 与圆()()223449x y -+-=相切,那么满足条件的直线l 有〔〕条 A .1 B .2C .3D .46.函数()sin(2)6f x x π=+的单调递增区间是〔〕A .()2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .(),,2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C .(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .(),,2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦7.某三棱锥的三视图如下列图,那么该三棱锥的体积为〔〕 A .20 B .10C .30D .608.点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,那么直线AF 的斜率为〔〕A .43- B .1-C .34-D .12-9.1a =,那么“()a a b ⊥+〞是“1a b ⋅=-〞的〔〕A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件10.随机变量ξ的分布列,那么以下说法正确的选项是()A .存在x ,y ∈(0,1),E (ξ)>12B .对任意x ,y ∈(0,1),E (ξ)≤14C .对任意x ,y ∈(0,1),D (ξ)≤E (ξ) D .存在x ,y ∈(0,1),D (ξ)>14二.填空题〔本大题一一共5小题.每一小题5分,一共25分〕 11.曲线()212f x x x =+的一条切线的斜率是3,那么该切点的横坐标为____________. 12.函数2cos 2sin y x x =-的最小正周期等于_____.13.在△ABC 中,假设30B=,23AB =,2AC =,求△ABC 的面积14.{a n }是各项均为正数的等比数列,a 1=1,a 3=100,那么{a n }的通项公式a n =_____;设数列{lga n }的前n 项和为T n ,那么T n =_____. 15.函数①是奇函数;②在上是单调递增函数;③方程有且仅有1个实数根;④假设对任意,都有,那么的最大值为2.注:此题给的结论中,有多个符合题目要求,全部选对得5分,不选或者有选错得0分,其他得3分.三、解答题〔本大题一一共6小题,一共85分.解答题应写出文字说明、证明过程或者演算步骤〕 16.函数()log k f x x =〔k 为常数,0k >且1k ≠〕.〔1〕在以下条件中选择一个________使数列{}n a 是等比数列,说明理由;①数列(){}nf a 是首项为2,公比为2的等比数列;②数列(){}nf a 是首项为4,公差为2的等差数列;③数列(){}nf a 是首项为2,公差为2的等差数列的前n 项和构成的数列.〔2〕在〔1〕的条件下,当k =12241+=-n n n a b n ,求数列{}n b 的前n 项和n T . 17.在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,2PA AD ==,1AB BC ==,Q 为PD 中点.〔1〕求证:PD BQ ⊥;〔2〕求异面直线PC 与BQ 所成角的余弦值. 18.函数()()22ln R f x a x x ax a =-+∈.〔Ⅰ〕求函数()f x 的单调区间;〔Ⅱ〕当0a>时,假设()f x 在()1,e 上有零点,务实数a 的取值范围.19.自由购是通过自助结算方式购物的一种形式.某大型超为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:〔Ⅰ〕现随机抽取1名顾客,试估计该顾客年龄在[)30,50且未使用自由购的概率;〔Ⅱ〕从被抽取的年龄在[]50,70使用自由购的顾客中,随机抽取3人进一步理解情况,用X 表示这3人中年龄在[)50,60的人数,求随机变量X 的分布列及数学期望;〔Ⅲ〕为鼓励顾客使用自由购,该超拟对使用自由购的顾客赠送1个环保购物袋.假设某日该超预计有5000人购物,试估计该超当天至少应准备多少个环保购物袋. 20.椭圆22:24C x y +=〔1〕求椭圆C 的HY 方程和离心率; 〔2〕是否存在过点()0,3P的直线l 与椭圆C 相交于A ,B 两点,且满足2PB PA =.假设存在,求出直线l 的方程;假设不存在,请说明理由.21.对于n ∈N *〔n ≥2〕,定义一个如下数阵:111212122212n n nn n n nn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭,其中对任意的1≤i ≤n ,1≤j ≤n ,当i 能整除j 时,a ij =1;当i 不能整除j 时,a ij =0.设()121nij j j nj i tj a a a a ===+++∑.〔Ⅰ〕当n =6时,试写出数阵A 66并计算()61j t j =∑; 〔Ⅱ〕假设[x ]表示不超过x 的最大整数,求证:()11 n nj i n t j i ==⎡⎤=⎢⎥⎣⎦∑∑; 〔Ⅲ〕假设()()11 n j f n t j n ==∑,()11 ng n dx x =⎰,求证:g 〔n 〕﹣1<f 〔n 〕<g 〔n 〕+1.2021高考压轴卷数学Word 含解析参考答案1.【答案】A【解析】13iz z +=,1131313101010i z i i +===+-,||z =. 应选:A. 2.【答案】B【解析】由220x x ->,得0x <或者2x >,即{|0B x x =<或者2}x >,={|02}R B x x ∴≤≤,又{}1,0,1,2,3A =-()={0,1,2}R A B ∴.应选:B. 3.【答案】B【解析】由()f x 满足(2)()f x f x +=, 所以函数的周期2T =,又因为函数()f x 为奇函数,且当01x ≤≤时,3()f x x =,所以51112228f f f ⎛⎫⎛⎫⎛⎫-=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 应选:B【解析】()21e 1cos cos 1e 1e x x x f x x x -⎛⎫=-= ⎪++⎝⎭,()1e cos()1e x xf x x ----=-=+e 1cos e 1x x x -+ ()f x =-,故()f x 为奇函数,排除选项A 、C ;又1e(1)cos101ef -=<+,排除D ,选B. 应选:B. 5.【答案】A【解析】显然直线l 有斜率,设l :y kx b =+,2=,即()2241b k =+,①又直线l 与圆相切,7=,②联立①②,34k =-,52b =-, 所以直线l 的方程为3542y x =--.应选:A 6.【答案】C【解析】 令222262k x k πππππ-+≤+≤+因此36k x k ππππ-≤≤+故函数()sin(2)6f x x π=+的单调递增区间是(),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦应选:C【解析】由三视图可得几何体直观图如以下列图所示:可知三棱锥高:4h =;底面面积:1155322S =⨯⨯= ∴三棱锥体积:1115410332V Sh ==⨯⨯=此题正确选项:B 8.【答案】C【解析】试题分析:由得,抛物线22y px =的准线方程为2p x =-,且过点(2,3)A -,故22p-=-,那么4p =,(2,0)F ,那么直线AF 的斜率303224k -==---,选C . 9.【答案】C【解析】由()a a b ⊥+,那么2()00⋅+=⇒+⋅=a a b a a b 又1a =,所以1a b ⋅=-假设1a b ⋅=-,且1a =,所以20+⋅=a a b ,那么()a a b ⊥+ 所以“()a a b ⊥+〞是“1a b ⋅=-〞的充要条件 应选:C 10.【答案】C【解析】依题意可得()2E xy ξ=,()()()()()()()222222222212121212D x xy y y xy x y x y x y x y x x y yxξ⎡⎤=-+-=-+-=-+-⎣⎦因为1x y +=所以()21222x y xy +≤=即()12E ξ≤故A ,B 错误;()()()()()()222221121212D x x x y yx x x y yx x yx ξ⎡⎤∴=-+-=-+=-⎣⎦01x <<1211x ∴-<-<()20211x ∴<-< ()D yx ξ∴<即()()12D E ξξ<,故C 成立; ()()()2211244x y D x yx xy ξ+=-<≤=故D 错误应选:C 11.【答案】2【解析】 由于()212f x x x =+,那么()1f x x '=+, 由导数的几何意义可知,曲线的切线斜率即对应的函数在切点处的导数值, 曲线21()2f x x x =+的一条切线斜率是3, 令导数()13f x x '=+=,可得2x =, 所以切点的横坐标为2. 故答案为:2. 12.【答案】π【解析】因为函数21cos 231cos 2sin cos 2cos 2222x y x x x x -=-=-=- 故最小正周期等于π. 故答案为:π13.【答案】【解析】在ABC 中,设BC x =,由余弦定理可得241230x =+-,2680x x -+=,2x ∴=,或者4x =.当2x =时,ABC的面积为111222AB BC sinB x ⋅⋅=⨯⋅= 当4x =时,ABC的面积为111222AB BC sinB x ⋅⋅=⨯⋅=,14.【答案】10n ﹣1()12n n -【解析】设等比数列{a n }的公比为q ,由题知q >0. ∵a 1=1,a 3=100, ∴q ==10, ∴a n =10n ﹣1;∵lga n =lg 10n ﹣1=n ﹣1,∴T n ()12n n -=.故答案为:(1).10n ﹣1(2).()12n n - 15.【答案】①②④【解析】对于①中,,定义域是,且是奇函数,所以是正确的; 对于②中,假设,那么,所以的递增,所以是正确的;对于③中,,令, 令可得,,即方程有一根,,那么方程有一根之间,所以是错误的; 对于④中,假设对于任意,都有,即恒成立,令,且,假设恒成立,那么必有恒成立,假设,即恒成立,而,假设有,所以是正确的,综上可得①②④正确.16.【答案】〔1〕②,理由见解析;〔2〕21n nT n =+ 【解析】〔1〕①③不能使{}n a 成等比数列.②可以:由题意()4(1)222n f a n n =+-⨯=+, 即log 22k n a n =+,得22n n a k+=,且410a k =≠,2(1)22122n n n n a k k a k++++∴==. 常数0k >且1k ≠,2k ∴为非零常数,∴数列{}n a 是以4k 为首项,2k 为公比的等比数列.〔2〕由〔1〕知()14222n k n a k kk -+=⋅=,所以当2k =12n n a +=.因为12241+=-n n n a b n ,所以2141n b n =-,所以1111(21)(21)22121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,12111111L 1L 23352121n n T b b b n n ⎛⎫=+++=-+-++- ⎪-+⎝⎭11122121nn n ⎛⎫=-= ⎪++⎝⎭. 17.【答案】〔1〕详见解析;〔2〕3. 【解析】〔1〕由题意在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,AD AB ⊥,以A 为原点,分别以AB ,AD ,AP 为x 轴,y 轴,z 轴,建立空间直角坐标系, 那么()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,2,0D ,()002P ,,.因为Q 为PD 中点,所以()0,1,1Q ,所以()0,2,2PD =-,()1,1,1BQ =-,所以()()0,2,21,1,10PD BQ ⋅=-⋅-=,所以PD BQ ⊥.〔2〕由〔1〕得()1,1,2PC =-,()()1,1,21,1,12PC BQ ⋅=-⋅-=-,6PC =,3BQ =,2,3PC BQ COS PC BQ PC BQ⋅==,所以PC 与BQ所成角的余弦值为3. 18.【答案】〔Ⅰ〕见解析〔Ⅱ〕)1e 1,2⎛⎫⎪ ⎪⎝⎭【解析】〔Ⅰ〕函数()f x 的定义域为()0,+∞,()()()2222a x a x a ax x f x x x-++='-=. 由()0f x '=得x a =或者2ax =-.当0a =时,()0f x '<在()0,+∞上恒成立,所以()f x 的单调递减区间是()0,+∞,没有单调递增区间. 当0a >时,()(),,x f x f x '的变化情况如下表:所以()f x 的单调递增区间是()0,a ,单调递减区间是(),a +∞. 当0a <时,()(),,x f x f x '的变化情况如下表:所以()f x 的单调递增区间是0,2a ⎛⎫-⎪⎝⎭,单调递减区间是,2a ⎛⎫-+∞ ⎪⎝⎭.〔Ⅱ〕当0a >时,()f x 的单调递增区间是()0,a ,单调递减区间是(),a +∞. 所以()f x 在()1,e 上有零点的必要条件是()0f a ≥, 即2ln 0a a ≥,所以1a ≥. 而()11f a =-,所以()10f ≥.假设1a =,()f x 在()1,e 上是减函数,()10f =,()f x 在()1,e 上没有零点. 假设1a >,()10f >,()f x 在()1,a 上是增函数,在(),a +∞上是减函数,所以()f x 在()1,e 上有零点等价于()e 01e f a ⎧<⎨<<⎩,即22e e 01e a a a ⎧-+<⎨<<⎩,解得)1e 12a <<.综上所述,实数a的取值范围是)1e 1,2⎛⎫⎪ ⎪⎝⎭. 19.【答案】17100;〔Ⅱ〕详见解析;〔Ⅲ〕2200 【解析】〔Ⅰ〕在随机抽取的100名顾客中,年龄在[30,50)且未使用自由购的一共有3+14=17人, 所以,随机抽取1名顾客,估计该顾客年龄在[30,50)且未使用自由购的概率为17100P =. 〔Ⅱ〕X 所有的可能取值为1,2,3,()124236C C 115C P X ===, ()214236C C 325C P X ===, ()304236C C 135C P X ===. 所以X 的分布列为所以X 的数学期望为1311232555EX =⨯+⨯+⨯=. 〔Ⅲ〕在随机抽取的100名顾客中,使用自由购的一共有3121764244+++++=人, 所以该超当天至少应准备环保购物袋的个数估计为4450002200100⨯=.20.【答案】〔1〕22142x y+=,e=;〔2〕存在,7x+30或者7x﹣0 【解析】〔1〕由22142x y+=,得2,a b==c==2cea==;〔2〕假设存在过点P〔0,3〕的直线l与椭圆C相交于A,B两点,且满足2PB PA=,可设直线l的方程为x=m〔y﹣3〕,联立椭圆方程x2+2y2=4,可得〔2+m2〕y2﹣6m2y+9m2﹣4=0,△=36m4﹣4〔2+m2〕〔9m2﹣4〕>0,即m2<47,设A〔x1,y1〕,B〔x2,y2〕,可得y1+y2=2262mm+,y1y2=22942mm-+,①由2PB PA=,可得〔x2,y2﹣3〕=2〔x1,y1﹣3〕,即y2﹣3=2〔y1﹣3〕,即y2=2y1﹣3,②将②代入①可得3y1﹣3=2262mm+,y1〔2y1﹣3〕=22942mm-+,消去y1,可得22232mm++•22322mm-+=22942mm-+,解得m2=2747<,所以7m=±,故存在这样的直线l,且方程为7xy0或者7x﹣0.21.【答案】〔Ⅰ〕66111111 010101 001001 000100 000010 000001A⎛⎫⎪⎪⎪= ⎪⎪⎪⎪⎪⎝⎭,()6114jt j==∑.〔Ⅱ〕见解析〔Ⅲ〕见解析【解析】〔Ⅰ〕依题意可得,66111111010101001001000100000010000001A ⎛⎫⎪⎪ ⎪=⎪ ⎪ ⎪⎪⎪⎝⎭,()6112232414j t j ==+++++=∑.〔Ⅱ〕由题意可知,t 〔j 〕是数阵A nn 的第j 列的和,可得()1nj t j =∑是数阵A nn所有数的和.而数阵A nn 所有数的和也可以考虑按行相加.对任意的1≤i ≤n ,不超过n 的倍数有1i ,2i ,…,n i i ⎡⎤⎢⎥⎣⎦.得数阵A nn 的第i 行中有n i ⎡⎤⎢⎥⎣⎦个1,其余是0,即第i 行的和为n i ⎡⎤⎢⎥⎣⎦.从而得到结果.〔Ⅲ〕由[x ]的定义可知,1n n n i i i ⎡⎤-≤⎢⎥⎣⎦<,得111 n nn i i i n n nn i i i===⎡⎤-≤⎢⎥⎣⎦∑∑∑<.进而()1111 1?nni i f n i i ==-≤∑∑<.再考察定积分11 n dx x ⎰,根据曲边梯形的面积的计算即可证得结论. 【详解】〔Ⅰ〕依题意可得,66111111010101001001000100000010000001A ⎛⎫⎪⎪⎪=⎪ ⎪ ⎪⎪⎪⎝⎭.()6112232414j t j ==+++++=∑. 〔Ⅱ〕由题意可知,t 〔j 〕是数阵A nn 的第j 列的和,因此()1nj t j =∑是数阵A nn所有数的和.而数阵A nn 所有数的和也可以考虑按行相加.对任意的1≤i ≤n ,不超过n 的倍数有1i ,2i ,…,n i i ⎡⎤⎢⎥⎣⎦.因此数阵A nn 的第i 行中有n i ⎡⎤⎢⎥⎣⎦个1,其余是0,即第i 行的和为n i⎡⎤⎢⎥⎣⎦.所以()11 n nj i n t j i ==⎡⎤=⎢⎥⎣⎦∑∑.〔Ⅲ〕证明:由[x ]的定义可知,1n n n i i i⎡⎤-≤⎢⎥⎣⎦<, 所以111 nn n i i i n n nn i i i ===⎡⎤-≤⎢⎥⎣⎦∑∑∑<.所以()1111 1?n ni i f n i i ==-≤∑∑<. 考察定积分11 ndx x ⎰,将区间[1,n ]分成n ﹣1等分,那么11n dx x ⎰的缺乏近似值为21 ni i =∑,11 n dx x ⎰的过剩近似值为111 n i i -=∑.所以1211111n n n i i dx i x i -==∑∑⎰<<. 所以11 1ni i =-∑<g 〔n 〕11ni i=∑<.所以g 〔n 〕﹣1()11111?nni i f n i i==-≤∑∑<<<g 〔n 〕+1.所以g 〔n 〕﹣1<f 〔n 〕<g 〔n 〕+1.。

高考数学压轴题精选精编附详细解答试题

高考数学压轴题精选精编附详细解答试题

卜人入州八九几市潮王学校2021年高考数学压轴题精选精编附详细解答1、〔本小题总分值是14分〕如图,点(4,0)N p -〔p >0,p 是常数〕,点T 在y 轴上,0MT NT ⋅=,MT 交x 轴于点Q ,且2TM QM =.〔Ⅰ〕当点T 在y 轴上挪动时,求动点M 的轨迹E 的方程;(4分) 〔Ⅱ〕设直线l 过轨迹E 的焦点F,且与该轨迹交于A 、B 两点, 过A 、B 分别作该轨迹的对称轴的垂线,垂足分别为12,,A A 求证:OF是1OA 和2OA 的等比中项;〔5分〕(Ⅲ)对于该轨迹E ,能否存在一条弦CD 被直线l 垂直平分?假设存在,求出直线CD 的方程;假设不存在,试说明理由。

〔5分〕 2、〔本小题总分值是14分〕 设函数)(x f 的定义域为R ,当0<x 时,0()1f x <<,且对任意的实数x 、R y ∈,有).()()(y f x f y x f =+〔Ⅰ〕求)0(f ;〔2分〕 (Ⅱ)试判断函数)(x f 在(,0]-∞上是否存在最大值,假设存在,求出该最大值,假设不存在说明理由;〔5分〕〔Ⅲ〕设数列{}n a 各项都是正数,且满足1(0),a f =22111(),()(32)n n n n f a a n N f a a *++-=∈--又设1322121111,,)21(++++=+++==n n n n n a na a a a a a Tb b b S b n ,试比较S n 与n T 的大小.〔7分〕3、〔此题总分值是13分〕椭圆221:36(0)x c y t t+=>的两条准线与双曲线222:536c x y -=的两条准线所围成的四边形之面积为直线l 与双曲线2c 的右支相交于,P Q 两点(其中点P ),线段OP 与椭圆1c 交于点,A O 为坐标原点(如下列图).〔I 〕务实数t 的值;〔II 〕假设3OP OA =⋅,PAQ ∆的面积26tan S PAQ =-⋅∠,求直线l 的方程.4、〔此题总分值是14分〕数列{}n a 的前n 项和n S 满足:11,S =-121(),n n S S n N *++=-∈数列{}n b 的通项公式为34().n b n n N *=-∈〔I 〕求数列{}n a 的通项公式;〔II 〕试比较n a 与n b 的大小,并加以证明; 〔III 〕是否存在圆心在x轴上的圆C 及互不相等的正整数n m k 、、,使得三点(,),(,),(,)n n n m m m k k k A b a A b a A b a 落在圆C 上说明理由.5、(本小题总分值是14分)一次国际乒乓球比赛中,甲、乙两位选手在决赛中相遇,根据以往经历,单局比赛甲选手胜乙选手的概率为0.6,本场比赛采用五局三胜制,即先胜三局的选手获胜,比赛完毕.设全局比赛互相间没有影响,令ξ为本场比赛甲选手胜乙选手的局数〔不计甲负乙的局数〕,求ξ〕. 6、(本小题总分值是14分) 数列{}n a 的前n 项和为S n *()n N∈,点〔a n,S n〕在直线y =2x -3n 上.〔1〕假设数列{}的值求常数成等比数列C c a n ,+;〔5分〕〔2〕求数列}{n a 的通项公式;〔3分〕 〔3〕数列{}请求出一组若存在它们可以构成等差数列中是否存在三项,?,n a 适宜条件的项;假设不存在,请说明理由.〔6分〕7、〔本小题14分〕数列}{n a 的前n 项和为n S ,且满足211=a ,)2(021≥-n S S a n n n =+. 〔1〕问:数列}1{nS 是否为等差数列?并证明你的结论;(5分) 〔2〕求n S 和n a ;(5分)〔3〕求证:nS S S S n 41212232221-≤+⋅⋅⋅+++(4分) 8、〔本小题总分值是14分〕函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0.〔Ⅰ〕假设b =2,且h (x )=f (x )-g(x )存在单调递减区间,求a 的取值范围;(7分)〔Ⅱ〕设函数f (x )的图象C 1与函数g(x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行.(7分) 9、〔本小题总分值是14分〕设抛物线214C ymx =:(0)m >的准线与x 轴交于1F ,焦点为2F ;以12F F 、为焦点,离心率12e =的椭圆2C 与抛物线1C 的一个交点为P .〔Ⅰ〕当1m =时,直线l 经过椭圆2C 的右焦点2F ,与抛物线1C 交于12A A 、,假设弦长12A A 等于三角形12PF F 的周长,求直线l 的斜率.〔Ⅱ〕求最小实数m ,使得三角形12PF F 的边长是自然数.10、〔本小题总分值是14分〕〔Ⅰ〕函1()2()(),([0,),n n n f x x a x a x n -=+-+∈+∞〔Ⅱ〕明:()(0,0,)22n n na b a b a b n N *++≥>>∈;〔Ⅲ〕定理:假设123,,k a a a a 均为正数,那么有123123()n n nn n kka a a a a a a a kk++++++++≥成立(其中2,,)kk N k *≥∈为常数.请你构造一个函数()g x ,证明:当1231,,,,,k k a a a a a +均为正数时,12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.11、 本小题总分值是14分〕如图,在OAB ∆中,||||4OA OB ==,点P 分线段AB 所成的比3:1,以OA 、OB 所在 直线为渐近线的双曲线M 恰好经过点P ,且离心率为2.〔Ⅰ〕求双曲线M 的HY 方程; 〔Ⅱ〕假设直线y kx m =+〔0k ≠,0m ≠〕与双曲线M 交于不同的两点E 、F ,且E 、F 两点都在以(0,3)Q -为圆心的同一圆上,务实数m 的取值范围.12、本小题总分值是14分函数()f x 是定义在[,0)(0,]e e -上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+〔其中e 为自然对数的底,a ∈R 〕.〔Ⅰ〕求函数()f x 的解析式;〔Ⅱ〕设ln ||()||x g x x =〔[,0)(0,]x e e ∈-〕,求证:当1a =-时,1|()|()2f xg x >+; 〔Ⅲ〕试问:是否存在实数a ,使得当[,0)x e ∈-,()f x 的最小值是3?假设存在,求出实数a 的值;假设不存在,请说明理由.13、〔小题总分值是14分〕锐角α、β满足sin cos()m βαβ=+〔0m >,2παβ+≠〕,令tan y β=,tan x α=。

高考数学三轮复习:(文数)压轴文化题

高考数学三轮复习:(文数)压轴文化题

数学(文科)数学文化题一、单选题1.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为:“有5个人分60个橘子,他们分得的橘子个数成公差为3的等差数列,问5人各得多少橘子.”根据这个问题,有下列3个说法:①得到橘子最多的人所得的橘子个数是15;②得到橘子最少的人所得的橘子个数是6;③得到橘子第三多的人所得的橘子个数是12.其中说法正确的个数是( ) A .0 B .1 C .2 D .3 【答案】C【解析】由题可设这五人的橘子个数分别为: ,3,6,9,12a a a a a ++++,其和为60,故a=6,由此可知②得到橘子最少的人所得的橘子个数是6;③得到橘子第三多的人所得的橘子个数是12是正确的,故选C2.《算法统宗》 中有一图形称为“方五斜七图”,注曰:方五斜七者此乃言其大略矣,内方五尺外方七尺有奇. 实际上,这是一种开平方的近似计算,即用 7 近似表示,当内方的边长为5 时, 外方的边长为, 略大于7.如图所示,在外方内随机取一点,则此点取自内方的概率为( )A .B .C .D .【答案】A 【解析】 由题意可得,,则外方内随机取一点,则此点取自内方的概率为,故选A .3.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的表面积为A.B.2 C.D.【答案】D【解析】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边分别是、斜边是2,且侧棱与底面垂直,侧棱长是2,几何体的表面积,故选:D.4.陕西省西安市周至县的旅游景点楼观台,号称“天下第一福地”,是我国著名的道教胜迹,古代圣哲老子曾在此著《道德经》五千言.景区内有一处景点建筑,是按古典著作《连山易》中记载的金、木、水、火、土之间相生相克的关系,如图所示,现从五种不同属性的物质中任取两种,则取出的两种物质恰好是相克关系的概率为()A.B.C.D.【答案】B【解析】方法一:从五种不同属性的物质中任取两种,基本事件数量为取出两种物质恰好相克的基本事件数量为则取出两种物质恰好是相克关系的概率为所以选B.方法二:从五种不同属性的物质中任取两种,基本事件有“火土,火金,火水,火木,土金,土水,土木,金水,金木,水木”,共10种,其中“取出两种物质恰好相克” 的基本事件是“火土,土金,土木,金水,水木”,共5种,则取出两种物质恰好是相克关系的概率为51 102,选B.5.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为( )A.B.C.D.【答案】C【解析】由题意,p=10,S8,∴此三角形面积的最大值为8.故选:C.6.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌” 就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第个儿子的年龄为,则( )A.23 B.32 C.35 D.38【答案】C【解析】由题意可得儿子的岁数成等差数列,设公差为,其中公差,,即,解得,故选C.7.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,表示的复数所对应的点在复平面中位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由题意可得,,,,,则表示的复数所对应的点在复平面中位于第二象限.故选:B.8.九章算术给出求羡除体积的“术”是:“并三广,以深乘之,又以袤乘之,六而一”,其中的“广”指羡除的三条平行侧棱的长,“深”指一条侧棱到另两条侧棱所在平面的距离,“袤”指这两条侧棱所在平行线之间的距离,用现代语言描述:在羡除中,,,,,两条平行线与间的距离为h,直线到平面的距离为,则该羡除的体积为已知某羡除的三视图如图所示,则该羡除的体积为A.B.C.D.【答案】B【解析】由三视图还原原几何体知,羡除中,,底面ABCD是矩形,,,平面平面ABCD,AB,CD间的距离,如图,取AD中点G,连接EG,则平面ABCD,由侧视图知,直线EF到平面ABCD的距离为,该羡除的体积为.故选:B.9.《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是尺,芒种的日影子长为尺,则冬至的日影子长为:()A.尺B.尺C.尺D.尺【答案】A【解析】从冬至起,日影长依次记为,根据题意,有,根据等差数列的性质,有,而,设其公差为,则有,解得,所以冬至的日影子长为尺,故选A.10.我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭,令上方六尺,问亭方几何?”大致意思是:有一个正四棱锥下底边长为二丈,高三丈,现从上面截去一段,使之成为正四棱台状方亭,且正四棱台的上底边长为六尺,则该正四棱台的体积是()(注:1丈=10尺)A.1946立方尺B.3892立方尺C.7784立方尺D.11676立方尺【答案】B【解析】由题意可知正四棱锥的高为30.所截得正四棱台的下底面棱长为20,上底面棱长为6,设棱台的高为,由可得,解得,可得正四棱台体积为,故选B.11.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随意投一粒豆子,则豆子落在其内切圆外的概率是()A.B.C.D.【答案】C【解析】直角三角形的斜边长为,设内切圆的半径为,则,解得,内切圆的面积为,豆子落在其内切圆外部的概率是,故选C.12.“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是()A.B.C.D.【答案】C【解析】观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为1,面积为4﹣2故飞镖落在阴影区域的概率为1.故选:C.13.中国古代数学著作《算法统宗》巾有这样一个问题:“三百七十八里关,初行健步不为难日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了A.60里B.48里C.36里D.24里【答案】D【解析】设每天行走的里程数为,则是公比为的等比数列,所以,故(里),所以(里),选C.14.我们把叫“费马数”(费马是十七世纪法国数学家).设,,,,表示数列的前项之和,则使不等式成立的最小正整数的值是()A.B.C.D.【答案】B∵∴,∴,而∴,,即,当n=8时,左边=,右边=,显然不适合;当n=9时,左边=,右边=,显然适合,故最小正整数的值9故选:B15.我国古代《九章算术》将上、下两面为平行矩形的六面体称为刍童.右图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该刍童的表面积为A.B.40 C.D.【答案】D由三视图可知,该刍童的直观图是如图所示的六面体,图中正方体棱长为,分别是所在正方体棱的四等分点,其表面由两个全等的矩形,与四个全等的等腰梯形组成,矩形面积为,梯形的上下底分别为,梯形的高为,梯形面积为,所以该刍童的表面积为,故选D.二、填空题16.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡九千人,南乡五千四百人,凡三乡,发役五百,意思是用分层抽样的方法从这三个乡中抽出500人服役,则北乡比南乡多抽__________人.【答案】60【解析】由题意可得,三乡共有人,从中抽取500人,因此抽样比为,所以北乡共抽取人;南乡共抽取人,所以北乡比南乡多抽人.故答案为17.对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______.【答案】【解析】设直角三角形的斜边为c,直角边分别为a,b,由题意知,则,则三角形的面积,,,则三角形的面积,当且仅当a=b=取等即这个直角三角形面积的最大值等于,故答案为:.18.部分与整体以某种相似的方式呈现称为分形,谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程得到如图所示的图案,若向该图案随机投一点,则该点落在黑色部分的概率是__________.【答案】【解析】由图可知:黑色部分由9个小三角形组成,该图案由16个小三角形组成,这些小三角形都是全等的,设“向该图案随机投一点,则该点落在黑色部分”为事件A,由几何概型中的面积型可得:P(A)=,故选:B.19.在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱是一个“堑堵”,其中,点是的中点,则四棱锥的外接球的表面积为__________.【答案】【解析】由题意得四边形为正方形,设其中心为,取中点则,即为四棱锥的外接球球心,球半径为,球表面积为.20.我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在张丘建算经中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为x,y,z,则鸡翁、鸡母、鸡雏的数量即为方程组的解其解题过程可用框图表示如图所示,则框图中正整数m的值为______.【答案】4【解析】由得:y=25﹣x,故x必为4的倍数,当x=4t时,y=25﹣7t,由y=25﹣7t>0得:t的最大值为3,故判断框应填入的是t<4?,即m=4,故答案为:4。

高考数学压轴卷文含解析试题

高考数学压轴卷文含解析试题

卜人入州八九几市潮王学校〔全国卷Ⅰ〕2021年高考数学压轴卷文〔含解析〕一、选择题〔此题一共12道小题,每一小题5分,一共60分.在每一小题的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.集合{}{}228023A x x x B x x =+-≥=-<<,,那么A∩B=(). A.(2,3)B.[2,3)C.[-4,2]D.(-4,3)2.(1i)(2i)z =+-,那么2||z =〔〕 A.2i +B.3i +C.5D.103.假设向量a=1,2⎛ ⎝⎭,|b |=a ·(b -a )=2,那么向量a 与b 的夹角为() A.6πB.4π C.3π D.2π 4.某几何体的三视图如下列图,那么该几何体的体积为 A.8B.12C.16D.245.甲、乙二人参加普法知识竞答一共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,那么甲乙两人中至少有一人抽到选择题的概率是() A .1115B .1315C .35D .10136.我国古代名著庄子天下篇中有一句名言“一尺之棰,日取其半,万世不竭〞,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如下列图的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),那么①②③处可分别填入的是()A.17?,,+1i s s i i i ≤=-=B.1128?,,2is s i i i ≤=-=C 17?,,+12i s s i i i≤=-=D.1128?,,22i s s i i i≤=-=7.变量x ,y 满足约束条件1031010x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,那么2z x y =+的最大值为〔〕 A.1 B.2C.3D.48.等差数列{}n a 的前n 项和为n S ,47109,a a a ++=14377S S -=,那么使n S 获得最小值时n 的值是() A .7B .6C .5D .49.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,3,sin a c b A ===cos 6a B π⎛⎫+ ⎪⎝⎭,那么b=() A.110..假设直线220(0,0)ax by a b -+=>>被圆014222=+-++y x y x 截得弦长为4,那么41a b +的最小值是〔〕A.9B.4C.12D.1411.抛物线2:2(0)C y px p =>的焦点为F,点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线C 上一点,以点M 为圆心的圆与直线2px =交于E ,G 两点,假设1sin 3MFG ∠=,那么抛物线C 的方程是〔〕A.2y x = B.22y x =C.24y x = D.28y x =12.函数1,0(),0x x mf x e x -⎧=⎪=⎨⎪≠⎩,假设方程23()(23)()20mf x m f x -++=有5个解,那么m 的取值范围是〔〕 A.(1,)+∞B.(0,1)(1,)⋃+∞C.31,2⎛⎫⎪⎝⎭D.331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题〔此题一共4道小题,每一小题5分,一共20分〕13.()0,θπ∈,且sin()410πθ-=,那么tan2θ=________.14.双曲线()222210,0x y a b a b-=>>的左顶点为A ,右焦点为F ,点()0,B b ,双曲线的渐近线上存在一点P ,使得A ,B ,F ,P 顺次连接构成平行四边形,那么双曲线C 的离心率e =______.15.数列{}n a 满足12a =,132n n a a +=+,令()13log n a n b +=,那么数列11n n b b +⎧⎫⎨⎬⎩⎭的前2021项的和2020S =__________.16.如图,六棱锥P-ABCDEF 的底面是正六边形,PA ⊥平面ABC ,2PA AB =,给出以下结论: ①PB AE ⊥;②直线//BC 平面PAE ; ③平面PAE⊥平面PDE ;④异面直线PD 与BC 所成角为45°;⑤直线PD 与平面PAB 所成角的余弦值为4.其中正确的有_______〔把所有正确的序号都填上〕三.解答题〔本大题一一共6小题.解答题应写出文字说明、证明过程或者演算步骤〕17.〔本小题12分〕△ABC中,内角A 、B 、C 所对的边分别为a 、b 、c ,24sin 4sin sin 22A BA B -+=〔1〕求角C 的大小; 〔2〕4b=,△ABC 的面积为6,求边长c 的值.如图,在四棱锥P-ABCD 中,PD⊥平面ABCD ,122BC CD AB ===,∠ABC=∠BCD=90°,E 为PB 的中点。

高考数学压轴题精编精解精选100题精心解答

高考数学压轴题精编精解精选100题精心解答

高考数学压轴题精编精解精选100题精心解答1.设函数()1,121,23x f x x x ≤≤⎧=⎨-<≤⎩,()()[],1,3g x f x ax x =-∈,其中a R ∈,记函数()g x 的最大值与最小值的差为()h a 。

(I )求函数()h a 的解析式;(II )画出函数()y h x =的图象并指出()h x 的最小值。

2.已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若12a =则当n ≥2时,!n nb a n >⋅.3.已知定义在R 上的函数f (x ) 同时满足:(1)21212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数); (2)(0)()14f f π==;(3)当0,4x π∈[]时,()f x ≤2求:(Ⅰ)函数()f x 的解析式;(Ⅱ)常数a 的取值范围.个 个4.设)0(1),(),,(22222211>>=+b a bx x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点. (1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 5.已知数列{}n a 中各项为:12、1122、111222、 (111)⋅⋅⋅⋅⋅⋅ 222n⋅⋅⋅⋅⋅⋅…… (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .6、设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由.7、已知动圆过定点P (1,0),且与定直线L:x=-1相切,点C 在l 上. (1)求动圆圆心的轨迹M 的方程;.B ,A M 3,P )2(两点相交于的直线与曲线且斜率为设过点-(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由 (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.8、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), 1.求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0;(3)证明:f(x)是R 上的增函数;(4)若f(x)²f(2x-x 2)>1,求x 的取值范围。

2020高考压轴与数学文化相关的数学考题(解析版)—20届高考压轴题讲义(选填题)

2020高考压轴与数学文化相关的数学考题(解析版)—20届高考压轴题讲义(选填题)

一、方法综述:关注学生数学文化的意识的养成,努力推进数学文化的教育,已经成为当今数学教师与改革的一个重要特征,在新课改的数学命题中,数学文化已经得到足够的重视,但并没由得到应有的落实,造成数学文化教学的缺失的根本原因在于教师自身数学文化素养的缺乏,令人欣喜的是在近几年的高考试题中已经开始有意识的进行尝试和引导,在众多的经典试题中,湖北卷的数学文化题更超凡脱俗和出类拔萃,因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导.二、解答策略:类型一、取材数学游戏游戏可以让数学更加好玩,在游戏中运用数学知识,或蕴含着数学原理的智力游戏可笼统地称为数学游戏,把数学游戏改编为高考试题,既不失数学型,又能增加了考题的趣味性,充分体现了素质教育与大众数学的理念。

例1、五位同学围成一圈依次循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数是3的倍数,则报该数的同学需拍手一次。

已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数为。

探究提高:以数学游戏为素材的命制高考题目,创造了既宽松又竞争的环境,拉近了考生与数学的心理距离,但要注意游戏素材的选择应与考生的实际生活密切相关,便于考生更好地理解游戏。

例如:2012年高考湖北卷第13题“回文数”,考查排列、组合和归纳推理等知识。

本题以此为背景,以简单的游戏为分析计算对象,考查学生的阅读理解能力和合情推理能力。

举一反三:回文数是指从左到右与从右到左读都一样的正整数。

如22,,11,3443,94249等。

显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。

则(Ⅰ)4位回文数有______个;(Ⅱ)2n+1(n∈N+)位回文数有______个。

2023年新高考数学创新题型微专题07 数列专题(数学文化)(解析版)

2023年新高考数学创新题型微专题07 数列专题(数学文化)(解析版)

专题07 数列专题(数学文化)一、单选题1.(2022·全国·高三专题练习)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一百寸)( ). A .一尺五寸 B .二尺五寸C .三尺五寸D .四尺五寸【答案】B【分析】十二个节气日影长构成一个等差数列{}n a ,利用等差数列通项公式、前n 项和公式列出方程组,求出首项和公差,由此能求出芒种日影长. 【详解】由题意知:∴从冬至日起,依次小寒、大寒等十二个节气日影长构成一个等差数列{}n a ,设公差为d ,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,∴147191393159898552a a a a d S a d ++=+=⎧⎪⎨⨯=+=⎪⎩,解得1135a =,10d =−, ∴芒种日影长为12111135111025a a d =+=−⨯=(寸)2=尺5寸.故选:B2.(2022秋·陕西咸阳·高二武功县普集高级中学校考阶段练习)河南洛阳龙门石窟是中国石刻艺术宝库,现为世界非物质文化遗产之一.某洞窟的浮雕共7层,它们构成一幅优美的图案.若从下往上计算,从第二层开始,每层浮雕像的个数依次是下层个数的2倍,且第三层与第二层浮雕像个数的差是16,则该洞窟的浮雕像的总个数为( ) A .1016 B .512 C .128 D .1024【答案】A【分析】设从上到下第()N ,17n n n *∈≤≤层的浮雕像个数为n a ,分析可知数列{}n a 为等比数列,且公比为2,根据已知条件求出1a 的值,利用等比数列求和公式可求得结果.【详解】设从上到下第()N ,17n n n *∈≤≤层的浮雕像个数为n a ,由题意可知,数列{}n a 为等比数列,且该数列的公比为2,由已知可得3222216a a a a −=−=,可得216a =,故2182a a ==, 因此,该洞窟的浮雕像的总个数为()78128127101612−=⨯=−.故选:A.3.(2022秋·广东广州·高二华南师大附中校考阶段练习)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的13是较小的两份之和,则最小的一份为( ) A .5 B .10 C .15 D .30【答案】B【分析】设五个人所分得的面包为2a d −,a d −,a ,a d +,2a d +,(其中0d >),则由总和为100可求得20a =,再由较大的三份之和的13是较小的两份之和,可得123d a =,从而可求出d ,进而可求出2a d −【详解】设五个人所分得的面包为2a d −,a d −,a ,a d +,2a d +,(其中0d >), 则有()()()()225100a d a d a a d a d a −+−+++++==, ∴20a =,由()232a a d a d a d a d ++++=−+−,得()33323a d a d +=−; ∴123d a =, ∴5d =.∴最少的一份为2201010a d −=−=. 故选:B4.(2022·河北邯郸·统考模拟预测)位于丛台公园内的武灵丛台已经成为邯郸这座三千年古城的地标建筑,丛台上层建有据胜亭,其顶部结构的一个侧面中,自上而下第一层有2块筒瓦,以下每一层均比上一层多2块筒瓦,如果侧面共有11层筒瓦且顶部4个侧面结构完全相同,顶部结构共有多少块筒瓦?( )A .440B .484C .528D .572【答案】C【分析】由题意知每层筒瓦数构成等差数列{}n a,由等差数列求和公式可求得每一面的筒瓦总数,由此可得四个侧面筒瓦总数.【详解】一个侧面中,第一层筒瓦数记为2,自上而下,由于下面每一层比上一层多2块筒瓦,∴每层筒瓦数构成等差数列{}n a,其中12a=,2d=.一个侧面中共有11层筒瓦,∴一个侧面筒瓦总数是()1111111221322⨯−⨯+⨯=,∴顶层四个侧面筒瓦数总和为1324528⨯=.故选:C.5.(2023·全国·高三专题练习)如图1,洛书是一种关于天地空间变化脉络的图案,2014年正式入选国家级非物质文化遗产名录,其数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,形成图2中的九宫格,将自然数1,2,3,…,2n放置在n行n列()3n≥的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,具有这种性质的图表称为“n阶幻方”.洛书就是一个3阶幻方,其“幻和”为15.则7阶幻方的“幻和”为()图1 图2A.91B.169C.175D.180【答案】C【分析】根据“幻和”的定义,将自然数1至2n 累加除以n 即可得结果. 【详解】由题意,7阶幻方各行列和,即“幻和”为12 (49)1757+++=.故选:C6.(2022·全国·高三专题练习)斐波那契数列,又称黄金分割数列,该数列在现代物理、准晶体结构、化学等领域有着非常广泛的应用,在数学上,斐波那契数列是用如下递推方法定义的:121a a ==,()*123,.n n n a a a n n N −−=+≥∈ 已知2222123mma a a a a ++++是该数列的第100项,则m =( )A .98B .99C .100D .101【答案】B【分析】根据题意推出2121a a a =,222321a a a a a =−,L ,211m m m m m a a a a a +−=−, 利用累加法可得211mi m m i a a a +==∑,即可求出m 的值.【详解】由题意得,2121a a a =,因为12n n n a a a −−=−,得222312321()a a a a a a a a =−=−,233423432()a a a a a a a a =−=−,L ,21111()m m m m m m m m a a a a a a a a +−+−=−=−,累加,得222121m m m a a a a a ++++=,因为22212m ma a a a +++是该数列的第100项,即1m a +是该数列的第100项,所以99m =. 故选:B.7.(2022春·河南南阳·高二校联考阶段练习)南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第50层球的个数为( )A .1255B .1265C .1275D .1285【答案】C【分析】根据题中给出的图形,结合题意找到各层球的个数与层数的关系,得到(1)2n n n a +=,进而求解结论.【详解】解:设各层球的个数构成数列{}n a ,由题意可知,11a =,21212a a =+=+,323123a a =+=++,⋯,1123n n a a n n −=+=+++⋯+, 故(1)1232n n n a n +=+++⋯+=, 50505112752a ⨯∴==, 故选:C .8.(2022秋·江苏南通·高三江苏省如皋中学统考阶段练习)1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成三段,去掉中间的一段,剩下两个闭区间1[0,]3和2[,1]3;第二步,将剩下的两个闭区间分别平均分为三段,各自去掉中间的一段,剩下四段闭区间:1[0,]9,21[,]93,27[,]39,8[,1]9;如此不断的构造下去,最后剩下的各个区间段就构成了三分康托集.若经历n 步构造后,20212022不属于剩下的闭区间,则n 的最小值是( ).A .7B .8C .9D .10【答案】A【分析】根据三分康托集的构造过程可知:经历第n 步,每个去掉的开区间以及留下的闭区间的区间长度都是13n⎛⎫⎪⎝⎭,根据规律即可求出20212022属于1112,133n n⎛⎫⎛⎫⎛⎫−⨯−⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,进而根据不等式可求解.【详解】20212022不属于剩下的闭区间,20212022属于去掉的开区间经历第1步,剩下的最后一个区间为2[,1]3,经历第2步,剩下的最后一个区间为8,19⎡⎤⎢⎥⎣⎦,……,经历第n步,剩下的最后一个区间为1113n⎡⎤⎛⎫−⎢⎥⎪⎝⎭⎢⎥⎣⎦,,去掉的最后开区间为1112,133n n⎛⎫⎛⎫⎛⎫−⨯−⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭由120111121320223n n⎛⎫⎛⎫−⨯<<−⎪ ⎪⎝⎭⎝⎭化简得4044320223nn⎧>⎨<⎩,解得7n=故选:A9.(2022春·江苏南通·高二统考期末)“埃拉托塞尼筛法”是保证能够挑选全部素数的一种古老的方法.这种方法是依次写出2和2以上的自然数,留下头一个2不动,剔除掉所有2的倍数;接着,在剩余的数中2后面的一个数3不动,剔除掉所有3的倍数;接下来,再在剩余的数中对3后面的一个数5作同样处理;……,依次进行同样的剔除.剔除到最后,剩下的便全是素数.在利用“埃拉托塞尼筛法”挑选2到30的全部素数过程中剔除的所有数的和为()A.333B.335C.337D.341【答案】B【分析】根据给定条件,求出230的全部整数和,再求出2到30的全部素数和即可计算作答.【详解】2到30的全部整数和123029464 2S+=⨯=,2到30的全部素数和22357111317192329129S=+++++++++=,所以剔除的所有数的和为464129335−=.故选:B10.(2022·全国·高三专题练习)谈祥柏先生是我国著名的数学科普作家,在他的《好玩的数学》一书中,有一篇文章《五分钟挑出埃及分数》,文章告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).则下列埃及分数113⨯、135⨯、157⨯、L、120212023⨯的和是()A.20222023B.20232022C.10112023D.20231011【答案】C【分析】利用裂项相消法可求得结果.【详解】当N n *∈时,()()1111212122121n n n n ⎛⎫=− ⎪−+−+⎝⎭,因此,11111111111111335572021202323355720212023⎛⎫++++=−+−+−++− ⎪⨯⨯⨯⨯⎝⎭1110111220232023⎛⎫=−=⎪⎝⎭. 故选:C.11.(2022春·四川资阳·高一统考期末)《算法统宗》是中国古代数学名著,书中有这样一个问题:九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.意为:996斤棉花,分别赠送给8个子女做旅费,从第二个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要长幼分明,使孝顺子女的美德外传.据此,前五个孩子共分得的棉花斤数为( ) A .362 B .430 C .495 D .645【答案】C【分析】设这八个孩子分得棉花的斤数构成等差数列{}n a ,由题设求得其首项与公差,即可求得结果. 【详解】解:设这八个孩子分得棉花的斤数构成等差数列{}n a , 由题意知:公差17d =, 又12381878179962a a a a a ⨯+++⋯+=+⨯=,解得165a =, 故412351545455651749522a a a a a d a ⨯⨯++=+=⨯⨯=+++. 故选:C .12.(2022秋·江苏淮安·高三校考阶段练习)天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,2022年是壬寅年,请问:在100年后的2122年为( ) A .壬午年 B .辛丑年C .己亥年D .戊戌年【答案】A【分析】将天干和地支分别看作等差数列,结合1001010÷=,1001284÷=,分别求出100年后天干为壬,地支为午,得到答案.【详解】由题意得:天干可看作公差为10的等差数列,地支可看作公差为12的等差数列,由于1001010÷=,余数为0,故100年后天干为壬,由于1001284÷=,余数为4,故100年后地支为午,综上:100年后的2122年为壬午年.故选:A13.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所以论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”,现有高阶等差数列,其前6项分别为1,5,11,21,37,61,……则该数列的第8项为()A.99B.131C.139D.141【答案】D【分析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为x,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:根据规律补全:由图可得341295yx y−=⎧⎨−=⎩,则14146xy=⎧⎨=⎩.故选:D14.(2023春·广西柳州·高三统考阶段练习)《九章算术》中有一题:今有牛、马、羊、猪食人苗,苗主责之粟9斗,猪主曰:“我猪食半羊.”羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?其意是:今有牛、马、羊、猪吃了别人的禾苗,禾苗主人要求赔偿9斗粟,猪主人说:“我猪所吃的禾苗只有羊的一半.”羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比率偿还,牛、马、羊、猪的主人各应赔偿多少粟?在这个问题中,马主人比猪主人多赔偿了()斗.A .35B .95C .3D .215【答案】B【分析】转化为等比数列进行求解,设出未知数,列出方程,求出马主人比猪主人多赔偿了斗数. 【详解】由题意得:猪、羊、马、牛的主人赔偿的粟斗数成等比数列,公比为2, 设猪的主人赔偿的粟斗数为x , 则2489x x x x +++=,解得:35x =,故马主人赔偿的粟斗数为1245x =, 所以马主人比猪主人多赔偿了斗数为1239555−=. 故选:B15.(2021秋·河南商丘·高二校联考期中)《莉拉沃蒂》是古印度数学家婆什迦罗的数学名著,书中有下面的表述:某王为夺得敌人的大象,第一天行军2由旬(由旬为古印度长度单位),以后每天均比前一天多行相同的路程,七天一共行军80由旬到达地方城市.下列说法正确的是( ) A .前四天共行1877由旬 B .最后三天共行53由旬C .从第二天起,每天比前一天多行的路程为237由旬 D .第三天行了587由旬 【答案】D【分析】由题意,每天行军的路程{}n a 为等差数列,且12a =,780S =,利用基本量1,a d 表示可得227d =,依次分析,即得解 【详解】由题意,不妨设每天行军的路程为数列{}n a ,则12a =又以后每天均比前一天多行相同的路程,故{}n a 构成一个等差数列,不妨设公差为d 七天一共行军80由旬,即780S = 故71767802S a d ⨯=+=,解得227d =4143188427S a d ⨯=+=,A 错误;567741883728077a a a S S ++=−=−=,B 错误; 由于227d =,故从第二天起,每天比前一天多行的路程为227由旬,C 错误;31225822277a a d =+=+⨯=,D 正确 故选:D16.(2022·全国·高三专题练习)“垛积术”是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫− ⎪⎝⎭万元,则n 的值为( )A .9B .10C .11D .12【答案】B【分析】先依次求出各层货物总价,再利用裂项抵消法进行求解. 【详解】由题意,得第一层货物总价为1万元,第二层货物总价为9210⨯万元, 第三层货物总价为293()10⨯万元,……,第n 层货物总价为19()10n n −⨯万元.设这堆货物总价为y 万元, 则21999123()()101010n y n −=+⨯+⨯+⋅⋅⋅+⨯ 23999992()3()()1010101010n y n =+⨯+⨯+⋅⋅⋅+⨯, 两式相减,得2311999991+()()()()101010101010n n y n −=+++⋅⋅⋅+−⨯,即91()199910()1010()()910101010110nn n n y n n −=−⋅=−⨯−⋅−,则999100100()10()=100(10010)()101010n n ny n n =−⨯−⋅−+⨯,令99100(10010)()=100200()1010n ny n =−+⨯−⨯,得10n =. 故选:B.17.(2021秋·吉林松原·高二长岭县第三中学校考阶段练习)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2,反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).如取正整数6m =,根据上述运算法则得出6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,则当42m =时,则使1n a =需要的雹程步数为( ) A .7 B .8 C .9 D .10【答案】B1n a =使得需要多少步雹程.【详解】解:根据题意,当42m =,根据上述运算法则得出42→21→64→32→16→8→4→2→1, 所以共需经过8个步骤变成1,故使1n a =需要的雹程步数为8. 故选:B18.(2022·全国·高三专题练习)意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列{}n a 满足11a =,21a =,()*123,n n n a a a n n −−=+≥∈N .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则其中不正确结论的是( )A .2111n n n n S a a a +++=+⋅ B .12321n n a a a a a +++++=−C .1352121n n a a a a a −++++=−D .()121)4(3n n n n c c a n a π−−+−≥=⋅【答案】C【分析】A 选项由前()1n +项所占格子组成长为1n n a a ++,宽为1n a +的矩形即可判断;B 选项由()*123,n n n a a a n n −−=+≥∈N 结合累加法即可判断;C 选项通过特殊值检验即可;D 选项表示出221111,44n n n n c a c a ππ−−==,作差即可判断. 【详解】由题意知:前()1n +项所占格子组成长为1n n a a ++,宽为1n a +的矩形,其面积为()211111n n n n n n n S a a a a a a +++++=+=+,A 正确;32143221,,,n n n a a a a a a a a a ++=+=+=+,以上各式相加得,()34223112()n n n a a a a a a a a a +++++=+++++++,化简得2212n n a a a a a +−=+++,即1221n n a a a a ++++=−,B 正确;12345613561,2,3,5,8,817a a a a a a a a a a ======∴++=≠−=,C 错误;易知221111,44n n n n c a c a ππ−−==,()()()221111214()(3)n n n n n n n n n n c c a a a a a a a a n πππ−−−−−+∴−=−=−+=≥,D 正确.故选:C.19.(2023·全国·高三专题练习)如图是美丽的“勾股树”,将一个直角三角形分别以它的每一条边向外作正方形而得到如图①的第1代“勾股树”,重复图①的作法,得到如图②的第2代“勾股树”,…,以此类推,记第n 代“勾股树”中所有正方形的个数为n a ,数列{}n a 的前n 项和为n S ,若不等式2022n S >恒成立,则n 的最小值为( )A .7B .8C .9D .10【答案】C【分析】根据第1代“勾股树”,第2代“勾股树”中,正方形的个数,以此类推,得到第n 代“勾股树”中所有正方形的个数,即n a ,从而得到n S 求解.【详解】解:第1代“勾股树”中,正方形的个数为11321+=−,第2代“勾股树”中,正方形的个数为21721+=−,…, 以此类推,第n 代“勾股树”中所有正方形的个数为121n +−,即121n n a +=−,所以()24122412n n n S n n +−=−=−−−,因为0n a >,所以数列{}n S 为递增数列, 又810122022S =<,920352022S =>, 所以n 的最小值为9. 故选:C .20.(2022·海南省直辖县级单位·“贾宪三角”,后被南宋数学家杨辉引用、n 维空间中的几何元素与之有巧妙联系、例如,1维最简几何图形线段它有2个0维的端点、1个1维的线段:2维最简几何图形三角形它有3个0维的端点,3个1维的线段,1个2维的三角形区域;……如下表所示.从1维到6维最简几何图形中,所有1维线段数的和是( )A .56B .70C .84D .28【答案】A【分析】根据题意可得1n n a a n −−=,可求得()12n a n n +=,即可求解. 【详解】设从1维到n 维最简几何图形的1维线段数构成数列{}n a , 由题意可得21312a a −=−=,32633a a −=−=,431064a a −=−=,…, 以此类推,可得1n n a a n −−=, 所以()()()121321n n n a a a a a a a a −=+−+−++−()11232n n n +=++++=,所以12345613610152156a a a a a a +++++=+++++=. 故选:A.21.(2023·全国·高三专题练习)大衍数列,来源于中国古代著作《乾坤普》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50,通项公式为221,2,2n n n a n n ⎧−⎪⎪=⎨⎪⎪⎩为奇数为偶数,若把这个数列{}n a 排成下侧形状,并记),A m n 表示第m 行中从左向右第n 个数,则()9,5A 的值为( )A .2520B .2312C .2450D .2380【答案】D【分析】确定()9,5A 在数列{}n a 中的项数,结合数列{}n a 的通项公式可求得结果.【详解】由题可知,设数阵第n 行的项数为n b ,则数列{}n b 是以1为首项,公差为2的等差数列, 数列{}n b的前8项和为87182642⨯⨯+⨯=,所以,()9,5A 是数列{}n a 的第64569+=项,因此,()26919,523802A −==.故选:D.22.(2022·全国·高三专题练习)在归国包机上,孟晚舟写下《月是故乡明,心安是归途》,其中写道“过去的1028天,左右踟躇,千头万绪难抉择;过去的1028天,日夜徘徊,纵有万语难言说;过去的1028天,山重水复,不知归途在何处.”“感谢亲爱的祖国,感谢党和政府,正是那一抹绚丽的中国红,燃起我心中的信念之火,照亮我人生的至暗时刻,引领我回家的漫长路途.”下列数列{}()N n a n *∈中,其前n 项和不可能为1028的数列是( ) (参考公式:2222(1)(21)1236n n n n ++++++=)A .1028n a n =+B .2744125n a n n =−+C .127(1)45n n a n +=−−D .1122n n a −=+【答案】A【分析】利用等差数列、等比数列的前n 项和公式以及参考公式求数列{}n a 前n 项和n S ,令1028n S =,看是否有正整数解即可判定选项A 、B 、D 的正确性;通过分类讨论分别求出2k S 和21k S −,然后可得到20k S <,令211028k S −=,看是否有正整数解即可选项C 的正确性. 【详解】设数列{}n a 的前n 项和为n S , 对于A :由等差数列的前n 项和公式,得: 1()(533)10282n n n a a S n n +==+=, 因为方程无正整数解,即选项A 错误;对于B :不妨令24n b n =,74125n c n =−+, 数列{}n b 和{}n c 的前n 项和分别为n T 和n Q , 则n n n a b c =+,n n n S T Q =+,由参考公式和等差数列的前n 项和公式,得: 22(1)(21)4(123)3n n n n T n ++=++++=,21()44625n n n c C Q n n +==−+, 所以22(1)(21)446102835n n n n n n S T Q n n ++=+=−+=,解得*10N n =∈,即选项B 正确; 对于C :①当*N )2(n k k =∈时, 222222271234(21)(2)245n k S S k k k ==−+−++−−−⨯ 14(3741)045kk =−+++−−<,故此时1028n S ≠; ②当()*21N n k k =−∈时, 22222222171234(23)(22)(21)(21)45n k S S k k k k −==−+−++−−−+−−− 27(3745)(21)(21)45k k k =−++⋅⋅⋅+−+−−− 2(1)(345)7(21)(21)245k k k k −+−=−+−−−27232(21)45k k k =−+−− 令27232(21)102845k k k −+−−=,解得23k =, 即223145n =⨯−=时,1028n S =, 即选项C 正确;对于D :由等比数列的前n 项和公式可知,1(12)112110281222n n n S n n ⨯−=+=+−=−,解得*10N n =∈,即选项D 故选:A .23.(2023·全国·高三专题练习)大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50,则此数列的第21项是( ) A .200 B .210C .220D .242【答案】C【分析】由数列奇数项的前几项可归纳出奇数项上的通项公式,从而得到答案.【详解】根据题意,数列的前10项依次是0、2、4、8、12、18、24、32、40、50,其中奇数项为0、4、12、24、40,有22221357113151710,4,12,24,2222a a a a −−−−========⋯故其奇数项上的通项公式为21,2n n a −=故221211=2202a −=, 故选:C24.(2022春·云南红河·高二弥勒市一中校考阶段练习)斐波那契数列(Fibonacci Sequence )又称黄金分割数列,因数学家列昂纳多,斐波那契(Leonardo Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.在数学上,斐波纳契数列被以下递推的方法定义:数列{}n a 满足:12211,n n n a a a a a ++===+,现从数列的前2022项中随机抽取1项,能被3整除的概率是( ) A .5052022B .2522022C .5042022 D .14【答案】A【分析】依次写出数列各项除以3所得余数,寻找后可得结论.【详解】根据斐波那契数列的定义,数列各项除以3所得余数依次为1,1,2,0,2,2,1,0,1,1,2,…,余数数列是周期数列,周期为8,202225286=⨯+,所以数列的前2022项中能被3整除的项有25221505⨯+=,所求概率为5052022P =, 故选A .25.(2022·高二课时练习)分形几何学是一门以不规则几何形态为研究对象的几何学,它的研究对象普遍存在于自然界中,因此又被称为“大自然的几何学”.按照如图1所示的分形规律,可得如图2所示的一个树形图.若记图2中第n n a ,则6a =( )A .55B .58C .60D .62【答案】A【分析】n a 表示第n 行中的黑圈个数,设n b 表示第n 行中的白圈个数,由题意可得112,n n n n n n a a b b a b ++=+=+,根据初始值,由此递推,不难得出所求.【详解】已知n a 表示第n 行中的黑圈个数,设n b 表示第n 行中的白圈个数,则由于每个白圈产生下一行的一白一黑两个圈,一个黑圈产生下一行的一个白圈2个黑圈,∴112,n n n n n n a a b b a b ++=+=+, 又∵110,1a b ==; 221,1a b ==;332113112a b =⨯+==+=,; 442328,325a b =⨯+==+=;5528521,8513a b =⨯+==+=; 62211355a =⨯+=,故选:A.26.(2022·全国·高三专题练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (n x ',n y '),则200n nn y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .1000【答案】C【分析】求出n n y y '、 ,用错位相减法求和即可.【详解】由条件可得()2020011920011.11 1.12 1.120 1.121 1.1n n nn n y y n =='=+=⨯+⨯++⨯+⨯∑∑①,所以2012202101.11 1.12 1.120 1.121 1.1n nn y y ='⨯=⨯+⨯++⨯+⨯∑②,-②得:2120120212101 1.10.1 1.1 1.1 1.121 1.121 1.11 1.1=−'−⨯=+++−⨯=−⨯−∑n nn y y ,2121221 1.10.121 1.11 1.118.1491.40.10.10.1−+⨯⨯++====−−−−,所以20914n nn y y ='=∑. 故选:C.27.(2022秋·陕西渭南·高二校考期中)图1是中国古代建筑中的举架结构,AA ',BB ',CC ',DD '是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中1DD ,1CC ,1BB ,1AA 是举,1OD ,1DC ,1CB ,1BA 是相等的步,相邻桁的举步之比分别为110.5DD OD =,111CC k DC =,121BBk CB =,131AA k BA =,已知1k ,2k ,3k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则2k =( )A .0.75B .0.8C .0.85D .0.9【答案】B【分析】设1111OD DC CB BA ===,则可得关于2k 的方程,求出其解后可得正确的选项 【详解】设11111OD DC CB BA ====,则10.5,DD =111213,,CC k BB k AA k ===, 依题意,有21230.1,0.1k k k k −=+=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以20.530.7254k +=,故20.8k =, 故选:B28.(2022秋·陕西咸阳·高二校考阶段练习)《张邱建算经》记载了这样一个问题:“今有马行转迟,次日减半,疾七日,行七百里”,意思是“有一匹马行走的速度逐渐变慢,每天走的路程是前一天的一半,连续走了7天,共走了700里”.在上述问题中,此马第二天所走的路程大约为( ) A .170里 B .180里C .185里D .176里【答案】D【分析】根据题意,可知此马每天走的路程形成等比数列,利用等比数列的前n 项和公式求得基本量,从而得解.【详解】由题意得,设这匹马的第n 天走的路程为n a ,则有112n n a a +=,7700S =, 所以数列{}n a 是12q =的等比数列, 故71112700112a ⎡⎤⎛⎫−⎢⎥⎪⎝⎭⎢⎥⎣⎦=−,解得1350128127a ⨯=,所以21175128176.4127a a q =⨯=≈. 故选:D.29.(2022秋·广东广州·高三校联考阶段练习)如图所示的三角形叫“莱布尼兹调和三角形”,它们是由整数的倒数组成,第n 行有n 个数且两端的数均为()12n n≥,每个数是它下一行左右相邻的两数的和,如111111111,,1222363412=+=+=+⋅⋅⋅⋅⋅⋅,则第8行第4个数(从左往右数)为( )A .1280B .1168C .1140D .1105【答案】A【分析】利用“莱布尼兹调和三角形”的性质,依次运算即可. 【详解】设第n 行第m 个数为(),a n m ,则()15,15a =,()16,16a =,()17,17a =,()18,18a =,故()()()16,25,16,130a a a =−=,()()()17,26,17,142a a a =−=,()()()18,27,18,156a a a =−=,()()()17,36,27,2105a a a =−=,()()()18,37,28,2168a a a =−=,()()()18,47,38,3280a a a =−=, 故选:A.二、多选题30.(2022秋·江苏南通·高三江苏省如皋中学统考阶段练习)朱世杰是历史上伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天比前一天多派7人,官府向修筑堤坝的每人每天发放大米3升.”则下列结论正确的有( ) A .将这1864人派谴完需要16天 B .第十天派往筑堤的人数为134 C .官府前6天共发放1467升大米D .官府前6天比后6天少发放1260升大米 【答案】ACD【分析】记数列{}n a 为第n 天派遣的人数,数列{}n b 为第n 天获得的大米升数,依题意可得{}n a 是以64为首项,7为公差的等差数列,{}n b 是以192为首项,21为公差的等差数列,再根据等差数列的通项公式及前n 项和公式计算可得;【详解】解:记数列{}n a 为第n 天派遣的人数,数列{}n b 为第n 天获得的大米升数,则{}n a 是以64为首项,7为公差的等差数列,即757n a n =+,{}n b 是以192为首项,21为公差的等差数列,即21171n b n =+,所以106479127a =+⨯=,B 不正确.设第k 天派遣完这1864人,则()716418642k k k −+=,解得16k =(负值舍去),A 正确; 官府前6天共发放6519262114672⨯⨯+⨯=升大米,C 正确, 官府前6天比后6天少发放211061260⨯⨯=升大米,D 正确. 故选:ACD31.(2022秋·山西太原·高二太原师范学院附属中学校考阶段练习)若正整数m .n 只有1为公约数,则称m ,n 互质,对于正整数k ,ϕ(k )是不大于k 的正整数中与k 互质的数的个数,函数ϕ(k )以其首名研究者欧拉命名,称为欧拉函数,例如:()21ϕ=,(3)2ϕ=,(6)2ϕ=,(8)4ϕ=.已知欧拉函数是积性函数,即如果m ,n 互质,那么()()()mn m n ϕϕϕ=,例如:(6)(2)(3)ϕϕϕ=,则( ) A .(5)(8)ϕϕ=B .数列(){}2n ϕ是等比数列 C .数列(){}6nϕ不是递增数列D .数列()16nϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和小于35【答案】ABD【分析】根据欧拉函数定义及运算性质,结合数列的性质与求和公式,依次判断各选项即可得出结果. 【详解】(5)4,(8)4,(5)(8)ϕϕϕϕ==∴=,A 对;∵2为质数,∴在不超过2n 的正整数中,所有偶数的个数为12n −, ∴()11222=2ϕ−−−=nnn n 为等比数列,B 对;∵与3n 互质的数为1,2,4,5,7,8,10,11,,32,3 1.−−n n共有11(31)323n n −−−⋅=⋅个,∴1(3)23,ϕ−=⋅n n又∵()6=(2)(3)ϕϕϕn n n =126−⋅n ,∴()6ϕn一定是单调增数列,C 错;()1626nn ϕ−=⋅,()16nϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为 111263131156516nn n S ⎡⎤⎛⎫−⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==−<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦−,D 对. 故选:ABD .32.(2022·全国·高三专题练习)我国古代著名的数学专著《九章算术》里有一段叙述:“今有良马和驽马发长安至齐,良马初日行一百九十三里,日增十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,九日后二马相逢.”其大意为今有良马和驽马从长安出发到齐国,良马第一天走193里,以后每天比前一天多走13里;驽马第一天走970.5里.良马先到齐国,再返回迎接驽马,9天后两马相遇.下列结论正确的是( ) A .长安与齐国两地相距1530里 B .3天后,两马之间的距离为328.5里 C .良马从第6天开始返回迎接驽马 D .8天后,两马之间的距离为377.5里 【答案】AB【分析】A, 设良马第n 天行走的路程里数为n a ,驽马第n 天行走的路程里数为n b ,求出良马和驽马各自走的路程即得A 正确;B ,计算得到3天后,两马之间的距离为328.5里,即可判断B 正确; C,计算得到良马前6天共行走了1353里1530<里,故C 不正确;D ,计算得到8天后,两马之间的距离为390里,故D 不正确.【详解】解:设良马第n 天行走的路程里数为n a ,驽马第n 天行走的路程里数为n b ,则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题7.1 与数学文化相关的数学考题一、方法综述:关注学生数学文化的意识的养成,努力推进数学文化的教育,已经成为当今数学教师与改革的一个重要特征,在新课改的数学命题中,数学文化已经得到足够的重视,但并没由得到应有的落实,造成数学文化教学的缺失的根本原因在于教师自身数学文化素养的缺乏,令人欣喜的是在近几年的高考试题中已经开始有意识的进行尝试和引导,在众多的经典试题中,湖北卷的数学文化题更超凡脱俗和出类拔萃,因此,我们特别策划了此专题,将数学文化与数学知识相结合,选取典型样题深度解读,希望能够给予广大师生的复习备考以专业的帮助与指导.二、解答策略:类型一、取材数学游戏游戏可以让数学更加好玩,在游戏中运用数学知识,或蕴含着数学原理的智力游戏可笼统地称为数学游戏,把数学游戏改编为高考试题,既不失数学型,又能增加了考题的趣味性,充分体现了素质教育与大众数学的理念。

例1、五位同学围成一圈依次循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的数是3的倍数,则报该数的同学需拍手一次。

已知甲同学第一个报数,当五位同学依次循环报到第100个数时,甲同学拍手的总次数为。

探究提高:以数学游戏为素材的命制高考题目,创造了既宽松又竞争的环境,拉近了考生与数学的心理距离,但要注意游戏素材的选择应与考生的实际生活密切相关,便于考生更好地理解游戏。

例如:2012年高考湖北卷第13题“回文数”,考查排列、组合和归纳推理等知识。

本题以此为背景,以简单的游戏为分析计算对象,考查学生的阅读理解能力和合情推理能力。

举一反三:回文数是指从左到右与从右到左读都一样的正整数。

如22,,11,3443,94249等。

显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999。

则(Ⅰ)4位回文数有______个;(Ⅱ)2n+1(n∈N+)位回文数有______个。

位回文数与位回文数个数相等,均为个.类型二、取材数学名著如数学家的传记、数学演讲报告、数学讲义等,这些都是命制考题好的素材,从中选取一段有关的数学素材,突出索要考查的数学知识,在引导中学数学教学知能并重的同时,有意识地培养学生的数学素养。

例2、【2018百校联盟联考】我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为,现将该金杖截成长度相等的10段,记第段的重量为,且,若,则()A. 4B. 5C. 6D. 7探究提高:本题主要考查阅读能力、等差数列的通项公式、等差数列的前项和公式以及转化与划归思想,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等差数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.举一反三:【2017届江西省赣州市高三上学期期末考试】中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一个走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为()A. 48里B. 24里C. 12里D. 6里【答案】C类型三、取材数学名题数学名题具有非凡的魅力,它常常蕴涵深刻的数学内容、经典的数学方法或与一些数学大师相关联,数学名题能持续地是命制试题的重点取材之一。

例3、在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图1所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle)如图1,17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图 2.在杨辉三角中相邻两行满足关系n=Cr n+1,其中n是行数,r∈N.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式式:Cr n+Cr+1是________.图1图2相邻两项之和是上一行的两者相而,1C1n +1茨三角形的每一行都能提出倍数将莱布尼,类比观察得 解析.1C1n +2Cr n +1+1C1n +2Cr n +1=1C1n +1Cr n 有,r n +1C =r +1n C +r n C ,故类比式子拱之数 1C1n +1Cr n=1C1n +2Cr n +1+1C1n +2Cr n +1 答案 探究提高:《九章算术》大约成书于公元1世纪,是中国古代最著名的传世数学著作,它的出现标志着中国古代数学形成了完成的体系,本题取材《九章算术》与著名的17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”相结合考查了组合数的运算,很好的把中国古代数学名著和欧洲数学有解的结合在一起,进行和合理命题。

举一反三:【2017届河南省安阳市高三第一次模拟考试数学】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用勾股股勾朱实黄实弦实,化简,得勾股弦.设勾股形中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A. 866B. 500C. 300D. 134【答案】D类型四、取材数学推理数学猜想是推动数学发展的强大动力之一,是数学发展中最活跃、最主动、最积极的因素,也是人类理性中最富有创造性的部分,数学猜想一旦被证明,就将转化为定理,从而丰富数学理论,即使被否定或不能被证实,也常常能给数学带来不可预期的成果,数学猜想是命制考题的好素材,它包含丰富的数学知识和思想方法。

例4、古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16…这样的数成为正方形数。

下列数中及时三角形数又是正方形数的是A.289B.1024C.1225D.1378【答案】C探究提高:合情推理主要包括归纳推理和类比推理。

数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向。

合情推理仅是“合乎情理”的推理,它得到的结论不一定正确。

而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下)。

举一反三:我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为,现将该金杖截成长度相等的10段,记第段的重量为,且,若,则()A. 4B. 5C. 6D. 7【答案】C【解析】由题意知,由细到粗每段的重量成等差数列,记为,设公差为,则,解得,所以该金杖的总重量,,解得,故选C.类型五、取材数学图形例5、一幅图胜过一千字,“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”,图形不仅包含大量信息,而且形象直观,生动绚丽,还能展示数学之美,图形是数学总要的组成部分,高考试题中自然少不了这样的试题,同时能较好的体现数学文化,甚至富有诗意的数学图形。

【2018北京丰台二模】血药浓度(Plasma Concentration)是指药物吸收后在血浆内的总浓度. 药物在人体内发挥治疗作用时,该药物的血药浓度应介于最低有效浓度和最低中毒浓度之间.已知成人单次服用1单位某药物后,体内血药浓度及相关信息如图所示:根据图中提供的信息,下列关于成人使用该药物的说法中,不正确...的个数是①首次服用该药物1单位约10分钟后,药物发挥治疗作用②每次服用该药物1单位,两次服药间隔小于2小时,一定会产生药物中毒③每间隔5.5小时服用该药物1单位,可使药物持续发挥治疗作用④首次服用该药物1单位3小时后,再次服用该药物1单位,不会发生药物中毒A. 1个B. 2个C. 3个D. 4个关键.由图象可得函数先增后减,在t=1时取到极大值,在血液浓度所对应的值超过最低中毒浓度时,会发生药物中毒,因此两次服药的间隔不能太小,需要看是否有两次药效之和超过最低值.举一反三:【2018广东湛江二模】某产品进入商场销售,商场第一年免收管理费,因此第一年该产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对该产品征收销售额的的管理费(即销售100元要征收元),于是该产品定价每件比第一年增加了元,预计年销售量减少万件,要使第二年商场在该产品经营中收取的管理费不少于14万元,则的最大值是( )A. 2B. 6C. 8.5D. 10【答案】D类型六、取材数学文化与现代科学:数学文化与现代科学泛指最近一段时间国内外发生的数学方面的大事,被广大媒体和公众共同关注,具有方向性和短暂性和聚焦性等特点,命题专家从一段时事材料中甄选一个角度,简明扼要的交代时事背景,抽象出数学模型,突出索要考查的数学问题,类似于文科综合卷中的时事材料,既能达到一般试题的考查效果,又能融入肥厚的数学文化,平添点滴生活气息。

例6、2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个分别表示椭圆轨22a 和12a 用,的焦距Ⅱ和Ⅰ分别表示椭圆轨道22c 和12c 若用.绕月飞行Ⅱ焦点的椭圆轨道.2c 1>a 2a 1④c ;c2a2<c1a1③;2c -2a =1c -1a ②;2c +2a =1c +1a ①给出下列式子:,的长轴长Ⅱ和Ⅰ道 其中正确式子的序号是( )A.①③B.①④C.②③D.②④ 解析 观察图形可知a 1>a 2,c 1>c 2,∴a 1+c 1>a 2+c 2,即①式不正确;a1-c1=a2-c2=|PF|,即②式正确;由a1-c1=a2-c2>0,c1>c2>0,知a1-c1c1<a2-c2c2,即a1c1<a2c2,从而c1a2>a1c2,c1a1>c2a2.即④式正确,③式不正确,答案 D探究提高 1.命题者抓住“嫦娥奔月”这个古老而又现代的浪漫话题,以探测卫星轨道为背景,抽象出共一条对称轴、一个焦点和一个顶点的两个椭圆的几何性质,并以加减乘除的方式构造两个等式和两个不等式,考查椭圆的几何性质,可谓匠心独运.2.注意到椭圆轨道Ⅰ和Ⅱ共一个顶点P和一个焦点F,题目所给四个式子涉及长半轴长和半焦距,从焦距入手,这是求解的关键,本题对考生的数学能力进行了比较全面的考查,是一道名副其实的小中见大、常中见新、蕴文化于现代科学技术应用之中的好题.举一反三:12.【2017届贵州省黔东南州高三下学期高考模拟考试数学】秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为,每次输入的值均为,输出的值为,则输入的值为A. B. C. 4 D. 3【答案】C三、强化训练:1.【2017课标1,理】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.B.C.D.【答案】B【解析】由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率,故选B。

相关文档
最新文档