八年级下册数学教学设计:图形的旋转

合集下载

北师大版八年级数学下册《 2. 图形的旋转 图形的旋转作图》公开课教案_12

北师大版八年级数学下册《 2. 图形的旋转  图形的旋转作图》公开课教案_12

第三章图形的平移与旋转2.图形的旋转(二)一、教材分析:“图形的旋转”是义务教育教科书北师大版(2013)八年级数学下册第三章图形的平移与旋转的第二节。

图形的旋转是图形变换的基本形式之一,是“义务教育阶段数学课程标准”中图形变换的一个重要组成部分,学习旋转和旋转作图,对发展学生的空间观念是一个很好的提升,是后续学习中心对称图形的基础。

利用旋转研究平行四边形性质、圆的性质的方式之一,因此本节内容在教材中起着承上启下的作用。

学习旋转作图,学习过程中学生就会经历观察、分析、画图和等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念。

旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题。

本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形旋转问题。

二、学生起点分析学生此前已经学习了轴对称、平移,积累了一定的活动经验,基于学生已有的旋转知识、生活经验,并且已经了解了旋转的特征。

教材编者将旋转与旋转作图如此安排,目的是力求让学生从动态的角度观察图形、分析解决,画图动手操作,培养学生的能力。

由于旋转与轴对称、平移都是全等变换,在特征上既存在共性又有特性;而学生已经掌握了旋转特征,因此,旋转作图中的相对复杂一点图形——三角形的旋转就成了本节课的难点所在。

三、教学目标1.简单平面图形旋转后的图形的作法,能够按要求作出简单平面图形旋转后的图形.2.确定一个三角形旋转后的位置的条件,3.对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念.教学重点:作简单平面图形旋转后的图形及步骤的总结.教学难点:以三角形外一点为旋转中心作旋转三角形及步骤的总结.四、教学过程设计第一环节回顾旧知师:在前面我们学习了旋转,也了解了旋转的特征,今天我们来学习如何作图形的旋转。

在学习新课之前,我们先来回顾已知。

初中数学下册图形旋转教案

初中数学下册图形旋转教案

初中数学下册图形旋转教案教学目标:1. 理解旋转的定义和性质,掌握图形旋转的基本方法。

2. 能够运用旋转的性质解决实际问题,提高学生的解决问题的能力。

3. 培养学生的空间想象能力和逻辑思维能力。

教学内容:1. 旋转的定义和性质2. 图形旋转的基本方法3. 旋转在实际问题中的应用教学过程:一、导入(5分钟)1. 利用多媒体展示一些生活中的旋转现象,如旋转门、风车等,引导学生观察和思考。

2. 提问:这些现象有什么共同特点?它们是如何实现的?二、新课讲解(15分钟)1. 讲解旋转的定义:在平面内,将一个图形绕着某一点转动一个角度的图形变换叫做旋转。

2. 讲解旋转的性质:旋转不改变图形的大小和形状,只改变图形的位置。

3. 讲解图形旋转的基本方法:以某一点为旋转中心,将图形绕该点旋转指定角度。

4. 示例讲解:如何将一个图形绕某一点旋转?如何确定旋转后的位置?三、课堂练习(15分钟)1. 让学生独立完成教材中的相关练习题,巩固旋转的基本概念和操作方法。

2. 教师选取部分学生的作业进行点评,指出优点和不足之处。

四、应用拓展(15分钟)1. 出示一些实际问题,让学生运用旋转的知识解决,如:如何设计一个旋转楼梯?如何布局旋转型的园林?2. 学生分组讨论,提出解决方案,并进行展示。

3. 教师对学生的解决方案进行评价和指导。

五、总结(5分钟)1. 回顾本节课所学内容,让学生总结旋转的定义、性质和应用。

2. 强调旋转在实际生活中的重要性,激发学生学习兴趣。

教学评价:1. 课后作业:检查学生对旋转知识的掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

3. 应用拓展:评估学生在解决实际问题时的创新能力和发展空间。

教学反思:本节课通过生活中的旋转现象导入,激发学生的学习兴趣。

在讲解过程中,注重让学生动手操作,培养学生的空间想象能力和逻辑思维能力。

课堂练习和应用拓展环节,及时巩固所学知识,提高学生的解决问题的能力。

初中数学北师大八年级下册(2023年修订) 图形的平移与旋转旋转教案

初中数学北师大八年级下册(2023年修订) 图形的平移与旋转旋转教案

第三章 图形的平移与旋转2.图形的旋转(二)本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形问题。

课前热身:1. 旋转的定义: 这个定点称为_____,转动的角称为____.旋转不改变图形的________.2.旋转的基本性质:对应点到旋转中心的距离对应点与旋转中心所连线段的夹角等于旋转前、后的图形图形的旋转是由 和旋转方向和旋转角度决定(注意:请准备好圆规、三角板、量角器和铅笔)3.关于点的旋转(1)点A 绕点O 逆时针旋转60° OA 4.关于线段的旋转(1)画出线段AB 绕着端点A 顺时针旋转60度后的线段(2)画出线段AB 绕着端点O 顺时针旋转90度后的线段 讲授新知:关于三角形的旋转类型一:已知旋转中心与旋转角作旋转后的图形例1.试着画△ABC 绕O 点逆时针旋转60°后所得的三角形.变式.如图,△ABC 绕O 点旋转后,顶点A 的对应点为点D ,试确定顶点B ,C 对应点的位置,以及旋转后的三角形A B B A O总结:“旋转”作图的步骤:一连:连接已知点与旋转中心二定:确定旋转方向三量:测量旋转角度四截:在旋转角的另一条边上,以旋转中心为一端点截取等于对应线段长度的线段五画:顺次连接所得的点,从而画出旋转得到的图形例2(格点问题)如图,正方形网格中,每个小正方形的边长都是1个单位长度,在平面直角坐标系中,△OAB 的三个顶点O(0,0),A(4,1),B(4,4)均在格点上画出△OAB绕原点O顺时针旋转90°后得到的△OA1B1,并写出点A1的坐标变式(坐标系中的旋转)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么点A(-2,5)的对应点A′的坐标是________.类型二:已知旋转后的图形,反过来寻找旋转中心和旋转角的位置例1.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的,如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)变式:如图,四边形ABCD和四边形CDFE是边长相等的两个正方形,其中A、D、F 和B、C、E各成一直线,将正方形ABCD绕着一点旋转一定的角度后与正方形CDFE重合,这样的旋转中心共有多少个?确定旋转中心与旋转角的方法:在图形的旋转过程中,判断谁是旋转中心,要看旋转中心是在图形上还是不在图形上;若在图形上,哪一点在旋转过程中位置没有改变,这一点就是旋转中心;若不在图形上,对应点连线的垂直平分线的交点就是旋转中心,旋转角等于对应点与旋转中心所连线段的夹角.随堂练习:1.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是在万花筒中看到的一个图案.图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是四边形ABCD以A为旋转中心() A.顺时针旋转60°得到的B.顺时针旋转120°得到的C.逆时针旋转60°得到的D.逆时针旋转120°得到的2.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是()A.点A B.点B C.点C D.点D课堂小结课后作业:请完成《英才课堂》59~60页1~10题必做,11、12题选做。

《图形的旋转》教学设计(7篇)

《图形的旋转》教学设计(7篇)

《图形的旋转》教学设计(精选7篇)《图形的旋转》教学设计篇一教学目标:1、经历欣赏图案、综合运用图形的变换知识在方格纸上设计图案的过程。

2、能灵活运用图形的平移、对称和旋转等在方格纸上设计图案。

3、认识到许多图案都可以借助图形变换来设计,感受图形变换的美,获得数学活动的积极体验。

教学准备:图案制作过程的课件、方格纸。

教学方案:一、欣赏图案教师谈话,并用课件出示书中的两幅图案,学生观察、交流这些图案有什么特点。

然后进行激励性对话。

通过启发性谈话,引导学生观察、交流图案的特点,激发学生的学习兴趣,为设计图案作铺垫。

师:同学们,我们分别认识了图形的对称、平移、旋转这三种图形变换方式。

其实,在许多图案中,经常同时有2种或3种图形变换方式。

请看两个图案。

课件呈现教材上的两个图案。

师:观察一下这两个图案,你发现它们各有什么特点?学生可能回答。

第一幅都是用梯形组成的。

第一幅图是轴对称图形。

第一幅图也可以通过旋转得到了。

第二幅图是三角形旋转得到的。

……师:同学们观察得真仔细。

你喜欢这样的图案吗?生:喜欢。

师:想不想学会设计这样的图案?生:想学。

二、设计图案1.说明设计图案的奥秘,学生利用课件动态地展示第一个图案的制作过程。

先完成第①、②两步。

2.讨论:下面怎么办?让学生充分发表自己的意见,完成③、④两步。

通过动态展示一个梯形是怎样一步步变换成漂亮的图案的过程,使学生认识到许多图案都可以借助图形变换来设计,感受图形变换的美。

通过讨论,使学生了解设计图案方法的多样化,丰富学生的实践活动经验。

师:同学们观察得真仔细。

你喜欢这样的图案吗?生:喜欢。

师:想不想学会设计这样的图案?生:想学。

师:老师告诉你们,用一个简单的图形,巧妙地利用对称、平移和旋转就可以设计出这些精美的图案。

让我们一起来设计第一个图案。

教师用课件呈现了方格图。

师:在方格纸上先画一个梯形。

课件展示画的过程和结果。

师:然后画出这个梯形的对称图形。

课件展示画的过程和结果。

八年级数学下册112图形的旋转学案版

八年级数学下册112图形的旋转学案版

11.2 图形的旋转课前准备回顾旧知:回顾平移的概念和性质。

预习新知(预习课本P173-P174内容):什么是旋转?它的三要素是什么?【学习目标】1.通过具体实欣赏生活中的旋转现象,感受数学中的旋转美,养成善于发现美的意识。

2.通过观察图形旋转的动画演示,知道旋转的三要素,了解旋转的概念;探索并能简单应用旋转的基本性质。

3. 通过具体的动手操作感受旋转过程中的不变量,能运用性质进行简单的旋转作图,养成细致认真、善于观察敢于尝试的良好习惯。

课内探究【旋转----概念篇】观察与思考:①观察先后两次旋转,旋转后图形的位置与___________有关。

②观察先后两次旋转,旋转后图形的位置与___________有关。

③观察先后两次旋转,旋转后图形的位置与___________有关。

总结:旋转及旋转三要素实例:△ABC绕点B沿顺时针方向旋转600得到△ A´B´C´(1)指出这个旋转过程中旋转中心、旋转方向、旋转角分别是什么?(2)指出△ABC与△A´B´C´的对应边?(3)旋转前后图形的形状、大小改变了没有?【旋转----性质篇】探究与发现:①OA与OA´的长有什么关系?OB与OB´或OC与OC´呢?②比较∠AOA´与∠BOB´,∠COC´的大小?你有什么发现?性质总结:一个图形和它经过旋转所得到的图形中:①___________________________________________②___________________________________________1、如图,将△AOB绕点O按逆时针方向旋转45°后得到△A’OB’,若∠AOB=15°,则∠AOB’的度数是()A.25°B.30°C.35°D.40°2、如图, AD是△ABC的高, ∠ABC=45°, DE=DC,延长BE交AC于点F. 则△BDE可以看作是由________绕点______按_________方向旋转_______度得到的。

初中数学图形旋转教案

初中数学图形旋转教案

初中数学图形旋转教案教学目标:1. 知识与技能:让学生理解旋转的定义及其基本性质,能够运用旋转的性质进行解决问题。

2. 过程与方法:通过观察、操作、交流、归纳等过程,培养学生的空间观念,提高学生的动手能力和观察能力。

3. 情感态度与价值观:让学生感受数学与生活的紧密联系,培养学生的合作交流意识,激发学生学习数学的兴趣。

教学重点:旋转的定义及其性质。

教学难点:旋转性质的灵活运用。

教学过程:一、导入(5分钟)1. 结合动画欣赏,让学生观察生活中的旋转现象,如时钟的秒针、大风车的转动、电风扇的旋转等。

2. 引导学生思考:这些旋转现象有什么共同特点?二、新课导入(15分钟)1. 介绍旋转的定义:在平面内,把一个图形绕着某一个点旋转一个角度的图形变换叫做旋转。

2. 讲解旋转的基本要素:旋转中心、旋转角度、旋转前后的图形。

3. 引导学生通过观察、操作,探索旋转的性质。

三、课堂练习(15分钟)1. 让学生自主完成教材中的练习题,巩固旋转的概念和性质。

2. 教师挑选几位学生的作业进行讲解,指出其中的优点和不足。

四、拓展与应用(15分钟)1. 让学生运用旋转的性质解决实际问题,如设计一个旋转对称的图案等。

2. 教师引导学生交流解题过程,分享彼此的思路和方法。

五、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结旋转的定义、性质及运用。

2. 教师强调旋转性质在实际问题中的重要性,鼓励学生在日常生活中发现和运用旋转现象。

教学评价:1. 课后作业:检查学生对旋转概念和性质的掌握情况。

2. 课堂表现:观察学生在课堂上的参与程度、动手操作能力和合作交流意识。

3. 拓展与应用:评估学生在实际问题中运用旋转性质的能力。

通过本节课的学习,让学生掌握旋转的定义及其性质,培养学生的空间观念和动手能力,激发学生学习数学的兴趣。

同时,引导学生发现数学与生活的紧密联系,培养学生的合作交流意识。

八年级数学下册-3.2 图形的旋转 第2课时 旋转作图 教案

八年级数学下册-3.2 图形的旋转    第2课时 旋转作图  教案

第2课时旋转作图1.复习旋转及旋转图形的概念与性质;2.能够根据旋转的性质进行简单的旋转作图.一、情境导入在钟面上,从1点到1点6分,分针转了多少度角?时针转了多少度角?1点6分时针与分针的夹角是多少度?二、合作探究探究点:简单的旋转作图【类型一】旋转作图在如图所示的网格图中按要求画出图形:(1)先画出△ABC向下平移5格后的△A1B1C1.(2)再画出△ABC以点O为旋转中心,沿顺时针方向旋转90°后的△A2B2C2.解:(1)如图,△A1B1C1即为△ABC向下平移5格后的图形.(2)△A2B2C2即为△ABC以点O为旋转中心,沿顺时针方向旋转90°后的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型二】作旋转图形如图,画出△ABC绕点O逆时针旋转90°后的△A′B′C′.解:(1)如图,连接OA,OB,OC.(2)分别以OA,OB,OC为一边作∠AOA′=∠BOB′=∠COC′=90°.(3)分别在射线OA′,OB′,OC′上截取OA′=OA,OB′=OB,OC′=OC.(4)依次连接A′B′,B′C′,C′A′.则△A′B′C′就是△ABC绕点O顺时针旋转90°后的图形.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】图形旋转的应用如图①,分别以正方形ABCD的边AD和DC为直径画两个半圆交于点O.若正方形的边长为10cm,求阴影部分的面积.解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.。

《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)《图形的旋转》教案1[课时]:1节课[教学内容]:复制粘贴和旋转功能的使用[教学目标]:1、使同学熟练掌握复制粘贴和旋转功能的使用方法。

2、使同学养成在实际操作中的动手动脑和小组合作的学习习惯。

3、培养同学对电脑绘图的兴趣。

[教学重点]:复制、旋转的操作使用[教学难点]:在实际绘图中的复制的多种用法[教学准备]:多媒体教室、远志多媒体教室广播软件[教学过程]:一、导入播放《欢乐的小鸡》图师:在这图里你看到了什么?生回答师:同学们,观察得真仔细啊!这幅图里的小鸡小花不是都要我们一笔一笔的画呢?其实我们只要画好其中的一朵花,一只鸡就可以利用绘图软件中的一个新功能来实现这幅画了,今天老师就来和大家一起学习新知识。

二、复制功能的学习。

师:要完成那么多的小花的绘制,我们得先画出一朵花。

活动一:下面请大家选好前景色,用工具栏中的'“椭圆”、“刷子”等来花小花。

1、教师先示范,同学动手一起画一朵花。

(可参考课本第20页的方法,画出一朵花)2、单击“图像”菜单,检查菜单中“不透明处置”前是否有打钩,有的话把钩去掉。

3、单击工具箱中“选定”工具,在小花周围拖动鼠标把要复制的小花围出。

4、选“编辑”菜单的“复制”,再点“粘贴”。

5、在出现新的小花选区上按住鼠标左键就可以把小花拖到其他位置,这样就复制了一朵小花了。

6、教学新的复制方法:选择要复制的图像后按CTRL键同时用鼠标脱动也可以复制。

让同学动手,教师指导,让好的同学进行演示。

三、画小鸡大家庭师:在草地上有许多的小鸡,大家能用刚才学习的知识进行绘制吗?但是如何绘制有大有小的呢?活动二:1、请同学们先用学的知识进行操作,画出1只小鸡。

2、然后复制一只小鸡后用选定工具再将一只小鸡选中,将鼠标指针移到“选定”框四周图像大小调整柄上,拖动鼠标后你发现什么?(变大变小)3你们试一试。

完成练习后,老师根据实际中出现的问题进行讲解并请一些操作较好的同学进行讲解。

初中图形的旋转公开课教案

初中图形的旋转公开课教案

初中图形的旋转公开课教案一、教学目标1. 知识与技能:通过观察和操作,使学生理解旋转的概念,掌握图形旋转的性质,并能运用旋转知识解决实际问题。

2. 过程与方法:培养学生观察、操作、思考、表达的能力,发展空间观念和坐标观念。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作交流意识,使学生在探究活动中体验成功的喜悦。

二、教学内容1. 旋转的概念:把一个图形绕着某一定点O转动一个角度,这种图形变换叫做旋转。

定点O叫做旋转中心,转动的角叫做旋转角。

2. 图形旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。

三、教学重点、难点1. 教学重点:旋转的概念,图形旋转的性质。

2. 教学难点:图形旋转的性质的应用。

四、教学过程1. 导入:利用多媒体展示钟面指针旋转的动画,引导学生观察并思考旋转的现象。

引出旋转的相关概念。

2. 新课讲解:(1)讲解旋转的概念,并通过实物演示旋转的过程,使学生直观地理解旋转。

(2)引导学生观察和操作,探索图形旋转的性质,并进行归纳总结。

3. 实例分析:出示实例,让学生运用旋转的性质解决问题,巩固所学知识。

4. 练习巩固:设计一些练习题,让学生独立完成,检查学生对旋转知识的掌握程度。

5. 课堂小结:对本节课的内容进行总结,强调旋转的概念和性质,并提醒学生注意旋转方向的作用。

6. 课后作业:布置一些有关旋转的练习题,让学生进一步巩固所学知识。

五、教学反思1. 针对本节课的教学内容,反思教学目标是否达成,学生对旋转的概念和性质是否掌握。

2. 反思教学过程是否符合学生的认知规律,教学方法是否适合学生的实际情况。

3. 反思课堂氛围是否活跃,学生参与度是否高,是否充分发挥了学生的主动性。

4. 针对教学中的不足,提出改进措施,为今后的教学提供借鉴。

六、教学评价1. 学生对旋转的概念和性质的掌握程度;2. 学生在解决问题时运用旋转知识的灵活性;3. 学生在课堂中的参与度和合作交流意识;4. 学生对数学的兴趣和自信心。

初二数学图形的平移和旋转教案

初二数学图形的平移和旋转教案

一、复习预习(1)平移的概念(2)平移的特点(3)平移的基本性质火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,那么在运动的过程中这些物体的形状、大小、位置等因素中,哪些没有发生改变? 哪些发生了变化?这种运动就叫做什么?为解决这一问题,我们讲今天的内容。

二、知识讲解知识点1 平移、旋转和轴对称的区别和联系(1)区别。

①三者概念的区别:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移;在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;在平面内,将一个图形沿着某条直线折叠。

如果它能够与另一个图形重合,那么这两个图形成轴对称。

②三者运动方式不同:平移是将图形沿某个方向移动一定的距离。

旋转是将一个图形绕一个定点沿某个方向转动一个角度;轴对称是将图形沿着某一条直线折叠。

③对应线段、对应角之间的关系不同:平移变换前后图形的对应线段平行(或共线)且相等;对应点所连的线段平行且相等;对应角的两边分别平行且对应角的方向一致。

轴对称的对应线段或延长线相交,交点在对称轴上:对应点的连线被对称轴垂直平分。

旋转变换前后图形的任意一对对应点与旋转中心的距离相等、与旋转中心的连线所成的角是旋转角。

④三者作图所需的条件不同:平移要有平移的方向和平移的距离,旋转要有旋转中心、旋转方向和旋转角:轴对称要有对称轴。

(2)联系。

①它们都在平面内进行图形变换②它们都只改变图形的位置不改变图形的形状和大小,因此变换前后的两个图形全等。

③都要借助尺规作图及全等三角形的知识作图。

知识点2 组合图案的形成(1)确定图案中的“基本图案”。

(2)发现该图案各组成部分之间的内在联系。

(3)探索该图案的形成过程:运用平移、旋转、轴对称分析各个组成部分如何通过“基本图案”演变成“形”的。

要用运动的观点、整体的思想分析“组合图案”的形成过程。

运动的观点就是要求我们不能静止地挖掘“基本图案”与“组合图案”的内在联系,头脑中应想象、再现图案形成的过程,做到心中有数,特别是有的图案含有不同的“基本图案”其形成的方式也多种多样,可以通过平移、旋转、轴对称变换中的一种或两种变换方式来实现,也可以通过同一种变换方式的重复使用来实现。

北师大版八年级数学下册3.2.图形的旋转教学设计

北师大版八年级数学下册3.2.图形的旋转教学设计
2.教学活动:
(1)引导学生回顾本节课所学内容,总结旋转的定义、性质、作图方法。
(2)强调旋转知识在实际生活中的应用,提高学生的数学应用意识。
(3)激发学生学习数学的兴趣,鼓励学生在生活中发现旋转现象,将所学知识应用于实际。
3.教学评价:通过学生的总结和反馈,了解教学效果,为下一步的教学提供参考。
综上,本节课通过导入新课、讲授新知、学生小组讨论、课堂练习和总结归纳等环节,使学生在轻松愉快的氛围中掌握图形的旋转知识,提高学生的空间想象力和创新能力。同时,注重学生的主体地位,培养学生的合作意识和解决问题的能力。
2.难点:
(1)理解旋转中心、旋转角和旋转方向的概念,并能运用这些概念进行作图。
(2)灵活运用旋转性质解决问题,如计算旋转后的坐标点、分析旋转对称图形等。
(3)将旋转知识应用于实际问题,设计旋转图案,解决与旋转相关的实际问题。
(二)教学设想
1.创设情境,引入新课
通过展示生活中的旋转现象,如风车、地球自转等,引发学生对旋转的兴趣,为新课的学习做好铺垫。
(二)讲授新知,500字
1.教学内容:旋转的定义、旋转中心、旋转角、旋转方向、旋转作图方法。
2.教学活动:
(1)通过动态演示,让学生直观地理解旋转的定义和基本要素。
(2)讲解旋转中心、旋转角、旋转方向等概念,结合实例进行解释。
(3)引导学生运用尺规作图方法,完成给定图形的旋转作图。
3.知识拓展:介绍旋转在生活中的应用,如建筑设计、工艺品设计等。
(2)借助多媒体演示,让学生直观地感受旋转过程中坐标点的变化,深化对旋转性质的理解。
4.实践应用,解决问题
(1)设计具有挑战性的问题,让学生运用旋转知识解决问题,巩固所学知识。

八年级数学:《图形的旋转》

八年级数学:《图形的旋转》

初中数学新课程标准教材数学教课方案( 2019—2020学年度第二学期)学校:年级:任课教师:数学教课方案 /初中数学/八年级数学教课方案编订: XX文讯教育机构初中数学教课方案文讯教育教课方案《图形的旋转》教材简介 : 本教材主要用途为经过学习数学的内容,让学生能够提高判断能力、剖析能力、理解能力,培育学生的逻辑、直觉判断等能力,本教课方案资料合用于初中八年级数学科目 , 学习后学生能获得全面的发展和提高。

本内容是依据教材的内容进行的编写,能够放心改正调整或直接进行教课使用。

【教课内容】苏教版《义务教育课程标准实验教科书数学》四年级(下册)第八单元第66、67页。

【教课目的】1.指引学生在实质情境中认识顺时针、逆时针方向,初步领会图形旋转的基本因素。

2.经过察看、操作、想象等活动,指引学生在方格纸上画出简单平面图形绕一点旋转90°后的图形,进一步发展空间观点。

3.指引学生感觉数学与生活的亲密联系,在学习过程中体验成功,感觉数学的美, 提高学习数学的兴趣。

【教课重、难点】认识旋转的三因素,能在方格纸上画出简单平面图形绕一点旋转90°后的图形。

【教、学具准备】多媒体课件、方格纸、学生每人一套三角尺、长方形学具【教课过程】一、情境导入,唤醒旧知师:课前,我们观看了游玩场的情境,( 课件出示相应图片) 想想 , 这些项目的运动方式是什么?二、走进生活,感知旋转。

1.学生举例生活中旋转的现象?2.课件播放转杆视频( 例 1) ,发问:你们看到了什么?师:认真察看转杆封闭和翻开的过程,比一比,有什么发现?( 依据学生的讲话,相机揭示旋转的三因素:点、方向、度数)3.学生亲身体验转杆运动,感知三因素。

4.小结过渡:经过方才的察看和体验,我们发现,点、方向、度数都是决定旋转结果很重要的因素。

三、实践应用,初建表象。

1.达成书中想想做做1。

2.由指针的旋转过渡到图形的旋转,赏识并想象图形旋转的过程,激发学生设计和创建的欲念。

《图形的旋转》教案及教学反思(精选7篇)

《图形的旋转》教案及教学反思(精选7篇)

《图形的旋转》教案及教学反思(精选7篇)《图形的旋转》及篇1【教学内容】义务教育课程标准北师大版试验教材六年级上册第三单元第34页“图形的变换”。

【教学目标】1、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。

2、借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。

3、利用七巧板在方格纸上变换各种图形,进一步提高学生的想象能力。

【教学重、难点】通过观察、操作活动,说出图形的平移或旋转的变换过程。

【教具、学具准备】三角尺、直尺、彩笔、圆规、每人准备一张方格纸,4张大小相等的等腰直角三角形(硬纸)、一副七巧板【个性化修改】难点:1、在于学生对轴对称的理解。

轴对称是图形变换的一种方法。

2、学生对于旋转的度数的把握。

【】教学过程一、创设情境师:在以前的学习中我们已初步认识了平移和旋转,下面请同学们用一个三角形在方格纸上边摆边说,说说什么是平移、什么是旋转。

学生在自己的方格纸上操作交流,然后请几位学生展示。

师:同学们我们在分析图形的变换时,不仅要说出它的平移或旋转情况,还要说清楚是怎样平移或旋转的,这样就能清楚地知道它的变换过程。

师:同学们的'交流很好,下面请同桌的两个同学互相合作,用两个三角形自己设计一个图形,然后进行变换,并说一说它的变换过程。

(学生进行自己的设计与操作,师巡视指导)师:同学们做得很好。

下面请几个同学上来演示他们设计的图形,并说一说它是怎样变换图形的。

如果是经过旋转组成的图案,每旋转一次,都应说一说是什么图形绕者哪一点旋转的?二、尝试练习:师:接下来,请同学们观察下图,边观察边思考,并拿出课前准备好的方格纸和三角形,分别给四个三角形标上A、B、C、D,自己摆一摆,移一移,转一转,进行图形的变换,然后按照下面老师提出的四个问题,与同桌同学进行交流。

(1)四个三角形A、B、C、D如何变换得到“风车”图形?(2)“风车”图形中的四个三角形如何变换得到长方形?(3)长方形中的四个三角形如何变换得到正方形?(4)正方形中的四个三角形如何变换回到最初的图形?学生自己操作,同桌交流图形变换的方法,教师巡视指导。

青岛版数学八年级下册第11章《图形的平移与旋转》说课稿

青岛版数学八年级下册第11章《图形的平移与旋转》说课稿

青岛版数学八年级下册第11章《图形的平移与旋转》说课稿一. 教材分析《图形的平移与旋转》是青岛版数学八年级下册第11章的内容。

本章主要介绍了图形的平移与旋转的性质和应用。

通过本章的学习,学生能够理解平移与旋转的概念,掌握它们的基本性质,并能运用平移与旋转解决实际问题。

在本章中,学生将学习图形的平移与旋转的定义、性质和定理。

首先,学生会学习平移的性质,包括平移的定义、平移的方向和距离、平移的规律等。

然后,学生会学习旋转的性质,包括旋转的定义、旋转的中心、旋转的角度和旋转的规律等。

最后,学生将通过实例学习如何运用平移与旋转解决实际问题,如设计图案、变换图形等。

二. 学情分析在八年级下册的学生已经具备了一定的几何基础,他们对图形的性质和变换有一定的了解。

然而,对于平移与旋转的概念和性质,他们可能还比较陌生。

因此,在教学过程中,需要通过生动的实例和具体的操作,帮助学生理解和掌握平移与旋转的性质。

同时,八年级的学生已经具备了一定的逻辑思维和解决问题的能力。

他们可以通过观察和操作,发现图形的变换规律,并能够运用这些规律解决实际问题。

因此,在教学过程中,应该鼓励学生积极参与,培养他们的观察能力和解决问题的能力。

三. 说教学目标1.知识与技能目标:学生能够理解平移与旋转的概念,掌握它们的基本性质,并能运用平移与旋转解决实际问题。

2.过程与方法目标:学生能够通过观察、操作和思考,培养观察能力和解决问题的能力。

3.情感态度与价值观目标:学生能够对数学产生兴趣和自信心,培养合作和交流的能力。

四. 说教学重难点1.教学重点:学生能够理解平移与旋转的概念,掌握它们的基本性质。

2.教学难点:学生能够运用平移与旋转解决实际问题。

五. 说教学方法与手段在教学过程中,我将采用以下方法和手段:1.引导法:通过提问和引导学生思考,激发学生的兴趣和思考能力。

2.实例教学法:通过具体的实例,让学生观察和操作,帮助学生理解和掌握平移与旋转的性质。

八年级数学下册9.1图形的旋转教学设计苏科版

八年级数学下册9.1图形的旋转教学设计苏科版
这些旋转有什么共同的特点呢?
万物都是由点线面这些图形组成,所以本节课我们来学习图形的旋转
补充课题板书:图形的旋转
情境一:认识旋转
1.演示时钟的旋转,时钟上指针的运动可以看成什么图形在旋转?
2.什么是图形的旋转?
这个定点称为旋转中心,,转动的方向称为旋转方向,旋转的角度称为旋转角.(板书概念)
[操作1]
(2).通过具体实例认识旋转,会找出旋转前后两个图形中的对应点、对应线段、对应角、旋转中心、旋转角;理解旋转前后图形全等并且对应点到旋转中心的距离相等、对应点与旋转中心的连线所成的角彼此相等的性质;
(3).经历对具有旋转特征的简单平面图形的观察、操作、画图等过程,掌握作图的技能.
2.过程性目标
(1).结合具体实例认识旋转,体会旋转和它的性质在现实生活中的广泛应用,提高学生的空间想象能力,培养学生研究问题的意识;
板书设计
9.1图形的旋转
1.定义:将一个图形绕着一个__旋转一定的__,这样的图形运动称为旋转.
2.旋转的三要素:____,____和____.
3.旋转的性质:
(1)旋转前、后的图形_______.(形)
(2)每一对对应点到旋转中心的距离____.(线)
(3)每一对对应点与旋转中心的连线所成的角彼此___.(角)
1.这个图形是什么呀?
2.三菱汽车标志可以看成什么图形怎样运动得到的图形?
3.生活中有许多图形也是这样得到的,如香港特别行政区区旗中央的紫荆花图案,你能说出它是怎样设计出来的吗?
4.介绍图案含义
早在1965年,香港 已经采用洋紫荆作为自己的市花, 所以区旗设计继续采纳了洋紫荆花的元素。洋紫荆图案中花蕊以五颗星表示,这样与中 华人民共和国国旗上的五星相对应,寓意中国与香港密不可分的关系,代表香港人热爱祖国。

初中数学_图形的旋转教学设计学情分析教材分析课后反思

初中数学_图形的旋转教学设计学情分析教材分析课后反思

上节课学习的图形的平移的相关内容。

(PPT )(几何画板演示)展示四个旋转图形,发现旋转图形中的旋转中心。

将这几个旋转图形按照旋转中心的位置进行分类: 旋转中心(在顶点上,在边上,在图形外部,在图形内部) 除了旋转中心,我们还要确定哪些元素才能将一个图形做一个旋转? 方向和角。

那么今天我们就研究图形旋转的方向和转动的角。

以三角形ABC 绕O 点顺时针旋转至三角形 定义:将一个图形沿某个方向移动一定的距离的图形运动称为平移。

性质: 1、对应角相等。

2、对应线段平行且相等。

3、对应点所连的线段平行且相等。

平移法。

1、2、3、4、通过多个图形的验证,我们可以发现刚才的结论在其他的图形当中仍然成立,那么你能用自己的话总结一下这些结论吗?除了验证了对应顶点,你能找出另外的对应点来研究它们和旋转中心的关系吗?对应点到旋转中心的距离相等。

对应点与旋转中心的连线所成的角相等。

这个角就是旋转角。

(完善性质)因此,在图形旋转的过程中,点转动带动线段转动,进而图形转动,所以旋转方向可以通过对应点的转动确定,旋转角度其实就是对应点与旋转中心连线所成夹角,即为旋转角。

你能用自己的话给旋转下一个定义吗?给出旋转定义。

如图,三角形ABC绕点O旋转后,顶点A旋转到点D。

(1)指出这一旋转的旋转角。

(2)画出旋转后的三角形。

图形的旋转的定义,性质。

书P77 1、2 P79 1、2学情分析:学生在学习本课之前已经学过了图形平移这一种基本图形变换,有了一定的变换思想。

对猜想、验证等数学活动也有一定感受,这些都为新课学习提供了必备的知识经验。

首先,学生在日常的生活和学习中,对风车,钟表,车轮等旋转图形或事物并不陌生,积累了一定的生活经验和操作技能,其次,八年级学生已经有了一定的观察、抽象、分析、和概括能力,这是本节课开展探究活动的有利因素。

再次,学生乐于亲身经历,在体验和探究中去学习。

只是学生的探究能力、归纳概括能力仍相对薄弱,学习过程中,可能有一部分学生探究活动受阻,教师要适时加以点拨和指导。

《图形的旋转》说课稿(精选6篇)

《图形的旋转》说课稿(精选6篇)

《图形的旋转》说课稿(精选6篇)《图形的旋转》说课稿(精选6篇)作为一位兢兢业业的人民教师,可能需要进行说课稿编写工作,说课稿有助于顺利而有效地开展教学活动。

那么什么样的说课稿才是好的呢?以下是小编收集整理的《图形的旋转》说课稿,希望能够帮助到大家。

《图形的旋转》说课稿篇1一、说教学内容北师大版小学数学第七册第四单元第一节《图形的旋转》二、教材的地位和作用我在尊重教材的基础上,,让学生在充分的经历与欣赏中感悟旋转;同时针对学生思维活跃的特点,引导学生对比图形旋转前后的变化,以渗透刚体变换的思想。

三、说教学目标知识目标:了解一个简单图形经过旋转形成复杂图案的过程,并能在方格纸上将简单图形旋转90度,运用旋转设计图案。

能力目标:运用观察、操作、归纳、联想等思维方法培养学生抽象思维能力,发展空间观念。

情感目标:感悟数学的美,培养学生学习数学的兴趣和热爱生活的情感。

教学难点:认识图形的旋转,解一个简单图形经过旋转形成复杂图案的过程,能在方格纸上将简单图形旋转90度。

教学难点是:能在方格纸上将简单图形旋转90度,并运用旋转设计图案。

三、说教法与学法学习本单元前,学生只初步感受到了生活中的平移和旋转现象,接触了两种图形变换方式:对称、平移。

本课是把学生的视角引入到第三种图形变换——旋转,意在通过欣赏、探索、创作等一系列活动,使学生体验到简单图形变成复杂图案的过程,理解旋转的中心点、方向、角度不同,形成的图案也不同,进一步发展学生的空间观念,为今后继续学习图形变换奠定基础。

四年级学生,形象思维在其认知过程中仍占主导地位。

因此,要本着“边操作边感悟”的原则,让学生在经历中体会旋转的三要素,感受图形旋转带来的变换美。

四、说教学准备图片、小黑板、方格纸、自制风车五、流程设计:(一)游戏激趣,感受图形的旋转此环节通过创设情景,初步感受旋转。

利用学生比较喜欢的情景,即风车,美丽的图形等引入,极大地激发了学生的学习热情。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《9.1图形的旋转》微课教学设计
教学过程:
一、创设情境
1.观察课本56页的两幅实物图的旋转现象,再举生活中类似的例子.
2.上述情境中的旋转现象有什么共同的特征?
【设计意图:引导学生用数学的眼光看待生活中的有关问题,发展学生的数学观.对生活中的旋转现象进行抽象并数学化,引导学生认识图形的旋转.】
二、建立概念
1.由旋转情境,引出“图形旋转”的定义:在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.这个定点称为旋转中心,旋转的角度称为旋转角.
2. 感受旋转过程,得到旋转的三要素:旋转中心,旋转方向,旋转角.
3.加深认识
如图,将△ABC绕点C逆时针方向旋转,请说出:
•旋转中心是点____;
•点B的对应点是点____;
•CA的对应边是______;
•∠A的对应角是_______;
•旋转角是∠_______,

一对对应点与旋转中心连线所成的角——旋转角
【设计意图:通过学生在生活中的体验,培养学生善于思考的良好习惯.】
三、性质探求
图形的旋转属于几何变换,基本问题是在该几何变换下原图形的哪些性质不
变. 为此,从观察图形的整体变换入手,考虑图形旋转前后的不变性质.
探求1. △ABC绕点C按逆时针方向旋转到△C'
'
'B
A的位置
思考:旋转前、后三角形的哪些性质发生了改变?
哪些性质没有发生改变?旋转前后有哪些相等的线段?哪
些相等的角?
【设计意图:引导学生发现旋转前后图形的大小和形
状没有变化,改变的只是位置.由于图形是由点组成的,
所以引入对应点的概念并在AB上任取一点K,找到它的对
应点K′.使学生理解“图形旋转时,意味着图形上每个点同时
都按相同的方式旋转相同的角度”.】
探求2.将任意△ABC绕平面内任一点O转动任意的角
度.
思考:刚才的发现还成立吗?
【设计意图:通过旋转中心的不同,继续探究性质,激发学生不断探索新知的欲望.】
探求3.归纳概括图形旋转的性质
(1)旋转前、后的图形全等,即旋转不改变图形的大小、形状.
(2)对应点到旋转中心的距离相等.
(3)每一对对应点与旋转中心的连线所成的角彼此相等.
4.巩固练习
△A′OB′是△AOB绕点O按逆时针方向旋转得到的,已知△AOB=20°, △A′OB=24°,AB=3,OA=5,则旋转角= °,A′B′= ,O A′= .
四、旋转作图
1.(1)画出将线段AB绕点O按逆时针方向旋转100°所得到的线段'
'B
A.
A
B
O
B
B'
O A'
C'
A
C
(2)画出将ABC △绕点C 按顺时针方向旋转120°后所得到的'''C B A △.
(3)画出ABC △绕点C 逆时针旋转90°后所得到的'''C B A △.
2. 你能归纳出旋转画图的一般步骤吗?
【设计意图】通过递进式的画图要求,使得学生理解并运用旋转的性质,并体会到:画“形”旋转后的图形其实质上是画“点”旋转后的对应点.
五、小结升华
你对旋转有了哪些认识?
【设计意图:利用思维导图,清晰图形旋转的相关知识,更重要的是思考研究图形问题的常用方法,形成学习能力,提升学生数学素养.】
六、效果检测(具体内容见学习任务单)
A B
C。

相关文档
最新文档