第3章 晶体缺陷(3)-位错的运动与弹性性质
第3章点缺陷、位错的基本类型和特征_材料科学基础
位错运动导致晶体滑移的方向;该矢量的模|b|表示
了畸变的程度,即位错强度。
② 柏氏矢量的守恒性:柏氏矢量与回路起点及其具体途 径无关。一根不分岔的位错线,不论其形状如何变化 (直线、曲折线或闭合的环状),也不管位错线上各 处的位错类型是否相同,其各部位的柏氏矢量都相同; 而且当位错在晶体中运动或者改变方向时,其柏氏矢 量不变,即一根位错线具有唯一的柏氏矢量。
18
第
3.2 位错
三 章
3.2.1 位错的基本类型和特征
1. 位错的概念:位错是晶体的线性缺陷。晶体中
晶
某处一列或若干列原子有规律的错排。
体
• 意义:对材料的力学行为如塑性变形、强度、断裂等
缺
起着决定性的作用,对材料的扩散、相变过程有较大
陷
影响。
• 位错的提出:1926年,弗兰克尔发现理论晶体模型刚
b l
positive
b
l
negative
Edge dislocations
b
b
right-handed left-handed Screw dislocations
26
3.2
3. 伯氏矢量的特性 位 ① 柏氏矢量是一个反映位错周围点阵畸变总累积的物理
错
量。该矢量的方向表示位错的性质与位错的取向,即
性切变强度与与实测临界切应力的巨大差异(2~4个 数量级)。1934年,泰勒、波朗依、奥罗万几乎同时 提出位错的概念。1939年,柏格斯提出用柏氏矢量表 征位错。1947年,柯垂耳提出溶质原子与位错的交互 作用。1950年,弗兰克和瑞德同时提出位错增殖机制。 之后,用TEM直接观察到了晶体中的位错。
➢ 特征:如果杂质的含量在固溶体的溶解度范围内,
第3章晶体缺陷
• An interstitial defect is formed when an extra atom is inserted into the crystal structure at a normally unoccupied position. • Interstitial atoms, although much smaller than the atoms located at the lattice points, are still larger than the interstitial sites that they occupy, consequently, the surrounding crystal region is compressed and distorted.
பைடு நூலகம்
• • • • • • • • • •
离开平衡位置的原子有三个去处: 离开平衡位置的原子有三个去处: (1)形成Schottky空位(vacancy) (1)形成 形成Schottky空位 vacancy) 空位( (2)形成Frankely缺陷 (2)形成 形成Frankely缺陷 (3)跑到其它空位上使空位消失或移位。 (3)跑到其它空位上使空位消失或移位 跑到其它空位上使空位消失或移位。 点缺陷的类型: 点缺陷的类型: (1)空位 间隙原子(异类)( )(interstital (2)间隙原子(异类)(interstital atom) 自间隙原子(同类) self(3)自间隙原子(同类) (self- interstital atom ) 外来杂质原子: (4)外来杂质原子: 置换原子( atom) (5)置换原子(substitutional atom) :
Crystal Defects
ch3.2 晶体缺陷--线缺陷(位错)(06级)
第三章 晶体缺陷 ③ 滑移面必须是同时包含有位错线和滑移矢量的平面。位 错线与滑移矢量互相垂直,它们构成平面只有一个。 ④ 晶体中存在刃位错后,位错周围的点阵发生弹性畸变,既 有正应变,也有负应变。点阵畸变相对于多余半原子面是左右对 称的,其程度随距位错线距离增大而减小。就正刃型位错而言, 上方受压,下方受拉。 ⑤ 在位错线周围的畸变区每个原子具有较大的平均能量。 畸变区是一个狭长的管道。
第三章 晶体缺陷 (3) 柏氏矢量的唯一性。即一根位错线具有唯一的柏氏矢 量。它与柏氏回路的大小和回路在位错线上的位臵无关,位 错在晶体中运动或改变方向时,其柏氏矢量不变。 (4) 位错的连续性:可以形成位错环、连接于其他位错、终 止于晶界或露头于表面,但不能中断于晶体内. (5) 可用柏氏矢量判断位错类型 刃型位错: ξe⊥be,右手法则判断正负 螺型位错: ξs∥bs,二者同向右旋,反向左旋 (6) 柏氏矢量表示晶体滑移方向和大小.位错运动导致晶 体滑移时,滑移量大小|b|,滑移方向为柏氏矢量的方向。 (7) 刃型位错滑移面为ξ与柏氏矢量所构成的平面,只有一 个;螺型位错滑移面不定,多个。 (8) 柏氏矢量可以定义为:位错为柏氏矢量不为0的晶体缺 陷。
第三章 晶体缺陷 (3) 混合位错的滑移过程 沿位错线各点的法线方向在滑移面上扩展,滑动方向垂 直于位错线方向。但滑动方向与柏氏矢量有夹角。(hhwc1)
第三章 晶体缺陷
2. 位错的攀移
• 位错的攀移(climbing of disloction) :在垂直于滑移面方 向上运动 • 攀移的实质:刃位错多余半原子面的扩大和缩小,它是通过 物质迁移即原子或空位的扩散来实现的。 • 刃位错的攀移过程:正攀移,向上运动;负攀移, 向下运动 • 注意:只有刃型位错才能发生攀移;滑移不涉及原子扩散, 而攀移必须借助原子扩散;外加应力对攀移起促进作用,压 (拉)促进正(负)攀移;高温影响位错的攀移 • 攀移运动外力需要做功,即攀移有阻力。粗略地分析,攀移 阻力约为Gb/5。 • 螺型位错不止一个滑移面,它只能以滑移的方式运动,它是 没有攀移运动的。 • 攀移为非守恒(或非保守)运动,而滑移为守恒(或保守) 运动。
固体物理 第三章_ 晶体中的缺陷
4
由以上讨论可知: 刃位错: 外加切应力的方向、原子的滑移方向和位错 线的运动方向是相互平行的。 螺位错: 外加切应力的方向与原子的滑移方向平行, 原子的滑移方向与螺位错的运动方向垂直。 在左右两部分受到向上和向下的切应力的作 用时,位错线向前移动,直到位错线移动到 尽头表面,这时左右两部分整个相对滑移b 的距离,晶体产生形变。
固体物理第三章
1. 热缺陷:由热起伏的原因所产生的空位和填隙原 子,又叫热缺陷,它们的产生与温度直接有关
(a) 肖脱基缺陷
(b)弗伦克耳缺陷
(c) 间隙原子
固体物理第三章
( a )肖特基缺陷 (vacancy) :原子脱离正常格点 移动到晶体表面的正常位置,在原子格点位置 留下空位,称为肖特基缺陷。 (b)弗伦克尔缺陷(Frenkel defect),原子脱离格 点后,形成一个间隙原子和一个空位。称为弗 伦克尔缺陷。 (c)间隙原子(interstitial):如果一个原子从正常 表面位置挤进完整晶格中的间隙位置则称为间 隙原子,由于原子已经排列在各个格点上,为 了容纳间隙原子,其周围的原子必定受到相当 大的挤压。
固体物理第三章 固体物理第三章
产生位错的外力: 机械应力:挤压、拉伸、切割、研磨 热应力:温度梯度、热胀冷缩 晶格失配: 晶体内部已经存在位错,只用较小的外力就 可推动这些位错移动,原来的位错成为了位错 源,位错源引起位错的增殖,有位错源的晶体 屈服强度降低。 晶体的屈服强度强烈地依赖于温度的变化。 T升高,原子热运动加剧,晶体的屈服强度下 降,容易产生范性形变。
固体物理第三章
在实际晶体中,由于存在某种缺陷,所以晶 面的滑移过程,可能是晶面的一部分原子 先发生滑移,然后推动同晶面的另一部分 原子滑移。按照这样的循序渐移,最后使 上方的晶面相对于下方的晶面有了滑移。 1934 年, Taylor( 泰勒 ), orowan( 奥罗万 ) 和 Polanyi( 波拉尼)彼此独立提出滑移是借助 于位错在晶体中运动实现的,成功解释了 理论切应力比实验值低得多的矛盾。
材料科学基础第三章晶体缺陷
够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。
《材料科学基础》 第03章 晶体缺陷
第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。
晶体缺陷点缺陷和位错
《材料科学与工程基础》
本章主要内容
3.1 点缺陷 3.2 位错 3.3 表面及界面
第3章 晶体缺陷
❖引 言
1、晶体缺陷(Defects in crystals)
定义:实际晶体都是非完整晶体,晶体中原子排 列的不完整性称为晶体缺陷。
2、缺陷产生的原因
(1)晶体生长过程中受到外界环境中各种复杂因 素的不同程度的影响;
作业
Cu晶体的空位形成能1.44x10-19J/atom,A=1, 玻尔兹曼常数k=1.38x10-23J/k。已知Cu的摩尔
质量为MCu=63.54g/mol, 计算: 1)在500℃以下,每立方米Cu中的空位数? 2) 500℃下的平衡空位浓度?
18
❖ 解:首先确定1m3体积内Cu原子的总数(已 知Cu的摩尔质量为MCu=63.54g/mol, 500℃ 下Cu的密度ρCu=8.96 ×106 g/m3
Ag
3980
0.372 25000 9.3×10-5 1.5×10-5
Cu
6480
0.490 40700 7.6×10-5 1.2×10-5
α-Fe
11000
2.75
68950 2.5×10-4 1.5×10-5
Mg
2630
0.393 16400 1.5×10-4 2.4×10-5
问题:计算结果和实验值相差甚远
3)位错线可以是任何形状的曲线。 4)点阵发生畸变,产生压缩和膨胀,形成应力场,
随着远离中心而减弱。
7.2 位错的基本知识
考虑一下,还 可以采用什么 方式构造出一 个刃型位错?
2、螺型位错
(1)螺型位错的形成
螺型位错的 原子组态:
材料科学基础第三章 晶体缺陷
贵州师范大学
化学与材料科学学院
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
二、点缺陷的产生 1. 平衡点缺陷及其浓度 虽然点缺陷的存在使晶体的内能增高,但 同时也使熵增加,从而使晶体的能量下降。因 此,点缺陷是晶体中热力学平衡的缺陷。 等温等容条件下,点缺陷使晶体的亥姆霍 A U T S 兹自由能变化为:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
三、点缺陷与材料行为 1. 点缺陷的运动 1)空位的运动
2)间隙原子的运动 3)空位片的形成
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
第三章 晶体缺陷
CRYSTAL DEFECTS
点缺陷 位错的基本概念 位错的弹性性质 作用在位错线上的力 实际晶体结构中的位错 晶体中的界面
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
一、点缺陷的类型
点缺陷的类型: (a) Schottky 空位; (b) Frenkel 缺陷; (c) 异类间隙原子; (d) 小置换原子; (e) 大置换原子
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
第3章 晶体缺陷 笔记及课后习题详解 (已整理 袁圆 2014.8.6)
第3章晶体缺陷3.1 复习笔记一、点缺陷1.点缺陷的定义点缺陷是在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷。
2.点缺陷的特征尺寸范围约为一个或几个原子尺度,故称零维缺陷,包括空位、间隙原子、杂质或溶质原子。
3.点缺陷的形成晶体中,位于点阵结点上的原子以其平衡位置为中心作热振动,当某一原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离其原来的位置,使点阵中形成空结点,称为空位。
离开平衡位置的原子有三个去处:(1)迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下空位,称为肖特基(Schottky)缺陷;(2)挤入点阵的间隙位置,而在晶体中同时形成数目相等的空位和间隙原子,则称为弗仑克尔(Frenkel)缺陷;(3)跑到其他空位中,使空位消失或使空位移位;(4)在一定条件下,晶体表面上的原子也可能跑到晶体内部的间隙位置形成间隙原子图3.1 晶体中的点缺陷(a)肖特基缺陷(b)弗伦克尔缺陷(c)间隙原子4.点缺陷的平衡浓度(1)点缺陷存在的影响①造成点阵畸变,使晶体的内能升高,降低了晶体的热力学稳定性;②由于增大了原子排列的混乱程度,并改变了其周围原子的振动频率,引起组态熵和振动熵的改变,使晶体熵值增大,增加了晶体的热力学稳定性。
晶体组态熵的增值:最小,即式中,Q f为空位形成能,单位为J/mol,R为气体常数,R=8.31J/(mol·K)。
(2)点缺陷浓度的几个特点对离子晶体而言,无论是Schottky缺陷还是Frenkel缺陷均是成对出现的事实;同时离子晶体的点缺陷形成能一般都相当大,故在平衡状态下存在的点缺陷浓度是极其微小的。
二、线缺陷1.位错的定义晶体中某一列或若干列原子有规律的错排。
2.线缺陷的特征在两个方向上尺寸很小,另外一个方向上延伸较长,也称一维缺陷。
3.位错(1)位错的分类①刃型位错:晶体的一部分相对于另一部分出现一个多余的半排原子面。
晶体缺陷——精选推荐
第3章晶体缺陷前言前面章节都是就理想状态的完整晶体而言,即晶体中所有的原子都在各自的平衡位置,处于能量最低状态。
然而在实际晶体中原子的排列不可能这样规则和完整,而是或多或少地存在离开理想的区域,出现不完整性。
正如我们日常生活中见到玉米棒上玉米粒的分布。
通常把这种偏离完整性的区域称为晶体缺陷(crystal defect; crystalline imperfection)。
缺陷的产生是与晶体的生成条件、晶体中原子的热运动、对晶体进行的加工过程以及其它因素的作用等有关。
但必须指出,缺陷的存在只是晶体中局部的破坏。
它只是一个很小的量(这指的是通常的情况)。
例如20℃时,Cu的空位浓度为3.8×10-17,充分退火后铁中的位错密度为1012m-2(空位、位错都是以后要介绍的缺陷形态)。
所以从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。
但是,晶体缺陷仍可以用相当确切的几何图像来描述。
在晶体中缺陷并不是静止地、稳定不变地存在着,而是随着各种条件的改变而不断变动的。
它们可以产生、发展、运动和交互作用,而且能合并消失。
晶体缺陷对晶体的许多性能有很大的影响,如电阻上升、磁矫顽力增大、扩散速率加快、抗腐蚀性能下降,特别对塑性、强度、扩散等有着决定性的作用。
20世纪初,X射线衍射方法的应用为金属研究开辟了新天地,使我们的认识深入到原子的水平;到30年代中期,泰勒与伯格斯等奠定了晶体位错理论的基础;50年代以后,电子显微镜的使用将显微组织和晶体结构之间的空白区域填补了起来,成为研究晶体缺陷和探明金属实际结构的主要手段,位错得到有力的实验观测证实;随即开展了大量的研究工作,澄清了金属塑性形变的微观机制和强化效应的物理本质。
按照晶体缺陷的几何形态以及相对于晶体的尺寸,或其影响范围的大小,可将其分为以下几类:1.点缺陷(point defects) 其特征是三个方向的尺寸都很小,不超过几个原子间距。
如:空位(vacancy)、间隙原子(interstitial atom)和置换原子(substitutional atom)。
第 三 章 晶 体 缺 陷
3.1.3 点缺陷的运动
点缺陷的运动方式: 点缺陷的运动方式: 空位运动。 (1) 空位运动。 (2) 间隙原子迁移 (3) 空位和间隙原子相遇,两缺陷同时消失。 空位和间隙原子相遇,两缺陷同时消失。 (4) 逸出晶体到表面 , 或移到晶界 , 点缺陷消失 。 逸出晶体到表面, 或移到晶界, 点缺陷消失。
3.2.1 位错的基本类型和特征
位错的类型: 位错的类型: 刃型位错( 1.刃型位错(edge dislocation) 2.螺型位错 螺型位错( 2.螺型位错(screw dislocation) 3.混合位错 混合位错( 3.混合位错(mixed dislocation)
1. 刃型位错
(1)刃型位错(edge dislocation)的产生 刃型位错( 晶体局部滑移造成的刃型位错 刃型位错图示: (2) 刃型位错图示:18 刃型位错线:多余半原子面与滑移面的交线 交线。 刃型位错线:多余半原子面与滑移面的交线。 (3)刃型位错特征: 刃型位错特征: 刃型位错有一个额外的( 多余) 半原子面。 ① 刃型位错有一个额外的 ( 多余 ) 半原子面 。 一般把多 出的半原子面在滑移面的上边的称为正刃型位错 正刃型位错用 出的半原子面在滑移面的上边的称为 正刃型位错 用 “ ⊥ ” 表 把多出在下边的称为负刃型位错 负刃型位错用 表示。 示;而 把多出在下边的称为负刃型位错用“┬”表示。19 刃型位错是直线、 折线或曲线。 它与滑移方向、 ② 刃型位错是直线 、 折线或曲线 。 它与滑移方向 、 伯氏 矢量(b)垂直 垂直。 矢量(b)垂直。20
点缺陷示意图
(a) 肖特基空Biblioteka 晶体中的点缺陷(b) 弗仑克尔缺陷 弗仑克尔缺陷
点缺陷类型1 点缺陷类型1
晶体缺陷位错的基本类型与特征
(a)变形前
(b)变形后
图 单晶试棒在拉伸应力作用下 的变化(宏观)
晶体缺陷位错的基本类型与特征
2、理想晶体的滑移模型
τ τ
图 外力作用下晶体滑移示意图(微观)
晶体缺陷位错的基本类型与特征
(1)理论抗剪屈服强度
滑移面上各个原子在切应力作用下,同时克服相邻滑 移面上原子的作用力前进一个原子间距,完成这一过程所 需的切应力就相当于晶体的理论抗剪屈服强度τm。
螺型位错的情况与刃型位错一样具有易 动性。
位错的运动
混合位错 的运动
晶体缺陷位错的基本类型与特征
三、位错的柏氏矢量
1、柏氏矢量的概念与性质
柏氏矢量:晶体中有位错存在时,滑移面一侧质点相 对于另一侧质点的相对位移或畸变。
性质:大小表征了位错的单位滑移距离,方向与滑移 方向一致(滑移矢量)。 柏氏(Burgers)矢量是一个矢量,具有方向和 大小;这个物理参量能把位错区原子的畸变特征 表示出来,包括畸变发生在什么晶向以及畸变有 多大(畸变矢量) 。
晶体缺陷位错的基本类型与特征
位错的特征归纳:
(1)可以把位错定义为晶体中以滑移区与未滑移 区的边界。
(2)刃型位错不仅仅指刀刃处的一条原子,而是 刀刃处这列原子及其周围区域。
(3)刃型位错中,晶体发生局部滑移的方向(或 滑移矢量)是与位错线垂直的。
(4)螺型位错中,晶体发生局部滑移的方向(或 滑移矢量)是与位错线平行的。
(2)理论抗剪屈服强度与晶体的切变模量的关系
原子的结合键能与弹性模量有很好的对应关系,因此 理论抗剪屈服强度τm应与晶体的切变模量G的大小有一定 的关系,根据推算两者之间大致的为:
m
G 30
第三章晶体缺陷
材料表面的原子核内部的原子所处的环境不同,内部的任一原子处于其它原子的包围 中,周围的原子对它的作用力对称分布,因此它处于均匀的力场中,总和力为零,即处于 能量最低的状态;而表面原子却不同,与外界接触,表面原子处于不均匀的力场之中,所 以其能量大大升高,高出的能量称为表面自由能(或表面能)。
三. 点缺陷的运动
点缺陷(空位)的运动过程
晶体的点缺陷处于不断的运动状态,当空位周围原子的热振动动能超过激活能时,就 可能脱离原来的结点位置而跳跃到空位,正是靠这一机制,空位发生不断的迁移,同时伴 随原子的反向迁移。间隙原子也是在晶格的间隙中不断运动。空位和间隙原子的运动是晶 体内原子扩散的内部原因,原子(或分子)的扩散就是依靠点缺陷的运动而实现的。
第一节 点缺陷
一. 点缺陷的类型
空位:如果晶体中某结点上的原子空缺了,则称为空位。
脱位原子一般进入其他空位或者逐渐迁移至晶界或表面,这样的空位通常称为肖脱基 空位或肖脱基缺陷。偶尔,晶体中的原子有可能挤入结点的间隙,则形成另一种类型的点 缺陷---间隙原子,同时原来的结点位置也空缺了,产生另一个空位,通常把这一对点缺陷 (空位和间隙原子)称为弗兰克耳缺陷。
界100
100
(θ< )和大角度晶界(θ> )。一般多晶体各晶粒之间的晶界属于大角度晶界。
实验发现:在每一个晶粒内原子排列的取向也不是完全一致,晶粒内又可分为位向差
只有几分到几度的若干小晶块,这些小晶块可称为亚晶粒,相邻亚晶粒之小角度晶界还是大角度晶界,这里的原子或多或少的偏离了平衡位置,所以相对 于晶体内部,晶界处于较高的能量状态,高出的那部分能量称为晶界能,或称晶界自由能。
一. 刃型位错
第二节 位错
刃型位错 刃型位错的滑移过程
第3章 晶体缺陷(4)-实际晶体中的位错
弗兰克-瑞德(Frank-Read)位错源
刃型位错的两端被位错网点钉住不能运动。若沿柏氏 矢量b方向施加一切应力,使位错沿滑移面向前滑移运动。 作用于位错线上的力,总是与位错线本身垂直,所以弯 曲后的位错每一小段继续沿它的法线方向向外扩展。 当两端弯出来的线段相互靠近时,由于该两线段平行于 柏氏矢量b,但位错线方向却相反,分别属于左螺和右螺位 错,因此会互相抵消,形成一闭合的位错环以及位错环内 的一小段弯曲位错线。
(1)位错少,材料强度极高,但不能直接应用。(晶 须) (2)位错增加,使位错线之间相互缠结难以移动,亦 可增加材料强度(材料强化途径:晶体经过冷变形或者 引入第二相,会使位错的晶体中为104~108cm-2数量级,经剧 烈冷加工的金属晶体中,为1012~1014cm-2
一、位错的密度
1、位错密度的概念
晶体中位错的数量用位错密度ρ表示,它的意 义是单位体积晶体中所包含的位错线总长度,或穿 越单位截面积的位错线数目。
2、位错密度的计算公式
S n V A
V为体积, S为晶体中位错线的总长度; A为截面积, n为穿过面积A的位错线数目。
3、位错与材料强度的关系
序堆层……ABCACBCAB……称插入型(或外禀)层错。
这种结构变化,并不改变层错处原子最近邻的关 系(包括配位数、键长、键角),只改变次邻近关系, 几乎不产生畸变,所引起的畸变能很小。因而,层错 是一种低能量的界面。
分位错非点阵矢量的滑移破坏了原子的正常排 列次序,在晶体内产生了堆垛层错;
层错使两个分位错成不可分割的位错对,称 其扩展位错。
若堆垛层错不是发生在晶体的整个原子面 上,而只是在部分局部区域存在,则在层错与 完整晶体的交界处就出现柏氏矢量b不等于点阵 矢量的不全位错。
材料科学基础第3-4章小结及习题课讲解
b a u2 v2 w2 n
六方晶系中: b=(a/n)[uvtw]
同一晶体中,柏氏矢量愈大,表明该位错导致点阵畸变愈 严重,它所在处的能量也愈高。
3.2.3 位错的运动
基本形式:滑移和攀移
滑移(slip):三种位错的滑移过程 攀移(climb):在垂直于滑移面方向上运动,
第三章 晶体缺陷
晶体缺陷分类及特征(几何形态、相对于晶体的尺寸、影响范围) :
1. 点缺陷:特征是三维空间的各个方面上尺寸都很小,尺寸
范围约为一个或几个原子尺度,包括空位、间隙原子、杂质 和溶质原子。
2. 线缺陷:特征是在两个方向上尺寸很小,另外一个方面上
很大,如各类位错。
3. 面缺陷:特征是在一个方向上尺寸很小,另外两个方向上
晶界:属于同一固相但位向不同的晶粒之间的界面 称为晶界。
亚晶界:每个晶粒有时又由若干个位向稍有差异的 亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。
确定晶界位置方法: (1)两晶粒的位向差θ (2)晶界相对于一个点阵某一平面的夹角φ。
晶界分类(按θ的大小): 小角度晶界θ<10º 大角度晶界θ>10º
(3)刃型位错标记 正刃型位错用“⊥”表示,负刃型位错用“┬”表示;其
正负只是相对而言。
(4)刃型位错特征: ① 有一额外的半原子面,分正和负刃型位错;
② 可理解为是已滑移区与未滑移区的边界线,可是直线也 可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;
③ 只能在同时包含有位错线和滑移矢量的滑移平面上滑移; ④ 位错周围点阵发生弹性畸变,有切应变,也有正应变;
表面能(γ):产生单位面积新表面所做的功。 表示法:①γ= dw/ds ②γ= T/L (N/m) ③γ= [被割断的结合键数/形成单位新表面]×[能量/每个键] 影响γ的因素: (1)晶体表面原子排列的致密程度。 (2)晶体表面曲率。 (3)外部介质的性质。 (4)晶体性质。
武汉理工大学考研材料科学基础重点 第3章-晶体结构缺陷
第二章晶体结构缺陷缺陷的含义:通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。
理想晶体:质点严格按照空间点阵排列的晶体。
实际晶体:存在着各种各样的结构的不完整性。
本章主要内容:2.1 晶体结构缺陷的类型2.2 点缺陷2.3 线缺陷2.4 面缺陷2.5 固溶体2.6 非化学计量化合物⏹ 2.1 晶体结构缺陷的类型分类方式:几何形态:点缺陷、线缺陷、面缺陷和体缺陷等形成原因:热缺陷、杂质缺陷、非化学计量缺陷、电荷缺陷和辐照缺陷等●一、按缺陷的几何形态分类1. 点缺陷(零维缺陷)缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。
包括:空位:正常结点没有被质点占据,成为空结点间隙质点:质点进入正常晶格的间隙位置,成为间隙质点错位原子或离子杂质质点:指外来质点进入正常结点位置或晶格间隙,形成杂质缺陷双空位等复合体点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。
2. 线缺陷(一维缺陷)位错指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短,如各种位错。
线缺陷的产生及运动与材料的韧性、脆性密切相关。
3.面缺陷面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。
如晶界、表面、堆积层错、镶嵌结构等。
面缺陷的取向及分布与材料的断裂韧性有关。
4.体缺陷体缺陷亦称为三维缺陷,是指在局部的三维空间偏离理想晶体的周期性、规则性排列而产生的缺陷。
如第二相粒子团、空位团等。
体缺陷与物系的分相、偏聚等过程有关。
●二、按缺陷产生的原因分类1. 热缺陷定义:热缺陷亦称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷和肖特基缺陷。
弗伦克尔缺陷是质点离开正常格点后进入到晶格间隙位置,其特征是空位和间隙质点成对出现。
肖特基缺陷是质点由表面位置迁移到新表面位置,在晶体表面形成新的一层,同时在晶体内部留下空位。
第3章 3.2.2位错的能量性质及运动
:泊松比
Gb y (3 x 2 y 2 ) Gb y( x 2 y 2 ) x y 2 2 2 2 (1 ) ( x y ) 2 (1 ) ( x 2 y 2 ) 2
z ( x y )
xy
Gb x( x 2 y 2 ) 2 (1 ) ( x 2 y 2 ) 2
螺位错滑移
27
螺位错沿滑移面运动时,周围原子动作情况如图。 虚线--为螺旋线原始位置, 实线--位错滑移一个原子间距后的状态。
(a)原始位置;
(b)位错向左移动一个原子间距 螺型位错滑移
螺位错滑移(立体图)
28
滑移台阶不断向左扩展。
螺型位错滑移导致晶体塑性变形的过程 (a)原始状态的晶体;(b)(c)位错滑移中间阶段;(d)位错移出晶体表面,形成一个台阶。
5
用圆柱坐标方式表达九个应力分量: 正应力分量:σrr、σθθ、σzz), 切应力分量:τrθ、τθr、τθz、τzθ、τzr、τrz
下角标: 第一个符号表示应力作用面的 外法线方向, 第二个符号表示应力的指向。
6
在平衡条件下,τxy=τyx、τyz =τzy、τzx =τxz (τrθ =τθr、τθz =τzθ、τzr =τrz), 实际只有六个应力分量就可充分表达一个点的应力状态。
xz
Gb y ( 2 ) 2 2 x y
yz
Gb x ( 2 ) 2 2 x y
G切变模量
xy 0
xx yy z z 0
2、圆柱坐标表示螺位错周围的应变分量:
z z
b 2r
材料科学基础位错部分知识点
材料科学基础位错部分知识点第三章晶体结构缺陷(位错部分)1.刃型位错及螺型位错的特征刃型位错特征:1)刃型位错是由一个多余半原子面所组成的线缺陷;2)位错滑移矢量(柏氏向量)垂直于位错线,而且滑移面是位错线和滑移矢量所构成唯一平面;3)位错的滑移运动是通过滑移面上方的原子面相对于下方原子面移动一个滑移矢量来实现的;4)刃型位错线的形状可以是直线、折线和曲线;5)晶体中产生刃型位错时,其周围的点阵发生弹性畸变,使晶体处于受力状态,既有正应变,又有切应变。
螺型位错特征:1)螺型位错是由原子错排呈轴线对称的一种线缺陷;2)螺型位错线与滑移矢量平行,因此,位错线只能是直线;3)螺型位错线的滑移方向与晶体滑移方向、应力矢量方向互相垂直;4)位错线与滑移矢量同方向的为右螺型位错;为此系与滑移矢量异向的为左螺型位错。
刃型位错螺型位错位错线和柏氏矢量关系(判断位错类型)⊥∥滑移方向∥b∥b位错线运动方向和柏氏矢量关系∥⊥相关概念(ppt上的,大概看一看):A.位错运动与晶体滑移:通过位错运动可以在较小的外加载荷下晶体产生滑移,宏观显现为产生塑性变形。
B.位错线:位错产生点阵畸变区空间呈线状分布。
对于纯刃型位错,其可以描述为刃型位错多余半原子面的下端沿线。
为了与其它类型位错统一,位错线可表述为已滑移区与未滑移区的交界线。
C.混合型位错:在外力作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(柏氏矢量b),这样的位错称为混合位错。
(位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。
晶体中位错线的形状可以是任意的。
)=l/V;单位面积内位错条数来表示位错密度:D.错位密度:单位体积内位错线的长度:ρv=n/S。
(金属中位错密度通常在106~8—1010~121/c㎡之间。
)ρs2.柏氏矢量:1)刃型位错和螺型位错的柏氏矢量表示:2)柏氏矢量的含义:柏氏矢量反映出柏氏回路包含的位错所引起点阵畸变的总累计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、位错的应变能
(1)位错能的概念
位错线周围的原子偏离了平衡位置,处于较高的能量状 态,高出的能量称为位错的应变能,简称位错能。
(2)位错是不平衡的缺陷,且具有尽量变直缩短的趋势 (3)位错能的计算公式(单位位错线-1.0 , 螺型位错α取下限0.5, 刃型位错取上限1.0。
(a)位错环
(b)位错环运动后产生的滑移
图 位错环的滑移
2、位错的攀移
(1)攀移的概念与本质
攀移的本质是刃型位错的半原子面向上或向下移 动,于是位错线就跟着向上或是向下运动,因此攀移 时位错线的运动方向正好与柏氏矢量垂直。
只有刃型位错才能发生攀移运动,螺型位错是不 会攀移的。
(2)攀移的分类及割阶概念
保持位错线弯曲所需的切应力与曲率半径成反比。
4、作用在位错上的力
刃型位错的切应力方向垂直与位错线; 螺型位错的切应力方向平行于位错线; 使位错攀移的力为正应力。
位错滑移时的力
F b
位错攀移时的力
F b
力的方向与位错线运动方向一致,垂直于位错线方向。
四、位错与其他缺陷的交互作用
1、位错与点缺陷的交互作用
图 位错的连续介质模型 (a)螺位错(b)刃位错
(1)螺位错的应力场
螺型位错周围只有一个切应变:γθz=b/2πr 相应的各应力分量分别为
用直角坐标表示
螺位错的应力场的特点:
只有切应力分量,正应力分量全为零,这表明 螺型位错不引起晶体的膨胀和收缩。 螺型位错所产生的切应力分量只与r有关(成 反比),而与θ,z 无关。只要r一定,τθz就为 常数。因此,螺型位错的应场是轴对称的,即与位 错等距离的各处,其切应力值相等,并随着与位错 距离的增大,应力值减小。 r→0时,τθz→∞,显然与实际情况不符,这 说明上述结果不适用位错中心的严重畸变区。
一、位错运动的方式
位错在晶体中运动有两种方式:滑移 和攀移,其中滑移最为重要。
攀移 滑移
1、位错的滑移
图
刃型位错与螺型位错的滑移
图 刃型位错滑移导致晶体塑性变形的过程
图 螺型位错滑移导致晶体塑性变形的过程
位错的滑移是在切应力作用下进行的,只 有当滑移面上的切应力分量达到一定值后位错 才能滑移。
3、位错的线张力
位错的总能量与位错线的长度成正比,因此为降低能量, 位错线有缩短变直的倾向。故在位错线上存在一种使其变 直的线张力T。这个线张力在数值上等于位错应变能。
b ds 2T sin
d 2
图
位错的线张力
ds rd d sin 2 2 Gb2 T (弯曲位错 0.5) 2 Gb 2r
②应力
外加应力对位错有促进作用,但切应力是无 效的,只有正应力才会协助位错实现攀移;压应 力有助于正攀移,拉应力有助于负攀移。
二、位错运动的交割
1、位错交割的含义
对于在滑移面上运动的位错来说,穿过此 滑移面的其它位错称为林位错。 林位错会阻碍位错的运动,但是若应力足 够大,滑动的位错将切过林位错继续前进。
位错割阶 刃型位错
图
两个柏氏矢量互相垂直刃型位错交割
(2) 两个柏氏矢量互相平行的刃型位错交割
位错扭折 螺型位错
位错扭折 螺型位错
图
两个柏氏矢量互相平行刃型位错交割
(3) 刃型位错与螺型位错的交割
位错割阶 刃型位错
图 刃型位错与螺型位错的交割
位错扭折 刃型位错
(4) 螺型位错与螺型位错的交割
位错割阶 刃型位错
扭折与原位错线在同一滑移面上,可随主位错线一道 运动,几乎不产生阻力;扭折在线张力作用下易消失。 割阶与原位错线不在同一滑移面上,除攀移外不能随 主位错线一道运动,成为位错运动的障碍,称割阶硬化。
3、几种典型的位错交割
两根互相垂直的刃型位错的交割 (柏氏矢量互相垂直)
(1) 两个柏氏矢量互相垂直的刃型位错交割
类型 柏氏向量 位错线 晶体 运动方向 滑移方向 与b一致 与b一致 与b一致 切应力 方向 与b一致 与b一致 与b一致 滑移 面 个数 唯一 多个
刃型位错 ⊥于位错线 ⊥于位错 线本身 螺型位错 ‖于位错线 ⊥于位错 线本身 混合位错 与位错线成 ⊥于位错 一定角度 线本身
螺位错的交滑移
由于混合位错可以分解为刃型和螺型两部分, 因此,混合位错在切应力作用下,也是沿其各线段 的法线方向滑移,并同样可使晶体产生与其柏氏矢 量相等的滑移量。
位错扭折 刃型位错
图 螺型位错与螺型位错的交割
三、位错的弹性性质
1、位错的应力场
位错的弹性性质是位错理论的核心与基础, 它探讨的是位错在晶体中引起的畸变的分布及其 能量变化。
位错在晶体中的存在使其周围原子偏离平衡 位置而导致点阵畸变和弹性应力场的产生。 在讨论位错的弹性应力场的基础上,可推算 出位错所具有的能量、位错的作用力、位错与晶 体其它缺陷间交互作用等问题。
2、位错与其它位错的交互作用
(1)位错的应力场对其他位错也产生一个作 用力,使位错发生运动,以降低体系的自由能。
(2)同一滑移面上两根平行刃型位错的互相 作用也与螺型位错一样,同号位错互相排斥,异 号位错互相吸引。
(3)位错墙。一系列同号位错在垂直于滑移 面的方向排列起来,上方位错的拉应力场与下方 位错的压应力场相重叠而部分抵消。
(1)柯氏气团:通常把溶质原子与位错交互作用后 ,在位错周围偏聚的现象成为柯氏气团;气团的形成对 位错有钉扎作用,是固溶强化的原因之一;当溶质原子 分布在位错周围时使位错的应变能下降,这样位错的稳 定性增加了,位错由易动变得不容易移动,使晶体的塑 性变形抗力(屈服强度)提高。
(2)空位与位错也会发生交互作用,其结果是使位 错发生攀移,这一交互作用在高温下显得十分重要,因 为空位浓度是随温度升高呈指数关系上升的。
第三章 晶体缺陷
引 言 晶体缺陷概述及类型 第一节 点缺陷
第二节 位错-线缺陷
第三节 表面及界面
第二节 位 错
2.1 位错的基本类型和特征 2.2 位错的运动与弹性性质 2.3 实际晶体中的位错
2.2 位错的运动与弹性性质
一、位错运动的方式 二、位错运动的交割 三、位错的弹性性质 四、位错与其他缺陷的交互作用
本节重点与难点
1、位错的运动——滑移与攀移; 2、位错运动的交割; 3、位错的割阶与扭折; 4、位错与点缺陷、其它位错的作用; 5、位错的应力场、应变能、线张力、作 用在位错上的力。
(2)刃位错的应力场
图
刃位错周围的应力场
刃位错的应力场的特点:
同时存在正应力分量与切应力分量,而且各应力分 量的大小与G和b成正比,与r成反比。 各应力分量都是x,y的函数,而与z无关。这表 明在平行与位错的直线上,任一点的应力均相同。 在滑移面上,没有正应力,只有切应力,而且切应 力τxy 达到极大值。 正刃型位错的位错滑移面上侧为压应力,滑移面下 侧为拉应力。 x=±y时,σyy,τxy均为零,说明在直角坐标的两 条对角线处,只有σxx。
通常把半原子面向上移动称为正攀移,半原子面 向下运动称为负攀移。
割阶指攀移时位错线上的台阶。
(a)正攀移 (半原子面缩短)
(b)未攀移
(c)负攀移 (半原子面伸长)
图
刃位错攀移示意图
(3)影响位错攀移的因素 ①温度
攀移是通过原子的扩散而实现的(而滑移不 涉及原子的扩散);由于空位的数量及其运动速 率对温度十分敏感,因此位错攀移是一个热激活 过程。
位错互相切割的过程称为位错交割或位错 交截。
2、割阶与扭折
两位错交割时,每个位错上都要产生一个新的小段位 错。当交割产生的小段位错不在所属位错的滑移面上时, 则成为位错割阶;如果小段位错位于所属位错的滑移面上 ,则成为位错扭折。 刃型位错的割阶部分仍为刃型位错,扭折部分为螺型 位错。
螺型位错的割阶与扭折均为刃型位错。