第七章 运筹学动态规划()精品PPT课件

合集下载

第07章 动态规划 《运筹学》PPT课件

第07章  动态规划  《运筹学》PPT课件
最优路径问题 资源分配问题 排序问题 投资问题 装载问题 生产计划与库存问题 生产过程的最优控制等
动态规划
模型分类
离散确定型 离散随机型 连续确定型 连续随机型
§1 多阶 段决 策过 程的 最优

多阶段决策问题
(Multi-Stage decision process)
决策u1 决策u2
决策uk
32
维护费
8 8 9 9 10 6 6 8 8 10 5 6 8 9 5 5 6 4 54Βιβλιοθήκη 新设备购置费 5050
52 52 55 60
旧设备折价
20 15 10 5 2 30 25 20 15 10 31 26 21 15 33 28 20 35 30
40
§1 多阶 段决 策过 程的 最优

3)连续生产过程的控制 问题:一般化工生产过程中,
本章 内容
多阶段决策过程的最优化 动态规划的基本概念和基本原理 动态规划模型的建立与求解 动态规划在经济管理中的应用 马氏决策规划简介
创始时间 创始人
上个世纪50年代
美国数学家贝尔曼 (Richard. Bellman)
是运筹学的一个主要分支 是解决多阶段决策过程的最优化的一
种方法多阶段决策过程: 多阶段决策过程的最优化的目标: 达到整个活动过程的总体效果最优 •主要用于解决:
不过,实际中尚有许多不包含时间 因素的一类“静态”决策问题,就其本 质而言是一次决策问题,是非动态决策 问题,但是也可以人为地引入阶段的概 念当作多阶段决策问题,应用动态规划 方法加以解决。
§1 多阶 段决 策过 程的 最优

4)资源分配问题:便属于这类静 态问题。如:某工业部门或公司,拟对 其所属企业进行稀缺资源分配,为此需 要制定出收益最大的资源分配方案。这 种问题原本要求一次确定出对各企业的 资源分配量,它与时间因素无关,不属 动态决策,但是,我们可以人为地规定 一个资源分配的阶段和顺序,从而使其 变成一个多阶段决策问题(后面我们将 详细讨论这个问题)。

运筹学课件第七章_动态规划

运筹学课件第七章_动态规划
略称为最优策略。
全过程策略:U1(S1), U2(S2),…, Un(Sn) P1n={Ui(Si)}, i=1,…,n
子过程策略:Uk(Sk), Uk+1(Sk+1),…, Un(Sn) Pkn={Ui(Si)}, i=k,…,n
6、阶段指标:Vk(Sk, Uk),k阶段,Sk状态下,作出Uk决 策带来的效果。在不同的问题中,指标的含义是不同的,它
运筹学
练习: 求从A到E的最短路径
2
12
B1
10
14
C1 3
9
D1 5
A
5
B2 6 10
1
4
13
6
C2
5
8
E
2
D2
B3
12 11
C3 10
路线为A→B2→C1 →D1 →E ,最短路径为19
2019/10/11
运筹学
二、资源分配问题 1、一维资源分配运筹学源自 二、动态规划的基本思想和基本方程
1、Bellman最优性定理
一个过程的最优策略具有这样的性质:即无论初始状 态及初始决策如何,对于先前决策所形成的状态而言, 其以后所有的决策应构成最优策略。
换句话说,最优策略只能由最优子策略构成。
2、思想方法:在求解过程中,各阶段的状态和决策, 对其后面的阶段来说,只影响其初始状态,而不影响 后面的最优策略。——无后效性
根据k 阶段状态变量和决策变量,写出k+1阶段状 态变量,状态转移方程应当具有递推关系。
5、确定阶段指标函数和最优指标函数,建立动态规 划基本方程
阶段指标函数是指第k 阶段的收益,最优指标函 数是指从第k 阶段状态出发到第n 阶段末所获得收益的
最优值,最后写出动态规划基本方程。

管理运筹学07动态规划

管理运筹学07动态规划
生产计划、库存管理、路径规划 等。
连续时间动态规划
定义
连续时间动态规划是指时间连续变化,状态 和决策也连续变化,状态转移和决策可以发 生在任意时刻。
解决思路
通过将时间连续化,将连续的时间动态问题转化为 离散的时间动态问题,然后应用动态规划的方法进 行求解。
应用场景
控制系统优化、金融衍生品定价、物流优化 等。
状态转移
指从一个状态转移到另一个状态的过程,是动态规划的基本要素 之一。
状态转移方程
描述了状态转移的数学表达式,是动态规划算法的核心。
最优化原理
最优化原理
在多阶段决策问题中,如果每个阶段 都按照最优策略进行选择,则整个问 题的最优解一定是最优的。
最优子结构
如果一个问题的最优解可以由其子问 题的最优解推导出来,则称该问题具 有最优子结构。
解决方案
采用启发式搜索策略, 如模拟退火、遗传算法 等,来引导算法跳出局 部最优解。
案例
在旅行商问题中,采用 模拟退火算法结合动态 规划,在局部搜索和全 局搜索之间取得平衡, 得到全局最优解。
06 动态规划案例研究
案例一:生产与存储问题的动态规划解决方案
总结词
该案例研究探讨了如何利用动态规划解决生 产与存储问题,通过合理安排生产和存储策 略,降低总成本。
管理运筹学07动态规划
contents
目录
• 动态规划概述 • 动态规划的基本概念 • 动态规划的应用 • 动态规划的扩展 • 动态规划的挑战与解决方案 • 动态规划案例研究
01 动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法,从而有效 地解决最优化问题的方法。

动态规划(完整)ppt课件

动态规划(完整)ppt课件

3
• Ⅲ --Ⅳ :
B1—C1—T
4
• Ⅱ--Ⅲ--Ⅳ :A2—B1—C1—T
7
• Ⅰ--Ⅱ--Ⅲ --Ⅳ:

Q—A2—B1—C1—T
11

Q--A3—B1—C1—T
11

Q--A3—B2—C2—T
11
最新版整理ppt
3
最短路径
11
4
7
A1
4
2
6
11
47
3 2
Q
A2
4
B1
1
4 76
3
C1
3
B2 3
最新版整理ppt
16
(4)策略和允许策略集合
策略(Policy)也叫决策序列.策略有全过程 策略和 k 部子策略之分,全过程策略是指具 有n 个阶段的全部过程,由依次进行的 n 个 阶段决策构成的决策序列,简称策略,表示
为 p1,n{x1,x2, ,xn}。从 k 阶段到第 n 阶段,
依次进行的阶段决策构成的决策序列称为 k
新分支的创立。
最新版整理ppt
6
• 动态规划将复杂的多阶段决策问题分解为 一系列简单的、离散的单阶段决策问题, 采用顺序求解方法, 通过解一系列小问题 达到求解整个问题目的;
• 动态规划的各个决策阶段不但要考虑本阶 段的决策目标, 还要兼顾整个决策过程的 整体目标, 从而实现整体最优决策.
最新版整理ppt
第七章 动态规划
主要内容:
§7.1多阶段决策问题 §7.2 动态规划的基本概念和基本原理 §7.3 动态规划应用举例
最新版整理ppt
1
例 求解最短路问题
2
Q
4

《运筹学07动态规划》课件

《运筹学07动态规划》课件
组合动态规划:解决组合问题, 如旅行商问题、背包问题等
动态规划的应用场景
资源分配 问题:如 背包问题、 车辆路径 问题等
优化问题: 如最短路 径问题、 最大子数 组问题等
决策问题: 如股票买 卖问题、 投资组合 问题等
游戏问题: 如国际象 棋、围棋 等
生物信息 学:如基 因序列比 对、蛋白 质结构预 测等
优化策略的改进
动态规划的扩展:从线性规划到非 线性规划,从单阶段决策到多阶段 决策
优化策略的改进:引入并行计算, 提高计算效率
添加标题
添加标题
添加标题
添加标题
优化策略的改进:引入启发式算法, 如遗传算法、模拟退火算法等
优化策略的改进:引入智能优化算 法,如神经网络、深度学习等
动态规划与其他 算法的比较
感谢您的观看
汇报人:
动态规划的基本 思想:将问题分 解为更小的子问 题,并利用子问 题的解来求解原
问题
动态规划的步 骤:确定状态、 状态转移方程、 初始状态和边
界条件
动态规划的算 法实现:递归、 迭代、记忆化
搜索等
动态规划的应 用:背包问题、 最短路径问题、 资源分配问题

动态规划的经典 案例
最短路径问题
问题描述:在图中找到从起点到终点的最短路径 应用场景:交通网络、物流配送、电路设计等 解决方案:使用动态规划算法,通过状态转移方程求解 经典案例:旅行商问题、最短路径问题等
排班问题
问题描述:如何合理安排员工工作时间,使得员工满意度最高,同时满足 公司业务需求
动态规划方法:使用动态规划算法,通过状态转移方程和递归函数求解
状态转移方程:定义状态变量,表示员工在不同时间段的工作状态
递归函数:根据状态转移方程,递归求解最优解

运筹学课件 ppt 复习资料 动态规划

运筹学课件 ppt 复习资料 动态规划
4
C2
5 8
E D2
2
4
1
13
B3
12 11
C3
10
设备更新问题
企业在使用设备时都要考虑设备的更新问题,因为设 备越陈旧,所需的维修费用就越高,但购置新设备一次性 支出的费用较大。现某企业要做出一台设备未来5年的更 新计划,经预测,第j年初购买设备的价格为rj,设备连续
使用(j-1)年后在第j年的维护费为kj,使用(j-1)年后设备的
最优决策C1 D1
21
f3(C1)=8
B1
2
10 6
12 14
C1
f3(C2)=7 9 6 5 8
3
f4(D1)=5
D1
f5(E)=0 5
A
5
B2 10
4 13
C2
E
1
D2
f4(D2)=2
2
B3
12 11
C3
10
d (C2 , D1 ) f 4 ( D1 ) f3 (C2 ) min d (C2 , D2 ) f 4 ( D2 )
运筹学
王莉莉
四川农业大学数学系
2012年11月
1
第七章—动态规划

― ― ―
学习目标
掌握动态规划的基本概念; 掌握动态规划的最优化原理; 动态规划在经济管理中的应用
2
引言
在生产和经营活动中,经常遇到这样的问题, 它们包含若干个相互联系的阶段,在每个阶段都要 做出决策,一个阶段的决策除了影响本阶段的效果 之外,还经常影响到下一个阶段的初始状态,从而 影响整个过程的最优。因此不仅要考虑这一个阶段, 还要把它看成是整个过程决策链中的一链环,这种 过程称为多阶段决策过程。

第七章 动态规划h 运筹学 ppt课件

第七章 动态规划h 运筹学 ppt课件

5 B1 4
2 A1
3
7
B2
6 5
3
2 B3 2
各阶段状态集合分别为:
C1 2 5 6
C2 3 2
C3 1
C4 7
D3
1
E 5 D
2
S1={A}
S2={B1,B2,B3}
S3={C1,C2,C3,C4} S4={D1,D2}
状态的选取应当满足无后效性:系统从某个阶段往后的发
展演变,完全由系统本阶段所处的状态及决策所决定,与
从B2出发,可以选择C1,C2,C3,C4,即允许决策集合为: D2(B2)={C1,C2,C3,C4} 当决定选择C3时,可以表示为:u2(B2)=C3
4.策略(policy)
当各个阶段的决策确定以后,各阶段的决策形成一个决 策序列,称此决策序列为一个策略.
使系统达到最优效果的策略称为最优策略。
2 A1
3
5 B1 4
7
B2
6 5
3
2 B3 2
C1 2 5 6
C2 3 2
C3 1
C4 7
状态转移方程为:sk+1= uk(sk)
D3
1
E 5 D
2
6.指标函数和最优指标函数 衡量所选策略优劣的数量指标称为指标函数。它定义在全 过程和所有后部子过程,常用Vk,n表示,即: Vk,n=Vk,n(sk,uk,sk+1,…,sn+1) 当k=1时,V1,n表示初始状态为s1,采用策略p1,n时的指标 函数值。 V1,n=V1,n(s1,u1,s2,…,sn+1)
3 D1 3
0
55
E
D2
从前向后标号:
02

运筹学课程动态规划课件

运筹学课程动态规划课件

5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
3 4 运筹学课程动态规划
5
6
7
示例5(生产与存储问题):
某工厂生产并销售某种产品。已知今后四个月市场需求 预测及每月生产j个单位产品的费用如下:
上一个阶段的决策直接影响下一个阶段的决策
运筹学课程动态规划
8
示例6(航天飞机飞行控制问题):
由于航天飞机的运动的环境是不断变化的,因 此就要根据航天飞机飞行在不同环境中的情况, 不断地决定航天飞机的飞行方向和速度(状态), 使之能最省燃料和实现目的(如软着落问题)。
运筹学课程动态规划
9
所谓多阶段决策问题是指一类活动过程,它可以分为若 干个相互联系的阶段,在每个阶段都需要作出决策。这 个决策不仅决定这一阶段的效益,而且决定下一阶段的 初
1 6
C3
D1
10
E
D2
6
运筹学课程动态规划
12
以上求从A到E的最短路径问题,可以转化为四个性质完
全相同,但规模较小的子问题,即分别从 Di 、 Ci 、Bi、
A到E的最短路径问题。
第四阶段:两个始点 D 1 和 D 2 ,终点只有一个;
本阶段始点 (状态)
D1 D2
本阶段各终点(决策) E 10 6
cj30j
j0 j1,2,6
月1 2 3
4
需求 2 3 2

《运筹学动态规划》PPT课件 (2)

《运筹学动态规划》PPT课件 (2)

7.2 动态规划的基本原理
7.2.1 最优化原理
动态规划方法是由美国数学家贝尔曼 (R.Bellman)等人于本世纪 50 年 代提出的。他们针对多阶段决策问题的特点 ,提出了解决这类问题的”最优 化原理”,并成功地解决了生产管理、工程技术许多方面的实际问题。 最优化 原理可以表述为:“一个过程的最优策略具有这样的性质, 即无论初始状态 和初始决策如何,对于先前决策所形成的状态而言 ,其以后的所有决策必构成 最优策略。”
1 S1
2
3
4
S2
S3
S4
精选PPT
17
第三步, K=2 由于第 3 段各点 C1,C2,C3 到终点 E 的最短距离 f3(C1),
f3(C2), f3(C3),已知,所以要求城市 B1 到 E 的最短距离,只需以它们为基础,
分别加上 B1 到达 C1,C2,C3 的一段距离,加以比较取其最短者即可。
x
* 3

C2
)=
D2
1 S1
2
3
4
S2
S3
S4
f 3 ( C3 )=min
d (C3 , D1 ) + f4 (D1 ) d (C3 , D2 ) + f4 (D2 )
=min
1+ 4 3+3
=5
即从 C3 到 E 的最短距离为 5,其路径为 C3→D1→E,相应的决策为
x
* 3

C
3
)=
D1

1
2
3
4
精选PPT
6
3)、 决策(Decision )
当各阶段的状态确定以后,就可以做出不同的决定或选择,从而确 定下一阶段的状态,这种决定就是决策,表示决策的变量称为决策变量。

运筹学教案动态规划ppt课件

运筹学教案动态规划ppt课件

(uk ,u2un )
注: 指标函数的含义是多样的,如:距离、 利润、成本、产品产量、资源消耗等。
最优化原理与动态规划问题基本方程
最优化原理
“作为全过程的最优策略具有这样的性质: 无论过去的状态和决策如何,对于前面决策所形 成的状态(即该最优策略上某一状态)而言,余 下的诸决策必须构成以此状态为初始状态的最优 策略。
3 A5
4
1 阶段
B
9
1
5
4
B
3
2
5
1 B
3
7
2
阶段
C1
1
5
D
1
4
8
C
4
2 D6
E 1
1
2
6
29
F
2 E
4 C
4
3
2
3
阶段
7
D
3
5
4 阶段
2
5 阶段
状态与状态变量
状态: 表示每个阶段开始时所处的自然状 况或客观条件,又称为不可控因素,是阶段的特 征,通常一个阶段有若干个状态。
如:前例,第一阶段状态为点A,第二阶段 的状态有B1,B2,B3三个状态。
但是要受到维数限制。
求解动态规划问题的过程: (1)将问题过程划分恰当阶段,选择阶段
变量k.。 正确(描2过)程正的确演选变择,状又态要变满量足x无k. 后应效注性意。:既能够
(3)正确选择决策变量uk,确定允许集合 。 (4)正确写出状态转移方程 xk+1= Tk(xk, uk)。 (5) 列出按阶段可分的准则函数V1,n ,要 满足几个性质。
概述
▪ 动态规划为运筹学的一个分支,是用于求解 多个阶段决策过程的最优化数学方法。

运筹学课件(动态规划)

运筹学课件(动态规划)

(二)、动态规划的基本思想 1、动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要做到 这一点,就必须将问题的过程分成几个相互联系的阶 段,恰当的选取状态变量和决策变量及定义最优值函 数,从而把一个大问题转化成一组同类型的子问题, 然后逐个求解。即从边界条件开始,逐段递推寻优, 在每一个子问题的求解中,均利用了它前面的子问题 的最优化结果,依次进行,最后一个子问题所得的最 优解,就是整个问题的最优解。
d( B1,C1 ) + f1 (C1 ) 3+1 f2 ( B1 ) = min d( B1,C2 ) + f1 (C2 ) = min 3+3 d( B1,C3 ) + f1 (C3 ) 1+4 4 = min 6 = 4 (最短路线为B1→C1 →D) 5
3
2 A 4 B2 B1 2 1 3
最优策略为(30,20),此时最大利润为105万元。
f 2 ( 40)
g2 ( y) y 0 ,10 ,, 40
max
f1 ( 40 y )
90
最优策略为(20,20),此时最大利润为90万元。
f 2 (30)
g2 ( y) y 0 ,10 , 20 , 30
max
f1 (30 y )
70
最优策略为(20,10),此时最大利润为70万元。
f 2 ( 20) ma 0 ,10 , 20
50
最优策略为(20,0),此时最大利润为50万元。
f 2 (10) maxg 2 ( y ) f1 (10 y )
3 2 A 4 B2 B1 2 3 1 3 1
C1 C2 4 3

运筹学――动态规划课件

运筹学――动态规划课件
当k=1时F1(s1)就是从初始状态到全过程的整体最优函 数.
8
指标函数的常见形式:
(1)过程和它的任一子过程的指标是它所包n 含的各阶段
(2的)指过标程的和和它。的Vk任,n(一sk子, u过k程, s的k+指1,标… 是sn它+1所)=包含jk 的v j (各s j阶,u段j) 的1
指标的乘积。Vk,n(sk,
23
1、动态规划模型的建立
建立动态模型的6个要素: 1)阶段k 2)状态SK 3)决策uk(sk) 4)状态转移方程 5)阶段指标函数 6)指标递推方程
24
2、动态规划模型的解法
动态规划的求解方法有两种: 逆序解法与顺序解法
1、在已知初始状态S1下,采用逆序解法:(反向递归) 2、在已知终止状态Sn下,采用顺序解法(正向递归)
fk (Sk )
dk Dk
OPt{vk (Sk , dk ) fk1( Sk1 )} fk (sk ) 0Pt Uk (sk , dk )
(k n, n 1,1)
dk Dk (k 1,2,n)
fk1(sk1 )
fn1( Sn1 ) 1
f0 (s0 ) 1
26
计 k 算 顺1如 序时下 解,: 法按解kuff( ( ( 111例0BsB1, 2) 11) ) :f的 ( 0 4A定 sA1)义45有f( 0: uf( ( A11BB) B1B2222) ) 538077,5A这C是 CCC1234边 845835界 44 条DDD件123156。 323
13
二、动态规划的基本思想和基本方程
最短路线有一个重要特性:如果由起点A经P点和H点 最终到达F点是一条最短路线,则由P点出发经过H点 最终到达F点的这条路线必定也是从P点到F点的最短路 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

fk( sk )=
Opt
[ Vk,n(sk, pk,n )]
pk,n Pk,n( sk )
12
一、动态规划的基本概念
由此可以得到多阶段决策过程的数学模型 多阶段决策过程问题要求出: (1)最优策略或最优决策序列; (2)最优目标函数值; (3)最优路线,即执行最优策略时的状态序
列。
一、动态规划的基本概念
3、决策(decision) 当一个阶段的状态确定后,可以作出不同的决定或选择,
从而演变到下一阶段的某个状态,这种决定或选择称为决策。 决策变量 —— uk(sk) (decision variable)简记为 uk 决策集合 —— Uk(sk)(set of admissible decision)
4、策略(policy) 一组有序的决策序列构成一个策略,从第k阶段至第n阶段
的一个策略称为后部子策略记为 pk,n →(uk,uk+1,…,un)。
9
一、动态规划的基本概念
5、状态转移方程(equation of state transition) 在确定型多阶段决策过程中,一旦某阶段的状态和决策为已知,
每个阶段开始时过程所处的自然状况或客观条件。它应能描述 过程的特征并具有“无后效性”,即当前阶段状态给定时,这个阶 段以后过程的演变与该阶段以前各阶段的状态无关。
状态变量 —— sk(state variable) 状态集合 —— Sk(set of admissible states)
8
一、动态规划的基本概念
第一节 分级决策方法
动态规划的方法,在工程技术、企业管理、 工农业生产及军事等部门中有着广泛的应用, 并且获得了显著的效果。在经济管理方面, 动态规划可以用来解决最优路径问题、资源 分配问题、生产调度问题、库存问题、装载 问题、排序问题、设备更新问题、生产过程 最优控制问题等等,他是现代企业管理中的 一种重要的决策方法。
多阶段决策过程: 整个决策过程可按时间或空间顺序
分解成若干相互联系的阶段,每一阶段 都需作出决策,全部过程的决策是一个 决策序列,也称为序贯决策问题。
例1求从A市到G市的最短路径问题
5
A 18 3
13 1
B1 3
6
8 7
B2 6
16
13
C1 6
8
10 3
C2 5
9
3
C3 3
8 4
C4
7
D1 2
2
15
三、动态规划的数学描述
建立 DP 模型与求解 建立动态规划的模型,就是分析问题并建立问题的动态规划基
本方程,成功地应用动态规划方法的关键,在于识别问题本身的多 阶段特征,将问题分解成为可用递推关系式联系起来的若干子问题, 或者说正确地建立具体问题的基本方程,这不仅需要经验和技巧, 也需要对实际问题敏锐的动察力。而正确建立基本递推关系方程的 关键又在于正确选择状态变量 sk+1 = Sk(sk,uk),这是建立动态 规划的模型的两个要点。
下一阶段的 状态便完全确定,用状态转移方程反映这种状态间的演 变规律,写作:
sk+1 = Sk(sk,uk) k =1,2,…,n 6、阶段指标值(objective value in a stage)
衡量在一个阶段某个状态下各决策所对应的某种数量指标或效 果,通常表示为 Dk(sk,uk)。
10
一、动态规划的基本概念
第七章 动态规划
动态规划是一种将复杂问题转化为一 系列比较简单问题的最优化方法。它的基 本特征是优化过程的多阶段性。
动态规划作为运筹学的一个重要分支是解决多阶段决策 过程最优化的一种非常有效的方法。1951年,美国数学家 贝尔曼( R . Bellman )等人,根据一类多阶段决策问 题的特点,把多阶段决策问题变换为一系列相互联系的单 阶段决策问题,然后分阶段逐个加以解决。贝尔曼等人在 研究和解决了大量实际问题之后,提出了解决这类问题 的——所谓“最优性原理”,通常称为“贝尔曼最优化原 理”,从而创建了解决最优化问题的一种新的方法 —— 动态规划 ——(Dynamic Programming )。贝尔曼的名 著《动态规划》于1957年出版,这成了动态规划的第一本 著作。
7、指标函数(objective function) 衡量在选定某策略时,其优劣的数量指标。定义在整个过程(1
到n阶段)上的指标函数记为:d1,n(s1,u1,s2,…,sn,un), 定义在后部子过程(k到n阶段)上的指标函数记为: fk(sk, uk,…,sn,un),或简记为:dk,n(sk, pk,n )。
3. 3. 为求全局的最优解,分级决策总是从 最后一级开始的,逐级求出最优解,直到 第一级为止。
第二节最优化原理和动态规划的数学描述
一、动态规划的基本概念 1、阶段(stage)
对整个决策过程的自然划分,通常根据时间顺序或空间特征来 划分阶段,以便按阶段的次序逐段解决整个过程的优化问题。阶段 变量通常用k表示(k = 1,2,3,…,n)。 2、状态(state)
多阶段决策过程具有如下的性质: (1)对于状态变量具有传递性; (2)对于状态描述的过程具有无后效性; (3)对于目标函数具有可分离性。
二、Bellman最优化原理
Bellman 最优化原理: “一个过程的最优策略具有这样的性
质,即无论开始的状态及初始的决策如何, 对先前决策所形成的状态而言,其以后所 有的决策必构成最优决策——后部子过程 最优。”
常见指标函数的形式: fk,n(sk, pk,n )= ∑ di(si ,ui) (求和形式)
fk,n(sk, pk,n )= ∏ di(si ,ui) (乘积形式)
11
一、动态规划的基本概念
8、最优指标函数(optimal value function)
从第k阶段状态 sk 出发,采用最优策略 p*k,n 到终止时的后 部子过程指标函数值。
6
D2 1
2
3
D3 3
8
7
E1 3
5
5
E2 2
5
6 6
E3
9
该点到G点的最短距离
4
F1 4
G 33
F2
12
第一阶段 第二阶段 第三阶段
第四阶段 第五阶段
第六阶段
6
分级决策方法(动态规划法)的基本特点:
1. 将一个问题分成几个部分(或级)进行分 析,使复杂问题简化;
2. 2. 每一个阶段(或级)有自己的输入量 和输出量,称为状态变量,又有各自的决 策变量以及指标函数;
相关文档
最新文档