高考考前复习资料—高中数学立体几何部分错题精选

合集下载

高三复习 立体几何部分

高三复习   立体几何部分

高三复习立体几何部分第一节简单几何体A组1.下列命题中,不正确的是______.①棱长都相等的长方体是正方体②有两个相邻侧面为矩形的棱柱为直棱柱③有两个侧面与底面垂直的棱柱为直棱柱④底面为平行四边形的四棱柱叫平行六面体解析:由平行六面体、正方体的定义知①④正确;对于②,相邻两侧面垂直于底面,则侧棱垂直于底面,所以该棱柱为直棱柱,因而②正确;对于③,若两侧面平行且垂直于底面,则不一定是直棱柱.答案:③2.(2009年高考全国卷Ⅱ改编)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图的平面图形,则标“△”的面的方位是________.解析:将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.答案:北3.(2009年高考安徽卷)对于四面体ABCD,下列命题正确的是________.(写出所有正确命题的编号).①相对棱AB与CD所在的直线是异面直线;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.解析:②中的四面体如果对棱垂直,则垂足是△BCD的三条高线的交点;③中如果AB 与CD垂直,则两条高的垂足重合.答案:①④⑤4.下列三个命题,其中正确的有________个.①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余各面都是等腰梯形的六面体是棱台.解析:①中的平面不一定与底面平行,②③可用反例图去验证.答案:05.下面命题正确的有________个.①长方形绕一条直线旋转一周所形成的几何体是圆柱②过圆锥侧面上一点有无数条母线③三棱锥的每个面都可以作为底面④圆锥的轴截面(过轴所作的截面)是等腰三角形解析:①②错,③④正确.①错在绕一条直线,应该是绕长方形的一条边所在的直线;②两点确定一条直线,圆锥的母线必过圆锥的顶点,因此过圆锥侧面上一点只有一条母线.答案:26.如图所示,长方体的长、宽、高分别为4 cm,3 cm,5 cm,一只蚂蚁从A到C1点沿着表面爬行的最短距离是多少?解:长方体ABCD-A1B1C1D1的表面可如下图三种方法展开后,A、C1两点间的距离分别为:(5+4)2+32=310,(5+3)2+42=45,(3+4)2+52=74,三者比较得74是从点A沿表面到C1的最短距离,∴最短距离是74 cm.B组1.(2009年高考安徽卷)对于四面体ABCD,下列命题正确的是________.①相对棱AB与CD所在的直线是异面直线;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.解析:②中的四面体如果对棱垂直,则垂足是△BCD的三条高线的交点;③中如果AB 与CD垂直,则两条高的垂足重合.答案:①④⑤2.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.其中,真命题的编号是______.(写出所有真命题的编号)解析:对于①,设四面体为D-ABC,过棱锥顶点D作底面的垂线DE,过E分别作AB,BC,CA边的垂线,其垂足依次为F,G,H,连结DF,DG,DH,则∠DFE,∠DGE,∠DHE分别为各侧面与底面所成的角,所以∠DFE=∠DGE=∠DHE,于是有FE=EG=EH,DF=DG=DH,故E为△ABC的内心,又因△ABC为等边三角形,所以F,G,H为各边的中点,所以△AFD≌△BFD≌△BGD≌△CGD≌△AHD,故DA=DB=DC,故棱锥为正三棱锥.所以为真命题.对于②,侧面为等腰三角形,不一定就是侧棱为两腰,所以为假命题.对于③,面积相等,不一定侧棱就相等,只要满足斜高相等即可,所以为假命题.对于④,由侧棱与底面所成的角相等,可以得出侧棱相等,又结合①知底面应为正三角形,所以为真命题.综上,①④为真命题.答案:①④3.关于如图所示几何体的正确说法为________.①这是一个六面体②这是一个四棱台③这是一个四棱柱④这是一个四棱柱和三棱柱的组合体⑤这是一个被截去一个三棱柱的四棱柱答案:①②③④⑤4.(2009年高考安徽卷)对于四面体ABCD,下列命题正确的是________.①相对棱AB与CD所在的直线是异面直线;②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;③若分别作△ABC和△ABD的边AB上的高,则这两条高的垂足重合;④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.解析:②中的四面体如果对棱垂直,则垂足是△BCD的三条高线的交点;③中如果AB 与CD垂直,则两条高的垂足重合.答案:①④⑤5.给出以下命题:①底面是矩形的四棱柱是长方体;②直角三角形绕着它的一边旋转一周形成的几何体叫做圆锥;③四棱锥的四个侧面可以都是直角三角形.其中说法正确的是__________.解析:命题①不是真命题,因为底面是矩形,若侧棱不垂直于底面,这时四棱柱是斜四棱柱;命题②不是真命题,直角三角形绕着它的一条直角边旋转一周形成的几何体叫做圆锥,如果绕着它的斜边旋转一周,形成的几何体则是两个具有共同底面的圆锥;命题③是真命题,如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,则可以得到四个侧面都是直角三角形.故填③.答案:③6.下列结论正确的是①各个面都是三角形的几何体是三棱锥②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥③棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥④圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:①错误.如图(1)所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.②错误.如图(2)(3)所示,若△ABC不是直角三角形,或是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥.③错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.④正确.答案:④7.过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°,则该截面的面积是________.解析:设截面的圆心为O′,由题意得:∠OAO′=60°,O′A=1,S=π·12=π.答案:π8.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是________.①等腰四棱锥的腰与底面所成的角都相等②等腰四棱锥的侧面与底面所成的二面角都相等或互补③等腰四棱锥的底面四边形必存在外接圆④等腰四棱锥的各顶点必在同一球面上解析:①如图,∵SA=SB=SC=SD,∴∠SAO=∠SBO=∠SCO=∠SDO,即等腰四棱锥腰与底面所成的角相等,正确;②等腰四棱锥的侧面与底面所成的二面角相等或互补不一定成立;③如图,由SA=SB=SC=SD得OA=OB=OC=OD,即等腰四棱锥的底面四边形存在外接圆,正确;④等腰四棱锥各顶点在同一个球面上,正确.故选②.答案:②9.(2008年高考江西卷)如图(1),一个正四棱柱形的密闭容器水平放置,其底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a 升水时,水面恰好经过正四棱锥的顶点P .如果将容器倒置,水面也恰好过点P (图(2))有下列四个命题:A .正四棱锥的高等于正四棱柱高的一半B .将容器侧面水平放置时,水面也恰好过点PC .任意摆放该容器,当水面静止时,水面都恰好经过点PD .若往容器内再注入a 升水,则容器恰好能装满.其中真命题的代号是:______(写出所有真命题的代号).解析:设正四棱柱底面边长为b ,高为h 1,正四棱锥高为h 2,则原题图(1)中水的体积为b 2h 2-13b 2h 2=23b 2h 2, 图(2)中水的体积为b 2h 1-b 2h 2=b 2(h 1-h 2),所以23b 2h 2=b 2(h 1-h 2),所以h 1=53h 2,故A 错误,D 正确. 对于B ,当容器侧面水平放置时,P 点在长方体中截面上,又水占容器内空间的一半,所以水面也恰好经过P 点,故B 正确.对于C ,假设C 正确,当水面与正四棱锥的一个侧面重合时,经计算得水的体积为2536b 2h 2>23b 2h 2,矛盾,故C 不正确.答案:BD 10.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为h 1,h 2,h 3,求h 1∶h 2∶h 3的值.解:选依题意,四棱锥为正四棱锥,三棱锥为正三棱锥,且棱长均相等,设为a ,h 2=h 3,h 1= a 2-(22a )2=22a ,h 2= a 2-(33a )2=63a , 故h 1∶h 2∶h 3=3∶2∶2.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,求该三角形的斜边长.解:如图,正三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,边长为2,△DEF 为等腰直角三角形,DF 为斜边,设DF 长为x ,则DE =EF =22x ,作DG ⊥BB 1,HG ⊥CC 1,EI ⊥CC 1, 则EG =DE 2-DG 2=x 22-4,FI =EF 2-EI 2=x 22-4,FH =FI +HI =FI +EG =2x 22-4,在Rt △DHF 中,DF 2=DH 2+FH 2,即x 2=4+(2x 22-4))2,解得x =2 3.即该三角形的斜边长为2 3.12.(2009年高考辽宁卷改编)如果把地球看成一个球体,求地球上北纬60°纬线长和赤道线长的比值.解:设地球的半径为R ,那么对应的赤道线的大圆的半径为R ,而对应的北纬60°纬线所在的小圆的半径为12R ,那么它们对应的长度之比为12R ∶R =12. 即所求比值为12.第二节 空间图形的基本关系与公理A 组1.以下四个命题中,正确命题的个数是________.①不共面的四点中,其中任意三点不共线;②若点A 、B 、C 、D 共面,点A 、B 、C 、E 共面,则A 、B 、C 、D 、E 共面;③若直线a 、b 共面,直线a 、c 共面,则直线b 、c 共面;④依次首尾相接的四条线段必共面.解析:①正确,可以用反证法证明;②从条件看出两平面有三个公共点A 、B 、C ,但是若A 、B 、C 共线,则结论不正确;③不正确,共面不具有传递性;④不正确,因为此时所得的四边形四条边可以不在一个平面上.答案:12.给出下列四个命题:①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若M ∈α,M ∈β,α∩β=l ,则M ∈l ;④空间中,相交于同一点的三条直线在同一平面内.其中真命题的个数为________.解析:根据平面的基本性质知③正确.答案:13.(2009年高考湖南卷改编)平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为________.解析:根据两条平行直线、两条相交直线确定一个平面,可得CD 、BC 、BB 1、AA 1、C 1D 1符合条件.答案:54.正方体ABCD -A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点.那么,正方体的过P 、Q 、R 的截面图形是________.解析:边长是正方体棱长的22倍的正六边形.答案:正六边形 5.(原创题)已知直线m 、n 及平面α,其中m ∥n ,那么平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集.其中正确的是________.解析:如图1,当直线m 或直线n 在平面α内且m 、n 所在平面与α垂直时不可能有符合题意的点;如图2,直线m 、n 到已知平面α的距离相等且两直线所在平面与已知平面α垂直,则已知平面α为符合题意的点;如图3,直线m 、n 所在平面与已知平面α平行,则符合题意的点为一条直线.答案:(1)(2)(4)6.如图,已知平面α、β,且α∩β=l .设梯形ABCD中,AD ∥BC ,且AB ⊂α,CD ⊂β.求证:AB ,CD ,l共点(相交于一点).证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两腰,∴AB,CD必定相交于一点.如图,设AB∩CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β,∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点B组1.有以下三个命题:①平面外的一条直线与这个平面最多有一个公共点;②直线l在平面α内,可以用符号“l∈α”表示;③若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交,其中所有正确命题的序号是______________.解析:表示线与面的关系用“⊂”或“⊄”表示,故②错误.答案:①③2.(2010年黄冈调研)下列命题中正确的是________.①若△ABC在平面α外,它的三条边所在的直线分别交α于P、Q、R,则P、Q、R 三点共线;②若三条直线a、b、c互相平行且分别交直线l于A、B、C三点,则这四条直线共面;③空间中不共面的五个点一定能确定10个平面.解析:在①中,因为P、Q、R三点既在平面ABC上,又在平面α上,所以这三点必在平面ABC与α的交线上,即P、Q、R三点共线,故①正确;在②中,因为a∥b,所以a 与b确定一个平面α,而l上有A、B两点在该平面上,所以l⊂α,即a、b、l三线共面于α;同理a、c、l三线也共面,不妨设为β,而α、β有两条公共的直线a、l,∴α与β重合,即这些直线共面,故②正确;在③中,不妨设其中有四点共面,则它们最多只能确定7个平面,故③错.答案:①②3.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点②三条直线两两平行③三条直线共点④有两条直线平行,第三条直线和这两条直线都相交其中使三条直线共面的充分条件有:________.解析:易知①中的三条直线一定共面,④中两条直线平行可确定一个平面,第三条直线和这两条直线相交于两点,则第三条直线也在这个平面内,故三条直线共面.答案:①④4.(2008年高考浙江卷改编)对两条不相交的空间直线a与b,必存在平面α,使得________.①a⊂α,b⊂α②a⊂α,b∥α③a⊥α,b⊥α④a⊂α,b⊥α解析:不相交的直线a、b的位置有两种:平行或异面.当a、b异面时,不存在平面α满足①、③;又只有当a⊥b时④才成立.答案:②5.正方体AC1中,E、F分别是线段C1D、BC的中点,则直线A1B与直线EF的位置关系是________.解析:直线AB与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.答案:相交6.(2010年湖南郴州调研)设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.解析:①错误,l可能在平面α内;②正确,l∥β,l⊂γ,β∩γ=n⇒l∥n⇒n⊥α,则α⊥β;③错误,直线可能与平面相交;④正确.故填②④.答案:②④7.(2009年高考广东卷改编)给定下列四个命题:①若一个平面内的两条直线与另一个平面平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是________.解析:当两个平面相交时,一个平面内的两条直线可以平行于另一个平面,故①不对;由平面与平面垂直的判定定理可知②正确;空间中垂直于同一条直线的两条直线可以平行,相交也可以异面,故③不对;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.答案:②④8.(2009年高考宁夏、海南卷改编)如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =22,则下列结论中错误的是________. ①AC ⊥BE②EF ∥平面ABCD③三棱锥A -BEF 的体积为定值④异面直线AE ,BF 所成的角为定值解析:∵AC ⊥平面BB 1D 1D ,又BE ⊂平面BB 1D 1D , ∴AC ⊥BE .故①正确.∵B 1D 1∥平面ABCD ,又E 、F 在直线D 1B 1上运动, ∴EF ∥平面ABCD .故②正确.③中由于点B 到直线B 1D 1的距离不变,故△BEF 的面积为定值.又点A 到平面BEF 的距离为22,故V A -BEF 为定值.当点E 在D 1处,F 为D 1B 1的中点时,建立空间直角坐标系,如图所示,可得A (1,1,0),B (0,1,0),E (1,0,1),F ⎝⎛⎭⎫12,12,1.∴A E →=(0,-1,1),B F →=(12,-12,1), ∴A E →·B F →=32.又|AE →|=2,|BF →|=62,∴cos 〈A E →,B F →〉=322·62=32, ∴AE 与BF 成30°角.当E 为D 1B 1中点,F 在B 1处时,此时E ⎝⎛⎭⎫12,12,1,F (0,1,1),∴A E →=⎝⎛⎭⎫-12,-12,1,B F →=(0,0,1), ∴A E →·B F →=1,|A E →|= 32,∴cos 〈A E →,B F →〉= 23=63≠32.故④错. 答案:④9.(2008年高考陕西卷改编)如图,α⊥β,α∩β=l ,A ∈α,B ∈β,A 、B 到l 的距离分别是a 和b ,AB 与α、β所成的角分别是θ和φ,AB 在α、β内的射影分别是m 和n.若a >b ,则θ与φ的大小关系为______,m 与n 的大小关系为______.解析:AB 与β成的角为∠ABC =φ,AB 与α成的角为∠BAD =θ,sin φ=sin ∠ABC =a |AB |,sin θ=sin ∠BAD =b |AB |. ∵a >b ,∴sin φ>sin θ.∴θ<φ.AB 在α内的射影AD =AB 2-b 2,AB 在β内的射影BC =AB 2-a 2,∴AD .BC ,即m >n .答案:θ<φ m >n10.如图,已知正方体ABCD -A1B 1C 1D 1中,E 、F分别为D 1C 1、B 1C 1的中点,AC ∩BD =P ,A 1C 1∩EF =Q ,若A 1C 交平面DBFE 于R 点,试确定R 点的位置.解:在正方体AC 1中,连结PQ ,∵Q ∈A 1C 1,∴Q ∈平面A 1C 1CA .又Q ∈EF ,∴Q ∈平面BDEF ,即Q 是平面A 1C 1CA 与平面BDEF 的公共点,同理,P 也是平面A 1C 1CA 与平面BDEF 的公共点. ∴平面A 1C 1CA ∩平面BDEF =PQ .又A 1C ∩平面BDEF =R ,∴R ∈A 1C ,∴R ∈平面A 1C 1CA ,R ∈平面BDEF .∴R 是A 1C 与PQ 的交点.如图.11.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为AB 的中点,N 为BB 1的中点,O 为平面BCC 1B 1的中心. (1)过O 作一直线与AN 交于P ,与CM 交于Q (只写作法,不必证明);(2)求PQ 的长.解:(1)连结ON ,由ON ∥AD 知,AD 与ON 确定一个平面α.又O 、C 、M 三点确定一个平面β(如图所示).∵三个平面α,β和ABCD 两两相交,有三条交线OP 、CM 、DA ,其中交线DA 与交线CM 不平行且共面.∴DA 与CM 必相交,记交点为Q ,∴OQ 是α与β的交线.连结OQ 与AN 交于P ,与CM 交于Q ,故直线OPQ 即为所求作的直线.(2)在Rt △APQ 中,易知AQ =1,又易知△APQ∽△OPN ,∴AP PN =AQ NO =2,AN =52,∴AP =53, ∴PQ =AQ 2+AP 2=143. 12.(2008年高考四川卷)如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点. (1)证明:四边形BCHG 是平行四边形;(2)C 、D 、F 、E 四点是否共面?为什么?(3)设AB =BE ,证明:平面ADE ⊥平面CDE .解:(1)证明:由题设知,FG =GA ,FH =HD ,所以GH 綊12AD .又BC 綊12AD ,故GH 綊BC .所以四边形BCHG 是平行四边形. (2)C 、D 、F 、E 四点共面.理由如下:由BE 綊12AF ,G 是F A 的中点知,BE 綊GF ,所以EF ∥BG .由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面. 又点D 在直线FH 上,所以C 、D 、F 、E 四点共面.(3)证明:连结EG .由AB =BE ,BE 綊AG 及∠BAG =90°知ABEG 是正方形,故BG ⊥EA .由题设知,F A 、AD 、AB 两两垂直,故AD ⊥平面F ABE ,因此EA 是ED 在平面F ABE 内的射影.根据三垂线定理,BG ⊥ED .又ED ∩EA =E ,所以BG ⊥平面ADE .由(1)知,CH ∥BG ,所以CH ⊥平面ADE .由(2)知F ∈平面CDE ,故CH ⊂平面CDE ,得平面ADE ⊥平面CDE .第三节 平行关系A 组1.已知m 、n 是两条不同直线,α,β是两个不同平面,下列命题中的真命题是_.①如果m ⊂α,n ⊂β,m ∥n ,那么α∥β②如果m ⊂α,n ⊂β,α∥β,那么m ∥n③如果m ⊂α,n ⊂β,α∥β且m ,n 共面,那么m ∥n④如果m ∥n ,m ⊥α,n ⊥β,那么α⊥β解析:m ⊂α,n ⊂β,α∥β⇒m ,n 没有公共点.又m ,n 共面,所以m ∥n .答案:③2.已知m 、n 是不同的直线,α、β是不重合的平面,给出下列命题:①若m ∥α,则m 平行于平面α内的无数条直线;②若α∥β,m ⊂α,n ⊂β,则m ∥n ;③若m ⊥α,n ⊥β,m ∥n ,则α∥β;④若α∥β,m ⊂α,则m ∥β.其中,真命题的序号是________.(写出所有真命题的序号)解析:②中α∥β,m ⊂α,n ⊂β⇒m ∥n 或m ,n 异面,所以②错误.而其它命题都正确.答案:①③④3.(2010年苏北四市调研)给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题:①若m ⊂α,l ∩α=A ,点A ∉m, 则l 与m 不共面;②若m 、l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α;③若l ∥α,m ∥β,α∥β,则l ∥m ;④若l ⊂α,m ⊂α,l ∩m =A ,l ∥β,m ∥β,则α∥β.其中为真命题的是________.解析:③中若l ⊂β,m ⊂α,α∥β⇒l ∥m 或l ,m 异面,所以②错误.而其它命题都正确.答案:①②④4.(2009年高考福建卷改编)设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是________.①m ∥β且l 1∥α ②m ∥l 1且n ∥l 2 ③m ∥β且n ∥β ④m ∥β且n ∥l 2解析:∵m ∥l 1,且n ∥l 2,又l 1与l 2是平面β内的两条相交直线,∴α∥β,而当α∥β时不一定推出m ∥l 1且n ∥l 2,可能异面.答案: ②5.(原创题)直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线有________条.答案:1或06.如图,ABCD为直角梯形,∠C=∠CDA=90°,AD=2BC =2CD,P为平面ABCD外一点,且PB⊥BD.(1)求证:P A⊥BD;(2)若PC与CD不垂直,求证:P A≠PD;(3)若直线l过点P,且直线l∥直线BC,试在直线l上找一点E,使得直线PC∥平面EBD.解:(1)证明:∵ABCD为直角梯形,AD=2AB=2BD,∴AB⊥BD,PB⊥BD,AB∩PB=B,AB,PB⊂平面P AB,BD⊥平面P AB,P A⊂平面P AB,∴P A⊥BD.(2)证明:假设P A=PD,取AD中点N,连结PN,BN,则PN⊥AD,BN⊥AD,AD⊥平面PNB,得PB⊥AD,又PB⊥BD,得PB⊥平面ABCD,∴PB⊥CD.又∵BC⊥CD,∴CD⊥平面PBC,∴CD⊥PC,与已知条件PC与CD不垂直矛盾.∴P A≠PD.(3)在l上取一点E,使PE=BC,连结BE,DE,∵PE∥BC,∴四边形BCPE是平行四边形,∴PC∥BE,PC⊄平面EBD,BE⊂平面EBD,∴PC∥平面EBD.B组1.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是________.①若α⊥γ,α⊥β,则γ∥β②若m∥n,m⊂α,n⊂β,则α∥β③若m∥n,m∥α,则n∥α④若n⊥α,n⊥β,则α∥β解析:①错,两平面也可相交;②错,不符合面面平行的判定定理条件,需两平面内有两条相交直线互相平行;③错,直线n不一定在平面内;④由空间想象知垂直于同一直线的两平面平行,命题正确.答案:④2.已知m,n是两条不同的直线,α,β是两个不同的平面,有下列4个命题:①若m∥n,n⊂α,则m∥α;②若m⊥n,m⊥α,n⊄α,则n∥α;③若α⊥β,m⊥α,n⊥β,则m⊥n;④若m,n是异面直线,m⊂α,n⊂β,m∥β,则n∥α.其中正确的命题有_.解析:对于①,m有可能也在α上,因此命题不成立;对于②,过直线n作垂直于m 的平面β,由m⊥α,n⊄α可知β与α平行,于是必有n与α平行,因此命题成立;对于③,由条件易知m平行于β或在β上,n平行于α或在α上,因此必有m⊥n;对于④,取正方体中两异面的棱及分别经过此两棱的不平行的正方体的两个面即可判断命题不成立.综上可知②③正确.答案:②③3.已知m,n是平面α外的两条直线,且m∥n,则“m∥α”是“n∥α”的________条件.解析:由于直线m,n在平面外,且m∥n,故若m∥α,则必有n∥α,反之也成立.答案:充要4.设l1,l2是两条直线,α,β是两个平面,A为一点,下列命题中正确的命题是________.①若l1⊂α,l2∩α=A,则l1与l2必为异面直线②若α⊥β,l1⊂α,则l1⊥β③l1⊂α,l2⊂β,l1∥β,l2∥α,则α∥β④若l1∥α,l2∥l1,则l2∥α或l2⊂α解析:①错,两直线可相交于点A;②错,不符合面面垂直的性质定理的条件;③错,不符合面面平行的判定定理条件;④正确,空间想象即可.答案:④5.(2010年广东深圳模拟)若a不平行于平面α,且a⊄α,则下列结论成立的是________.①α内的所有直线与a 异面 ②α内与a 平行的直线不存在 ③α内存在唯一的直线与a 平行 ④α内的直线与a 都相交解析:由题设知,a 和α相交,设a ∩α=P ,如图,在α内过点P 的直线与a 共面,①错;在α内不过点P 的直线与a 异面,④错;(反证)假设α内直线b ∥a ,∵a ⊄α,∴a ∥α,与已知矛盾,③错.答案:②6.设m 、n 是异面直线,则(1)一定存在平面α,使m ⊂α且n ∥α;(2)一定存在平面α,使m ⊂α且n ⊥α;(3)一定存在平面γ,使m 、n 到γ的距离相等;(4)一定存在无数对平面α与β,使m ⊂α,n ⊂β,且α∥β.上述4个命题中正确命题的序号为________.解析:(1)成立;(2)不成立,m 、n 不一定垂直;(3)过m 、n 公垂线段中点分别作m 、n 的平行线所确定平面到m 、n 距离就相等,(3)正确;满足条件的平面只有一对,(4)错.答案:(1)(3)7.如图,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下AP =a 3,底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =______. 答案:223a8.下列四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是________(写出所有符合要求的图形序号).解析:①∵面AB ∥面MNP ,∴AB ∥面MNP .②若下底面中心为O ,易知NO ∥AB ,NO ⊄面MNP ,∴AB 与面MNP 不平行. ③易知AB ∥MP ,∴AB ∥面MNP .④易知存在一直线MC ∥AB ,且MC ⊄平面MNP ,∴AB 与面MNP 不平行. 答案:①③9.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、CD 的中点,N 是BC 中点.点M 在四边形EFGH 上及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.答案:M ∈FHAA 1=2,10.如图,长方体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,E 为BC 的中点,点M 为棱AA 1的中点.(1)证明:DE ⊥平面A 1AE ; (2)证明:BM ∥平面A 1ED .证明:(1)在△AED 中,AE =DE =2,AD=2, ∴AE ⊥DE .∵A1A ⊥平面ABCD , ∴A 1A ⊥DE ,∴DE ⊥平面A 1AE .(2) 设AD 的中点为N ,连结MN 、BN .在△A 1AD 中,AM =MA 1,AN =ND ,∴MN ∥A 1D , ∵BE ∥ND 且BE =ND ,∴四边形BEDN 是平行四边形, ∴BN ∥ED ,∴平面BMN ∥平面A 1ED , ∴BM ∥平面A 1ED . 11.(2010年扬州调研)在正方体ABCD -A1B 1C 1D 1中,M ,N 分别是AB ,BC 的中点.(1)求证:平面B 1MN ⊥平面BB 1D 1D ;(2)若在棱DD 1上有一点P ,使BD 1∥平面PMN ,求线段DP 与PD 1的比解:(1)证明:连结AC ,则AC ⊥BD , 又M ,N 分别是AB ,BC 的中点, ∴MN ∥AC ,∴MN ⊥BD .∵ABCD -A 1B 1C 1D 1是正方体,∴BB 1⊥平面ABCD , ∵MN ⊂平面ABCD , ∴BB 1⊥MN , ∵BD ∩BB 1=B ,∴MN ⊥平面BB 1D 1D , ∵MN ⊂平面B 1MN ,∴平面B 1MN ⊥平面BB 1D 1D .(2)设MN 与BD 的交点是Q ,连结PQ ,PM ,PN ∵BD 1∥平面PMN ,BD 1⊂平面BB 1D 1D ,平面BB 1D 1D ∩平面PMN =PQ , ∴BD 1∥PQ ,∴DP ∶PD 1=DQ ∶QB =3∶1.12.如图,四边形ABCD 为矩形,BC ⊥平面ABE ,F为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设点M 为线段AB 的中点,点N 为线段CE 的中点.求证:MN ∥平面DAE .证明:(1)因为BC ⊥平面ABE ,AE ⊂平面ABE , 所以AE ⊥BC ,又BF ⊥平面ACE ,AE ⊂平面ACE , 所以AE ⊥BF ,又BF ∩BC =B ,所以AE ⊥平面BCE , 又BE ⊂平面BCE ,所以AE ⊥BE .(2)取DE 的中点P ,连结P A ,PN ,因为点N 为线段CE 的中点.所以PN ∥DC ,且PN =12DC ,又四边形ABCD 是矩形,点M 为线段AB 的中点,所以AM ∥DC ,且AM =12DC ,所以PN ∥AM ,且PN =AM ,故四边形AMNP 是平行四边形,所以MN ∥AP , 而AP ⊂平面DAE ,MN ⊄平面DAE ,所以MN ∥平面DAE .第四节 垂直关系A 组1.(2010年宁波十校联考)设b 、c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是________.①若b ⊂α,c ∥α,则b ∥c ②若b ⊂α,b ∥c ,则c ∥α ③若c ∥α,α⊥β,则c ⊥β ④若c ∥α,c ⊥β,则α⊥β解析:①中,b ,c 亦可能异面;②中,也可能是c ⊂α;③中,c 与β的关系还可能是斜交、平行或c ⊂β;④中,由面面垂直的判定定理可知正确.答案:④2.(2010年青岛质检)已知直线l ⊥平面α,直线m ⊂平面β,下面有三个命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β.则真命题的个数为________.解析:对于①,由直线l ⊥平面α,α∥β,得l ⊥β,又直线m ⊂平面β,故l ⊥m ,故①正确;对于②,由条件不一定得到l ∥m ,还有l 与m 垂直和异面的情况,故②错误;对于③,显然正确.故正确命题的个数为2.答案:2个3.(2009年高考山东卷改编)已知α、β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β ”是“m ⊥β ”的________条件.解析:由平面与平面垂直的判定定理知如果m 为平面α内的一条直线,m ⊥β,则α⊥β,反过来则不一定.所以“α⊥β”是“m ⊥β”的必要不充分条件.答案:必要不充分4.(2009年高考浙江卷)如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.解析:如图,过D 作DG ⊥AF ,垂足为G ,连结GK ,∵平面ABD ⊥平面ABC ,又DK ⊥AB , ∴DK ⊥平面ABC ,∴DK ⊥AF .∴AF ⊥平面DKG ,∴AF ⊥GK .容易得到,当F 接近E 点时,K 接近AB 的中点,当F范围是(12,接近C 点时,K 接近AB 的四等分点.∴t 的取值1).答案:(12,1)5.(原创题)已知a 、b 为两条不同的直线,α、β为两个不同的平面,且a ⊥α,b ⊥β,则下列命题中假命题的有________.①若a ∥b ,则α∥β;②若α⊥β,则a ⊥b ;③若a 、b 相交,则α、β相交;④若α、β相交,则a ,b 相交.解析:若α、β相交,则a 、b 既可以是相交直线,也可以是异面直线. 答案:④6.(2009年高考山东卷)如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点.(1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1;(2)证明:平面D 1AC ⊥平面BB 1C 1C .证明:(1)法一:取A 1B 1的中点为F 1,连结FF 1,C 1F 1. 由于FF 1∥BB 1∥CC 1,所以F 1∈平面FCC 1.因此平面FCC 1即为平面C 1CFF 1.。

高三数学易错立体几何多选题 易错题难题提高题学能测试试题

高三数学易错立体几何多选题 易错题难题提高题学能测试试题

高三数学易错立体几何多选题 易错题难题提高题学能测试试题一、立体几何多选题1.如图,在棱长为2的正方体ABCD A B C D ''''-中,M 为BC 边的中点,下列结论正确的有( )A .AM 与DB ''10 B .过三点A 、M 、D 的正方体ABCD A BCD ''''-的截面面积为92C .四面体A C BD ''的内切球的表面积为3π D .正方体ABCD A B C D ''''-中,点P 在底面A B C D ''''(所在的平面)上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是椭圆 【答案】AB 【分析】构建空间直角坐标系,由异面直线方向向量的夹角cos ,||||AM D B AM D B AM D B ''⋅''<>=''为AM 与D B ''所成角的余弦值判断A 的正误;同样设(,,0)P x y 结合向量夹角的坐标表示,2221543x y =++⨯P 的轨迹知D 的正误;由立方体的截面为梯形,分别求,,,MN AD AM D N '',进而得到梯形的高即可求面积,判断B 的正误;由四面体的体积与内切球半径及侧面面积的关系求内切球半径r ,进而求内切球表面积,判断C 的正误. 【详解】A :构建如下图所示的空间直角坐标系:则有:(0,0,2),(1,2,2),(0,2,0),(2,0,0)A M B D '', ∴(1,2,0),(2,2,0)AM D B ''==-,10cos ,10||||58AM D B AM D B AM D B ''⋅''<>===''⨯,故正确.B :若N 为CC '的中点,连接MN ,则有//MN AD ',如下图示,∴梯形AMND’为过三点A 、M 、D 的正方体ABCD A B C D ''''-的截面, 而2,2,5MN AD AM D N ''====322, ∴梯形的面积为132932222S =⨯=,故正确. C :如下图知:四面体A C BD ''的体积为正方体体积减去四个直棱锥的体积,∴118848323V =-⨯⨯⨯=,而四面体的棱长都为22,有表面积为142222sin 8323S π=⨯⨯⨯⨯=,∴若其内切圆半径为r ,则有188333r ⨯⋅=,即33r =,所以内切球的表面积为2443r ππ=.故错误. D :正方体ABCD A B C D ''''-中,点P 在底面A B C D ''''(所在的平面)上运动且MAC PAC ''∠=∠,即P 的轨迹为面A B C D ''''截以AM 、AP 为母线,AC’为轴的圆锥体侧面所得曲线,如下图曲线GPK ,构建如下空间直角坐标系,232(0,0,2),(2),(0,22,0)22A M C '-,若(,,0)P x y ,则232(,,0),(0,22,2),(,,2)22AM AC AP x y '=-=-=-,∴15cos ||||512AM AC MAC AM AC '⋅'∠==='⨯,2222cos ||||43AP AC y PAC AP AC x y '⋅+'∠=='++⨯,即222215543y x y +=++⨯,整理得22(102)9216(0)y x y +-=>,即轨迹为双曲线的一支,故错误.故选:AB 【点睛】关键点点睛:应用向量的坐标表示求异面直线的夹角,并结合等角的余弦值相等及向量数量积的坐标表示求动点的轨迹,综合立方体的性质求截面面积,分割几何体应用等体积法求内切球半径,进而求内切球的表面积.2.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC 6 【答案】AC【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠ ⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD =+-=+,所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB ADAA AB AA AD AB AB AD BD,111cos ,2⋅<>===B AC D BD BD AC ACD 不正确;对C ,112==AC BD ,在1A AC 中,111,===A A AC AC 22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 1∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.3.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C ,又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B==, 又E 为棱1CC 上的中点,所以14B N =, 所以1111234432B BMN N B BM V V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.4.如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,//EF AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且2AB =,1EF AD ==,则下述正确的是( )A .//OF 平面BCEB .BF ⊥平面ADFC .点A 到平面CDFE 的距离为217D .三棱锥C BEF -5π【答案】ABC 【分析】由1EF OB ==,//EF OB ,易证//OF 平面BCE ,A 正确;B , 由所矩形ABCD 所在平面和圆O 所在平面垂直, 易证AD ⊥平面ABEF ,所以AD BF ⊥,由线段AB 为圆O 的直径,所以BF FA ⊥,易证故B 正确.C ,由C DAF A CDF V V --=可求点A 到平面CDFE 的距离为7,C 正确. D ,确定线段DB 的中点M 是三棱锥C BEF -外接球心,进一步可求其体积,可判断D 错误. 【详解】解:1EF OB ==,//EF OB ,四边形OFEB 为平行四边形,所以//OF BE ,OF ⊄平面BCE ,BE ⊂平面BCE ,所以//OF 平面BCE ,故A 正确.线段AB 为圆O 的直径,所以BF FA ⊥,矩形ABCD 所在平面和圆O 所在平面垂直,平面ABCD 平面ABEF AB =,AD ⊂平面ABCD ,所以AD ⊥平面ABEF ,BF ⊂平面ABEF ,所以AD BF ⊥ AD ⊂平面ADF ,AF ⊂平面ADF ,AD AF A =, 所以BF ⊥平面ADF ,故B 正确.1OF OE EF ===,OFE △是正三角形,所以1EF BE AF ===, //DA BC ,所以BC ⊥平面ABEF ,BC BF ⊥,BF =2CF ==,DF ===2AB CD ==,CDF 是等腰三角形,CDF 的边DF 上的高2==,1222CDF S =⨯=△, //DA BC ,AD ⊂平面ADF ,BC ⊄平面ADF , //BC平面ADF ,点C 到平面ADF 的距离为BF = 111122DAF S =⨯⨯=△,C DAF A CDF V V --=,设点A 到平面CDFE 的距离为h ,1133ADF CFD S FB S h ⨯⨯=⨯⨯△△,1113232h ⨯=⨯,所以h =,故C 正确.取DB的中点M,则//MO AD,12MO=,所以MO⊥平面CDFE,所以215122ME MF MB MC⎛⎫====+=⎪⎝⎭所以M是三棱锥C BEF-外接球的球心,其半径5,三棱锥C BEF-外接球的体积为334455533V rπππ⎛⎫==⨯=⎪⎪⎝⎭,故D错误,故选:ABC.【点睛】综合考查线面平行与垂直的判断,求点面距离以及三棱锥的外接球的体积求法,难题. 5.已知直三棱柱111ABC A B C-中,AB BC⊥,1AB BC BB==,D是AC的中点,O 为1A C的中点.点P是1BC上的动点,则下列说法正确的是()A.当点P运动到1BC中点时,直线1A P与平面111A B C5B.无论点P在1BC上怎么运动,都有11A P OB⊥C.当点P运动到1BC中点时,才有1A P与1OB相交于一点,记为Q,且113PQQA=D.无论点P在1BC上怎么运动,直线1A P与AB所成角都不可能是30°【答案】ABD【分析】构造线面角1PA E ∠,由已知线段的等量关系求1tanEPPA E AE∠=的值即可判断A的正误;利用线面垂直的性质,可证明11A P OB ⊥即可知B 的正误;由中位线的性质有112PQ QA =可知C 的正误;由直线的平行关系构造线线角为11B A P ∠,结合动点P 分析角度范围即可知D 的正误 【详解】直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==选项A 中,当点P 运动到1BC 中点时,有E 为11B C 的中点,连接1A E 、EP ,如下图示即有EP ⊥面111A B C∴直线1A P 与平面111A B C 所成的角的正切值:1tan EPPA E AE∠= ∵112EP BB =,2211115AE A B B E BB =+= ∴15tan PA E ∠=,故A 正确选项B 中,连接1B C ,与1BC 交于E ,并连接1A B ,如下图示由题意知,11B BCC 为正方形,即有11B C BC ⊥而AB BC ⊥且111ABC A B C -为直三棱柱,有11A B ⊥面11B BCC ,1BC ⊂面11B BCC∴111A B BC ⊥,又1111A B B C B =∴1BC ⊥面11A B C ,1OB ⊂面11A B C ,故11BC OB ⊥ 同理可证:11A B OB ⊥,又11A B BC B ⋂=∴1OB ⊥面11A BC ,又1A P ⊂面11A BC ,即有11A P OB ⊥,故B 正确选项C 中,点P 运动到1BC 中点时,即在△11A B C 中1A P 、1OB 均为中位线∴Q 为中位线的交点∴根据中位线的性质有:112PQ QA =,故C 错误选项D 中,由于11//A B AB ,直线1A P 与AB 所成角即为11A B 与1A P 所成角:11B A P ∠ 结合下图分析知:点P 在1BC 上运动时当P 在B 或1C 上时,11B A P ∠最大为45° 当P 在1BC 中点上时,11B A P ∠最小为23arctan 30>=︒ ∴11B A P ∠不可能是30°,故D 正确 故选:ABD 【点睛】本题考查了利用射影定理构造线面角,并计算其正弦值;利用线面垂直证明线线垂直;中位线的性质:中位线交点分中位线为1:2的数量关系;由动点分析线线角的大小6.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 面积的最大值为2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,且最大值为2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值, 此时1212S D E BE =⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.7.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC 6D .若点E 到平面11ACC A 的距离等于32EB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002a A ⎛⎫⎪⎝⎭,,,3002B a ⎛⎫ ⎪ ⎪⎝⎭,,,1302B a b ⎛⎫ ⎪ ⎪⎝⎭,,,102a C b ⎛⎫- ⎪⎝⎭,,,所以132a BC b ⎛⎫=- ⎪ ⎪⎝⎭,,,132a AB b ⎛⎫=- ⎪ ⎪⎝⎭,,. ∵11BC AB ⊥,∴110BC AB ⋅=,即222302a b ⎫⎛⎫--+=⎪ ⎪⎪⎝⎭⎝⎭,解得22b a =. 因为//DE 平面11ABB A ,则动点E 的轨迹的长度等于122BB =.选项B 正确.对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,3002B a ⎛⎫ ⎪ ⎪⎝⎭,,,()0,0,0D ,12022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,132222a BC a a ⎛⎫=- ⎪ ⎪⎝⎭,-,, 因为211162cos ,||||622a BC DA BC DA BC DA a a ⎛⎫- ⎪⋅⎝⎭<>===-,所以异面直线1,BC DA 所成角的余弦值为6,选项C 正确. 对于选项D ,设点E 在底面ABC 的射影为1E ,作1E F 垂直于AC ,垂足为F ,若点E 到平面11ACC A 的距离等于32EB ,即有312E F EB =,又因为在1CE F ∆中,311E F E C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD 【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.8.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小, 此时2MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时3MN =,即面积S 的最大值为6, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确. 对于D 选项,四棱锥A MENF -的体积1112123346M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。

高三数学易错立体几何多选题 易错题质量专项训练试卷

高三数学易错立体几何多选题 易错题质量专项训练试卷

高三数学易错立体几何多选题 易错题质量专项训练试卷一、立体几何多选题1.如图,正方体1111ABCD A B C D -的棱长为3,点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=.动点M 在侧面11ADD A 内(包含边界)运动,且满足直线//BM 平面1D EF ,则( )A .过1D ,E ,F 的平面截正方体所得截面为等腰梯形B .三棱锥1D EFM -的体积为定值C .动点M 10D .过B ,E ,M 的平面截正方体所得截面面积的最小值为10【答案】BCD 【分析】由题做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,进而计算即可排除A 选项;根据//BM平面1D EF ,由等体积转化法得1111D EFM M D EF B D EF D BEFV V V V ----===即可得B 选项正确;取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知M 的轨迹为线段HI 10,故C 选项正确;过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,易知过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而得当H 位于点I 时,截面面积最小,为四边形ABEI 的面积,且面积为310S AB BE =⋅= 【详解】解:对于A 选项,如图,取BF 中点G ,连接1A G ,由点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=,故四边形11A D EG 为平行四边形,故11//AGD E ,由于在11A B G △,F 为1B G 中点,当N 为11A B 中点时,有11////NF A G D E ,故过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,此时22133532D N ⎛⎫=+= ⎪⎝⎭,223110EF =+=,故梯形1D EFN 不是等腰梯形,故A 选项错误;对于B 选项,三棱锥1D EFM -的体积等于三棱锥1M D EF -的体积,由于//BM平面1D EF ,故三棱锥1M D EF -的体积等于三棱锥1B D EF -的体积,三棱锥1B D EF -的体积等于三棱锥1D BEF -的体积,而三棱锥1D BEF -的体积为定值,故B 选项正确; 对于C 选项,取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知1////HB AG NF ,1//BI D F ,由于1,HI BI I NFD F F ==,故平面//BHI 平面1D EF ,故M 的轨迹为线段HI ,其长度为10,故C 选项正确;对于D 选项,过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,则过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,易知当H 位于点I 时,平行四边形BPOE 边BP 最小,且为AB ,此时截面平行四边形BPOE 的面积最小,为四边形ABEI 的面积,且面积为310S AB BE =⋅=,故D 选项正确; 故选:BCD【点睛】本题解题的关键在于根据题意,依次做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而讨论AD选项,通过//BM平面1D EF ,并结合等体积转化法得1111D EFM M D EF B D EF D BEF V V V V ----===知B 选项正确,通过构造面面平行得M 的轨迹为线段HI ,进而讨论C 选项,考查回归转化思想和空间思维能力,是中档题.2.在三棱锥M ABC -中,下列命题正确的是( ) A .若1233AD AB AC =+,则3BC BD =B .若G 为ABC 的重心,则111333MG MA MB MC =++ C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.3.已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α.下面说法正确的是()A .直线AB 与平面α所成角的正弦值范围为32⎣⎦B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大 C .点M 为1CC 的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点 【答案】AC 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,利用空间向量法可判断A 选项的正误;证明出1AC ⊥平面1A BD ,分别取棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点E 、F 、Q 、N 、G 、H ,比较1A BD 和六边形EFQNGH 的周长和面积的大小,可判断B 选项的正误;利用空间向量法找出平面α与棱11A D 、11A B 的交点E 、F ,判断四边形BDEF 的形状可判断C 选项的正误;将矩形11ACC A 与矩形11CC D D 延展为一个平面,利用A 、M 、N 三点共线得知AM MN +最短,利用平行线分线段成比例定理求得MC ,可判断D 选项的正误. 【详解】对于A 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()2,0,0A 、()2,2,0B 、设点()()0,2,02M a a ≤≤,AM ⊥平面α,则AM 为平面α的一个法向量,且()2,2,AM a =-,()0,2,0AB =, 2232cos ,288AB AM AB AM AB AMa a ⋅⎡<>===⎢⋅⨯++⎣⎦, 所以,直线AB 与平面α所成角的正弦值范围为3232⎣⎦,A 选项正确;对于B 选项,当M 与1CC 重合时,连接1A D 、BD 、1A B 、AC , 在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD ,BD ⊂平面ABCD ,1BD CC ∴⊥,四边形ABCD 是正方形,则BD AC ⊥,1CC AC C =,BD ∴⊥平面1ACC ,1AC ⊂平面1ACC ,1AC BD ∴⊥,同理可证11AC A D ⊥, 1A D BD D ⋂=,1AC ∴⊥平面1A BD ,易知1A BD 是边长为22(12322234A BD S =⨯=△为22362=.设E 、F 、Q 、N 、G 、H 分别为棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点,易知六边形EFQNGH 是边长为2的正六边形,且平面//EFQNGH 平面1A BD , 正六边形EFQNGH 的周长为62,面积为()236233⨯⨯=,则1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,B 选项错误; 对于C 选项,设平面α交棱11A D 于点(),0,2E b ,点()0,2,1M ,()2,2,1AM =-,AM ⊥平面α,DE ⊂平面α,AM DE ∴⊥,即220AM DE b ⋅=-+=,得1b =,()1,0,2E ∴,所以,点E 为棱11A D 的中点,同理可知,点F 为棱11A B 的中点,则()2,1,2F ,()1,1,0EF =,而()2,2,0DB =,12EF DB ∴=,//EF DB ∴且EF DB ≠, 由空间中两点间的距离公式可得2222015DE =++=()()()2222212205BF =-+-+-=,DE BF ∴=,所以,四边形BDEF 为等腰梯形,C 选项正确;对于D 选项,将矩形11ACC A 与矩形11CC D D 延展为一个平面,如下图所示:若AM MN +最短,则A 、M 、N 三点共线,11//CC DD ,2222222MC AC DN AD ∴===+, 11222MC CC =≠,所以,点M 不是棱1CC 的中点,D 选项错误.故选:AC. 【点睛】本题考查线面角正弦值的取值范围,同时也考查了平面截正方体的截面问题以及折线段长的最小值问题,考查空间想象能力与计算能力,属于难题.4.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||104A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论.对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos12022224A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得33λ=时,函数()f λ取得最大值()31231339f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.5.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQ B .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A ,若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,3SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥, 同理,SM PC ⊥,又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上, ∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立,故C 错误;对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d ,记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数,则点S 到PQR 的距离为sin PS α, 又13sin 234PQR S PQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin 33412S PQR PQR V PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅,又13sin 234PSR S PS PR PS PR π=⋅=⋅, 13sin 234PSQ S PS PQ PS PQ π=⋅=⋅, 13sin23PQR S PQ PR PQ PR π=⋅=⋅,()S PQR O PSR O PSQ O PQR V V V V PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅,∴()3sin 12PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴111sin d PQ PR PS α++=为常数,故D 正确.故选:ABD.【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.6.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D DB .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2D .过点1A 与异面直线AD 与1CB 成60角的直线有2条【答案】ABD【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D .【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥,由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D ,1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥, 1ACB C C =,1BD ∴⊥平面1ACB ,故B 正确; 对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA mDA m DA m y z ⋅<>===⋅++, 1122111cos ,221CB m z CB m CB m y z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =±因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确.故选:ABD.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.7.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下面结论中正确结论的有( )A .11A D C P ⊥;B .当1A P PD +取最小值时,23λ=;C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈ ⎪⎝⎭; D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为94π. 【答案】ABD【分析】以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D.【详解】以D 为坐标原点建立如图空间直角坐标系,则()1,1,0B ,()10,0,1D ,设(),,P x y z ,()()10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,则可解得()1,1,P λλλ--,对A ,()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则11A D C P ⊥,故A 正确;对B ,1A P PD +=== 则当23λ=时,1A P PD +取最小值,故B 正确; 对C ,()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,则222321cos 1321321PA PC APC PA PC λλλλλλ⋅-∠===--+-+⋅, 01λ<<,则2232123λλ≤-+<,则2111123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤∠∈ ⎥⎝⎦,故C 错误; 对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为O ,四棱锥11P AA D D -的外接球半径为R ,所以222122R R ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭,解得34R =, 故四棱锥11P AA D D -的外接球表面积为94π,所以D 正确. 故选:ABD.【点睛】 关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.8.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为)A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 2 【答案】BCD【分析】 A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾,所以A 错;对于B ,补齐八个角构成棱长为2的正方体, 则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=, 所以B 对;对于C ,取正方形ACPM 对角线交点O ,即为该二十四等边体外接球的球心, 其半径为2R =248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS ,所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN =,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。

详解十五道高中立体几何典型易错题

详解十五道高中立体几何典型易错题

例1 设有四个命题:①底面是矩形的平行六面体是长方体;②棱长都相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A .1B .2C .3D .4分析:命题①是假命题.因为底面是矩形的直平行六面体才是长方体.底面是矩形,侧棱不垂直于底面,这样的四棱柱仍是斜平行六面体;命题②是假命题.底面是菱形,底面边长与棱长相等的直四棱柱不是正方体; 命题③是假命题.因为有两条侧棱垂直于义面一边不能推出侧棱与底面垂直. 命题④是真命题,如图所示,平行六面体1111-D C B A ABCD 中所有对角线相等,对角面11BDD B 是平行四边形,对角线D B BD 11=,所以四边形11BDD B 是矩形,即BD BB ⊥1,同理四边形11ACC A 是矩形,所以AC AA ⊥1,由11//BB AA 知⊥1BB 底面ABCD ,即该平行六面体是直平行六面体.故选A .说明:解这类选择题的关键在于理清各种棱柱之间的联系与区别,要紧扣底面形状及侧棱与底面的位置关系来解题.下面我们列表来说明平行四边形与平行六面体的性质的“类比”,由此,我们可以发现立体几何与平面几何许多知识是可以进行类比的.见表表例2 如图,正四棱柱1111-D C B A ABCD 中,对角线81=BD ,1BD 与侧面C C BB 11所成角为 30,求:(1)1BD 与底面ABCD 所成角;(2)异面直线1BD 与AD 所成角;(3)正四棱柱的全面积.分析:正四棱柱是一种特殊的长方体,它的两底面ABCD 、1111D C B A 是正方形,长方体中有比较多的线面垂直关系,而线面垂直关系往往是解决立体几何问题的关键条件.题中无论是已知线面成角,还是求线面成角,都要把它们转化为具体的角,落实线面成角,先要找线面垂直关系.异面直线1BD 与AD 所成角通过11//D A AD ,落实为具体的B D A 11∠.正四棱柱各个面都是矩形,求面积只要用矩形面积公式. 解:(1)在正四棱柱C A 1中,∵⊥11C D 面C C BB 11,∴11BC D ∠是B D 1与侧面C C BB 11所成角,即 3011=∠BC D .∵ 81=BD ,∴ 411=C D ,341=BC ,∵ 1111D C B A 是正方形,∴41111==C D C B ,⊥D D 1平面ABCD ,∴ BD D 1∠是B D 1与底面ABCD 所成角,在Rt △DB D 1中,2411==D B BD ,81=BD , ∴22cos 11==∠BD BD BD D ,∴ 451=∠BD D , 即1BD 与底面ABCD 所成角为 45.(2)∵11//D A AD ,∴B D A 11∠是1BD 与AD 所成角(或补角).∵⊥11A D 平面B B AA 11,∴ B A A D 111⊥,Rt △B D A 11中,411=D A ,81=BD , ∴21cos 11=∠B D A ,∴ 6011=∠B D A ,即异面直线AD 与1BD 所成角为 60.(3)Rt △11C BB 中,411=C B ,341=BC .∴ 241=BB ,∴ ()()12232244244442+=⨯+⨯+⨯=全S .说明:长方体是一种特殊的棱柱,充分感受其中丰富的线面垂直、线线垂直关系是灵活解题的关键,各种垂直关系是解决立体几何中证明和计算的重要条件.典型例题三例3 如图,已知长方体1111-D C B A ABCD 中,棱长51=AA ,12=AB ,求直线11C B 与平面11BCD A 的距离.分析:求直线到平面的距离,首先要找直线上的点到平面的垂线,而找平面的垂线的一个很有用的思路是,找平面内一条直线与某一平面垂直,这里我们不难看出,长方体中有⊥CB 平面11BB AA ,这样,只要作B A H B 11⊥,又有CB H B ⊥1,得到⊥H B 1平面11A BC D . 解:长方体1AC 中,有⊥BC 平面11BB AA ,过1B 作B A H B 11⊥于H ,又有H B BC1⊥,∴ ⊥H B 1平11A BCD ,即H B 1是11C B 到平面11BCD A 的距离.在Rt △11A BB 中,由已知可得,51=BB ,1211=B A ,∴ 131=B A ,∴13601=H B . 即H B 1是11C B 到平面11BCD A 的距离为1360. 说明:长方体中有棱与面的线面垂直关系,正方体除此之外,还有对角线与对角面的线面垂直关系,比如,求正方体1AC 中,11C A 与面BD C 1所成角.这里,要找11C A 与BD C 1所成角,必须找1A 到平面BD C 1的垂线,因为⊥BD 面C C AA 11,在对角面1AC 内,过1A 作11OC H A ⊥于H ,则H A BD 1⊥,所以⊥H A 1面BD C 1,可以得到O C A 11∠为11C A 与面BD C 1所成角,在对角面C C AA 11中可计算2arctan 11=∠O C A .典型例题四例4 如图,已知直三棱柱1111-D C B A ABCD 中,AC AB =,F 为侧棱1BB 上一点,a BC BF 2==,a FB =1.(1)若D 为BC 的中点,E 为AD 上不同于A 、D 的任一点,求证:1FC EF ⊥;(2)若a B A 311=,求1FC 与平面B B AA 11所成角的大小. 分析:E 点在AD 上变化,EF 为平面ADF 内变化的一组相交直线(都过定点F ),要证明F C 1与EF 垂直,必有⊥F C 1平面ADF .求1FC 与平面11A ABB 所成角的关键是找1C 到面11A ABB 的垂线,从而落实线面成角,直三棱柱中,侧棱⊥1AA 平面111C B A 给找点1C 到面1AB 的垂线创造了方便的条件.解:(1)∵AC AB =,且D 是BC 的中点,∴BC AD ⊥,又∵ 直三棱柱中⊥1BB 平面ABC ,∴1BB AD ⊥,∴ ⊥AD 平面C C BB 11,∴F C AD 1⊥.在矩形C C BB 11中,a BC BF 2==,a F B =1, ∴a DF 5=,a FC 51=,a DC 101=,∴21212DC FC DF =+,∴ 901=∠DFC ,即DF FC ⊥1,∴⊥1FC 平面ADF ,∴EF FC ⊥1.(2)过1C 作111B A H C ⊥于H ,∵⊥1AA 平面C B A 11,∴H C AA 11⊥,∴⊥H C 1平面B B AA 11,连接FH ,FH C 1∠是F C 1与平面1AB 所成角.在等腰△ABC 中,a AC AB 3==,a BC 2=,∴a AD 22=,在等腰△111C B A 中,由面积相等可得,a a H C 22231⨯=⨯, ∴a H C 3241=,又a F C 51=, 在Rt △HF C 1中,15104sin 1=∠FH C , ∴15104arcsin1=∠FH C , 即F C 1与平面1AB 所成角为15104arcsin . 说明:由于点E 在AD 上变化,给思考增加了难度,但仔细思考,它又提供了解题的突破口,使得线线垂直成为了1CF 与一组直线垂直.本题的证明还有一个可行的思路,虽然E 在AD 上变化,但是由于⊥AD 平面C C BB 11,所以E 点在平面1BC 上的射影是定点D ,EF 在平面1BC 上射影为定直线DF ,使用三垂线定理,可由DF F C ⊥1,直接证明EF F C ⊥1.三垂线定理是转化空间线线垂直为平面内线线垂直的一个有力工具,再看一个例子,正方体1AC 中,O 是底面ABCD的中心,E 是11B A 上动点,F 是1DD 中点,求AF 与OE 所成角.我们取AD 中点G ,虽然E 点变化,但OE 在面1AD 上射影为定直线G A 1,在正方形D D AA 11中,易证AF B A ⊥1,所以,OE AF ⊥,即AF 与OE 所成角为 90.典型例题五例5 如图,正三棱柱111-C B A ABC 的底面边长为4,侧棱长为a ,过BC的截面与底面成 30的二面角,分别就(1)3=a ;(2)1=a 计算截面的面积.分析:要求出截面的面积,首先必须确定截面的形状,截面与底面成 30的二面角,如果a 较大,此时截面是三角形;但是如果a 较小,此时截面与侧棱不交,而与上底面相交,截面为梯形.解:截面与侧棱1AA 所在直线交于D 点,取BC 中点E ,连AE 、DE ,△ABC 是等边三角形,∴BC AE ⊥,∵⊥1AA 平面ABC ,∴BC DE ⊥.∴DEA ∠为截面与底面所成二面角的平面角,∴ 30=∠DEA .∵等边△ABC 边长为4,∴32=AE .在Rt △DAE 中,2tan =∠=DEA AE DA .(1)当3=a 时,D 点在侧棱1AA 上,截面为△BCD ,在Rt △DAE 中,422=+=AE AD DE , ∴8442121=⨯⨯=⋅=∆DE BC S BCD . (2)当1=a 时,D 点在1AA 延长线上,截面为梯形BCMN ,∵2=AD ,11=AA ∴MN 是△DBC 的中位线, ∴684343=⨯==∆DBC BCMN S S 梯形. 说明:涉及多面体的截面问题,都要经过先确定截面形状,再解决问题的过程,本例通过改变侧棱长而改变了截面形状,我们也可以通过确定侧棱长,改变截面与底面成角而改变截面形状.典型例题六例6 斜三棱柱111-C B A ABC 中,平面⊥C C AA 11底面ABC ,2=BC ,32=AC ,90=∠ABC ,C A AA 11⊥,且C A AA 11=.(1)求1AA 与平面ABC 所成角;(2)求平面11ABB A 与平面ABC 所成二面角的大小;(3)求侧棱1BB 到侧面C C AA 11的距离.分析:按照一般思路,首先转化条件中的面面垂直关系,由C A A A 11=,取AC 的中点D ,连D A 1,则有AC D A ⊥1,从而有⊥D A 1平面ABC ,在此基础上,A A 1与底面所成角以及平面11ABB A 与底面所成二面角都能方便地找到,同时⊥D A 1底面ABC 也为寻找B 点到面C C AA 11的垂线创造了条件.解:(1)取AC 的中点D ,连接D A 1,∵C A A A 11=,∴AC D A ⊥1,∵平面⊥C C AA 11底面ABC ,∴⊥D A 1底面ABC ,∴AC A 1∠为A A 1与底面ABC 所成角.∵C A AA 11=且C A AA 11⊥,∴ 451=∠AC A .(2)取AB 中点E ,则BC DE //,∵ 90=∠ABC ,∴AB CB ⊥,∴AB DE ⊥.连E A 1,∵⊥D A 1底面ABC ,∴E A 1在平面ABC 上射影为DE ,∴AB E A ⊥1,∴ED A 1∠为侧面B A 1与底面ABC 所成二面角的平面角. 在等腰Rt △AC A 1中,32=AC ,∴31=D A .在Rt △ABC 中,2=BC ,∴1=DE .在Rt △DE A 1中,3tan 11==∠DED A ED A , ∴ 601=∠ED A ,即侧面B B AA 11与底面ABC 所成二面角的大小为 60.(3)过B 作AC BH ⊥于H ,∵⊥D A 1底面ABC ,∴BH D A ⊥1,∴⊥BH 平面C C AA 11,在Rt △ABC 中,32=AC ,2=BC ,∴22=AB , ∴632=⋅=AD BC AB BH ,即1BB 到平面C C AA 11的距离为632. 说明:简单的多面体是研究空间线面关系的载体,而线面垂直关系又是各种关系中最重要的关系,立体几何中的证明与计算往往都与线面垂直发生联系,所以在几何体中发现并使用线面垂直关系往往是解题的关键.典型例题七例7 斜三棱柱111-C B A ABC 的底面△ABC 是直角三角形, 90=∠C ,cm 2=BC ,1B 在底面上的射影D 恰好是BC 的中点,侧棱与底面成 60角,侧面B B AA 11与侧面C C BB 11所成角为 30,求斜棱柱的侧面积与体积.分析:1B 在底面ABC 上射影D 为BC 中点,提供了线面垂直⊥D B 1平面ABC ,另外又有 90=∠C ,即BC AC ⊥,又可以得到⊥AC 平面C C BB 11,利用这两个线面垂直关系,可以方便地找到条件中的线面角以及二面角的平面角.解:∵1B 在底面ABC 上,射影D 为BC 中点.∴⊥D B 1平面ABC .∴BD B 1∠为侧棱B B 1与底面ABC 所成角,即 601=∠BD B ,∵ 90=∠C ,即BC AC ⊥,又D B AC 1⊥,∴⊥AC 平面C C BB 11,过A 作B B AE 1⊥于E ,连接CE ,则B B CE 1⊥. ∴AEC ∠是侧面B B AA 11与侧面B B CC 11所成二面角的平面角,∴ 30=∠AEC ,在直角△CEB 中,∵ 60=∠CEB ,2=BC ,∴3=CE ,在直角△ACE 中,∵ 30=∠CEA ,3=CE ,∴130tan == EC AC ,22==AC AE ,在直角△DB B 1中, 601=∠BD B ,121==BC BD , ∴221==BD BB ,360sin 11== BB D B .∴侧面积为111AA AC BB AE BB CE S ⋅+⋅+⋅=侧()()()2cm 3322332123+=⨯+=⨯++=. 体积为311cm 33212121=⨯⨯⨯=⋅⋅=⋅=∆D B BC AC D B S V ABC .说明:本例中△ACE 是斜棱柱的一个截面,而且有侧棱与该截面垂直,这个截面称为斜棱柱的直截面,我们可以用这个截面把斜棱柱分成两部分,并且用这两部分拼凑在一个以该截面为底面的直棱柱,斜棱柱的侧面积等于该截面周长乘以侧棱长,体积为该截面面积乘以侧棱长.典型例题八例8 如图所示,在平行六面体1111D C B A ABCD -中,已知a AD AB 2==,a AA =1,又︒=∠=∠=∠6011AB A DAB AD A .(1)求证:1AA ⊥截面C D B 11;(2)求对角面11ACC A 的面积.分析:(1)由题设易证111D B AA ⊥,再只需证C B AA 11⊥,即证11CD CC ⊥.而由对称性知,若C B CC 11⊥,则11CD CC ⊥,故不必证111D B AA ⊥.(2)关键在于求对角面的高.证明:(1)∵a AD C B 211==,a A A CC ==11,︒=∠=∠60111AD A C C B ,∴在C C B 11∆中,由余弦定理,得2213a C B =.再由勾股定理的逆定理,得C B C C 11⊥.同理可证:11CD C C ⊥.∴C C 1⊥平面C D B 11.又A A C C 11//,∴1AA ⊥平面C D B 11.解:(2)∵AD AB =,∴平行四边形ABCD 为菱形.AC 为BAD ∠的平分线. 作O A 1∴⊥平面AC 于O ,由AB A AD A 11∠=∠,知AC O ∈.作AB M A ⊥1于M ,连OM ,则AB OM ⊥. 在AM A Rt 1∆中,a A A AM 2160cos 1=︒⋅=, 在AOM Rt ∆中,330sec a AM AO =︒⋅=.在AO A Rt 1∆中,a AO A A O A 322211=-=. 又在ABC ∆中,由余弦定理,得a AC 32=. ∴212211a O A AC S ACC A =⋅=.说明:本题解答中用到了教材习题中的一个结论——经过一个角的顶点引这个角所在平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.另外,还有一个值得注意的结论就是:如果一个角所在平面外一点到角的两边所在直线的距离相等,那么这一点在平面上的射影在这个角的平分线所在的直线上.典型例题九例9 如图所示,已知:直三棱柱111C B A ABC -中,︒=∠90ACB ,︒=∠30BAC ,1=BC ,61=AA ,M 是1CC 的中点.求证:M A AB 11⊥.分析:根据条件,正三棱柱形状和大小及M 点的位置都是确定的,故可通过计算求出M A 1与1AB 两异面直线所成的角.因为C C C B 111⊥,1111C A C B ⊥,所以11C B ⊥侧面C C AA 11.1AC 是斜线1AB 在平面C C AA 11的射影,设1AC 与M A 1的交点为D ,只需证得︒=∠901MDC 即可.证明:∵C C C B 111⊥,1111C A C B ⊥,C C 1与11C A 交于点1C ,∴11C B ⊥面C C AA 11.∵M 为1CC 的中点,∴262111==C C MC . 在111B C A Rt ∆中,︒=∠30111C A B ,∴221111==C B B A ,311=C A .在M C A Rt 11∆中, ()22332622211211=+⎪⎪⎭⎫ ⎝⎛=+=C A MC M A . 在11C AA Rt ∆中,33622211211=+=+=C A AA AC . 又1MDC ∆∽DA A 1∆且21=MC AA ∶, ∴22122331311=⨯==M A MD , 13313111=⨯==AC D C . 在1MDC ∆中,23122122212=+⎪⎭⎫ ⎝⎛=+D C MD , 2326221=⎪⎪⎭⎫ ⎝⎛=M C , ∴︒=∠901DM C ,11AC M A ⊥,∴11AB M A ⊥.说明:证明两直线垂直,应用三垂线定理或逆定理是重要方法之一.证明过程中的有关计算要求快捷准确,不可忽视.本题证明两异面直线垂直,也可用异面直线所成的角,在侧面C C AA 11的一侧或上方一个与之全等的矩形,平移M A 1或1AB ,确定两异面直线所成的角,然后在有关三角形中通过计算可获得证明.典型例题十例10 长方体的全面积为11,十二条棱长度之和为24,求这个长方体的一条对角线长.分析:要求长方体对角线长,只要求长方体的一个顶点上的三条棱的长即可. 解:设此长方体的长、宽、高分别为x 、y 、z ,对角线长为l ,则由题意得:⎩⎨⎧=++=++②①24)(411)(2z y x zx yz xy由②得:6=++z y x ,从而由长方体对角线性质得:5116)(2)(22222=-=++-++=++=zx yz xy z y x z y x l .∴长方体一条对角线长为5.说明:(1)本题考查长方体的有关概念和计算,以及代数式的恒等变形能力.在求解过程中,并不需要把x 、y 、z 单个都求出来,而要由方程组的①②从整体上导出222z y x ++,这需要同学们掌握一些代数变形的技巧,需要有灵活性.(2)本题采用了整体性思维的处理方法,所谓整体性思维就是在探究数学问题时,应研究问题的整体形式,整体结构或对问题的数的特征、形的特征、结构特征作出整体性处理.整体思维的含义很广,根据问题的具体要求,需对代数式作整体变换,或整体代入,也可以对图形作出整体处理.典型例题十一例11 如图,长方体1111D C B A ABCD -中,a AB =,b BC =,c BB =1,并且0>>>c b a .求沿着长方体的表面自A 到1C 的最短线路的长.分析:解本题可将长方体表面展开,可利用在平面内两点间的线段长是两点间的最短距离来解答.解:将长方体相邻两个展开有下列三种可能,如图.三个图形甲、乙、丙中1AC 的长分别为:ab c b a c b a 2)(22222+++=++bc c b a c b a 2)(22222+++=++ac c b a b c a 2)(22222+++=++∵0>>>c b a ,∴0>>>bc ab ab . 故最短线路的长为bc c b a 2222+++.说明:(1)防止只画出一个图形就下结论,或者以为长方体的对角线2221c b a AC ++=是最短线路.(2)解答多面体表面上两点间,最短线路问题,一般地都是将多面体表面展开,转化为求平面内两点间线段长.典型例题十二例12 设直平行六面体的底面是菱形,经下底面的一边及与它相对的上义面的一边的截面与底面成︒60的二面角,面积为Q ,求直平行六面体的全面积.分析:如图,由于⊥'DD 面AC .作出截面与底面所成的二面角的平面角HD D '∠后,因DH D Rt '∆中︒=∠60'HD D ,可分别求出D D '、DH 和H D '的值.又上下底面的边长是相等的,便可进一步求出全面积.解:设平行六面体为''''D C B A ABCD -,过D 作AB DH ⊥,H 为垂足,连结H D '.∵⊥'DD 平面ABCD ,∴AB H D ⊥',︒=∠60'HD D , ∴H D D D ''23=,H D DH '21=. 又在菱形ABCD 中,有CD BC AB AD ===,∴截面''D ABC 的面积为:Q AB H D S =⋅='1.侧面''DCC D 的面积为:Q AB H D AB D D DC D D S 2323'''2=⋅=⋅=⋅= 底面ABCD 的面积为:Q AB H D AB DH S 2121'3=⋅=⋅=. 所以Q S S S )132(2432+=+=全.典型例题十三例13 设有三个命题:甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是直平行六面体.以上命题中,真命题的个数是( ).A .0B .1C .2D .3解:甲命题是真命题,因为它就是平行六面体的定义;乙命题不是真命题,因为平行六面体的侧棱不一定垂直于底面;丙命题也不是真命题,因为四棱柱的底面不一定是平行四边形.∴应选B .说明:要认真搞清平行六面体、直平行六面体、长方体等特殊四棱柱的有关概念及性质.典型例题十四例14 如图,ABC C B A -111是直三棱柱,︒=∠90BCA ,点1D 、1F 分别是11B A 、11C A 的中点.若1CC CA BC ==,则1BD 与1AF 所成角的余弦值是( ).A .1030B .21 C .1530 D .1015 解:可将异面直线所成角转化为相交直线的角,取BC 的中点E ,并连结1EF 、EA .∵11F D BC 21BE =, ∴11//BD EF ,∴A EF 1∠是1BD 与1AF 所成角.设a BC 2=,则a CC 21=,a CA 2=.∴a AB 22=,a AF 51=,a AE 5=,a D B B B BD EF 62112111=+==. ∴1030652)5()6()5(2cos 22211221211=⨯⨯-+=⨯⨯-+=∠a a a a a EF AF AE EF AF A EF ∴应选A .说明:本题主要考查棱柱的性质,以及两条异面直线所成的角、勾股定理、余弦定理等内容:对运算能力和空间想象能力也有较高的要求.典型例题十五例15 如图,已知ABC C B A -111是正三棱柱,D 是AC 的中点.(1)证明://1AB 平面1DBC ;(2)假设11BC AB ⊥,求以1BC 为棱,1DBC 与1CBC 为面的二面角α的度数.(1)证明:∵ABC C B A -111是正三棱柱,∴四边形11BCC B 是矩形.连结C B 1交1BC 于E ,则E 是C B 1的中点.连结DE .∵D 、E 分别是AC 、C B 1的中点,∴1//AB DE .又⊄1AB 平面1DBC ,⊂DE 平面1DBC ,.∴//1AB 平面1DBC .(2)解:作BC DF ⊥于F ,则⊥DF 平面C C BB 11,连结EF 则EF 是ED 在平面C C BB 11上的射影.∵11BC AB ⊥又ED AB //1.∴1BC ED ⊥.根据三垂线定理的逆定理,得1BC EF ⊥.从而DEF ∠是二面角C BC D --1的平面角,即α=∠DEF ,设1=AC ,则21=DC ∵ABC ∆是正三角形,∴在DCF Rt ∆中,有4360sin =︒=DC DF ,4160cos =︒=DC CF 取BC 的中点G ,∵EC EB =,∴BC EG ⊥.在BEF Rt ∆中,FG BF EF ⋅=2 而43=-=FC BC BF ,41=GF , ∴41432⋅=EF ,∴43=EF , ∴在DEF Rt ∆中,14343tan ===∠EF DF DEF . ∴︒=∠45DEF ,即︒=45α.从而所求二面角的大小为︒45.说明:(1)纵观近十年高考题,其中解答题大多都是以多面体进行专利权查,解答此类题,有些同学往往忽略或忘记了多面体的性质,从而解题时,思维受阻.今后要引以为戒.(2)本题考查空间的线面关系,正棱柱的概念和性质,空间想象能力、逻辑思维能力和运算能力.本题涉及到的知识面宽,有一定的深度,但入手不难,逐渐加深;逻辑推理和几何计算交织为一体;正三棱柱放倒,与课本习题不同,加强了对空间想象能力的考查;在解答过程中,必须添加适当的辅助线,不仅考查了识图,而且考查了作图.本题是一道综合性试题,较深入和全面地考查了各种数学能力,正确解答本题,要求同学们有较高的数学素质.。

高中数学高考总复习立体几何平行与垂直的判断习题及详解

高中数学高考总复习立体几何平行与垂直的判断习题及详解

高中数学高考总复习立体几何平行与垂直的判断习题及详解一、选择题1.(文)(09·福建)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是()A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2[答案] B[解析]如图(1),α∩β=l,m∥l,l1∥l,满足m∥β且l1∥α,故排除A;如图(2),α∩β=l,m∥n∥l,满足m∥β,n∥β,故排除C.在图(2)中,m∥n∥l∥l2满足m∥β,n∥l2,故排除D,故选B.[点评]∵l1与l2相交,m∥l1,n∥l2,∴m与n相交,由面面平行的判定定理可知α∥β;但当m、n⊂α,l1,l2⊂β,l1与l2相交,α∥β时,如图(3),得不出m∥l1且n∥l2.(理)设a,b是两条直线,α,β是两个平面,则a⊥b的一个充分条件是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β[答案] C[解析]对于A,如图正方体α、β分别为平面ABCD与平面ADD1A1,a、b分别为直线B1B和C1C.a与b也可能平行,对于B,∵a⊥α,α∥β,∴a⊥β,又b⊥β,∴a∥b,对于D,a与b也可能平行,故选C.2.(2010·郑州检测)已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A.0个B.1个C.2个D.3个[答案] C[解析]依题意得,命题“a∥b,且a⊥γ⇒b⊥γ”是真命题(由“若两条平行线中的一条与一个平面垂直,则另一条也与这个平面垂直”可知);命题“a∥β,且a⊥c⇒β⊥c”是假命题(直线c可能位于平面β内,此时结论不成立);命题“α∥b,且α⊥c⇒b⊥c”是真命题(因为α∥b,因此在平面α内必存在直线b1∥b;又α⊥c,因此c∥b1,c⊥b).综上所述,其中真命题共有2个,选C.3.(2010·东北三校模拟)正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别为A 1B 1,CD ,B 1C 1的中点,则下列命题正确的是( )A .AM 与PC 是异面直线B .AM ⊥PC C .AM ∥平面BC 1ND .四边形AMC 1N 为正方形 [答案] C[解析] 连接MP ,AC ,A 1C 1,AM ,C 1N ,由题易知MP ∥A 1C 1∥AC ,且MP =12AC ,所以AM 与PC 是相交直线,假设AM ⊥PC ,∵BC ⊥平面ABB 1A 1,∴BC ⊥AM ,∴AM ⊥平面BCC 1B 1,又AB ⊥平面BCC 1B 1矛盾,∴AM 与PC 不垂直.因为AM ∥C 1N ,C 1N ⊂平面BC 1N ,所以AM ∥平面BC 1N .又易得四边形AMC 1N 为菱形而不是正方形,故选C.4.(文)对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .a ⊂α,b ⊂α B .a ⊂α,b ∥α C .a ⊥α,b ⊥αD .a ⊂α,b ⊥α[答案] B[解析] a 、b 异面时,A 错,C 错;若D 正确,则必有a ⊥b ,故排除A 、C 、D ,选B.(理)设a 、b 为两条直线,α、β为两个平面.下列四个命题中,正确的命题是( ) A .若a 、b 与α所成的角相等,则a ∥b B .若a ∥α,b ∥β,α∥β,则a ∥b C .若a ⊂α,b ⊂β,a ∥b ,则α∥β D .若a ⊥α,b ⊥β,α⊥β,则a ⊥b [答案] D[解析] 若直线a 、b 与α成等角,则a 、b 平行、相交或异面;对选项B ,如a ∥α,b ∥β,α∥β,则a 、b 平行、相交或异面;对选项C ,若a ⊂α,b ⊂β,a ∥b ,则α、β平行或相交;对选项D ,由⎭⎪⎬⎪⎫a ⊥αβ⊥α⇒a ∥β或a ⊂β,无论哪种情形,由b ⊥β都有b ⊥a .,故选D. 5.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB ⊥EF ②AB 与CM 成60°③EF 与MN 是异面直线④MN ∥CD 其中正确的是( )A.①②B.③④C.②③D.①③[答案] D[解析]本题考查学生的空间想象能力,将其还原成正方体如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD.只有①③正确,故选D.6.(文)(2010·山东潍坊)已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β[答案] D[解析]对于选项A,两平面β、γ同垂直于平面α,平面β与平面γ可能平行,也可能相交;对于选项B,平面α、β可能平行,也可能相交;对于选项C,直线n可能与平面α平行,也可能在平面α内;对于选项D,∵m∥n,m⊥α,∴n⊥α,又n⊥β,∴α∥β,故选D.(理)(2010·曲师大附中)已知两个不同的平面α,β和两条不重合的直线a,b,则下列四个命题中为真命题的是()A.若a∥b,b⊂α,则a∥αB.若α⊥β,α∩β=b,a⊥b,则a⊥βC.若a⊂α,b⊂α,a∥β,b∥β,则α∥βD.若α∥β,a⊄α,a⊄β,a∥α,则a∥β[答案] D[解析]选项A中,直线a可能在平面α内;选项B中,直线a可能在平面β内;选项C 中,直线a ,b 为相交直线时命题才成立.7.(2010·江苏南通)在正方体ABCD -A 1B 1C 1D 1中,P 、Q 分别是棱AA 1、CC 1的中点,则过点B 、P 、Q 的截面是( )A .邻边不等的平行四边形B .菱形但不是正方形C .邻边不等的矩形D .正方形 [答案] B[解析] 设正方体棱长为1,连结D 1P ,D 1Q ,则易得PB =PQ =D 1P =D 1Q =52,取D 1D 的中点M ,则D 1P 綊AM 綊BQ ,故截面为四边形PBQD 1,它是一个菱形,又PQ =AC =2,∴∠PBQ 不是直角,故选B.8.(文)(2010·山东日照、聊城模考)已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β,给出下列四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β; 其中真命题是( ) A .①② B .①③ C .①④D .②④[答案] C [解析][点评] 如图,α∩β=m ,则l ⊥m ,故(2)假;在上述图形中,当α⊥β时,知③假.(理)(2010·福建福州市)对于平面α和共面的直线m ,n ,下列命题是真命题的是( ) A .若m ,n 与α所成的角相等,则m ∥n B .若m ∥α,n ∥α,则m ∥nC.若m⊥α,m⊥n,则n∥αD.若m⊂α,n∥α,则m∥n[答案] D[解析]正三棱锥P-ABC的侧棱P A、PB与底面成角相等,但P A与PB相交应排除A;若m∥α,n∥α,则m与n平行、相交或异面,应排除B;若m⊥α,m⊥n,则n∥α或n⊂α,应排除C.∵m、n共面,设经过m、n的平面为β,∵m⊂α,∴α∩β=m,∵n∥α,∴n∥m,故D正确.9.(文)(2010·北京顺义一中月考)已知l是直线,α、β是两个不同平面,下列命题中的真命题是()A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若l⊥α,l∥β,则α⊥βD.若l∥α,α∥β,则l∥β[答案] C[解析]如图在正方体ABCD-A1B1C1D1中,取平面ABD1A1为α,平面ABCD为β,B1C1为l,则排除A、B;又取平面ADD1A1为α,平面BCC1B1为β,B1C1为l,排除D.(理)(2010·广东罗湖区调研)已知相异直线a,b和不重合平面α,β,则a∥b的一个充分条件是()A.a∥α,b∥αB.a∥α,b∥β,α∥βC.a⊥α,b⊥β,α∥βD.α⊥β,a⊥α,b∥β[答案] C[解析]a∥α,b∥α时,a与b可相交可异面也可平行,故A错;a∥α,b∥β,α∥β时,a与b可异面,故B错;由α⊥β,a⊥α得,a∥β或a⊂β,又b∥β,此时a与b可平行也可异面,排除D.10.(2010·日照实验高中)如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,且始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )[答案] C[解析] 过M 作ME ⊥AD 于E ,连接EN ,则平面MEN ∥平面DCC 1D 1,所以BN =AE =x (0≤x <1),ME =2x ,MN 2=ME 2+EN 2,则y 2=4x 2+1,y 2-4x 2=1(0≤x <1,y >0),图象应是焦点在y 轴上的双曲线的一部分.故选C.二、填空题11.(文)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.[答案] M ∈线段FH[解析] 因为HN ∥BD ,HF ∥DD 1,所以平面NHF ∥平面B 1BDD 1,又平面NHF ∩平面EFGH =FH .故线段FH 上任意点M 与N 相连,有MN ∥平面B 1BDD 1,故填M ∈线段FH .(理)(2010·南充市模拟)已知两异面直线a ,b 所成的角为π3,直线l 分别与a ,b 所成的角都是θ,则θ的取值范围是________.[答案] [π6,π2]12.在四面体ABCD 中,M 、N 分别是△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.[答案] 面ABC 和面ABD[解析] 连结AM 并延长交CD 于点E ,∵M 为△ACD 的重心,∴E 为CD 的中点, 又N 为△BCD 的重心,∴B 、N 、E 三点共线, 由EM MA =EN NB =12得MN ∥AB , 因此MN ∥平面ABC ,MN ∥平面ABD .13.如图是一正方体的表面展开图,B 、N 、Q 都是所在棱的中点,则在原正方体中, ①AB 与CD 相交;②MN ∥PQ ;③AB ∥PE ;④MN 与CD 异面;⑤MN ∥平面PQC . 其中真命题的序号是________.[答案] ①②④⑤[解析] 将正方体还原后如图,则N 与B 重合,A 与C 重合,E 与D 重合,∴①、②、④、⑤为真命题.14.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P 的平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.[答案]223a [解析] ∵B 1D 1∥平面ABCD ,平面B 1D 1P ∩平面ABCD =PQ ,∴B 1D 1∥PQ , 又B 1D 1∥BD ,∴BD ∥PQ ,设PQ ∩AB =M ,∵AB ∥CD ,∴△APM ∽△DPQ ,∴PQ PM =PDAP=2,即PQ =2PM , 又△APM ∽△ADP ,∴PM BD =AP AD =13,∴PM =13BD ,又BD =2a ,∴PQ =223a .三、解答题15.(文)(2010·南京调研)如图,在四棱锥E -ABCD 中,四边形ABCD 为平行四边形,BE =EC ,AE ⊥BE ,M 为CE 上一点,且BM ⊥平面ACE .(1)求证:AE ⊥BC ;(2)如果点N 为线段AB 的中点,求证:MN ∥平面ADE .[解析] (1)因为BM ⊥平面ACE ,AE ⊂平面ACE ,所以BM ⊥AE .因为AE ⊥BE ,且BE ∩BM =B ,BE 、BM ⊂平面EBC ,所以AE ⊥平面EBC . 因为BC ⊂平面EBC ,所以AE ⊥BC . (2)解法1:取DE 中点H ,连接MH 、AH .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点. 所以MH 为△EDC 的中位线,所以MH 綊12DC .因为四边形ABCD 为平行四边形,所以DC 綊AB . 故MH 綊12AB .因为N 为AB 的中点,所以MH 綊AN .所以四边形ANMH 为平行四边形,所以MN ∥AH . 因为MN ⊄平面ADE ,AH ⊂平面ADE , 所以MN ∥平面ADE .解法2:取EB 的中点F ,连接MF 、NF .因为BM ⊥平面ACE ,EC ⊂平面ACE ,所以BM ⊥EC . 因为BE =BC ,所以M 为CE 的中点,所以MF ∥BC .因为N 为AB 的中点,所以NF ∥AE , 因为四边形ABCD 为平行四边形, 所以AD ∥BC .所以MF ∥AD .因为NF 、MF ⊄平面ADE ,AD 、AE ⊂平面ADE , 所以NF ∥平面ADE ,MF ∥平面ADE . 因为MF ∩NF =F ,MF 、NF ⊂平面MNF , 所以平面MNF ∥平面ADE .因为MN ⊂平面MNF ,所以MN ∥平面ADE .(理)(2010·厦门市质检)如图所示的几何体中,△ABC 为正三角形,AE 和CD 都垂直于平面ABC ,且AE =AB =2,CD =1,F 为BE 的中点.(1)若点G 在AB 上,试确定G 点位置,使FG ∥平面ADE ,并加以证明;(2)在(1)的条件下,求三棱锥D -ABF 的体积. [解析] (1)当G 是AB 的中点时,GF ∥平面ADE . ∵G 是AB 的中点,F 是BE 的中点, ∴GF ∥AE ,又GF ⊄平面ADE ,AE ⊂平面ADE , ∴GF ∥平面ADE . (2)连接CG ,由(1)可知: GF ∥AE ,且GF =12AE .又AE ⊥平面ABC ,CD ⊥平面ABC ,∴CD ∥AE , 又CD =12AE ,∴GF ∥CD ,GF =CD ,∴四边形CDFG 为平行四边形, ∴DF ∥CG ,且DF =CG .又∵AE ⊥平面ABC ,CG ⊂平面ABC ,∴AE ⊥CG . ∵△ABC 为正三角形,G 为AB 的中点, ∴CG ⊥AB ,又AB ∩AE =A ,∴CG ⊥平面ABE . 又CG ∥DF ,且CG =DF ,∴DF 为三棱锥D -ABF 的高,且DF = 3. 又AE ⊥平面ABC ,AB ⊂平面ABC ,∴AE ⊥AB . ∵在Rt △ABE 中,AB =AE =2,F 为BE 的中点,∴S △ABF =12S △ABE =12×12×2×2=1.∴V D -ABF =13S △ABF ·DF =13×1×3=33,∴三棱锥D -ABF 的体积为33. 16.(文)(2010·安徽合肥质检)如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ;若不存在,说明理由.[解析] (1)∵PO ⊥平面ABCD , BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP , 又EA ∥PO ,AO ⊂平面ABP , ∴EA ⊂平面ABP ,∴BC ⊥平面ABPE . (2)点E 即为所求的点,即点M 与点E 重合. 取PO 的中点N ,连结EN 并延长交PB 于F , ∵EA =1,PO =2,∴NO =1,又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB , ∴F 为PB 的中点,∴NF =12OB =1,∴EF =2,又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF , ∵CF ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面PBC .∴当M 与E 重合时即可.(理)在长方体ABCD -A 1B 1C 1D 1中,O 为底面正方形的中心,过A 1、C 1、B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D 1及其三视图.(1)求证:D1O∥平面A1BC1;(2)是否存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q?若存在,求出线段PQ的长;若不存在,请说明理由.[分析]要证D1O∥平面A1BC1,∵O为DB的中点,∴取A1C1中点E,只须证D1E綊OB,或利用长方体为正四棱柱的特性,证明平面ACD1∥平面A1C1B,假设存在平面A1PQ ⊥DC1,利用正四棱柱中,BC⊥平面DCC1D1,故有BC⊥DC1,从而平面A1PQ与平面BCC1的交线PQ⊥DC1,故只须在面DCC1D1的边CC1上寻找点Q,使D1Q⊥DC1即可.[解析](1)连接AC,AD1,D1C,易知点O在AC上.D1、四边形A1D1CB均为平行四边根据长方体的性质得四边形ABC Array 1形,∴AD1∥BC1,A1B∥D1C,又∵AD1⊄平面A1C1B,BC1⊂平面A1C1B,∴AD1∥平面A1C1B,同理D1C∥平面A1BC1,又∵D1C∩AD1=D1,∴根据面面平行的判定定理知平面ACD1∥平面A1BC1.∵D1O⊂平面ACD1,∴D1O∥平面A1BC1.(2)假设存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.D,过点D1作C1D的垂线交C1C于点Q,过点Q作PQ连接C Array 1∥BC交BC1于点P,连接A1P,A1Q.∵C1D⊥D1Q,C1D⊥A1D1,D1Q∩A1D1=D1,∴C1D⊥平面A1D1Q.∵A1Q⊂平面A1D1Q,∴C1D⊥A1Q.∵PQ∥BC∥A1D1,∴C1D⊥PQ,∵A1Q∩PQ=Q,∴C1D⊥平面A1PQ.∴存在过点A1与直线DC1垂直的平面A1PQ,与线段BC1交于点P,与线段CC1交于点Q.在矩形CDD 1C 1中,∵Rt △D 1C 1Q ∽Rt △C 1CD ,∴C 1Q CD =D 1C 1C 1C ,结合三视图得C 1Q 2=24,∴C 1Q =1. ∵PQ ∥BC ,∴PQ BC =C 1Q CC 1=14,∴PQ =14BC =12. 17.(文)(2010·东北师大附中)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1;(2)求证:EF ⊥B 1C ;(3)求三棱锥B 1-EFC 的体积.[解析] (1)证明:连结BD 1,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则EF ∥D 1B ,又EF ⊄平面ABC 1D 1,D 1B ⊂平面ABC 1D 1,∴EF ∥平面ABC 1D 1.(2)证明:∵B 1C ⊥AB ,B 1C ⊥BC 1,AB ∩BC 1=B ,∴B 1C ⊥平面ABC 1D 1,又BD 1⊂平面ABC 1D 1,∴B 1C ⊥BD 1,又EF ∥BD 1,∴EF ⊥B 1C .(3)解:∵CF ⊥BD ,CF ⊥BB 1,∴CF ⊥平面BDD 1B 1,即CF ⊥平面EFB 1,且CF =BF = 2∵EF =12BD 1=3,B 1F =BF 2+BB 12=(2)2+22=6,B 1E =B 1D 12+D 1E 2=12+(22)2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°,∴VB 1-EFC =VC -B 1EF =13·S △B 1EF ·CF =13×12·EF ·B 1F ·CF =13×12×3×6×2=1. (理)(2010·河北唐山)如图,在四棱锥V -ABCD 中,底面ABCD 是矩形,侧棱VA ⊥底面ABCD ,E 、F 、G 分别为VA 、VB 、BC 的中点.(1)求证:平面EFG ∥平面VCD ;(2)当二面角V -BC -A 、V -DC -A 依次为45°、30°时,求直线VB 与平面EFG 所成的角.[解析] (1)∵E 、F 、G 分别为VA 、VB 、BC 的中点,∴EF ∥AB ,FG ∥VC ,又ABCD 是矩形,∴AB ∥CD ,∴EF ∥CD ,又∵EF ⊄平面VCD ,FG ⊄平面VCD ,∴EF ∥平面VCD ,FG ∥平面VCD ,又EF ∩FG =F ,∴平面EFG ∥平面VCD .(2)∵VA ⊥平面ABCD ,CD ⊥AD ,∴CD ⊥VD .则∠VDA 为二面角V -DC -A 的平面角,∴∠VDA =30°.同理∠VBA =45°.作AH ⊥VD ,垂足为H ,由上可知CD ⊥平面VAD ,则AH ⊥平面VCD .∵AB ∥平面VCD ,∴AH 即为B 到平面VCD 的距离.由(1)知,平面EFG ∥平面VCD ,则直线VB 与平面EFG 所成的角等于直线VB 与平面VCD 所成的角,记这个角为θ.∵AH =VA sin60°=32VA ,VB =2VA ,∴sin θ=AH VB =64, 故直线VB 与平面EFG 所成的角是arcsin64.。

高三数学易错立体几何多选题 易错题测试基础卷试题

高三数学易错立体几何多选题 易错题测试基础卷试题

高三数学易错立体几何多选题 易错题测试基础卷试题一、立体几何多选题1.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由11110m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-,设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 6θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.2.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S SS ⋅=; B .3333A B C D S S S S <++;C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222111sin sin sin 1αβγ++=;D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则22cos α+2222cos cos 1βγ+=.【答案】ACD 【分析】由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯又12A S BC O D '=⋅,12BCOS BC O O '=⋅, 22221124DS BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭所以2A BCOD S SS ⋅=,故A 正确.对B :当1a b c ===时,33318B C D S S S ===,则33338B C D S S S ++=,而332333322288A S ⎛⎫=⨯⨯=> ⎪ ⎪⎝⎭,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系. 设(),,M x y z ,则(),,AM x y z =,222AM x y z =++,(),0,0AB a =,()0,,0AC b =,()0,0,AD c =所以222222222cos cos cos AM AB AM AC AM AD AM ABAM ACAM ADαβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪⎪⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭2222221x y z AMAMAM=++=,所以D 正确.对C :当M 与O 重合时,AO ⊥面BCD ,由D 有222222cos cos cos 1αβγ++=,由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.【点睛】关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.3.已知球O 为正方体1111ABCD A B C D -的内切球,平面11A C B 截球O 的面积为24π,下列命题中正确的有( )A .异面直线AC 与1BC 所成的角为60°B .1BD ⊥平面11AC B C .球O 的表面积为36πD .三棱锥111B AC B -的体积为288 【答案】AD 【分析】连接11A C ,1A B ,通过平移将AC 与1BC 所成角转化为11A C 与1BC 所成角可判断A ;通过反证法证明B ;由已知平面11A C B 截球O 的面积为24π求出正方体棱长,进而求出内切球的表面积可判断C ;利用等体积法可求得三棱锥111B AC B -的体积可判断D. 【详解】对于A ,连接11A C ,1A B ,由正方体1111ABCD A B C D -,可知11//A C AC ,11AC B ∴∠为异面直线AC 与1BC 所成的角,设正方体边长为a,则1111AC A B BC ==,由等边三角形知1160A C B ∠=,即异面直线AC 与1BC 所成的角为60,故A 正确; 对于B ,假设1BD ⊥平面11A C B ,又1A B ⊂平面11A C B ,则11BD B A ⊥,设正方体边长为a ,则11A D a =,1A B =,1BD =,由勾股定理知111A D B A ⊥,与假设矛盾,假设不成立,故1BD 不垂直于平面11A C B ,故B 错误; 对于C ,设正方体边长为a,则11AC =,内切球半径为2a,设内切球的球心O 在面11A C B 上的投影为O ',由等边三角形性质可知O '为等边11A C B △的重心,则11123233O A AC a ='=⨯=,又12OA a =,∴球心O 到面11A C B 的距离==,又球心与截面圆心的连线垂直于截面,∴6a =,又截面圆的面积224S ππ⎫=⎪⎪⎝⎭=,解得12a =,则内切球半径为6,内切球表面积214644S ππ==⨯,故C 错误;对于D ,由等体积法知111111111111212122812383B A C B B A C B A C B V V S a --==⨯⨯=⨯⨯=,故D 正确; 故选:AD【点睛】关键点点睛:本题考查了正方体和它的内切球的几何结构特征,关键是想象出截面图的形状,从而求出正方体的棱长,进而求出内切球的表面积及三棱锥的体积,考查了空间想象能力,数形结合的思想,属于较难题.4.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P P 点有且只有一个 B .若12A P ,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 2D .若12A P 且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 2P 与B 或D 重合,利用12sin 60A P r =︒,求出6r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =P 在以1A 3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.5.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC 6 【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠ ⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD =+-=+,所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ,()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD ABAB AD BD,1116cos ,23⋅<>===⋅B AC D BD BD AC AC,故D 不正确;对C ,112==AC BD ,在1A AC 中,111,2,3===A A AC AC ,所以22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 21∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.6.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==, 又E 为棱1CC 上的中点,所以14B N =,所以1111234432B BMN N B BMV V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.7.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( )A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE 所成的角的正切为15 【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tan 5DF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V S DE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确; 对于C ,由翻折前知,,AE EC AE ED ⊥⊥,且ECED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D ,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,tan 5DFDBF BF∠=====,所以DB 与平面ABCED 正确; 故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.8.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDE C .若12λ=,当二面角A DE B '--为直二面角时,||A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE ,则A B '===≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()313BCDE f S λλλ=⋅=-,()01λ∈,,()213f λλ'=-,可得λ=()f λ取得最大值()113f λ⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.。

推荐-立体几何易错题集[整理] 精品

推荐-立体几何易错题集[整理] 精品

立体几何易错题集1. 三棱柱ABC —A 1B 1C 1中,P 为侧棱BB 1上任意一点,Q 为底面A 1B 1C 1上任意一点,四棱锥P —AA 1C 1C 的体积为V 1,三棱锥Q —ABC 的体积为V 2,则V 1:V 2是A. 3B. 2C. 3;2D. 2;32. 已知PA 、PB 、PC 是从P 点引出的三条射线,每两条的夹角都是60°,则直线PC 与平面PAB 所成角的余弦值为A.21B.36 C.33 D.23 3. 如图所示,矩形ABCD 中,AB=2AD ,E 、F 、G 分别是AB 、CD 、EF 的中点,把矩形沿EF折成60°的二面角,则异面直线AE 和BG 所成角为A. 55arccosB. 43arctanC. 43arcsinD. 53arctan4. 已知长方体ABCD —A 1B 1C 1D 1中,A1A=AB=2,若棱AB 上存在点P ,使D1P ⊥PC ,则棱AD 的长的取值范围是A. ]1,0(B. ]2,0(C. ]2,0(D. ]2,1(5. 一个三棱锥的所有棱长均为1,那么这个三棱锥在平面α上的射影的面积不可能是A.43 B.23 C.21 D.42 6. 设长方体的对角线之长为4,过每个顶点的三条棱中总有两条棱与对角线的夹角为60°,则长方体的体积是____________.7. 正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体表面上与点A 距离是332的点抗体 合形成一条曲线,这条曲线的长度是A. π33 B.π23 C.π3D. π3658. 若一个简单的F 面体的各面都是三角形,则其顶点数是_____________9. 如图E 、F 分别为正方体的面ADD 1A 1,面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是________________(要求:把可能的图的序号都填上).10.四棱锥P —ABCD 的底面ABCD 是一个正方形,PD ⊥面ABCD ,则这个四棱锥的五个面内,互相垂直的平面共有A. 3对B. 4对C. 5对D. 6对11. 一座大型建筑的地下水泥桩基深a m ,由4个同中心的空心正四棱柱构成(空中俯视该桩基如图所示,阴影部分灌注水泥),自内向外的第k 个正方形的边长a k =2k (k=1,2,…,8),则制造此桩基需灌注的水泥的体积为( )A. 112a m 3B. 56a m 3C. 144a m 3D. 72a m 312. 正方体1111D C B A ABCD -中,若M 、N 分别为1AA 与1BB 的中点,则直线CM 与N D 1所成角为A. 552arccosB. 549arccosC. arccos91 D. 35arccos13. 在正方体1111D C B A ABCD -中,EF 是异面直线AC 和D A 1的公垂线,则EF 和1BD 的关系是A. 相交不垂直B. 相交垂直C. 异面直线D. 互相平行14. 在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC1、C1D1、D1D 、DC 的中点,N 为BC 的中点,点M 在四边形EFGH 及其MN内部运动,设AB 的长为a ,MN 与底面ABCD 所成的角为θ,的长为f (θ)。

高三数学易错立体几何多选题 易错题提高题学能测试试卷

高三数学易错立体几何多选题 易错题提高题学能测试试卷

高三数学易错立体几何多选题 易错题提高题学能测试试卷一、立体几何多选题1.在正三棱柱111ABC A B C -中,AC =11CC =,点D 为BC 中点,则以下结论正确的是( ) A .111122A D AB AC AA =+-B .三棱锥11D ABC -的体积为6C .1AB BC ⊥且1//AB 平面11AC DD .ABC 内到直线AC 、1BB 的距离相等的点的轨迹为抛物线的一部分 【答案】ABD 【分析】A .根据空间向量的加减运算进行计算并判断;B .根据1111D ABC A DB C V V --=,然后计算出对应三棱锥的高AD 和底面积11DB C S,由此求解出三棱锥的体积;C .先假设1AB BC ⊥,然后推出矛盾;取AB 中点E ,根据四点共面判断1AB //平面11AC D 是否成立;D .将问题转化为“ABC 内到直线AC 和点B 的距离相等的点”的轨迹,然后利用抛物线的定义进行判断. 【详解】A .()11111111222A D A A AD AD AA AB AC AA AB AC AA =+=-=+-=+-,故正确; B .1111D AB C A DB C V V --=,因为D 为BC 中点且AB AC =,所以AD BC ⊥, 又因为1BB ⊥平面ABC ,所以1BB AD ⊥且1BB BC B =,所以AD ⊥平面11DB C ,又因为AD ===11111122DB C S BB B C =⨯⨯=,所以1111111133226D AB C A DB C DB C V V AD S --==⨯⨯=⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.2.如图所示,正三角形ABC中,D,E分别为边AB,AC的中点,其中AB=8,把△ADE 沿着DE翻折至A'DE位置,使得二面角A'-DE-B为60°,则下列选项中正确的是()A.点A'到平面BCED的距离为3B.直线A'D与直线CE所成的角的余弦值为5 8C.A'D⊥BDD.四棱锥A'-BCED237【答案】ABD【分析】作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.利用线面垂直的判定定理判定CD⊥平面A'MN,利用面面垂直的判定定理与性质定理得到'A到平面面BCED的高A'H,并根据二面角的平面角,在直角三角形中计算求得A'H的值,从而判定A;根据异面直线所成角的定义找到∠A'DN就是直线A'D与CE所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N,在利用外接球的球心的性质进行得到四棱锥A'-BCED的外接球的球心为O,则ON⊥平面BCED,且OA'=OC,经过计算求解可得半径从而判定D.【详解】如图所示,作AM⊥DE,交DE于M,延长AM交BC于N,连接A'M,A'N.则A'M⊥DE,MN⊥DE, ,∵'A M∩MN=M,∴CD⊥平面A'MN,又∵CD⊂平面ABDC,∴平面A'MN⊥平面ABDC,在平面A'MN中作A'H⊥MN,则A'H⊥平面BCED,∵二面角A'-DE-B为60°,∴∠A'EF=60°,∵正三角形ABC中,AB=8,∴AN=43∴A'M3,∴A'H=A'M sin60°=3,故A正确;连接DN,易得DN‖EC,DN=EC=4,∠A'DN就是直线A'D与CE所成的角,DN=DA'=4,A'N=A'M3,cos∠A'DN=22441252448+-=⨯⨯,故B正确;A'D=DB=4,22121627A N BN+=+=',∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P , 则HP =x ,易得()()22222433x x R +=-+=,解得23x =-,舍去; 故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P , 则HP =x ,易得()()22222433x x R +=++=, 解得23x =, ∴244371699R ⨯=+=,237R ∴=,故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.3.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC 6 【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD =+-=+,所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ,()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD ABAB AD BD ,1116cos ,23⋅<>===⋅B AC D BD BD AC AC,故D 不正确;对C ,112==AC BD ,在1A AC 中,111,2,3===A A AC AC ,所以22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 21∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.4.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -55【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故2252OD OG GD =+=,由矩形的性质知:15OB OE OF OB ====令四棱锥1D BB FE -的外接球半径为R ,则52R =,所以四棱锥1D BB FE -的外接球体积为35435V R π==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.5.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,P 、Q 、R 分别是AB 、1BB 、1A C 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABCD 【分析】本题先建立空间直角坐标系,再运用空间向量在立体几何中的应用逐一判断即可. 【详解】如图所示,建立空间直角坐标系,设(2,,0)P a ,023a ⎡⎤∈⎣⎦,,(2,23,)Q b ,[]0,2b ∈,设11A R AC λ=,得到(22,3,22)R λλλ--,[]0,1λ∈. 1(2,,2)D P a =-,(2,0,)CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;1(22,23,2)D R λλλ=--,12(22)2D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则1(2,23,22)(2,23,2)412440AR AC λλλλλλ⋅=--⋅--=+-+=,解得:15λ=,此时122328232(,,)(,,)0555555AR D R ---⋅=⋅=,1AR D R ⊥,C 正确;113AC A R =,则4234(,,)333R ,14232(,,)333D R =-,设平面1BDC 的法向量为(,,)n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,1,3)n =-,故10n D R ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABCD.【点睛】本题考查了空间向量在立体几何中的应用,是偏难题.6.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD的中点,所以)2Q , 平面PAD 的一个法向量为(0,1,0)m =,6(QC =,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,22PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则3602260n AQ x zn AC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===, 所以cos 3θ=,所以B 正确; 三棱锥B ACQ -的体积为1132BACQ Q ABC ABCV V SOP --==⋅ 1116322=⨯⨯⨯=,所以C 不正确;设四棱锥Q ABCD -外接球的球心为(0,3,)M a ,则MQ MD =, 所以()()()2222226323632a a ⎛⎫⎛⎫++-=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得0a =,即(0,3,0)M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为22x ,所以22236x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为2342434x ⨯=,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.7.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A .棱的高与底边长的比为22B .侧棱与底面所成的角为4π C 2D .侧棱与底面所成的角为3π 【答案】AB【分析】设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a =,然后可得侧面积为242108a a+,运用导数可求出当32a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案.【详解】设四棱锥S ABCD -的高为h ,底面边长为a可得21183V a h ==,即254h a= 所以其侧面积为2222244215410842244a a a h a a a⋅⋅+=+=+令()242108f a a a =+,则()23321084f a a a ⨯'=- 令()233210840f a a a ⨯'=-=得32a = 当(0,32a ∈时()0f a '<,()f a 单调递减 当()32,a ∈+∞时()0f a '>,()f a 单调递增 所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小此时3h =2,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO =所以4SAO π∠=,故B 正确,D 错误故选:AB【点睛】本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.8.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π【答案】BD【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断; 对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可.【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =, 对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠, 整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确.故选:BD.【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.。

2024年高考数学几何历年真题错误常见类型分析

2024年高考数学几何历年真题错误常见类型分析

2024年高考数学几何历年真题错误常见类型分析高考数学几何部分一直是考生们最为重视的内容之一,也是很多考生容易出错的地方。

本文将对2024年高考数学几何部分历年真题中常见的错误类型进行分析,帮助考生们更好地理解和掌握这些知识点,提高应对数学几何题的能力。

一、平面几何题型的错误类型分析1. 图形判断错误:这种类型的错误主要表现为对图形的判断出现错误,例如判定两条直线平行或垂直时弄混方向,或者判断角平分线时出现错误。

这类错误的原因主要是考生对图形的性质理解不够深入或者观察不细致。

解决方法:要对每个图形的性质进行深入理解,多做题、多画图,注重观察,不要随意下结论。

2. 同一图形的不同表达错误:同一个几何图形可以有不同表达方式,当考生没有注意到这些不同表达方式时,容易在计算过程中出现错误。

解决方法:在解答题目时,多角度地观察题目中给出的几何图形,并且学会转化不同的图形表达方式。

3. 判定条件不满足错误:在判断两条线段相等或两个三角形全等的时候,考生需要注意每个条件的具体含义。

有时候考生可能会忽略某个判定条件,导致判断结果出错。

解决方法:仔细审题,理解和注意题目中给出的判定条件的含义,并逐个进行检查。

二、立体几何题型的错误类型分析1. 空间图形理解错误:立体几何是在空间中进行,需要考生具备一定的空间想象力。

有些考生在解答空间立体图形题目时,容易将二维图形的思维方式带入,导致错误。

解决方法:多做立体几何的题目,培养空间想象力;可以在纸上画出空间图形,有助于更好地理解和解答题目。

2. 体积、表面积计算错误:计算体积和表面积是立体几何的重要内容,但是有些考生在计算过程中容易出错,如计算公式的使用错误、边长或高度的计算不准确等。

解决方法:熟练掌握体积和表面积的计算公式,并在计算过程中注意细节,准确计算。

3. 空间角度判断错误:在解决立体几何题时,对于空间角度的判断是重要的,但有些考生可能在角度比较和转化的过程中出现错误。

2024年高考数学立体几何复习试卷及答案解析

2024年高考数学立体几何复习试卷及答案解析

2024年高考数学立体几何复习试卷及答案
一、选择题
1.已知直线l和平面α,若l∥α,P∈α,则过点P且平行于l的直线()
A.只有一条,不在平面α内
B.只有一条,且在平面α内
C.有无数条,一定在平面α内
D.有无数条,不一定在平面α内
答案B
解析假设过点P且平行于l的直线有两条m与n,则m∥l且n∥l,由平行公理得m∥n,这与两条直线m与n相交与点P相矛盾,故过点P且平行于l的直线只有一条,又因为点P 在平面内,所以过点P且平行于l的直线只有一条且在平面内.故选B.
2.设m,n为两条不同的直线,α为平面,则下列结论正确的是()
A.m⊥n,m∥α⇒n⊥αB.m⊥n,m⊥α⇒n∥α
C.m∥n,m⊥α⇒n⊥αD.m∥n,m∥α⇒n∥α
答案C
解析对于A,若m⊥n,m∥α时,可能n⊂α或斜交,故错误;
对于B,m⊥n,m⊥α⇒n∥α或n⊂α,故错误;
对于C,m∥n,m⊥α⇒n⊥α,正确;
对于D,m∥n,m∥α⇒n∥α或n⊂α,故错误.
故选C.
3.已知l⊥平面α,直线m⊂平面β.有下面四个命题:
①α∥β⇒l⊥m;②α⊥β⇒l∥m;
③l∥m⇒α⊥β;④l⊥m⇒α∥β.
其中正确的命题是()
A.①②B.③④
C.②④D.①③
答案D
解析∵l⊥α,α∥β,∴l⊥β,∵m⊂β,∴l⊥m,故①正确;∵l∥m,l⊥α,∴m⊥α,又∵m⊂β,∴α⊥β,故③正确.
4.如图所示,在四面体D-ABC中,若AB=BC,AD=CD,E是AC的中点,则下列命题中正确的是()
第1页共11页。

高考数学压轴专题人教版备战高考《空间向量与立体几何》易错题汇编及解析

高考数学压轴专题人教版备战高考《空间向量与立体几何》易错题汇编及解析

【高中数学】数学《空间向量与立体几何》复习知识点一、选择题1.已知m ,l 是两条不同的直线,α,β是两个不同的平面,则下列可以推出αβ⊥的是( )A .m l ⊥,m β⊂,l α⊥B .m l ⊥,l αβ=I ,m α⊂C .//m l ,m α⊥,l β⊥D .l α⊥,//m l ,//m β【答案】D 【解析】 【分析】A ,有可能出现α,β平行这种情况.B ,会出现平面α,β相交但不垂直的情况.C ,根据面面平行的性质定理判断.D ,根据面面垂直的判定定理判断. 【详解】对于A ,m l ⊥,m β⊂,l α⊥,则//αβ或α,β相交,故A 错误; 对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;对于C ,因为//m l ,m α⊥,则l α⊥,由因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确. 故选:D 【点睛】本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.2.《乌鸦喝水》是《伊索寓言》中一个寓言故事,通过讲述已知乌鸦喝水的故事,告诉人们遇到困难要运用智慧,认真思考才能让问题迎刃而解的道理,如图2所示,乌鸦想喝水,发现有一个锥形瓶,上面部分是圆柱体,下面部分是圆台,瓶口直径为3厘米,瓶底直径为9厘米,瓶口距瓶颈为23厘米,瓶颈到水位线距离和水位线到瓶底距离均为332厘米,现将1颗石子投入瓶中,发现水位线上移3厘米,若只有当水位线到达瓶口时乌鸦才能喝到水,则乌鸦共需要投入的石子数量至少是( )A .2颗B .3颗C .4颗D .5颗【答案】C 【解析】 【分析】利用图形中的数据,分别算出石子的体积和空瓶的体积即可. 【详解】如图,9,3,33AB cm EF GH cm LO cm ====所以60A ∠=︒,原水位线直径6CD cm =,投入石子后,水位线直径5IJ cm = 则由圆台的体积公式可得石子的体积为:()22319133MN CN IM CN IM ππ⋅⋅++⋅= 空瓶的体积为:()22213LN CN EL CN EL EL KL ππ⋅++⋅+⋅⋅633363993888πππ=+=()99329783,491913ππ=∈ 所以至少需要4颗石子 故选:C 【点睛】本题考查的是圆台和圆柱体积的算法,掌握其公式是解题的关键.3.设α、β是两个不同的平面,m 、n 是两条不同的直线,下列说法正确的是( ) A .若α⊥β,α∩β=m ,m ⊥n ,则n ⊥β B .若α⊥β,n ∥α,则n ⊥β C .若m ∥α,m ∥β,则α∥β D .若m ⊥α,m ⊥β,n ⊥α,则n ⊥β 【答案】D 【解析】【分析】根据直线、平面平行垂直的关系进行判断. 【详解】由α、β是两个不同的平面,m 、n 是两条不同的直线,知:在A 中,若α⊥β,α∩β=m ,m ⊥n ,则n 与β相交、平行或n ⊂β,故A 错误; 在B 中,若α⊥β,n ∥α,则n 与β相交、平行或n ⊂β,故B 错误; 在C 中,若m ∥α,m ∥β,则α与β相交或平行,故C 错误; 在D 中,若m ⊥α,m ⊥β,则α∥β, ∴若n ⊥α,则n ⊥β,故D 正确. 故选:D. 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.4.已知圆锥的母线与底面所成的角等于60°,且该圆锥内接于球O ,则球O 与圆锥的表面积之比等于( ) A .4:3 B .3:4 C .16:9 D .9:16【答案】C 【解析】 【分析】由圆锥的母线与底面所成的角等于60°,可知过高的截面为等边三角形,设底面直径,可以求出其表面积,根据圆锥内接于球O ,在高的截面中可以求出其半径,可求其表面积,可求比值. 【详解】设圆锥底面直径为2r ,圆锥的母线与底面所成的角等于60°,则母线长为2r , 则圆锥的底面积为:2r π,侧面积为1222r r π⋅, 则圆锥的表面积为2212232r r r r πππ+⋅=, 该圆锥内接于球O ,则球在圆锥过高的截面中的截面为圆,即为边长为2r 的等边三角形的内切圆,则半径为23R r =,表面积为221643r R ππ=, 则球O 与圆锥的表面积之比等于2216:316:93r r ππ=,故选:C . 【点睛】本题考查圆锥的性质,以及其外接球,表面积,属于中档题.5.已知ABC V 的三个顶点在以O 为球心的球面上,且22cos 3A =,1BC =,3AC =,三棱锥O ABC -的体积为14,则球O 的表面积为( ) A .36π B .16πC .12πD .163π【答案】B 【解析】 【分析】根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积. 【详解】由余弦定理得22229122cos 263AB AC BC AB A AB AC AB +-+-===g ,解得22AB =, 222AB BC AC ∴+=,即AB BC ⊥.AC ∴为平面ABC 所在球截面的直径.作OD ⊥平面ABC ,则D 为AC 的中点, 11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯⨯=Q g , 7OD ∴=. 222OA OD AD ∴=+=. 2416O S OA ππ∴=⋅=球.故选:B .【点睛】本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.6.如图,在正方体1111ABCD A B C D -,点P 在线段1BC 上运动,则下列判断正确的是( )①平面1PB D ⊥平面1ACD ②1//A P 平面1ACD③异面直线1A P 与1AD 所成角的取值范围是0,3π⎛⎤ ⎥⎝⎦④三棱锥1D APC -的体积不变 A .①② B .①②④C .③④D .①④【答案】B 【解析】 【分析】由面面垂直的判定定理判断①,由面面平行的性质定理判断②,求出P 在特殊位置处时异面直线所成的角,判断③,由换底求体积法判断④. 【详解】正方体中易证直线AC ⊥平面11BDD B ,从而有1AC B D ⊥,同理有11B D AD ^,证得1B D ⊥平面1ACD ,由面面垂直判定定理得平面1PB D ⊥平面1ACD ,①正确;正方体中11//A B CD ,11//BC AD ,从而可得线面平行,然后可得面面平行,即平面11A BC //平面1ACD ,而1A P ⊂平面11A BC ,从而得1//A P 平面1ACD ,②正确;当P 是1BC 中点时,1A P 在平面11A B CD 内,正方体中仿照上面可证1AD ⊥平面11A B CD ,从而11AD A P ⊥,1A P 与1AD 所成角为90︒.③错;∵11D APC P AD C V V --=,由1//BC 平面1ACD ,知P 在线段1BC 上移动时,P 到平面1ACD 距离相等,因此1P AD C V -不变,④正确. 故选:B . 【点睛】本题考查面面垂直的判定定理、面面平行的性质定理、异面直线所成的角、棱锥的体积等知识,考查学生的空间想象能力,属于中档题.7.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D 【解析】 【分析】先还原几何体,再根据锥体体积公式求结果. 【详解】几何体为一个三棱锥,高为33333,,所以体积为1127=33333=322V ⨯⨯⨯,选D. 【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.8.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥; ②若//αβ,m α⊥,则m β⊥; ③若//m α,//n α,则//m n ; ④若m α⊥,αβ⊥,则//m β. 其中真命题的序号为( ) A .①和② B .②和③C .③和④D .①和④【答案】A 【解析】 【分析】逐一分析命题①②③④的正误,可得出合适的选项. 【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确; 对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误. 故选:A. 【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.9.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B .230C .27D .47【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B 【点睛】本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.10.设α,β是两个不同的平面,m 是直线且m α⊂.“m βP ”是“αβP ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.11.如下图,在正方体1111ABCD A B C D -中,点E F 、分别为棱1BB ,1CC 的中点,点O 为上底面的中心,过E F O 、、三点的平面把正方体分为两部分,其中含1A 的部分为1V ,不含1A 的部分为2V ,连接1A 和2V 的任一点M ,设1A M 与平面1111D C B A 所成角为α,则sin α的最大值为( ).A .22B 25C 26D 26【答案】B 【解析】 【分析】连接EF ,可证平行四边形EFGH 为截面,由题意可找到1A M 与平面1111D C B A 所成的角,进而得到sinα的最大值. 【详解】连接EF ,因为EF//面ABCD,所以过EFO 的平面与平面ABCD 的交线一定是过点O 且与EF 平行的直线,过点O 作GH//BC 交CD 于点G,交AB 于H 点,则GH//EF,连接EH ,FG,则平行四边形EFGH 为截面,则五棱柱1111A B EHA D C FGD -为1V ,三棱柱EBH-FCG 为2V ,设M 点为2V 的任一点,过M 点作底面1111D C B A 的垂线,垂足为N ,连接1A N ,则1MA N ∠即为1A M 与平面1111D C B A 所成的角,所以1MA N ∠=α,因为sinα=1MNA M,要使α的正弦最大,必须MN 最大,1A M 最小,当点M 与点H 重合时符合题意,故sinα的最大值为11=MN HN A M A H =25, 故选B【点睛】本题考查空间中的平行关系与平面公理的应用,考查线面角的求法,属于中档题.12.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( ) A .若,与所成的角相等,则B .若,,则C .若,,则D .若,,则【答案】C 【解析】试题分析:若,与所成的角相等,则或,相交或,异面;A 错. 若,,则或,B 错. 若,,则正确. D .若,,则,相交或,异面,D 错考点:直线与平面,平面与平面的位置关系13.已知正三棱柱111ABC A B C -的所有棱长都相等,D 是11A B 的中点,则AD 与平面11BCC B 所成角的正弦值为( )A .55B .255C .1010D .1510【答案】D 【解析】 【分析】先找出直线AD 与平面11BCC B 所成角,然后在1B EF V 中,求出1sin EB F ∠,即可得到本题答案. 【详解】如图,取AB 中点E ,作EF BC ⊥于F ,连接11,B E B F ,则1EB F ∠即为AD 与平面11BCC B 所成角. 不妨设棱长为4,则1,2BF BE ==,13,25EF B E ∴==1315sin 25EB F ∴∠==. 故选:D 【点睛】本题主要考查直线与平面所成角的求法,找出线面所成角是解决此类题目的关键.14.某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )A .22B .23C .4D .26【答案】B【解析】 解:如图所示,该几何体是棱长为2的正方体中的三棱锥P ABC - ,其中面积最大的面为:1232232PAC S V =⨯⨯= . 本题选择B 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.15.在正方体1111ABCD A B C D -中,E 为棱1CC 上一点且12CE EC =,则异面直线AE 与1A B 所成角的余弦值为( )A .1144B 11C .1144D .1111【答案】B【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AE 与1A B 所成角的余弦值.【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设3AB =,则()3,0,0A ,()0,3,2E ,()13,0,3A ,()3,3,0B,()3,3,2AE =-u u u r ,()10,3,3A B =-u u u r , 设异面直线AE 与1A B 所成角为θ,则异面直线AE 与1A B 所成角的余弦值为: 11311cos 222218AE A B AE A Bθ⋅===⋅⋅u u u r u u u r u u u r u u u r . 故选:B .【点睛】本题考查利用向量法求解异面直线所成角的余弦值,难度一般.已知1l 的方向向量为a r ,2l 的方向向量为b r ,则异面直线12,l l 所成角的余弦值为a b a b⋅⋅r r r r .16.如图,在正方体1111ABCD A B C D -中,M , N 分别为棱111,C D CC 的中点,以下四个结论:①直线DM 与1CC 是相交直线;②直线AM 与NB 是平行直线;③直线BN 与1MB 是异面直线;④直线AM 与1DD 是异面直线.其中正确的个数为( )A .1B .2C .3D .4【答案】C【分析】根据正方体的几何特征,可通过判断每个选项中的两条直线字母表示的点是否共面;如果共面,则可能是相交或者平行;若不共面,则是异面.【详解】①:1CC 与DM 是共面的,且不平行,所以必定相交,故正确;②:若AM BN 、平行,又AD BC 、平行且,AM AD A BN BC B ⋂=⋂=,所以平面BNC P 平面ADM ,明显不正确,故错误;③:1BN MB 、不共面,所以是异面直线,故正确;④:1AM DD 、不共面,所以是异面直线,故正确;故选C.【点睛】异面直线的判断方法:一条直线上两点与另外一条直线上两点不共面,那么两条直线异面;反之则为共面直线,可能是平行也可能是相交.17.已知直三棱柱111ABC A B C -的底面为直角三角形,且两直角边长分别为1三棱柱的高为A .323πB .163πC .83πD .643π 【答案】A【解析】【分析】求得该直三棱柱的底面外接圆直径为22r ==,再根据球的性质,求得外接球的直径2R =,利用球的体积公式,即可求解.【详解】由题意可得该直三棱柱的底面外接圆直径为221r r ==⇒=,根据球的性质,可得外接球的直径为24R ===,解得2R =, 所以该三棱柱的外接球的体积为343233V R ππ==,故选A. 【点睛】本题主要考查了球的体积的计算,以及组合体的性质的应用,其中解答中找出合适的模型,合理利用球的性质求得外接球的半径是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.18.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为A .152πB .12πC .112πD .212π 【答案】A【解析】【分析】 由三视图可知,该几何体为由18的球体和14的圆锥体组成,结合三视图中的数据,利用球和圆锥的体积公式求解即可.【详解】 由三视图可知,该几何体为由18的球体和14的圆锥体组成, 所以所求几何体的体积为11+84V V V =球圆锥, 因为31149=3=8832V ππ⨯⨯球, 221111=34344312V r h πππ⨯⨯=⨯⨯⨯=圆锥, 所以915322V πππ=+=,即所求几何体的体积为152π. 故选:A【点睛】本题考查三视图还原几何体及球和圆锥的体积公式;考查学生的空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.19.设,αβ是两个不同的平面,,l m 是两条不同的直线,且l α⊂,m β⊂,则( ) A .若//αβ,则//l mB .若//m a ,则//αβC .若m α⊥,则αβ⊥D .若αβ⊥,则//l m【答案】C【解析】【分析】根据空间线线、线面、面面的位置关系,对选项进行逐一判断可得答案.【详解】A. 若//αβ,则l 与m 可能平行,可能异面,所以A 不正确.B. 若//m a ,则α与β可能平行,可能相交,所以B 不正确.C. 若m α⊥,由m β⊂,根据面面垂直的判定定理可得αβ⊥,所以C 正确. D 若αβ⊥,且l α⊂,m β⊂,则l 与m 可能平行,可能异面,可能相交, 所以D 不正确.【点睛】本题考查空间线线、线面、面面的位置判断定理和性质定理,考查空间想象能力,属于基础题.20.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( )A .15B .5C .6D .10 【答案】D【解析】【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,设正三棱柱的各棱长为2,则115,22,3C N BC BN ===,设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得222(5)(22)(3)10cos 42522θ+-==⨯⨯, 即异面直线AM 与1BC 所成角的余弦值为10,故选D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.。

人教版高三数学下学期立体几何多选题单元 易错题难题提高题学能测试试题

人教版高三数学下学期立体几何多选题单元 易错题难题提高题学能测试试题

人教版高三数学下学期立体几何多选题单元 易错题难题提高题学能测试试题一、立体几何多选题1.在三棱柱111ABC A B C -中,ABC ∆是边长为23的等边三角形,侧棱长为43,则( )A .直线1A C 与直线1BB 之间距离的最大值为3B .若1A 在底面ABC 上的投影恰为ABC ∆的中心,则直线1AA 与底面所成角为60︒ C .若三棱柱的侧棱垂直于底面,则异面直线AB 与1A C 所成的角为30D .若三棱柱的侧棱垂直于底面,则其外接球表面积为64π 【答案】AD 【分析】建立空间直角坐标系,用向量法求解. 【详解】如图示,以A 为原点,AC 为y 轴正方向,Ax 为x 轴正方向,过A 点垂直于面ABC 的向上方向为z 轴正方向建系,则()()()0,0,0,3,0,0,23,0,A B C 设()()()100010001000,,,3,3,,,23,,A x y z B x y z C x y z ++所以()()()1000100011,23,,,,,3,3,0,AC x y z BB x y z A B =---== 对于A:设n 为直线1A C 与直线1BB 的公垂线的方向向量,则有:11·0·0AC n BB n ⎧=⎪⎨=⎪⎩,即()()0000002300x x y y zz x x y y zz ⎧-+-=⎪⎨++=⎪⎩解得:()00,0n z x =- 设直线1A C 与直线1BB 之间距离为d ,则22011222200009||||z A B nd d x z n x z ===++ 22009x d ≥∴≤,即3d ≤,故A 正确;对于B :若1A 在底面ABC 上的投影恰为ABC ∆的中心,则()11,3,211A 底面法向量()()10,0,1,1,3,211m AA ==,设直线 1AA 与底面所成角为θ,则:121133sin |cos ,|6143AA n θ===⨯,故B 错误; 对于C : 三棱柱的侧棱垂直于底面时,则()()()1110,0,43,3,3,43,0,23,43,A B C则()()13,3,0,0,23,43,AB AC ==-设异面直线AB 与1A C 所成的角为θ,则1115cos |cos ,|||||||23215AB AC AB AC AB AC θ====⨯,故C 错误;对于D :若三棱柱的侧棱垂直于底面时,外接球的球心O 为上下底面中心DD 1连线的中点,所以外接球的半径()222324R =+=,所以2464S R ππ==.故D 正确故选:AD 【点睛】向量法解决立体几何问题的关键: (1)建立合适的坐标系; (2)把要用到的向量正确表示; (3)利用向量法证明或计算.2.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -55【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故2252OD OG GD =+=,由矩形的性质知:15OB OE OF OB ====令四棱锥1D BB FE -的外接球半径为R ,则52R =,所以四棱锥1D BB FE -的外接球体积为35435V R ππ==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.3.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 3C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ;【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.4.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =,2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义;(2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.5.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==, 又E 为棱1CC 上的中点,所以14B N =, 所以1111234432B BMN N B BM V V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误;对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.6.如图,正方体1111ABCD A B C D -的棱长为3,点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=.动点M 在侧面11ADD A 内(包含边界)运动,且满足直线//BM 平面1D EF ,则( )A .过1D ,E ,F 的平面截正方体所得截面为等腰梯形B .三棱锥1D EFM -的体积为定值C .动点M 10D .过B ,E ,M 的平面截正方体所得截面面积的最小值为10【答案】BCD 【分析】由题做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,进而计算即可排除A 选项;根据//BM平面1D EF ,由等体积转化法得1111D EFM M D EF B D EF D BEFV V V V ----===即可得B 选项正确;取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知M 的轨迹为线段HI ,故C 选项正确;过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,易知过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而得当H 位于点I 时,截面面积最小,为四边形ABEI 的面积,且面积为S AB BE =⋅= 【详解】解:对于A 选项,如图,取BF 中点G ,连接1A G ,由点E ,F 分别在1CC ,1BB 上,12C E EC →→=,12BF FB →→=,故四边形11A D EG 为平行四边形,故11//AGD E ,由于在11A B G △,F 为1B G 中点,当N 为11A B 中点时,有11////NF A G D E ,故过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,此时1D N ==,EF ==1D EFN 不是等腰梯形,故A 选项错误;对于B 选项,三棱锥1D EFM -的体积等于三棱锥1M D EF -的体积,由于//BM平面1D EF ,故三棱锥1M D EF -的体积等于三棱锥1B D EF -的体积,三棱锥1B D EF -的体积等于三棱锥1D BEF -的体积,而三棱锥1D BEF -的体积为定值,故B 选项正确; 对于C 选项,取1AA 靠近1A 点的三等分点H , 1DD 靠近D 点的三等分点I ,易知1////HB AG NF ,1//BI D F ,由于1,HI BI I NFD F F ==,故平面//BHI 平面1D EF ,故M 的轨迹为线段HI ,故C 选项正确;对于D 选项,过M 点做BE 的平行线交1AA 于P ,交1DD 于O ,连接,BP OE ,则过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,易知当H 位于点I 时,平行四边形BPOE 边BP 最小,且为AB ,此时截面平行四边形BPOE 的面积最小,为四边形ABEI 的面积,且面积为S AB BE =⋅=D 选项正确; 故选:BCD【点睛】本题解题的关键在于根据题意,依次做出过1D ,E ,F 的平面截正方体所得截面为梯形1D EFN ,过B ,E ,M 的平面截正方体所得截面即为平行四边形BPOE ,进而讨论AD 选项,通过//BM 平面1D EF ,并结合等体积转化法得1111D EFM M D EF B D EF D BEF V V V V ----===知B 选项正确,通过构造面面平行得M 的轨迹为线段HI ,进而讨论C 选项,考查回归转化思想和空间思维能力,是中档题.7.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++ C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ =【答案】BC【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得.【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确; 对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA +-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误.故选:BC【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点:(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.(3)在立体几何中三角形法则、平行四边形法则仍然成立.8.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上C .1AP BC ⊥D .AP ∥平面11AC D 【答案】BD【分析】对于A ,1111111113326P AA D AA D V S CD -=⋅=⨯⨯⨯⨯=, 对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可.【详解】对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D ,所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长,所以1111111113326P AA D AA D V S CD -=⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x ,所以(,0,)CP x x =,所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-,所以111AP BC x x ⋅=-+=,所以1AP BC ⊥不成立,C 错误;对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D ,所以11(1,0,1),(0,1,1)DA DC ==, 设平面11AC D 的法向量为(,,)n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 令1x =,则1,1z y =-=,所以(1,1,1)n =-,所以110AP n x x ⋅=-+-=,所以AP n ⊥,所以AP ∥平面11AC D ,D 正确,故选:BD【点睛】此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.9.如图,线段AB 为圆O 的直径,点E ,F 在圆O 上,//EF AB ,矩形ABCD 所在平面和圆O 所在平面垂直,且2AB =,1EF AD ==,则下述正确的是( )A .//OF 平面BCEB .BF ⊥平面ADFC .点A 到平面CDFE 的距离为217D .三棱锥C BEF -5π【答案】ABC【分析】由1EF OB ==,//EF OB ,易证//OF 平面BCE ,A 正确;B , 由所矩形ABCD 所在平面和圆O 所在平面垂直, 易证AD ⊥平面ABEF ,所以AD BF ⊥,由线段AB 为圆O 的直径,所以BF FA ⊥,易证故B 正确.C ,由C DAF A CDF V V --=可求点A 到平面CDFE 的距离为7,C 正确. D ,确定线段DB 的中点M 是三棱锥C BEF -外接球心,进一步可求其体积,可判断D 错误.【详解】解:1EF OB ==,//EF OB ,四边形OFEB 为平行四边形,所以//OF BE , OF ⊄平面BCE ,BE ⊂平面BCE ,所以//OF 平面BCE ,故A 正确.线段AB 为圆O 的直径,所以BF FA ⊥,矩形ABCD 所在平面和圆O 所在平面垂直,平面ABCD平面ABEF AB =,AD ⊂平面 ABCD ,所以AD ⊥平面ABEF ,BF ⊂平面ABEF ,所以AD BF ⊥AD ⊂平面ADF ,AF ⊂平面ADF ,AD AF A =,所以BF ⊥平面ADF ,故B 正确.1OF OE EF ===,OFE △是正三角形,所以1EF BE AF ===,//DA BC ,所以BC ⊥平面ABEF ,BC BF ⊥,BF =2CF ==,DF ===2AB CD ==,CDF 是等腰三角形,CDF 的边DF 上的高2==,1222CDF S =⨯=△, //DA BC ,AD ⊂平面ADF ,BC ⊄平面ADF ,//BC平面ADF ,点C 到平面ADF 的距离为BF =111122DAF S =⨯⨯=△,C DAF A CDF V V --=, 设点A 到平面CDFE 的距离为h ,1133ADF CFD S FB S h ⨯⨯=⨯⨯△△,1113232h ⨯=⨯,所以h =,故C 正确. 取DB 的中点M ,则//MO AD ,12MO =,所以MO ⊥平面CDFE ,所以21512ME MF MB MC ⎛⎫====+= ⎪⎝⎭所以M 是三棱锥C BEF -5, 三棱锥C BEF -外接球的体积为334455533V r ππ==⨯=⎝⎭,故D 错误, 故选:ABC.【点睛】综合考查线面平行与垂直的判断,求点面距离以及三棱锥的外接球的体积求法,难题.10.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案. 【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡∈⎣,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,333R ⎛⎫ ⎪ ⎪⎝⎭,14232,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-, 故10D R n ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.。

高中数学易错题库

高中数学易错题库

第一章 空间向量与立体几何易错点一:空间向量的加减运算1.已知正方体ABCD-A 1B 1C 1D 1中,AC 1的中点为O ,则下列命题中正确的是( ) A .OA OD +与11OB OC +是一对相等向量 B .OB OC -与11OA OD -是一对相反向量 C .1OA OA -与1OC OC -是一对相等向量D .OA OB OC OD +++与1111OA OB OC OD +++是一对相反向量2.已知在正方体1111ABCD A B C D -中,P ,M 为空间任意两点,如果1111764PM PB BA AA A D =++-,那么点M 必( ) A .在平面1BAD 内 B .在平面1BA D 内 C .在平面11BA D 内D .在平面11AB C 内3.已知平行六面体ABCD-A'B'C'D',则下列四式中:①AB CB AC -=;②''''AC AB B C CC =++;③''AA CC =;④'''AB BB BC C C AC +++=. 其中正确的是_____.易错点二:空间向量的数量积1.平行六面体(底面为平行四边形的四棱柱)1111ABCD A B C D -所有棱长都为1,且1160,45,A AD A AB DAB ︒∠=∠=∠=︒则1BD =( ) A .31-B .21-C .32-D .32-2.在空间直角坐标系O xyz -中,(0,0,0),(22,0,0),(0,22,0)O E F ,B 为EF 的中点,C 为空间一点且满足||||3CO CB ==,若1cos ,6EF BC <>=,,则OC OF ⋅=( ) A .9B .7C .5D .33.设a b c ,,是单位向量,且0⋅=a b ,则()()a cbc -⋅-的最小值为__________. 易错点三:用空间基底表示向量1.在三棱柱111A B C ABC -中,D 是四边形11BB C C 的中心,且1,,AA a AB b AC c ===,则1A D =( )A .111222a b c ++B .111222a b c -+C .111222a b c +-D .111222a b c -++2.如图,在三棱锥O ABC -中,点D 是棱AC 的中点,若OA a =,OB b =,OC c =,则BD 等于( )A .1122a b c -+B .a b c +-C .a b c -+D .1122a b c -+-3.如图,在空间四边形OABC 中,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且3MG GN =,用向量OA 、OB 、OC 表示向量OG ,设OG x OA y OB z OC =⋅+⋅+⋅,则x 、y 、z 的和为______.易错点四:空间向量的坐标运算1.已知点A(3,3,-5),B(2,-3,1),C 为线段AB 上一点,且23AC AB = ,则点C 的坐标为( ) A . 715(,,)222-B . 3(,3,2)8-C . 7(,1,1)3--D . 573(,,)222-2.已知()1,1,2P -,()23,1,0P 、()30,1,3P ,则向量12PP 与13PP 的夹角是( )A .30B .45C .60D .903.如图,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别为D 1C 1,B 1C 1的中点,若以{}1,,AB AD AA 为基底,则向量AE 的坐标为___,向量AF 的坐标为___,向量1AC 的坐标为___.易错点五:空间向量运算的坐标表示1.在空间直角坐标系中,已知()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -,则直线AD 与BC 的位置关系是( ) A .平行B .垂直C .相交但不垂直D .无法判定2.已知A(1,2,3),B(2,1,2),C(1,1,2),O 为坐标原点,点D 在直线OC 上运动,则当DA ·DB 取最小值时,点D 的坐标为A .444,,333⎛⎫ ⎪⎝⎭B .848,,333⎛⎫ ⎪⎝⎭C .448,,333⎛⎫ ⎪⎝⎭D .884,,333⎛⎫ ⎪⎝⎭3.已知AB =(1,5,-2),BC =(3,1,z ),若AB ⊥BC ,BP =(1x -,y ,-3),且BP ⊥平面ABC ,则实数x y +=________. 易错点六:空间位置关系的向量证明1.已知正方体1111ABCD A B C D -,E 是棱BC 的中点,则在棱1CC 上存在点F ,使得( ) A .1//AF D E B .1AF D E ⊥ C .//AF 平面11C D ED .AF ⊥平面11C D E2.在正方体ABCD-A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M=AN=23a,则MN 与平面BB 1C 1C 的位置关系是( ) A .相交B .平行C .垂直D .不能确定3.若直线l 1的方向向量为1u =(1,3,2),直线l 2上有两点A(1,0,1),B(2,-1,2),则两直线的位置关系是_____. 易错点七:异面直线夹角的向量求法1.如图所示,在三棱锥P –ABC 中,PA ⊥平面ABC ,D 是棱PB 的中点,已知PA =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为A .3010-B .305-C .305D .30102.如图所示,在正方体1111ABCD A B C D -中,若E 为11D C 的中点,则11AC →与DE →所成角的余弦值为( )A .1010B .13C .24D .553.在三棱锥O ABC -中,已知OA 、OB 、OC 两两垂直且相等,点P 、Q 分别是线段BC 和OA 上的动点,且满足12BP BC ≤,12AQ AO ≥,则PQ 和OB 所成角的余弦的取值范围是___________.易错点八:线面角的向量求法A .6πB .3π C .2π D .56π2.在棱长为1的正方体1111ABCD A B C D -中,点M 为棱1CC 的中点,则直线1B M 与平面11A D M 所成角的正弦值是( )A .215B .25 C .35D .453.在正四棱锥S -ABCD 中,O 为顶点在底面内的投影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 的夹角是________.易错点九:面面角的向量求法1.如图,在空间直角坐标系D xyz -中,四棱柱1111ABCD A B C D -为长方体,12AA AB AD ==,点E ,F 分别为11C D ,1A B 的中点,则二面角11B A B E --的余弦值为( )A .33-B .32-C .33D .322.如图,在空间直角坐标系Dxyz 中,四棱柱1111ABCD A B C D -为长方体, 12AA AB AD ==,点E 为11C D 的中点,则二面角11B A B E --的余弦值为( )A .33-B .32-C .33D .323.如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上.若二面角1D EC D --的大小为4π,则AE =__________.第二章 直线和圆的方程易错点一:两条直线平行和垂直的判定1.若过点A (2,-2),B (5,6)的直线与过点P (2m ,1),Q (-1,-m )的直线平行,则m 的值为( ) A .-1B .-513C .2D .122.若直线a ,b 的斜率分别为方程2410x x --=的两个根,则a 与b 的位置关系为( ) A .互相平行B .互相重合C .互相垂直D .无法确定3.经过点A (1,2)和点B (-3,2)的直线l 1与经过点C (4,5)和点D (a ,-7)的直线l 2垂直,则a =________. 易错点二:直线的方程1.在x 轴和y 轴上的截距分别为4-和5的直线方程是( ) A .154x y +=- B .145x y +=- C .145x y +=- D .154x y +=- 2.直线()2(2)232m x m m y m ++--=在x 轴上的截距为3,则实数m 的值为( )A .65B .6-C .65-D .63.过点P (1,2)且在两坐标轴上截距的和为0的直线方程为____________________. 易错点三:两条直线的交点坐标1.直线x -2y +3=0与2x -y +3=0的交点坐标为( ) A .(-1,1) B .(1,-1) C .(1,1)D .(-1,-1)2.两条直线1l :x =2和2l :32120x y +-=的交点坐标是 A .(2,3)B .(2,3)-C .(3,2)-D .(3,2)-3.已知直线1:l 3250x y +-=与直线2:l 4110x ay +-=,且12l l ⊥,则直线1l 与直线2l 的交点坐标是______. 易错点四:两点间的距离公式1.点()2,5P -为平面直角坐标系内一点,线段PM 的中点是()1,0,那么点M 到原点O 的距离为( ) A .41B .41C .39D .392.光线从点(3,5)A -射到x 轴上,经x 轴反射后经过点(2,10)B ,则光线从A 到B 的距离为 A .52B .25C .510D .1053.已知点()2,1A ,点()5,1B -,则AB =________. 易错点五:圆的方程1.以()3,1A -,()2,2B -为直径的圆的方程是 A .2280x y x y +---= B .2290x y x y +---= C .2280x y x y +++-=D .2290x y x y +++-=2.圆224630x y x y ++--=的标准方程为( ) A .22(2)(3)16x y -+-= B .22(2)(3)16x y -++= C .22(2)(3)16x y ++-=D .22(2)(3)16x y +++=3.圆心为直线20x y -+=与直线280x y +-=的交点,且过原点的圆的标准方程是________. 易错点六:直线与圆的位置关系 1.直线y=x+1与圆x 2+y 2=1的位置关系为 A .相切B .相交但直线不过圆心C .直线过圆心D .相离2.已知过点P(2,2) 的直线与圆22(1)5x y -+=相切, 且与直线10ax y -+=垂直, 则a =( ) A .12-B .1C .2D .123.直线()0kx y k k R --=∈与圆222x y +=交点的个数为______. 易错点七:圆与圆的位置关系1.圆M :x 2+y 2+4x =0与圆N :(x +6)2+(y ﹣3)2=9的位置关系是( ) A .内切B .相交C .外切D .相离2.已知圆C 1:x 2+y 2+2x ﹣4y +4=0,圆C 2:x 2+y 2﹣4x +4y ﹣1=0,则圆C 1与圆C 2( ) A .相交B .外切C .内切D .外离3.已知圆221:1C x y +=,圆222:2210C x y x y +--+=,则圆1C 与圆2C 的位置关系为______.第三章 圆锥曲线的方程易错点一:利用椭圆定义求方程1.椭圆的焦点坐标为(﹣5,0)和(5,0),椭圆上一点与两焦点的距离和是26,则椭圆的方程为( ) A .22+169144x y =1 B .2144x +2169y =1C .2169x +225y =1D .2144x +225y =12.已知ABC 的两个顶点分别为(4,0),(4,0),A B ABC -的周长为18,则点C 的轨迹方程为( )A .221(0)259x y y +=≠B .221(0)259y x y +=≠C .221(0)169x y y +=≠D .221(0)169y x y +=≠3.已知圆221:(2)36F x y ++=,定点2(20)F ,,A 是圆1F 上的一动点,线段2F A 的垂直平分线交半径1F A 于P 点,则P 点的轨迹C 的方程是_____________. 易错点二:求椭圆的焦点1.若直线l :2x +by +3=0过椭圆C :10x 2+y 2=10的一个焦点,则b 等于( ) A .1B .±1C .-1D .±22.已知12,F F 分别为椭圆221169x y+=的左,右焦点,A 为上顶点,则12AF F △的面积为( )A .6B .15C .67D .373.设椭圆221129x y +=的短轴端点为1B 、2B ,1F 为椭圆的一个焦点,则112B F B ∠=________.易错点三:求椭圆的长轴、短轴1.已知椭圆9x 2+4y 2=36,则其长轴长为( ) A .2B .4C .6D .92.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( ) A .2B .4C .12D .143.已知椭圆()2222:111x y C a a a +=>-的左,右焦点分别为1F ,2F ,点()0,6A ,椭圆C 短轴的一个端点恰为12AF F △的重心,则椭圆C 的长轴长为________. 易错点四:求椭圆的离心率或离心率的取值范围1.在Rt ABC 中,1AB AC ==,如果一个椭圆通过A 、B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率e =( )A .32-B .21-C .31-D .63-2.曲率半径可用来描述曲线上某点处的弯曲变化程度,曲率半径越大则曲线在该点处的弯曲程度越小.已知椭圆C :22221x y a b+=(0a b >>)上点()00,P x y 处的曲率半径公式为3222220044x y R a b a b ⎛⎫=+ ⎪⎝⎭.若椭圆C 上所有点相应的曲率半径的最大值是最小值的8倍,则椭圆C 的离心率为( )A .12B .22C .32D .1443.已知椭圆M :2222x y a b+=1(a >b >0)的左、右焦点分别为F 1,F 2,若椭圆M 与坐标轴分别交于A ,B ,C ,D 四点,且从F 1,F 2,A ,B ,C ,D 这六点中,可以找到三点构成一个直角三角形,则椭圆M 的离心率的可能取值为__. ①512-;②312-;③32;④22. 易错点五:根据离心率求椭圆的标准方程 1.焦点在y 轴上的椭圆mx 2+y 2=1的离心率为32,则m 的值为( ) A .1 B .2 C .3D .42.阿基米德不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积公式,设椭圆的长半轴长、短半轴长分别为,a b ,则椭圆的面积公式为S ab π=.若椭圆C 的离心率为32,面积为8π,则椭圆的C 的标准方程为( ) A .221164x y +=或221164y x +=B .2211612x y +=或2211612y x += C .221124x y +=或221124y x +=D .221169x y +=或221916x y +=3.已知焦点在x 轴上的椭圆2215x y m +=的离心率105e =,则m 的值为______.易错点六:利用定义解决双曲线中焦点三角形问题1.已知O 为坐标原点,设12,F F 分别是双曲线221x y -=的左、右焦点,点P 为双曲线左支上任一点,自点1F 作12F PF ∠的平分线的垂线,垂足为H ,则||OH = A .1B .2C .4D .122.已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF 的面积为 A .13B .1 2C .2 3D .323.已知F 1,F 2分别为双曲线C :221x y -=的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于________.易错点七:根据方程表示双曲线求参数的范围1.若方程22191x y k k +=--表示焦点在y 轴上的双曲线,则k 的取值范围为( )A .9k >B .1k <C .19k <<D .(1,5)(5,9)k ∈⋃2.已知方程2211-2x y m m +=+表示双曲线,则m 的取值范围是( )A .(-1,+∞)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .(-1,2)3.已知双曲线的一个焦点到其一条渐近线的距离为,则实数的值是_______.易错点八:根据a,b,c 求双曲线的标准方程1.过双曲线2222:1x y C a b-=的右顶点作x 轴的垂线与C 的一条渐近线相交于点A ,若以C 的右焦点为圆心,以2为半径的圆经过A 、O 两点(O 为坐标原点),则双曲线C 的方程为( ) A .2213x y -=B .2213y x -=C .22122x y -=D .22126x y -=2.已知双曲线的渐近线方程为y=±2x,焦点坐标为(-6,0),(6,0),则双曲线方程为( ) A .22x y 28-=1B .22x y 82-=1C .22x y 24-=1D .22x y 42-=13.已知双曲线中心在原点,一个焦点为1(5,0)F -,点P 在双曲线上,且线段1PF 的中点坐标为(0,2),则此双曲线的方程是________________. 易错点九:求双曲线的焦点坐标1.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( ) A .77y x =±B .7y x =±C .55y x =±D .5y x =±2.过双曲线221169x y -=的一个焦点F 作弦AB ,则11||||AF BF +的值等于( ) A .92B .89C .49D .293.若双曲线22154x y -=的左焦点在抛物线22y px =的准线上,则p 的值为________.易错点十:根据焦点或准线写出抛物线的标准方程1.已知抛物线22(0)y px p =>的准线与圆22(3)16x y -+=相切,则p 的值为 A .12B .1C .2D .42.以坐标轴为对称轴,焦点在直线34120x y --=上的抛物线的标准方程为( ) A .216x y =或212y x = B .216y x =或212x y = C .216y x =或212x y =-D .216x y =或212y x =-3.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为____.第四章 数列易错点一:判断或写出数列中的项 13,5,7,3,11,,21,n +51 ) A .第12项B .第13项C .第14项D .第25项2.已知数列{}n a 的通项公式为21nn a =+,则257是这个数列的( )A .第6项B .第7项C .第8项D .第9项3.已知数列210,4,…()231n -…,则8是该数列的第________项 易错点二:判断等差数列1.若{}n a 是等差数列,则下列数列中也成等差数列的是 A .{}2n aB .1n a ⎧⎫⎨⎬⎩⎭C .{}3n aD .{}n a2.数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是( ) A .31n -B .32n +C .32n -D .31n +3.给出下列命题,正确命题的是( )(多选题) A .数列6,4,2,0是公差为2的等差数列; B .数列1,23a a a a ---,,是公差为1-的等差数列;C .等差数列的通项公式一定能写成n a kn b =+的形式(k ,b 为常数);D .数列{}()21n n N*+∈是等差数列.易错点三:等差数列通项公式的基本两计算1.在等差数列{a n }中,a 3=2,d =6.5,则a 7=( ) A .22B .24C .26D .282.已知数列{}n a 是等差数列,若35715a a a ++=,8212a a -=,则10a 等于( ) A .10B .12C .15D .183.三数成等差数列,首末两数之积比中间项的平方小16,则公差为__________. 易错点四:利用等差数列的性质计算1.在等差数列{a n }中,a 3+a 4+a 5=6,则a 1+a 7=( ) A .2B .3C .4D .52.在等差数列{}n a 中,2510a a +=,3614a a +=,则58a a +=( ) A .12B .22C .24D .343.在等差数列{}n a 中,194a a +=,那么238a a a ++⋅⋅⋅+等于______. 易错点五:等差数列前n 项和的基本量计算1.已知等差数列{}n a 的前5项和为25,且11a =,则7a =( ) A .10B .11C .12D .132.已知n S 为等差数列{}n a 的前n 项和,若254a a +=,7S =21,则7a 的值为 A .6B .7C .8D .93.设n S 是等差数列{}n a 的前n 项和,若63511a a =,则115SS =__________. 易错点六:等比数列通项公式的基本量计算1.已知等比数列{}n a 的前n 项和为n S ,公比为2,若415S =,则6a 的值为( ) A .16B .32C .48D .642.已知等比数列{}n a 的前n 项和为n S ,若33S =,621S =-,则1a =( ) A .2-B .1-C .1D .23.设正项等比数列{}n a 的公比为q ,前n 项和为n S ,若423S S =,则q =_______________. 易错点七:求等比数列前n 项和1.已知数列{}n a 的通项公式212n n n a -=,则数列{}n a 的前5项和5S 等于( )A .3132B .2516C .12932D .211322.等比数列{}n a 的前n 项和为n S ,且14a ,22a ,3a 成等差数列.若11a =,则3S =( ) A .15B .7C .8D .163.对于数列{}n a ,若点()()n n a n ∈*N ,都在函数()2x f x =的图象上,则数列{}n a 的前4项和4S =___________.第五章 一元函数的导数及其应用易错点一:平均变化率1.设函数2()1f x x =-,当自变量x 由1变到1.1时,函数的平均变化率是( ) A .2.1B .0.21C .1.21D .0.1212.函数1y x=在1x =到3x =之间的平均变化率为( ) A .23B .23-C .13-D .133.函数()ln f x x =在区间[]1,e 上的平均变化率为_________. 易错点二:瞬时变化率的概率及辨析1.如果一个物体的运动方程为()()30s t t t =>,其中s 的单位是千米,t 的单位是小时,那么物体在4小时末的瞬时速度是( ) A .12千米/小时B .24千米/小时C .48千米/小时D .64千米/小时2.已知某物体的运动方程是39t s t =+,则当3t s =时的瞬时速度是A .2/m sB .3/m sC .4/m sD .5/m s3.质点M 按规律()()21s t t =-做直线运动(位移单位:m ,时间单位:s ),则质点M 在3t s=时的瞬时速度为______(单位:/m s ). 易错点三:导数定义中极限的简单计算 1.已知函数()sin f x a x =-,且0()()lim 2x f x f xππ∆→+∆-=∆,则实数a 的值为( )A .2πB .2π-C .2D .2-2.已知(1)1f '=,0(13)(1)lim x f x f x∆→+∆-∆等于( )A .1B .1-C .3D .133.已知()03f x '=,则()()0002limx x x f x f x∆→+∆-=∆______.易错点四:求曲线切线的斜率(倾斜角)1.已知函数()32f x x x =-,则()f x 在点()()1,1f 处的切线的倾斜角为 ( )A .34π B .3π C .4πD .6π2.设()()22lim2x f x f x x∆→+∆--∆=-∆,则曲线()y f x =在点()()22f ,处的切线的倾斜角是( )A .4πB .3π C .34π D .23π 3.已知函数()321313f x x x x =---+,则在曲线()y f x =的所有切线中,斜率的最大值为______.易错点五:基本初等函数的导数公式 1.若函数()31f x x =--,则()f x '=( ) A .0B .3x -C .3D .3-2.函数()3ln 2x f x =+的导数为( ) A .3ln 3xB .13ln 32x+C .132x+D .3x3.若()()23,f x x g x x ==,则满足()1()f x g x ''+=的x 值为________.易错点六:导数的运算1.已知函数2()2x f x x x xe =+-,则(0)f '=( ) A .1B .0C .1-D .22.下列导数运算正确的是( ) A .()122x x x -'=⋅ B .(sin cos 1)cos2x x x +=' C .1(lg )x x'=D .()12x x --'=3.已知函数2()x f x x e =,'()f x 为()f x 的导函数,则(1)f '的值为___________. 易错点七:用导数判断或证明已知函数的单调性 1.函数f (x )=2x -sin x 在(-∞,+∞)上是( ) A .增函数 B .减函数 C .先增后减D .不确定2.已知()'f x 是定义在R 上的函数()f x 的导函数,且满足()()0xf x f x '+>对任意的x ∈R 都成立,则下列选项中一定正确的是( )A .(2)(1)2f f >B .(1)(2)2f f > C .(2)(1)2f f <D .(1)(2)2f f < 3.已知定义在()0,∞+上的函数()f x 的导函数为'()f x ,且满足'()()f x x f x ⋅<,()30f =,则()0f x x>的解集为_________. 易错点八:求已知函数的极值1.函数y =x +1x(-2<x <0)的极大值为( )A .-2B .2C .-52D .不存在2.函数f (x )=1-x +x 2的极小值为( ) A .1 B .34C .14D .123.已知函数()ln f x x x =,则()y f x =的极小值为______. 易错点九:由导数求函数的最值1.函数f (x )=x 2-4x +1在[1,5]上的最大值和最小值分别是( ) A .f (1),f (2) B .f (2),f (5) C .f (1),f (5)D .f (5),f (2)2.关于函数3()f x x x =+,下列说法正确的是( ) A .没有最小值,有最大值 B .有最小值,没有最大值 C .有最小值,有最大值D .没有最小值,也没有最大值3.已知函数2 ()2ln f x x x =-,则() f x 在[1,]e 上的最大值是__________.第六章 计数原理易错点1:分步标准不清致错典例 甲、乙、丙、丁4名同学争夺数学、物理、化学3门学科知识竞赛的冠军,且每门学科只有1名冠军产生,则不同的冠军获得情况共有__64__种.易错点2:忽视排列数公式的隐含条件致误典例 解不等式A x8<6A x -28.由排列数公式得8!(8-x )!<6×8!(10-x )!,化简得x 2-19x +84<0,解之得7<x <12.∵x ∈N *,∴x =8,9,10,11.易错点3:重复计数与遗漏计数致误典例 6个人站成前、中、后三排,每排2人,则不同的排法有__720__种.易错点4:混淆“排列”与“组合”的概念致错典例 某单位需派人同时参加甲、乙、丙三个会议,甲需2人参加,乙、丙各需1人参加,从10人中选派4人参加这三个会议,不同的安排方法共有__2_520__种(用数字作答).易错点5:计数时重复或遗漏致错典例 将4个不同的小球放入编号为1,2,3,4的4个盒子中,则恰好有1个空盒子的放法有__144__种(用数字作答).易错点6:混淆项的系数与二项式系数典例 设(x -2)n (n ∈N *)的展开式中第二项与第四项的系数之比为1∶2,求含x 2的项.易错点7:错用二项式系数的性质致误典例 (1+2x )20的展开式中,x 的奇次项系数的和与x 的偶次项系数的和之比为__(320-1)∶(320+1)__.第七章 随机变量及其分布列易错点1:误认为条件概率P (B |A )与积事件的概率P (AB )相同典例 袋中装有大小相同的6个黄色的乒乓球,4个白色的乒乓球,每次抽取一球,取后不放回,连取两次,求在第一次取到白球的条件下第二次取到黄球的概率.易错点2:概率计算公式理解不清而致误典例(多选题)若0<P(A)<1,0<P(B)<1,则下列式子中成立的为__BCD__.A.P(A|B)=P(AB) P(A)B.P(AB)=P(A)P(B|A)C.P(B)=P(A)P(B|A)+P(A)P(B|A)D.P(A|B)=P(B)P(A|B)P(A)P(B|A)+P(A)P(B|A)易错点3:离散型随机变量的可能取值搞错致误典例小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复得奖)用X表示小王所获奖品的价值,写出X的所有可能取值.易错点4:对离散型随机变量均值的性质理解不清致误典例若X是一个离散型随机变量,则E(E(X)-X)=(A)A.0 B.1C.2E(X) D.不确定易错点5:要准确理解随机变量取值的含义典例某人有5把钥匙,其中只有一把能打开某一扇门,今任取一把试开,不能打开者除去,求打开此门所需试开次数X的均值和方差.易错点6:审题不清致误典例9粒种子分别种在3个坑内,每坑放3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,求需要补种坑数的分布列.易错点7:对超几何分布的概念理解不透致错典例 盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,若取出的是次品不再放回,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数X 的分布列.易错点8:对正态曲线的性质理解不准确致错典例 设ξ~N (1,4),那么P (5<ξ<7)=__0.021_5__.第八章 成对数据的统计分析易错点1:概念不清致误典例 (2021·陕西西安高三月考)在一组成对样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( D )A .-1B .0C .12D .1易错点2:生搬硬套求回归直线方程的步骤致错.典例 在一次抽样调查中测得样本的5个样本点数值如下表:x 0.25 0.5 1 2 4 y1612521试建立y 与x 之间的经验回归方程.易错点3:没有准确掌握公式中参数的含义致误典例 有甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计后,得到如下的列联表班级与成绩列联表试问能有多大把握认为“成绩与班级有关系”?。

高三一轮复习 立体几何全章 练习(9套)+易错题+答案

高三一轮复习 立体几何全章 练习(9套)+易错题+答案

第九章立体几何与空间向量第1节简单几何体的结构、三视图和直观图一、选择题1.如图是由哪个平面图形旋转得到的( A )解析:根据面动成体的原理即可解,一个直角三角形绕直角边旋转一周可以得到一个圆锥.一个直角梯形绕着直角腰旋转一周得到圆台.该几何体的上部分是圆锥,下部分是圆台,圆锥的轴截面是直角三角形,圆台的轴截面是直角梯形,所以这个几何图形是由直角三角形和直角梯形围绕直角边所在的直线为轴旋转一周得到.故选A.2.已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4, AB⊥AC,AA1=12,则球O的半径为( C )(A) (B)2 (C) (D)3解析:构建长方体的棱长分别为3,4,12.体对角线长为=13,外接球的半径为,故选C.3.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为( B )(A)8 (B)(C)(D)解析:若以4作为圆柱的高、2作为底面圆的周长,则圆柱轴截面面积为;若以2作为圆柱的高、4作为底面圆的周长,则圆柱轴截面面积为,所以此圆柱轴截面面积为.故选B.4.正四棱锥S-ABCD的底面边长为4,高SE=8,则过点A,B,C,D,S的球的半径为( C )(A)3 (B)4 (C)5 (D)6解析:由正四棱锥及其外接球的对称性,球心O在正四棱锥的高线SE上,球半径R=OS=OB,EB=BD=4.所以在直角三角形OEB中,由勾股定理得,(8-R)2+42=R2,解得R=5,故选C.5.三棱锥P-ABC中,△ABC是底面,PA⊥PB,PA⊥PC,PB⊥PC,且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为( B )(A)16 (B)(C)(D)32解析:因为PA,PB,PC两两垂直,又因为三棱锥P-ABC的四个顶点均在半径为1的球面上,所以以PA,PB,PC为棱的长方体的对角线即为球的一条直径.所以16=PA2+PB2+PC2,因为PA=2PB,则这个三棱锥的三个侧棱长的和PA+PB+PC=3PB+PC,因为5PB2+PC2=16,设PB=4cos α,PC=4sin α,则3PB+PC=cos α+4sin α=sin(α+φ)≤=. 可知其最大值为,选B.6.已知一个四面体其中五条棱的长分别为1,1,1,1,,则此四面体体积的最大值是( B )(A) (B) (C) (D)解析:设四面体为P-ABC,则设PC=X,AB=,其余的各边为1,那么取AB 的中点D,那么连接PD,因此可知,AB垂直于平面PCD,则棱锥的体积可以运用以PCD为底面,高为AD,BD的两个三棱锥体积的和来表示,因此只要求解底面积的最大值即可.由于PD=CD=,那么可知三角形PDC的面积越大,体积越大,可知S△PDC=××sin θ≤=,也就是当PD垂直于CD时,面积最大,因此可得四面体的体积的最大值为××=,选B.二、填空题7.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为.解析:因为圆柱的侧面展开图是边长为6π和4π的矩形,①若6π=2πr,r=3,所以圆柱的表面积为4π×6π+2×πr2=24π2+18π;②若4π=2πr,r=2,所以圆柱的表面积为4π×6π+2×πr2=24π2+8π.答案:24π2+8π或24π2+18π8.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.解析:设球的半径为r,则V圆柱=πr2×2r=2πr3,V圆锥=πr2×2r=,V球=πr3,所以V圆柱∶V圆锥∶V球=2πr3∶∶πr3=3∶1∶2.答案:3∶1∶29.将4个半径都是R的球体完全装入底面半径是2R的圆柱形桶中,则桶的最小高度是.解析:由题意知,小球要分两层放置且每层两个,令下层两小球的球心分别是A,B,上层两小球的球心分别是C,D.此时,圆柱底面的半径=两小球半径的和,恰好使小球相外切,且与圆柱母线相切.圆柱的高=上层小球的上方半径+AB与CD间的距离+下层小球的下方半径=2R+AB与CD间的距离.令AB,CD的中点分别为E,F.很明显,四面体ABCD每条棱的长都是2R,容易求出:EC=ED,FA=FB,由EC=ED,CF=DF,得EF⊥CD.由FA=FB,AE=BE,得EF⊥AB.所以EF是AB与CD间的距离,所以圆柱的高=2R+EF.由勾股定理,有CE2+AE2=AC2,CE2=EF2+CF2.两式相减,消去CE,得AE2=AC2-EF2-CF2,所以EF2=AC2-AE2-CF2=(2R)2-R2-R2=2R2,所以EF=R.所以圆柱的高=2r+R=(2+)R.答案:(2+)R10.一个圆锥有三条母线两两垂直,则它的侧面展开图的圆心角大小为.解析:设母线长为l,因圆锥有三条母线两两垂直,则这三条母线可以构成以它们为侧棱、以底面边长为l的正三角形的正三棱锥,故由正弦定理得,圆锥的底面直径2R=,解得R=,因此可知侧面展开图的圆心角大小为π.答案:π11.若圆锥的侧面展开图是圆心角为180°,半径为4的扇形,则这个圆锥的表面积是.解析:因为圆锥的侧面展开图是圆心角为180°,母线长等于4,半径为4的扇形,则这个圆锥的表面积是底面积加上侧面积,扇形面积加上底面面积的和为12π.答案:12π12.若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是.解析:从长方体的一条对角线的一个端点A出发,沿表面运动到另一个端点B,有三种方案,如图是它们的三种部分侧面展开图,AB路程可能是:最短路程是.答案:三、解答题13.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,求a+b的最大值.解:如图,把几何体放到长方体中,使得长方体的体对角线刚好为几何体的已知棱,则长方体的体对角线A 1C=,则它的正视图投影长为A 1B=,侧视图投影长为A1D=a,俯视图投影长为A1C1=b,则a2+b2+()2=2·()2,即a2+b2=8,又≤,当且仅当“a=b=2”时等号成立.所以a+b≤4,即a+b的最大值为4.14.某几何体的三视图如图所示.(1)判断该几何体是什么几何体?(2)画出该几何体的直观图.解:(1)该几何体是一个正方体切掉两个圆柱后得到的几何体.(2)直观图如图所示.15.已知正三棱锥V-ABC的正视图和俯视图如图所示.(1)画出该正三棱锥的侧视图和直观图;(2)求出侧视图的面积.解:(1)如图.(2)侧视图中V A===2,则S △VBC=×2×2=6.第2节简单几何体的表面积与体积一、选择题1.如图所示是一个几何体的三视图,则该几何体的体积为( B )(A)16+2π(B)8+2π(C)16+π (D)8+π解析:由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此V=1×2×4+π×12×2=8+2π.故选B.2.一个三条侧棱两两互相垂直并且侧棱长都为a的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为( B )(A)πa2(B)3πa2(C)6πa2(D)πa2解析:由题可知该三棱锥为一个棱长a的正方体的一角,则该三棱锥与该正方体有相同的外接球,又正方体的对角线长为a,则球半径为a,则S=4πr2=4π(a)2=3πa2.故选B.3.一个棱长都为a的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( A )(A)πa2(B)2πa2(C)πa2(D)πa2解析:如图,设O1,O2为棱柱两底面的中心,球心O为O1O2的中点.又直三棱柱的棱长为a,可知OO1=a,AO1=a,所以R2=OA2=O+A=,因此该直三棱柱外接球的表面积为S=4πR2=4π×=πa2,故选A.4.某几何体的三视图如图所示,则该几何体的体积为( D )(A) (B)2 (C) (D)解析:由三视图可知,该几何体的直观图为一个竖立的圆锥和一个倒立的圆锥组成,其体积为V=2×π×12×1=,选D.5.某四棱锥的三视图如图所示,则该四棱锥的体积是( C )(A)5 (B)2 (C) (D)解析:由三视图知,该四棱锥的底面是直角梯形,上底长为2,下底长为3,高为,四棱锥的高为h=2,故该四棱锥的底面积S=(2+3)×=,所以该四棱锥的体积V=Sh=××2=.6.已知边长为2的菱形ABCD中,∠A=60°,现沿对角线BD折起,使得二面角A BD C为120°,此时点A,B,C,D在同一个球面上,则该球的表面积为( C )(A)20π(B)24π(C)28π(D)32π解析:如图,分别取BD,AC的中点M,N,连接MN,则容易算得AM=CM=3,MN=,MD=,CN=,由图形的对称性可知球心必在MN的延长线上,设球心为O,半径为R,ON=x,则由题设可得解得x=,则R2=+=7,所以球面面积S=4πR2=28π,故选C.二、填空题7.一个圆柱的轴截面为正方形,则与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为.解析:令正方形的边长为a,则圆柱的侧面积S1=2π××a=πa2,与它同底等高的圆锥的侧面积S2=πrl=π××a=,则与它同底等高的圆锥的侧面积与该圆柱的侧面积的比为.答案:8.球O与直三棱柱ABC-A1B1C1的各个面都相切,若三棱柱的表面积为27,△ABC的周长为6,则球的表面积为.解析:设内切球半径为r,那么直三棱柱的底面内切圆半径为r,棱柱的高为2r,由等面积法,则直三棱柱底面面积S 底=r×6=3r,由等体积法,V三棱柱=S底·2r=r·27,所以9r=6r2,解得r=.其表面积为4π×()2=3π.答案:3π9.已知母线长为6,底面半径为3的圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,则球的体积是 .解析:取圆锥的轴截面,则截面是边长为6的正三角形,正三角形的内切圆的圆心即为球心,R=6××,所以R=,所以V=πR3=4π.答案:4π10.棱长为a的正方体ABCD A 1B1C1D1的8个顶点都在球O的表面上,E,F 分别是棱AA1,DD1的中点,则过E,F两点的直线被球O截得的线段长为.解析:设过E,F两点的直线与球O交于M,N,所以△OMN,△OEF均为等腰直角三角形,所以OM=ON=R=a,点O到EF的距离为棱长一半,所以|MN|=2= a.答案: a11.四棱锥P-ABCD的各顶点都在同一球面上,且矩形ABCD的各顶点都在同一个大圆上,球半径为R,则此四棱锥的体积的最大值为.解析:点P到平面ABCD的最大距离为R,设矩形ABCD的长宽分别为x,y,则x2+y2=4R2,四棱锥P ABCD的体积V=xyR≤×=R3,当且仅当x=y=R时,V max=R3.答案:R312.设正四面体ABCD的棱长为a,P是棱AB上的任意一点,且P到平面ACD,BCD的距离分别为d1,d2,则d1+d2= .解析:根据题意,由于正四面体ABCD的棱长为a,各个面的面积为a2,高为a,所以V=×a2×a=×a2×(d1+d2),所以d1+d2= a.答案: a三、解答题13.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥加一个圆柱组成的,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=(2πa)·(a)=πa2,S圆柱侧=(2πa)·(2a)=4πa2,S圆柱底=πa2,所以S 表=πa2+4πa2+πa2=(+5)πa2.(2)沿P点所在母线剪开圆柱侧面,如图.则PQ===a,所以从P点到Q点在侧面上的最短路径长为a.14.如图,四棱锥P ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求四面体NBCM的体积.(1)证明:由已知得AM=AD=2.如图,取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.所以AM=TN,又AD∥BC,故TN AM,所以四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)解:因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.取BC的中点E,连接AE.由AB=AC=3得AE⊥BC,AE==.由AM∥BC得M到BC的距离为,故S △BCM=×4×=2.所以四面体NBCM的体积V N-BCM=×S△BCM×=.15.如图所示,在空间几何体ADE BCF中,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是线段AE上的动点.(1)试确定点M的位置,使AC∥平面MDF,并说明理由;(2)在(1)的条件下,平面MDF将几何体ADE-BCF分成两部分,求空间几何体M-DEF与空间几何体ADM BCF的体积之比.解:(1)当M是线段AE的中点时,AC∥平面MDF.理由如下:连接CE交DF于点N,连接MN.因为M,N分别是AE,CE的中点,所以MN∥AC.又因为MN⊂平面MDF,AC⊄平面MDF,所以AC∥平面MDF.(2)将几何体ADE-BCF补成三棱柱ADE-B′CF,如图所示,三棱柱ADE-B′CF的体积为V=S△ADE·CD=×2×2×4=8,则几何体ADE-BCF的体积=-=8-×(×2×2)×2=.因为三棱锥M-DEF的体积=×(×2×4)×1=,所以=-=,所以两几何体的体积之比为∶=1∶4.第3节空间图形的基本关系与公理一、选择题1.设m,n是两条不同的直线,α,β是两个不同的平面( C )(A)若m∥α,n∥α,则m∥n(B)若m∥α,m∥β,则α∥β(C)若m∥n,m⊥α,则n⊥α(D)若m∥α,α⊥β,则m⊥β解析:设直线a⊂α,b⊂α,a∩b=A,因为m⊥α,所以m⊥a,m⊥b.又n∥m,所以n⊥a,n⊥b,所以n⊥α.故选C.2.下列命题中,错误的是( D )(A)平行于同一平面的两个不同平面平行(B)一条直线与两个平行平面中的一个相交,则必与另一个平面相交(C)如果两个平面不垂直,那么其中一个平面内一定不存在直线与另一个平面垂直(D)若直线不平行于平面,则此直线与这个平面内的直线都不平行解析:当直线l在平面α内,即l⊂α时,直线l不平行于平面α,但平面α内存在直线与直线l平行,可知D选项错误,故选D.3.下列四个命题:①若一个平面内的两条直线都与另一个平面平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( D )(A)①和②(B)②和③(C)③和④(D)②和④解析:①显然错误,因为这两条直线相交才满足条件;②成立;③错误,这两条直线可能平行、相交,也可能异面;④成立,用反证法容易证明.故选D.4.若α,β是两个相交平面,则在下列命题中,真命题的序号为( C )①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线;②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直;③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线;④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.(A)①③(B)②③(C)②④(D)①④解析:若α⊥β且直线m⊥α,则在平面β内,一定存在与直线m平行的直线,所以①错误;若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直,故②正确;若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线,故③错误,④正确,故选C.5.设不在同一条直线上的A,B,C三点到平面α的距离相等,且A∉α,则( B )(A)α∥平面ABC(B)△ABC中至少有一条边平行于α(C)△ABC中至多有两条边平行于α(D)△ABC中只可能有一条边平行于α解析:因为A∉α,所以A,B,C均不在平面α内.当A,B,C三点在平面α的同侧时,α∥平面ABC,此时△ABC的三条边都平行于α,排除C,D;当A,B,C三点不在平面α的同侧时,易知△ABC中只有一条边平行于α,此时平面α和平面ABC相交,故选B.6.若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的( B )(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:因为l⊥m,m⊥α,所以l∥α或l⊂α.故充分性不成立.若l∥α,m⊥α,一定有l⊥m.故必要性成立.选B.二、填空题7.长方体ABCD-A1B1C1D1的底面是边长为1的正方形,点E在侧棱AA1上(不与A,A1重合),满足∠C1EB=90°,则异面直线BE与C1B1所成的角为,侧棱AA1的长的最小值为.解析:在长方体ABCD-A1B1C1D1中,CB⊥平面ABB1A1,所以∠CBE=90°,又C1B1∥BC,所以异面直线BE与C1B1所成的角为90°.连接BC1,设AA1=x,AE=m(m>0),则有BE2=1+m2,C1E2=(x-m)2+2,C1B2=1+x2,因为∠C1EB=90°,所以C1B2=C1E2+BE2,即1+x2=(x-m)2+2+1+m2,即m2-mx+1=0,所以x=m+≥2,当且仅当m=,即m=1时,“=”成立.答案:90° 28.四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A1-BCD,使平面A1BD⊥平面BCD,给出下列结论:(1)A1C⊥BD;(2)∠BA1C=90°;(3)四面体A1-BCD的体积为.其中正确的命题是.(把所有正确命题的序号都填上) 解析:若A1C⊥BD,因为BD⊥CD,A1C∩CD=C,所以BD⊥平面A1CD,所以BD⊥A1D.而由A 1B=AB=1,A1D=AD=1,BD=,得A1B⊥A1D,与BD⊥A1D矛盾,故(1)错.因为CD⊥BD,平面BCD⊥平面A1BD,所以CD⊥平面A1BD,则CD⊥A1B.又A1B⊥A1D,A1D∩CD=D,所以A1B⊥平面A1CD,则A1B⊥A1C,故(2)正确.由(2)知==×·A1D·DC·A1B=,故(3)错.答案:(2)9.在正方体ABCD A 1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有条.解析:在A1D1上任取一点P,过点P与直线EF作一个平面α,因为CD 与平面α不平行,所以它们相交,设α∩CD=Q,连接PQ,则PQ与EF必然相交.由点P的任意性,知有无数条直线与A1D1,EF,CD都相交.答案:无数10.如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形.∠ACB =90°,AC=6,BC=CC 1=,P是BC1上一动点,则CP+PA1的最小值为.解析:连接A1B,将△A1BC1与△CBC1同时展开形成一个平面四边形A1BCC1,则此时对角线CP+PA1=A1C达到最小,在等腰直角三角形△BCC1中,BC1=2,∠CC1B=45°,在△A 1BC1中,A1B==2,A1C1=6,BC1=2,所以A1+B=A1B2,即∠A1C1B=90°.对于展开形成的四边形A1BCC1,如图,在△A 1C1C中,C1C=,A1C1=6,∠A1C1C=135°,由余弦定理有,CP+PA 1=A1C===5.答案:511. 如图,三棱锥A BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.因为M为AD的中点,所以MK∥AN,所以∠KMC为异面直线AN,CM所成的角.因为AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理求得AN=DN=CM=2,所以MK=.在Rt△CKN中,CK==.在△CKM中,由余弦定理,得cos∠KMC===.答案:12.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE 翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是.①BM是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.解析:取DC中点F,连接MF,BF,MF∥A1D且MF=A1D,FB∥ED且FB=ED,所以∠MFB=∠A1DE.由余弦定理可得MB2=MF2+FB2-2MF·FB·cos∠MFB 是定值,所以M是在以B为圆心,MB为半径的球上,可得①②正确;由MF∥A1D与FB∥ED可得平面MBF∥平面A1DE,可得④正确;A1C在平面ABCD中的投影与AC重合,AC与DE不垂直,可得③不正确.答案:③三、解答题13.如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.解:如图所示,取AC的中点F,连接EF,BF,在△ACD中,E,F分别是AD,AC的中点,所以EF∥CD.所以∠BEF或其补角即为异面直线BE与CD所成的角.在Rt△EAB中,AB=AC=1,AE=AD=,所以BE=.在Rt△EAF中,AF=AC=,AE=,所以EF=.在Rt△BAF中,AB=1,AF=,所以BF=.在等腰三角形EBF中,cos∠FEB===.所以异面直线BE与CD所成角的余弦值为.14.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明:(1)如图所示,因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体ABCD-A1B1C1D1中,B1D1∥BD,所以EF∥BD.所以EF,BD确定一个平面.即D,B,F,E四点共面.(2)在正方体ABCD-A1B1C1D1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β.则Q是α与β的公共点,同理,P点也是α与β的公共点.所以α∩β=PQ.又A1C∩β=R,所以R∈A1C,则R∈α且∈β.则R∈PQ,故P,Q,R三点共线.15.在长方体ABCD A 1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上.(1)过P点在空间内作一条直线l,使l∥直线BD,应该如何作图?并说明理由;(2)过P点在平面A1C1内作一条直线m,使m与直线BD成α角,其中α∈(0°,90°],这样的直线有几条,应该如何作图?解:(1)连接B1D1,BD,在平面A1C1内过P点作直线l,使l∥直线B1D1,则l即为所求作的直线.因为直线B1D1∥直线BD,l∥直线B1D1,所以l∥直线BD.如图(1).(2)在平面A1C1内作直线m,使直线m与B1D1相交成α角,因为BD∥B1D1,所以直线m与直线BD也成α角,即直线m为所求作的直线,如图(2).由图(2)知m与BD是异面直线,且m与BD所成的角α∈(0,90°].当α=90°时,这样的直线m有且只有一条,当α≠90°时,这样的直线m 有两条.第4节直线、平面平行的判定与性质一、选择题1.若直线l∥平面α,直线a⊂平面α,则l与a的位置关系是( D )(A)l∥a (B)l与a异面(C)l与a相交 (D)l与a没有公共点解析:因为直线平行于平面,那么l与平面内的任何一条直线都没有公共点,因此l与a的位置关系是没有公共点,选D.2.下列条件能推出平面α∥平面β的是( D )(A)存在一条直线a,a∥α,a∥β(B)存在一条直线a,a⊂α,a∥β(C)存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α(D)存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:因为根据面面平行的判定定理可知,如果存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α,则可以利用线线平行得到面面平行,选D.3.已知直线l,m,平面α,β,则下列命题中:①若α∥β,l⊂α,则l∥β②若α⊥β,l⊥α,则l∥β③若l∥α,m⊂α,则l∥m④若α⊥β,α∩β=l,m⊥l,则m⊥β,其中真命题有( B )(A)0个(B)1个(C)2个(D)3个解析:当两个平面平行时,一个平面上的线与另一个平面平行,故①正确;一条直线垂直于两个垂直平面中的一个平面,那么这条直线平行于或包含于另一个平面,故②不正确;④不正确;③中l,m的关系是不相交,故③不正确,故选B.4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( B )(A)①③(B)①④(C)②③(D)②④解析:对图①,构造AB所在的平面,即对角面,可以证明这个对角面与平面MNP平行,由线面平行的定义可得AB∥平面MNP;对图④,通过证明AB∥PN得到AB∥平面MNP;对于②,证MP中点为K,延长BA,KN则相交,所以BA与平面MNP相交,②错;对于③平面MNP与直线AB相交于点B,③错.故选B.5.类比平面几何中的定理“设a,b,c是三条直线,若a⊥c,b⊥c,则a∥b”,得出如下结论:①设a,b,c是空间的三条直线,若a⊥c,b⊥c,则a∥b;②设a,b是两条直线,α是平面,若a⊥α,b⊥α,则a∥b;③设α,β是两个平面,m是直线,若m⊥α,m⊥β,则α∥β;④设α,β,γ是三个平面,若α⊥γ,β⊥γ,则α∥β.其中正确命题的个数是( B )(A)1 (B)2 (C)3 (D)4解析:①错;②垂直于同一个平面的两条直线平行,正确;③垂直于同一条直线的两个平面平行,正确;④错;两个平面也可能相交.6.在空间中,下列命题正确的是( D )(A)平面α内的一条直线a垂直于平面β内的无数条直线,则α⊥β(B)若直线m与平面α内的一条直线平行,则m∥α(C)若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面β(D)若直线a与平面α内的无数条直线都垂直,则不能说一定有a⊥α解析:直线a与平面α内的任意直线都垂直,则有a⊥α,所以D正确.二、填空题7.点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB的中点,则EF= .解析:取BC的中点D,连接ED与FD,因为E,F分别是SC和AB的中点,点D为BC的中点所以ED∥SB,FD∥AC,而SB⊥AC,SB=AC=2,则三角形EDF为等腰直角三角形,则ED=FD=1,即EF=.答案:8.正四棱锥S ABCD的底面边长为2,高为2,E是边BC的中点,动点P 在这个棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为.解析:由题意知,点P的轨迹为如图所示的三角形EFG,其中G,F为其所在棱的中点,所以EF=BD=,GE=GF=SB=,所以轨迹的周长为+.答案:+9.将边长为2,一个内角为60°的菱形ABCD沿较短对角线BD折成四面体ABCD,点E,F分别为AC,BD的中点,则下列命题中正确的是.①EF∥AB;②EF⊥BD;③EF有最大值,无最小值;④当四面体ABCD的体积最大时,AC=;⑤AC垂直于截面BDE.解析:因为将边长为2,一个内角为60°的菱形ABCD沿较短对角线BD 折成四面体ABCD,点E,F分别为AC,BD的中点,则可知EF⊥BD,当四面体ABCD的体积最大时,AC=,AC垂直于截面BDE成立.答案:②④⑤10.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于A,C,过点P的直线n与α,β分别交于B,D且PA=6,AC=9,PD=8,则BD的长为.解析:因为平面α∥平面β,所以AB∥CD,①当P在两平面外时,==,所以=,所以BD=.②当P在两平面之间时,=,所以=,所以BD=24,所以BD的长为或24.答案:或2411.给出下列四个命题:①过平面外一点,作与该平面成θ角的直线一定有无穷多条;②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;③对确定的两条异面直线,过空间任意一点有且只有一个平面与这两条异面直线都平行;④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等.其中正确的命题序号为.解析:①中,成90度角的时候,就只有一条,因此错误.②中是线面平行的性质定理,显然成立.③不正确.④中,利用等角定理,可知成立. 答案:②④12.侧棱长为2的正三棱锥V-ABC中,∠AVB=∠BVC=∠CVA=40°,过A 作截面AEF,则截面△AEF周长的最小值为.解析:沿着侧棱VA把正三棱锥V ABC展开在一个平面内,则设VA的另一边为VA′,则AA′即为截面△AEF周长的最小值,且∠AVA′=3×40=120°.△VAA′中,由余弦定理可得AA′=6.答案:6三、解答题13.已知长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AB=4,AA1=2,点E 在棱C1D1上,且D1E=3.(1)试在棱CD上确定一点E1,使得直线EE1∥平面D1DB,并证明;(2)若动点F在底面ABCD内,且AF=2,请说明点F的轨迹,并探求EF 长度的最小值.解:(1)取CD的四等分点E1,使得DE1=3,则有EE1∥平面D1DB.证明如下:因为D1E∥DE1且D1E=DE1,所以四边形D1EE1D为平行四边形,则D1D∥EE1,因为DD1⊂平面D1DB,EE1⊄平面D1DB,所以EE1∥平面D1DB.(2)因为AF=2,所以点F在平面ABCD内的轨迹是以A为圆心,半径等于2的四分之一圆弧.因为EE1∥DD1,D1D⊥平面ABCD,所以E1E⊥平面ABCD,故EF==.所以当E1F的长度取最小值时,EF的长度最小,此时点F为线段AE1和四分之一圆弧的交点,即E1F=E1A-AF=5-2=3,所以EF==.即EF长度的最小值为.14.在正方体ABCD-A1B1C1D1中,棱长为2,E是棱CD的中点,P是棱AA1的中点,(1)求证:PD∥平面AB1E;(2)求三棱锥B-AB1E的体积.(1)证明:取AB1中点Q,连接PQ,则PQ为中位线,PQ A1B1,而正方体ABCD-A1B1C1D1,E是棱CD的中点,故DE A1B1,所以PQ DE,所以四边形PQED为平行四边形.所以PD∥QE,而QE⊂平面AB1E,PD⊄平面AB1E,故PD∥平面AB1E.(2)解:正方体ABCD-A1B1C1D1中,BB1⊥平面ABE,故BB1为高,BB1=2,因为CD∥AB,所以S△ABE=S△ABC=AB·BC=×2×2=2.故==BB1·S△ABC=.15.如图,在四面体PABC中,PA=PB,CA=CB,D,E,F,G分别是PA,AC,CB,BP的中点.(1)求证:D,E,F,G四点共面;(2)求证:PC⊥AB;(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,PC=,求四面体PABC的体积.(1)证明:依题意DG∥AB,EF∥AB,所以DG∥EF,DG,EF共面,从而D,E,F,G四点共面.(2)证明:取AB中点为O,连接PO,CO.因为PA=PB,CA=CB,所以PO⊥AB,CO⊥AB,因为PO∩CO=O,所以AB⊥平面POC,PC⊂平面POC,所以AB⊥PC.(3)解:因为△ABC和△PAB是等腰直角三角形,所以PO=CO=AB=1,因为PC=,OP2+OC2=PC2,所以OP⊥OC,又PO⊥AB,且AB∩OC=O,所以PO⊥平面ABC,=PO·S△ABC=×1×2×1×=.第5节直线、平面垂直的判定与性质一、选择题1.已知直线l,m和平面α, 则下列命题正确的是( C )(A)若l∥m,m⊂α,则l∥α(B)若l∥α,m⊂α,则l∥m(C)若l⊥α,m⊂α,则l⊥m(D)若l⊥m,l⊥α,则m∥α解析:A项中直线l与平面α可能平行,可能直线在平面内;B项中直线l,m平行或异面;C项中当直线垂直于平面时,直线垂直于平面内任意直线;D项中直线m与平面α平行或直线在平面内.2.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P ABC中共有直角三角形个数为( A )(A)4 (B) 3 (C) 2 (D) 1解析:因为PA⊥平面ABC,AB⊥BC,所以PA⊥AB,PA⊥AC,PB⊥CB,所以△ABC,△PBC, △ABP, △APC都是直角三角形,故选A.3.已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则( C )(A)n⊥β (B)n∥β,或n⊂β(C)n∥α或n⊂α(D)n⊥α解析:由题意画出图形,容易判断选项.由于直线m⊥n,m⊥α,α⊥β,选项A,中线面可能相交,也可能垂直,选项B中,n与β还可能相交,错误,选项D中,直线不能垂直于平面,故结合图象不难得到选项为C.4.正方体的棱长为1,C,D,M分别为三条棱的中点,A,B是顶点,那么点M到截面ABCD的距离是( B )(A)(B)(C)(D)解析:过M作AB的垂线MN交AB于N,连接CN.由于CM⊥AB,MN⊥AB,则AB⊥平面CMN,所以,M到面ABCD的距离h是直角三角形CMN的斜边CN上的高.由于BM=,CM=1,MN=,CN=,则结合=求得h=.故选B.。

高二数学 专题 空间向量与立体几何(六个混淆易错点)(解析版)

高二数学 专题 空间向量与立体几何(六个混淆易错点)(解析版)

专题空间向量与立体几何(六个混淆易错点)易错点1对空间向量的运算理解不清1.在棱长为1的正四面体A BCD -中,点M 满足()1AM xAB y AC x y AD =++--,点N 满足()1DN DB DC λλ=-- ,当线段AM 、DN 的长度均最短时,AM AN ⋅= ()A .23B .23-C .43D .43-【答案】A【分析】根据题意得到M ∈平面BCD ,N ∈直线BC ,从而求得,AM DN 最短时,得到M 为BCD △的中心,N 为BC 的中点,求得AM 的长,结合向量的运算公式,即可求得AM AN ⋅的值.【详解】解:如图所示,因为(1)AM x AB y AC x y AD =++-- ,()1DN DB DC λλ=--,可得M ∈平面BCD ,N ∈直线BC ,当,AM DN 最短时,AM ⊥平面BCD ,且DN BC ⊥,所以M 为BCD △的中心,N 为BC 的中点,如图所示,又由正四面体的棱长为1,所以13NM DN ==AN =所以3AM =,因为AM ⊥平面BCD ,所以AM MN ⊥,所以Rt ANM △中,6223cos 332AM MAN AN ∠===,所以326222cos 333AM AN AM AN MAN ⋅=⋅∠=⨯=⨯ 故选:A2.下列命题中正确的个数是().①若a 与b 共线,b 与c 共线,则a 与c共线.②向量a ,b ,c共面,即它们所在的直线共面.③如果三个向量a ,b ,c不共面,那么对于空间任意一个向量p ,存在有序实数组(),,x y z ,使得p xa yb zc =++.④若a ,b 是两个不共线的向量,而c a b λμ=+(,λμ∈R 且0λμ≠),则{},,a b c 是空间向量的一组基底.A .0B .1C .2D .3【答案】B【分析】举例0b =,判断①,由向量共面的定义判断②,由空间向量基本定理判断③,由共面向量定理和空间向量基本定理判断④.【详解】①当0b = 时,a 与c不一定共线,故①错误;②当a ,b ,c共面时,它们所在的直线平行于同一平面,或在同一平面内,故②错误;由空间向量基本定理知③正确;④当a ,b 不共线且c a b λμ=+时,a ,b ,c 共面,故④错误.故选:B .3.以下命题:①若//a b r r ,则存在唯一的实数λ,使得λa b = ;②若a b b c ⋅=⋅r r r r,则a c = 或0b = ;③若{},,a b c为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底;④()()()()a b c d d c b a ⋅⋅⋅=⋅⋅⋅ 一定成立.则其中真命题的个数为()A .4B .3C .2D .1【答案】C【分析】由共线向量的基本定理判断①;由数量积判断②;由基底的概念判断③;由数量积的性质判断④【详解】对于①:根据共线向量的基本定理,//a b r r 的充要条件是存在唯一的实数λ,使得λa b = ,其中0b ≠r r;这里没有限制b,所以①错误;对于②:cos ,,cos ,a b a b a b b c b c b c ⋅=⋅⋅=⋅r r r r r r r r r r r r ,若a b b c ⋅=⋅r r r r ,则cos ,cos ,a a b c b c ⋅=r r r r r r ,即只要a 在b 上的投影与c 在b 上的投影相等即可,故②错误;对于③:若{},,a b c 为空间的一个基底,则,,a b c不共面,则,,a b b c c a +++ 也不共面,则{},,a b b c c a +++构成空间的另一个基底,故③正确;对于④:因为,a b b a c d d c ⋅=⋅⋅=⋅,所以()()()()a b c d d c b a ⋅⋅⋅=⋅⋅⋅ ,故④正确;所以正确的有2个,故选:C4.下面四个结论正确的个数是()①空间向量(),0,0a b a b ≠≠ ,若a b ⊥ ,则0a b ⋅=;②若空间四个点P ,A ,B ,C ,1344PC PA PB =+,则A ,B ,C 三点共线;③已知向量(1,1,)a x = ,(3,,9)b x =- ,若310x <,则,a b 〈〉为钝角;④任意向量,,a b c 满足()()a b c a b c ⋅⋅=⋅⋅.A .4B .3C .2D .1【答案】C【分析】根据空间向量的线性运算、向量平行的意义及坐标表示、数量积的定义、性质对各命题逐一判断即可.【详解】对于①,因0,0a b ≠≠ ,a b ⊥ ,则·0a b =,①正确;对于②,因1344PC PA PB =+ ,则1144PC PA - =3344PB PC -,即3AC CB = ,即A 、B 、C 三点共线,②正确;对于③,a b ⋅ =10x -3,若,a b 〈〉 为钝角,则0a b ⋅< ,且a 与b 不共线,由0a b ⋅<得310x <,当//a b 时,1139xx ==-,即3x =-,由a 与b 不共线得3x ≠-,于是得当310x <且3x ≠-时,,a b 〈〉为钝角,③错误;对于④,()a b c ⋅⋅ 是c 的共线向量,而()a b c ⋅⋅是a 的共线向量,④错误,综上可知,①②正确.故选:C5.(多选)给出下列命题,其中正确的是()A .若{},,a b c是空间的一个基底,则{},,a b b c +r r r r 也是空间的一个基底B .在空间直角坐标系中,点()2,4,3P -关于坐标平面yOz 的对称点是()2,4,3---C .若空间四个点P ,A ,B ,C 满足1344PC PA PB =+,则A ,B ,C 三点共线D .平面α的一个法向量为()1,3,4m =-u r ,平面β的一个法向量为()2,6,n k =--r.若//αβ,则8k =【答案】ACD【分析】根据三个向量是否共面判断A ,由点关于坐标面的对称判断B ,由向量的运算确定三点共线可判断C ,根据向量共线求参数可判断D 。

(易错题)高中数学必修第二册第三单元《立体几何初步》检测题(有答案解析)

(易错题)高中数学必修第二册第三单元《立体几何初步》检测题(有答案解析)

一、选择题1.设m ,n 是不同的直线,α,β,γ是三个不同的平面,有以下四个命题: ①若m α⊥,n β⊥,//αβ,则//m n ;②若m αγ=,n βγ=,//m n ,则//αβ;③若γα⊥,γβ⊥,则//αβ.④若//αβ,//βγ,m α⊥,则m γ⊥;其中正确命题的序号是( )A .①③B .②③C .③④D .①④ 2.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .//m α,//n β且//αβ,则//m nB .m α⊂,n α⊂,//m β,//n β,则//αβ C .m α⊥,n β⊂,m n ⊥,则αβ⊥D .m α⊥,n β⊥且αβ⊥,则m n ⊥3.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,15AA =,则V 的最大值是( )A .4πB .92πC .1256πD .323π 4.已知四棱锥S ABCD -的底面为矩形,SA ⊥底面ABCD ,点E 在线段BC 上,以AD 为直径的圆过点E .若33SA AB ==,则SED ∆的面积的最小值为( )A .9B .7C .92D .725.如图,P 是正方体1111ABCD A B C D -中1BC 上的动点,下列命题:①1AP B C ⊥;②BP 与1CD 所成的角是60°;③1P AD C V -为定值;④1//B P 平面1D AC ;⑤二面角P AB C 的平面角为45°.其中正确命题的个数有( )A .2个B .3个C .4个D .5个6.在正四面体ABCD 中,异面直线AB 与CD 所成的角为α,直线AB 与平面BCD 所成的角为β,二面角C AB D --的平面角为γ,则α,β,γ的大小关系为( ) A .βαγ<< B .αβγ<< C .γβα<< D .βγα<< 7.已知平面α与平面β相交,直线m ⊥α,则( )A .β内必存在直线与m 平行,且存在直线与m 垂直B .β内不一定存在直线与m 平行,不一定存在直线与m 垂直C .β内必存在直线与m 平行,不一定存在直线与m 垂直D .β内不一定存在直线与m 平行,但必存在直线与m 垂直8.下列说法正确的是( )A .直线l 平行于平面α内的无数条直线,则l ∥αB .若直线a 在平面α外,则a ∥αC .若直线a b φ⋂=,直线b α⊂,则a ∥αD .若直线a ∥b ,b α⊂,那么直线a 就平行于平面α内的无数条直线9.三棱锥A -BCD 的所有棱长都相等,M ,N 分别是棱AD ,BC 的中点,则异面直线BM 与AN 所成角的余弦值为( )A .13B .2C .3D .2310.已知三棱锥A BCD -的所有棱长都为2,且球O 为三棱锥A BCD -的外接球,点M 是线段BD 上靠近D 的四等分点,过点M 作平面α截球O 得到的截面面积为Ω,则Ω的取值范围为( )A .π3π,42⎡⎤⎢⎥⎣⎦B .3π3π,42⎡⎤⎢⎥⎣⎦C .π3π,22⎡⎤⎢⎥⎣⎦D .,42ππ⎡⎤⎢⎥⎣⎦ 11.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为23π的扇形,则该圆锥的轴截面的面积为( )A .183B .182C .123D .24312.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥底面111A B C ,底面三角形111A B C 是正三角形,E 是BC 中点,则下列叙述正确的是( )A .1CC 与1B E 是异面直线B .AC ⊥平面11ABB A C .AE ,11B C 为异面直线,且11AE B C ⊥D .11//A C 平面1AB E13.边长为2的正方形ABCD 沿对角线AC 折叠使得ACD 垂直于底面ABC ,则点C 到平面ABD 的距离为( )A .263B .233C .223D .6314.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行截面间的距离是( )A .1B .2C .1或7D .2或6二、解答题15.如图,BC 为圆O 的直径,D 为圆周上异于B 、C 的一点,AB 垂直于圆O 所在的平面,BE AC ⊥于点E ,BF AD ⊥于点F .(1)求证:BF AC ⊥;(2)若2AB BC ==,60CBD ∠=︒,求三棱锥B DEF -的体积.16.如图,在四棱锥S ABCD -中,底面梯形ABCD 中,//BC AD ,平面SAB ⊥平面ABCD ,SAB 是等边三角形,已知24AC AB ==,2225BC AD CD ===(1)求证:平面SAB ⊥平面SAC ;(2)求直线AD 与平面SAC 所成角的余弦值.17.如图所示的四棱锥E -ABCD 中,底面ABCD 为矩形,AE =EB =BC =2,AD ⊥平面ABE ,且CE 上的点F 满足BF ⊥平面ACE .(1)求证:AE ∥平面BFD ;(2)求三棱锥C -AEB 的体积.18.如图所示,在四面体ABCD 中,点P ,Q ,R 分别为棱BC ,BD ,AD 的中点,AB BD ⊥,2AB =,3PR =,22CD =.(1)证明://CD 平面PQR ;(2)证明:平面ABD ⊥平面BCD .19.如图,已知三棱台111ABC A B C -中,平面11BCC B ⊥平面ABC ,ABC 是正三角形,侧面11BCC B 是等腰梯形,111224AB BB B C ===,E 为AC 的中点.(1)求证:1AA BC ⊥;(2)求直线1B E 与平面11ACC A 所成角的正弦值.20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,2AB AP ==,E 为棱PD 的中点.(Ⅰ)求证CD AE ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)求点A 到平面PBD 的距离.21.ABC 是正三角形,线段EA 和DC 都垂直于平面ABC .设2,EA AB a DC a ===,且F 为BE 的中点,如图.(1)求证://DF 平面ABC ;(2)求证:AF BD ⊥;(3)求平面BDF 与平面ABC 所成锐二面角的大小.22.如图在Rt ABC △中,点M ,N 分别在线段AB ,AC 上,且//MN BC ,AB BC =,2AM MB =.若将AMN 沿MN 折起到PMN 的位置,使得60PMB ∠=︒.(1)求证:平面PBN ⊥平面BCNM ;(2)在棱PC 上是否存在点G ,使得//GN 平面PBM ?说明理由.23.如图,四面体ABCD 中,O ,E 分别是BD 、BC 的中点,2CA CB CD BD ====,2AB AD ==.(1)求证:AO ⊥平面BCD ;(2)若G 为AO 上的一点,且2AG GO =,求证://AC 平面GDE .24.在斜三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,且2AB AC ==,123AA =.(Ⅰ)求证:平面1AB C ⊥平面11ABB A ;(Ⅱ)求直线1BC 与平面11ABB A 所成角的正弦值.25.如图,ABCD 是边长为2的正方形,ED ⊥平面ABCD ,1ED =,//EF BD .(1)设EF BD λ=,是否存在实数λ,使//BF 平面ACE ;(2)证明:平面EAC ⊥平面BDEF ;(3)当12EF BD =时,求几何体ABCDEF 的体积. 26.在如图所示的圆锥中,OP 是圆锥的高,AB 是底面圆的直径,点C 是弧AB 的中点,E 是线段AC 的中点,D 是线段PB 的中点,且2PO =,1OB =.(1)试在PB 上确定一点F ,使得EF ∥面COD ,并说明理由;(2)求点A 到面COD 的距离.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据空间线面位置关系的性质和判定定理判断或举出反例说明.【详解】对①,根据垂直于两个平行平面中一个平面的直线与另一个平面也垂直,以及垂直于同一个平面的两条直线平行,故①正确;对②,设三棱柱的三个侧面分别为,,αβγ,其中两条侧棱为,m n ,显然//m n ,但α与β不平行,故②错误.对③,当三个平面,,αβγ两两垂直时,显然结论不成立,故③错误.对④,∵////αβγ,当m α⊥时,m γ⊥,故④正确.故选:D.【点睛】该题考查空间线面位置关系的判断,属于中档题目. 2.D解析:D【分析】对每一个命题逐一判断得解.【详解】对于A ,若m ∥α,n ∥β且α∥β,说明m 、n 是分别在平行平面内的直线,它们的位置关 系应该是平行或异面或相交,故A 不正确;对于B ,若“m ⊂α,n ⊂α,m ∥β,n ∥β”,则“α∥β”也可能α∩β=l ,所以B 不成立. 对于C ,根据面面垂直的性质,可知m ⊥α,n ⊂β,m ⊥n ,∴n ∥α,∴α∥β也可能α∩β=l ,也可能α⊥β,故C 不正确;对于D ,由m ⊥α,n ⊥β且α⊥β,则m 与n 一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n 相交,且设m 与n 确定的平面为γ,则γ与α和β的交线所成的角即 为α与β所成的角,因为α⊥β,所以m 与n 所成的角为90°,故命题D 正确. 故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.3.D解析:D【分析】先保证截面圆与ABC 内切,记圆O 的半径为r ,由等面积法得()68AC AB BC r ++=⨯,解得2r.由于三棱柱高为5,此时可以保证球在三棱柱内部,球的最大半径为2,由此能求出结果.【详解】 解:如图,由题意可知,球的体积要尽可能大时,球需与三棱柱内切.先保证截面圆与ABC 内切,记圆O 的半径为r ,则由等面积法得1111 (682222)ABC S AC r AB r BC r =++=⨯⨯△, 所以()68AC AB BC r ++=⨯,又因为6AB =,8BC =,所以10AC =,所以2r.由于三棱柱高为5,此时可以保证球在三棱柱内部,若r 增大,则无法保证球在三棱柱内,故球的最大半径为2,所以3344322333V r πππ==⋅=. 故选:D .【点评】本题考查球的最大体积的求法,考查空间想象能力,属于中档题.4.C解析:C【分析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到,BE EC 之间的等量关系,再用,BE EC 表示出SED 的面积,利用均值不等式即可容易求得.【详解】设BE x =,EC y =,则BC AD x y ==+.因为SA ⊥平面ABCD ,ED ⊂平面ABCD ,所以SA ED ⊥.又AE ED ⊥,SA AE A ⋂=,所以ED ⊥平面SAE ,则ED SE ⊥.易知23AE x =+23ED y =+ 在Rt AED ∆中,222AE ED AD +=,即22233()x y x y +++=+,化简得3xy =. 在Rt SED ∆中,212SE x =+22933ED y x =+=+. 所以221110834522SED S SE ED x x ∆=⋅=++. 因为22221081083336x x x x+≥⋅=, 当且仅当6x =6y =19364522SED S ∆≥+=.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.5.C解析:C【详解】①在正方体中,1111,,AB B C BC B C AB BC B ⊥⊥=,所以1B C ⊥平面11,ABC D AP ⊂平面11ABC D ,从而1AP B C ⊥正确;②由于11//CD A B ,并且11,BC A B 的夹角是60°,故1BP CD 与所成的角是60°正确;③虽然点P 变化,但P 到1AD 的距离始终不变,故1P AD C V -为定值正确;④若1//B P 平面1D AC ,而1//BC 平面1D AC ,1111,,B P BC P B P BC =⊂平面11BB C C ,所以平面1//D AC 平面11BB C C ,这与平面1D AC 与平面11BB C C 相交矛盾,所以不正确;⑤P 点变化,但二面角PAB C 都是面11ABC D 与面ABCD 所成的角, 故二面角PAB C 的平面角为45°正确;故选:C. 6.D解析:D【分析】在正四面体ABCD 中易证AB CD ⊥,即90α=,然后作出直线AB 与平面BCD 所成的角,二面角C AB D --的平面角,在将之放到三角形中求解比较其大小.【详解】在正四面体ABCD 中,设棱长为2,设O 为底面三角形BCD 是中心,则AO ⊥平面BCD .取CD 边的中点E ,连结,AE BE , 如图.则易证,AE CD BE CD ⊥⊥,又AEBE E =. 所以CD ⊥平面ABE ,又AB ⊆平面ABE ,所以AB CD ⊥. 所以异面直线AB 与CD 所成的角为90α=.又AO ⊥平面BCD .所以直线AB 与平面BCD 所成的角为β=ABO ∠在ABO 中,2233BO BE ==,2AB = 所以3cos 3BO ABO AB ∠==. 取边AB 的中点F ,连结,CF FD ,则有,CF AB FD AB ⊥⊥,所以二面角C AB D --的平面角为CFD γ=∠, 在CFD △中,3,2CF FD CD === 由余弦定理有:2221cos 23CF FD CD CFD CF FD +-∠==⨯⨯, 即31=90cos cos =33αβγ=>,, 所以βγα<<,故选:D.【点睛】本题考查异面直线成角,线面角,二面角的求法,关键是在立体图中作出相应的角,也可以用向量法,属于中档题. 7.D解析:D【分析】可在正方体中选择两个相交平面,再选择由顶点构成且与其中一个面垂直的直线,通过变化直线的位置可得正确的选项.【详解】如图,平面ABCD 平面11D C BA AB =,1BB ⊥平面ABCD ,但平面11D C BA 内无直线与1BB 平行,故A 错.又设平面α平面l β=,则l α⊂,因m α⊥,故m l ⊥,故B 、C 错, 综上,选D .【点睛】本题考察线、面的位置关系,此种类型问题是易错题,可选择合适的几何体去构造符合条件的点、线、面的位置关系或不符合条件的反例. 8.D解析:D【分析】根据直线与平面平行的判定及相关性质,一一验证各选项即可得出答案.【详解】解:A 项,若直线l 平行于平面α内的无数条直线,则l 可能平行于平面α,也可能位于平面α内,故A 项错误;B 项,直线a 在平面α外,则直线a 与平面α可能平行,也可能相交,故B 错误;C 项,直线,a b b φα⋂=⊂,所以a 可能与平面α相交或与平面α平行,故C 项错误;D 项,直线a ∥b ,b α⊂,当a ∥α时,直线a 与平面α内所有与直线b 平行的直线平行;当a α⊂时,除了直线a 本身,直线a 与平面α内所有与直线b 平行的直线平行,因此直线a 平行于平面α内的无数条直线,故D 项正确.故选:D.【点睛】本题主要考查直线与平面平行的判定及相关性质,属于基础题型.9.D解析:D【分析】连接DN ,取DN 的中点O ,连接MO ,BO ,得出BMO ∠(或其补角)是异面直线BM 与AN 所成的角,根据长度关系求出BMO ∠(或其补角)的余弦值即可.【详解】连接DN ,取DN 的中点O ,连接MO ,BO ,∵M 是AD 的中点,∴MO ∥AN ,∴BMO ∠(或其补角)是异面直线BM 与AN 所成的角.设三棱锥A -BCD 的所有棱长为2, 则2213AN BM DN ===- 则13122MO AN NO DN ====, 则223714BO BN NO =+=+= 在BMO ∠中,由余弦定理得222373244cos 233232BM MO BO BMO BM MO +-+-∠===⋅⨯⨯, ∴异面直线BM 与AN 所成角的余弦值为23. 【点睛】 本题主要考查异面直线的夹角,解题的关键是正确找出异面直线所对应的夹角,属于中档题.10.B解析:B【分析】求出三棱锥A BCD -的外接球半径R ,可知截面面积的最大值为2πR ,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,截面圆的半径的最小值22R OM -,进而可求出截面面积的最小值.【详解】三棱锥A BCD -是正四面体,棱长为2,将三棱锥A BCD -放置于正方体中, 可得正方体的外接球就是三棱锥A BCD -的外接球.因为三棱锥A BCD -的棱长为22,可得外接球直径22226R =++=,故62R =, 故截面面积的最大值为2263πππ2R ⎛⎫= ⎪ =⎪⎝⎭. 因为M 是BD 上的点,当球心O 到截面的距离最大时,截面面积最小,此时球心O 到截面的距离为OM ,△OBD 为等腰三角形,过点O 作BD 的垂线,垂足为H ,222662,12OD OH OD HD ⎛⎫==-=-= ⎪ ⎪⎝⎭, 得222113244OM OH HM =+=+=, 则所得截面半径的最小值为22633444R OM -=-=, 所以截面面积的最小值为233ππ()44=. 故Ω的取值范围为3π3π,42⎡⎤⎢⎥⎣⎦.故选:B.【点睛】外接球问题与截面问题是近年来的热点问题,平常学习中要多积累,本题考查学生的空间想象能力、推理能力及计算求解能力,属于中档题.11.B解析:B【分析】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .可得πr 2+πrl =36π,2πr =l •23π,联立解得:r ,l ,h 22l r =-即可得出该圆锥的轴截面的面积S 12=•2r •h =rh . 【详解】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .则πr 2+πrl =36π,化为:r 2+rl =36,2πr =l •23π,可得l =3r . 解得:r =3,l =9,h 22l r =-=2.该圆锥的轴截面的面积S 12=•2r •h =rh =2=2. 故选:B.【点睛】本题考查了圆锥的表面积、弧长的计算公式,考查了推理能力与计算能力,属于中档题. 12.C解析:C【分析】根据异面直线定义可判断A ;由线面垂直的性质即可判断B ;由异面直线的位置关系并得11AE B C ⊥可判断C ;根据线面平行的判定定理可判断D.【详解】对于A 项,1CC 与1B E 在同一个侧面中,故不是异面直线,所以A 错;对于B 项,由题意知,上底面是一个正三角形,故AC ⊥平面11ABB A 不可能,所以B 错;对于C 项,因为AE ,11B C 为在两个平行平面中且不平行的两条直线,故它们是异面直线,由底面111A B C 是正三角形,E 是BC 中点,根据等腰三角形三线合一可知AE BC ⊥,结合棱柱性质可知11//B C BC ,则11AE B C ⊥,所以C 正确;对于D 项,因为11A C 所在的平面与平面1AB E 相交,且11A C 与交线有公共点,故11//A C 平面1AB E 不正确,所以D 项不正确.故选C.【点睛】该题考查的是有关立体几何中空间关系的问题,在解题的过程中,需要对其相关的判定定理和性质定理的条件和结论熟练掌握,注意理清其关系,属于中档题13.A解析:A【分析】取AC 的中点O ,连接DO 和BO ,由等腰三角形的性质得出DO AC ⊥,可求出DO 和BO 的长,再由平面ACD ⊥平面ABC ,根据面面垂直的性质可得DO ⊥平面ABC ,进而得到DO OB ⊥,利用勾股定理即可求出BD ,最后利用等体积法得出C ABD D ABC V V --=,进而求出点C 到平面ABD 的距离.【详解】解:取AC 的中点O ,连接DO 和BO ,则DO AC ⊥,BO AC ⊥,由于四边形ABCD 是边长为2的正方形,2AD CD AB BC ∴====,则AC ==DO BO ===由题知,平面ACD ⊥平面ABC ,且交线为AC ,而DO ⊂平面ACD ,则DO ⊥平面ABC ,又BO ⊂平面ABC ,所以DO BO ⊥,∴在Rt BOD 中,2BD ==,∴ABD △是等边三角形,则122sin 6032ABD S =⨯⨯⨯=△, 则在Rt ABC 中,12222ABC S =⨯⨯=, 设点C 到平面ABD 的距离为d ,则C ABD D ABC V V --=,即1133ABD ABC S d S DO ⋅=⋅△△,即:11233=⨯d =,即点C 到平面ABD 的距离为3. 故选:A.【点睛】本题考查利用等体积法求点到面的距离,还涉及面面垂直的性质和棱锥的体积公式,考查推理证明和运算能力.14.C解析:C【分析】求出两个平行截面圆的半径,由勾股定理求出球心到两个截面的距离.分两个平行截面在球心的同侧和两侧讨论,即得两平行截面间的距离.【详解】设两平行截面圆的半径分别为12,r r ,则121226,28,3,4r r r r ππππ==∴==. ∴球心到两个截面的距离分别为222212534,543d d =-==-=.当两个平行截面在球心的同侧时,两平行截面间的距离为12431d d -=-=; 当两个平行截面在球心的两侧时,两平行截面间的距离为12437d d +=+=. 故选:C .【点睛】本题考查球的截面间的距离,属于基础题.二、解答题15.(1)证明见解析;(23 【分析】(1)易证得CD ⊥平面ABD ,由线面垂直性质可得CD BF ⊥,利用线面垂直判定定理可证得BF ⊥平面ACD ,由线面垂直性质证得结论;(2)利用勾股定理可求得,AD BD 长,在ABD △中,利用面积桥可求得BF ,进而得到BDF S ;由等腰三角形三线合一可知E 为AC 中点,由此确定E 到平面ABD 的距离;利用体积桥和三棱锥体积公式可求得结果.【详解】(1)AB 垂直于圆O 所在平面BCD ,CD ⊂平面BCD ,AB CD ∴⊥, BC 为圆O 的直径,CD BD ∴⊥, 又,BD AB ⊂平面ABD ,AB BD B =,CD平面ABD , BF ⊂平面ABD ,CD BF ∴⊥,又BF AD ⊥,AD CD D =,,AD CD ⊂平面ACD ,BF ∴⊥平面ACD , AC ⊂平面ACD ,BF AC ∴⊥.(2)2BC =,60CBD ∠=︒,CD BD ⊥,1BD ∴=,由AB ⊥平面BCD ,CD ⊂平面BCD 知:AB BD ⊥,AD ∴==,111222ABD S AB BD AD BF BF ∴=⋅=⋅==,解得:5BF =,5DF ∴===,11122555BDF S DF BF ∴=⋅=⨯=, AB BC =,BE AC ⊥,E ∴为AC 中点,由(1)知:CD ⊥平面ABD ,E ∴到平面ABD 的距离为122CD =,13230B DEF E BDF BDF V V S --∴==⨯=. 【点睛】 方法点睛:立体几何求解三棱锥体积的问题常采用体积桥的方式,将所求三棱锥转化为底面面积和高易求的三棱锥体积的求解问题.16.(1)证明见解析;(2. 【分析】(1)在ABC 中,利用勾股定理易证AB AC ⊥,再由平面SAB ⊥平面ABCD ,利用面面垂直的性质定理和线面垂直的判定定理证明.(2)由(1)以A 为原点,以AB ,AC 为x ,y 轴建立空间直角坐标系,分别求得AD 的坐标和平面SCA 的一个法向量()111,,m x y z =,再由||cos ,||||AD m AD m AD m ⋅〈〉=⋅求解. 【详解】(1)在ABC 中,由于2AB =,4CA =,BC =∴222AB AC BC +=, AB AC ∴⊥,平面SAB ⊥平面ABCD ,AC ∴⊥平面SAB ,又因为AC ⊂平面SAC ,所以平面SAB ⊥平面SAC ;(2)如图建立A xyz -空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,3)S ,(0,4,0)C , 则(1,3)CS =-,(2,4,0)BC =-,(0,4,0)AC =,1(1,2,0)2AD BC ==-. 设平面SCA 的一个法向量()111,,m x y z =,则00m AC m CS ⎧⋅=⎨⋅=⎩,即111140430y x y z =⎧⎪⎨-+=⎪⎩ ∴(3,0,1)m =-. ||15cos ,10||||AD m AD m AD m ⋅〈〉==⋅, 设直线AD 与平面SAC 所成夹角为θ, 则15sin |cos ,|10AD m θ=<>=, ∴直线AD 与平面SAC 85. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 17.(1)证明见解析;(2)43. 【分析】(1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解.【详解】(1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG ,∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE ,∴F 是EC 的中点,∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD ,∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,则AE ⊥BC .又BF ⊥平面ACE ,则AE ⊥BF ,∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△. 【点睛】方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).18.(1)证明见解析;(2)证明见解析.【分析】(1)推导出//PQ DC ,由此能证明//CD 平面PQR .(2)推导//RQ AB ,//PQ CD ,且12RQ AB =,12PQ CD =,从而RQ BD ⊥,PQ RQ ⊥,进而RQ ⊥平面BCD ,由此能证明平面ABD ⊥平面BCD .【详解】证明:(1)点P ,Q 分别为棱BC ,BD 的中点,//PQ DC ∴,PQ ⊂平面PQR ,CD ⊂/平面PQR ,//CD ∴平面PQR .(2)点P ,Q ,R 分别为棱BC ,BD ,AD 的中点,//RQ AB ∴,//PQ CD ,且12RQ AB =,12PQ CD =, AB BD ⊥,RQ BD ∴⊥,2AB =,3PR =,22CD =. 112RQ AB ∴==,122PQ CD ==, 222PQ QR PR ∴+=,PQ RQ ∴⊥, BD PQ Q ⋂=,RQ ∴⊥平面BCD , RQ ⊂平面ABD ,∴平面ABD ⊥平面BCD .【点睛】思路点睛:证明线面平行、面面垂直的常见思路:(1)证明线面平行的思路:通过三角形中位线或者证明平行四边形说明线线平行或者证明面面平行;(2)证明面面垂直的思路:证明线面垂直结合面面垂直的判定定理完成证明. 19.(1)答案见解析;(26. 【分析】(1)分别取BC 、11B C 的中点O 、1O ,连接11A O 、1OO 、AO ,则AO BC ⊥,由平面11BCC B ⊥平面ABC ,推出AO ⊥平面11BCC B ,同理可得,11A O ⊥平面11BCC B ,故11//AO AO ,即1A 、1O 、O 、A 四点共面;易知1OO BC ⊥,而AO BC ⊥,于是有BC ⊥平面11AO OA ,故而得证;(2)由(1)知,AO ⊥平面11BCC B ,得1AO OO ⊥,于是1OO ,OA ,OB 两两垂直,故以O 为原点,OA 、OB 、1OO 所在的直线分别为x 、y 、z 轴建立空间直角坐标系,根据法向量的性质求得平面11ABB A 的法向量n ,设直线1EB 与平面11ABB A 所成角为θ,由1sin |cos EB θ=<,|n >,即可得解.【详解】(1)证明:分别取BC 、11B C 的中点O 、1O ,连接11A O 、1OO 、AO ,ABC ∆为正三角形, AO BC ∴⊥,平面11BCC B ⊥平面ABC ,平面11BCC B 平面ABC BC =,AO ⊂平面ABC ,AO ∴⊥平面11BCC B ,同理可得,11A O ⊥平面11BCC B ,11//AO AO ∴,1A ∴、1O 、O 、A 四点共面.等腰梯形11BCC B 中,O 、1O 分别为BC 、11B C 的中点,1OO BC ∴⊥,又AO BC ⊥,1AO OO O ⋂=,AO 、1OO ⊂平面11AO OA ,BC ∴⊥平面11AO OA ,1AA ⊂平面11AO OA , 1AA BC ∴⊥.(2)解:由(1)知,AO ⊥平面11BCC B ,1OO ⊂平面11BCC B , 1AO OO ∴⊥,1OO ∴,OA ,OB 两两垂直,故以O 为原点,OA 、OB 、1OO 所在的直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,则(23A ,0,0),(0B,2,0),1(0B ,1,(0C ,2-,0),E 1-,0),∴1(EB =-2,(AB =-,2,0),1(0BB =,1-,设平面11ABB A 的法向量为(n x =,y,)z ,则1·0·0n AB n BB ⎧=⎪⎨=⎪⎩,即200y y ⎧-+=⎪⎨-+=⎪⎩,令y =1x =,1z =,∴(1n =1),设直线1EB 与平面11ABB A 所成角为θ, 则1sin |cos EB θ=<,11·|534·EB n n EB n>===+, 故直线1EB 与平面11ABB A 所成角的正弦值为 【点睛】关键点点睛:本题考查空间中线与面的位置关系、线面角的求法,熟练掌握线面、面面垂直的判定定理与性质定理,以及利用空间向量处理线面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题. 20.(Ⅰ)证明见解析;(Ⅱ;(Ⅲ. 【分析】(Ⅰ)根据PA ⊥底面ABCD ,PA ⊥CD ,再由底面ABCD 为正方形,利用线面垂直的判定定理证得CD PAD ⊥面即可.(Ⅱ)以点A 为原点建立空间直角坐标系,不妨设2AB AP ==,求得向量AE 的坐标,和平面PBD 的一个法向量(,,)n x y z =, 由cos ,AE n AE n AE n⋅=⋅求解.(Ⅲ)利用空间向量法,由AE n d n⋅=求解.【详解】(Ⅰ)证明:因为PA ⊥底面ABCD , 所以PA ⊥CD ,因为AD CD ⊥,PA AD A ⋂= 所以CD PAD ⊥面. 因为AE PAD ⊂面, 所以CD AE ⊥.(Ⅱ)依题意,以点A 为原点建立空间直角坐标系(如图),不妨设2AB AP ==,可得()()()()2,0,0,2,2,0,0,2,0,0,0,2B C D P , 由E 为棱PD 的中点,得(0,1,1)E . (0,1,1)AE =, 向量(2,2,0)BD =-,(2,0,2)PB =-. 设平面PBD 的一个法向量(,,)n x y z =,则00n BD n PB ⎧⋅=⎨⋅=⎩,即220220x y x z -+=⎧⎨-=⎩,令y=1,可得n =(1,1,1), 所以 6cos ,AE n AE n AE n⋅==⋅ 所以直线AE 与平面PBD 6. (Ⅲ)由(Ⅱ)知:(0,1,1)AE =,平面PBD 的一个法向量n =(1,1,1), 所以点A 到平面PBD 的距离 2333AE n d n⋅===. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.21.(1)证明见解析;(2)证明见解析;(3)45︒.【分析】(1)利用三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理即可证明;(2)利用线面、面面垂直的判定和性质定理即可证明;(3)延长ED 交AC 延长线于G ′,连BG ′,只要证明BG ′⊥平面ABE 即可得到∠ABE 为所求的平面BDE 与平面ABC 所成二面角,在等腰直角三角形ABE 中即可得到. 【详解】(1)证明:如图所示,取AB 的中点G ,连接,CG FG .∵,EF FB AG GB ==,//FG EA ∴,1=2FG EA又//DC EA ,1=2DC EA ,//FG DC ∴,=FG DC ,∴四边形CDFG 为平行四边形,故//DF CG .∵DF ⊄平面,ABC CG ⊂平面ABC , ∴//DF 平面ABC .(2)证明:∵EA ⊥平面ABC ,∴EA CG ⊥. 又ABC 是正三角形, ∴CG AB ⊥. ∴CG ⊥平面AEB . ∴CG AF ⊥. 又∵//DF CG , ∴DF AF ⊥.又AE AB =,F 为BE 中点, ∴AF BE ⊥.又BE DF F ⋂=, ∴AF ⊥平面BDE . ∴AF BD ⊥.(3)延长ED 交AC 延长线于G ',连接BG '.由12CD AE =,//CD AE 知D 为EG '中点, ∴//FD BG '.由CG ⊥平面,//ABE FD CG , ∴BG '⊥平面ABE .∴EBA ∠为所求二面角的平面角.在等腰直角三角形AEB 中,易求45ABE ∠=︒. 【点睛】熟练掌握三角形的中位线定理、平行四边形的判定和性质定理、线面平行的判定定理与线面、面面垂直的判定和性质定理及二面角的求法是解题的关键. 22.(1)证明见解析;(2)存在,理由见解析. 【分析】(1)证明PB BM ⊥,由线面垂直证明MN PB ⊥,然后由线面垂直的判定定理可得线面垂直,然后有面面垂直;(2)过点N 作//NH BM ,交BC 于点H ,再过点H 作GH //PB ,交PC 于点G ,可得两个线面平行,从而得面面平行,于是可得//GN 平面PMB ,同时得出13CG CP =. 【详解】解:(1)在Rt ABC △中,由AB BC =可知,BC AB ⊥. 因为//MN BC ,所以MN AB ⊥.翻折后垂直关系没变,仍有MN PM ⊥,MN BM ⊥. 又PM BMM ⋂=,所以MN ⊥平面PBM ,PB ⊂平面PBM ,则MN PB ⊥,又60PMB ∠=︒,可令2PM =,则1BM =,由余弦定理得PB =所以222PB BM PM +=,即PB BM ⊥.又因为BMMN M =,所以PB ⊥平面BCNM .又因为PB ⊂平面PBM ,所以平面PBM ⊥平面BCNM .(2)在PC 上是存在一点G ,当13CG CP =时,使得//GN 平面PMB . 证明如下:过点N 作//NH BM ,交BC 于点H ,则四边形BMNH 是平行四边形, 且2MN BH ==,1CH =.又由NH ⊄平面PBM ,BM ⊂平面PBM 知,//NH 平面PBM .再过点H 作GH //PB ,交PC 于点G ,则13CH CG CB CP ==. 又由GH ⊄平面GHN ,PB ⊂平面PBM 知,//GH 平面PBM .又NH ⊂面GHN ,GH ⊂面GHN ,GH HN H ⋂=, 所以平面//GHN 平面PBM .又GN ⊂平面PBM ,所以//GN 平面PBM .【点睛】关键点点睛:本题考查证明面面垂直,线面平行,解题方法根据面面垂直的判定定理证明垂直,根据面面平行的性质定理证明线面平行.要注意立体几何中证明平行与垂直的方法很多,解题时注意线线、线面、面面平行(垂直)间的相互转化. 23.(1)证明见解析;(2)证明见解析. 【分析】(1)连结OC ,根据等腰三角形的性质得出AO BD ⊥和CO BD ⊥,利用勾股定理的逆定理得出90AOC ︒∠=,则AO OC ⊥,最后根据线面垂直的判定定理,即可证明AO ⊥平面BCD ;(2)连接DE 交OC 于点H ,由BCD △为正三角形,得出H 为BCD △重心,最后通过线面平行的判定,即可证明//AC 平面GDE . 【详解】证明:(1)证明:O ,E 分别是BD 、BC 的中点,连结OC , ∵,BO DO AB AD ==,∴AO BD ⊥, ∵,BO DO BC CD ==,∴CO BD ⊥, 在AOC △中,由已知可得1,3AO CO ==2AC =,∴222AO CO AC +=,∴90AOC ︒∠=,即AO OC ⊥, ∵BD OC O ⋂=,,BD OC ⊂平面BCD , ∴AO ⊥平面BCD ;(2)证明:连接DE 交OC 于点H ,∵BCD △正三角形,,O E 分别为,BD BC 的中点, ∴H 为BCD △重心,∴2CH HO =且2AG GO =, ∴AG CHGO HO=,∴//AC GH ,∴GH ⊂平面GDE ,AC ⊄平面GDE , ∴//AC 平面GDE .【点睛】关键点点睛:本题考查等腰三角形的性质、线面垂直和线面平行的判定定理,熟练掌握三角形的重心的性质是解题的关键. 24.(Ⅰ)证明见解析;(Ⅱ)2. 【分析】(Ⅰ)通过1B C AB ⊥和AB AC ⊥可得AB ⊥平面1AB C ,即得证; (Ⅱ)设11BC B C O =,作1OE AB ⊥于E ,连结BE ,可得EBO ∠为1BC 与平面11ABB A 所成角,求出相关长度即可求解.【详解】(Ⅰ)证明:∵1B C ⊥平面ABC ,∴1B C AB ⊥, 又AB AC ⊥,1AC B C C ⋂=, 所以AB ⊥平面1AB C ,AB ⊂平面11ABB A ,所以平面1AB C ⊥平面11ABB A ; (Ⅱ)设11BC B C O =,作1OE AB ⊥于E ,连结BE ,∵平面1AB C ⊥平面11ABB A 于1AB ,∴OE ⊥平面11ABB A ,∴EBO ∠为1BC 与平面11ABB A 所成角,由已知2AB AC ==,123BB =,得12B C =,122B A =, ∴223BO BC OC =+=,在等腰直角1AB C 中,2OE =, 所以2sin 6OE EBO OB ∠==,即1BC 与平面11ABB A 所成角的正弦值为26. 【点睛】方法点睛:求线面角或面面角的常用方法,根据图形结构常用建立坐标系利用向量法求解或直接用几何法求解,向量法的往往更简单有效. 25.(1)存在;(2)证明见解析;(3)2. 【分析】 (1)存在12λ=满足题意,设AC 与BD 的交点为O ,连接EO ,由平面几何的知识可得//BF EO ,再由线面平行的判定即可得证;(2)由线面垂直的性质与判定可得AC ⊥平面BDEF ,再由面面垂直的判定即可得证;(3)结合(2)可得AC ⊥平面BDEF 、2ABCDEF A BDEF V V -=,再由棱锥的体积公式即可得解. 【详解】 (1)存在12λ=满足题意,理由如下: 设AC 与BD 的交点为O ,则12DO BO BD ==,连接EO ,如图,∵//EF BD ,当12λ=时,12EF BD BO ==, ∴四边形EFBO 是平行四边形,∴//BF EO ,又EO ⊂平面ACE ,BF ⊄平面ACE ,∴//BF 平面ACE ; (2)证明:ED ⊥平面ABCD ,AC ⊂平面ABCD ,∴ED AC ⊥, ∵ABCD 为正方形,∴BD AC ⊥, 又EDBD D =,∴AC ⊥平面BDEF ,又AC ⊂平面EAC ,∴平面EAC ⊥平面BDEF ; (3)∵ED ⊥平面ABCD ,∴ED BD ⊥, 又∵//EF BD 且12EF BD =,∴BDEF 是直角梯形,又∵ABCD 是边长为2的正方形,BD =,EF =∴122BDEF S⨯==,由(2)知AC ⊥平面BDEF ,∴12222332ABCDEF A BDEF BDEF V V S AO -==⨯⋅=⨯=. 【点睛】本题考查了线面平行、面面垂直的判定及几何体体积的求解,考查了空间思维能力与运算求解能力,属于中档题.26.(1)点F 是PB 上靠近点P 的四等分点;(2)d = 【解析】 试题分析:(1)连接BE ,设BEOC G =,由题意G 为ABC ∆的重心,∴2BGGE=,连接DG , 利用EF ∥面COD ,可得∴EF DG ∥,进而求得点F 的位置;(2)由PO ABC ⊥面,得到OC PO ⊥,利用线面、面面垂直的判定与性质定理,可得OC ⊥面POB ,再利用体积A COD D AOC V V --=,即可求解距离.试题解:(1)连接BE ,设BE OC G ⋂=,由题意G 为ABC ∆的重心,∴2BGGE=,连接DG , ∵EF 面COD ,EF ⊂平面BEF ,面BEF ⋂面COD DG =,∴EF DG ,∴21BD BG DF GE == 又BD DP =,∴14DF PF PB ==∴点F 是PB 上靠近点P 的四等分点.。

高考数学试卷错题

高考数学试卷错题

一、错题分析1. 错题类型:函数与导数题目:已知函数$f(x)=x^3-3x+1$,求$f(x)$的极值。

错因分析:在求极值时,没有正确运用导数的方法。

在求导数时,误将$f'(x)$求错,导致极值求解错误。

2. 错题类型:立体几何题目:已知长方体$ABCD-ABCD_1$,$AB=3$,$AD=4$,$AA_1=5$,求长方体的体积。

错因分析:在计算长方体体积时,误将底面积和高相乘,导致计算结果错误。

3. 错题类型:数列题目:已知数列$\{a_n\}$,$a_1=1$,$a_{n+1}=2a_n+1$,求$a_n$的通项公式。

错因分析:在求解数列通项公式时,没有正确运用递推公式。

在推导通项公式时,误将等式两边同时除以$a_n$,导致通项公式错误。

4. 错题类型:概率与统计题目:袋中有5个红球、4个蓝球和3个绿球,从中随机取出3个球,求取出2个红球和1个蓝球的概率。

错因分析:在计算概率时,没有正确运用组合数公式。

在计算组合数时,误将分子分母的项数写错,导致概率计算错误。

二、反思1. 错题原因分析:从以上错题分析可以看出,错题产生的原因主要有以下几个方面:(1)基础知识掌握不牢固,对公式、定理理解不透彻;(2)解题思路不清晰,没有正确运用解题方法;(3)粗心大意,审题不仔细,导致计算错误。

2. 改进措施:(1)加强基础知识的学习,熟练掌握公式、定理,提高解题能力;(2)总结解题方法,形成解题思路,提高解题效率;(3)培养细心审题的习惯,避免粗心大意导致的错误;(4)多做练习题,提高解题速度和准确率。

总之,高考数学试卷错题是我们提高数学成绩的重要资源。

通过分析错题,找出错误原因,制定改进措施,有助于我们更好地提高数学水平。

在今后的学习中,我们要认真对待错题,总结经验教训,不断提高自己的数学能力。

立体几何问题中的易错点剖析

立体几何问题中的易错点剖析

立体几何问题中的易错点剖析作者:***来源:《中学生数理化·高考数学》2020年第12期立體几何是高中数学重要内容之一,高考常考题型有三视图、线面位置关系的证明与判断、空间角的计算、动态问题、翻折问题等,其主要考查同学们的空间思维能力和逻辑推理能力,有时一些角度和距离问题也可以用空间向量来解决,较多问题属于基础题,难度适中。

同学们在复习过程中会因认知受限,容易出现错解,本文对立体几何中的易错问题归类剖析,以助同学们解题时能乘风破浪,所向披靡。

易错点1——忽视了三视图中的虚线点睛:在三视图中,规定看得见的棱画成实线,看不见的棱要画成虚线,因此,我们在看三视图时一定要看清楚虚实线。

易错点2——混淆了三视图中长度的真正意义例2 已知某几何体的三视图如图4所示(正视图为等腰三角形,俯视图为正方形,侧视图为直角三角形),则该几何体的最短棱长为____,最长棱长为 ___ 。

错解:最短棱长为√2;最长棱长为2√2。

错因剖析:将正视图和侧视图中的√2当作了底面边长,实际上,正视图中的√2指的是OA和OC的长,侧视图中的√2指的是OB和OD的长。

正解:根据三视图画出其直观图,该几何体是一个四棱锥(如图5),通过计算,易知最短棱PD及底面边长均为2,最长棱为PB =2√3。

点睛:三视图中的线段长并不能简单地认为就是棱的实际长度,当棱平行于所视方向时,看到的只是一个点,当棱斜对所视方向时,看到的长度小于实际长度,只有当棱垂直所视方向时,它代表的才是实际长度。

易错点3——无法~断翻折问题中角度的大小变化例3 如图6,在矩形ABCD中,AB =4,AD=3,E为边AD上的一点,DE=1,现将△ABE沿直线BE折成△A' BE,使得点A'在平面BCDE上的射影在四边形BCDE内(不含边界),设二面角A '-BE-C的大小为θ,直线A'B,A'C与平面BCDE所成的角分别为a,β,则()。

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》易错题汇编附解析

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》易错题汇编附解析

数学《空间向量与立体几何》复习资料一、选择题1.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A .64B .62C .32D .34【答案】A 【解析】 【分析】根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α. 【详解】如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点,1AB =,则2113122OC =+=,2113424OE =+=,2119244EC =+=,∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A ,1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE ,且1136222BDE S BD OE ∆==⨯⨯=g , 即α截该正方体所得截面图形的面积为6. 故选:A .【点睛】本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题.2.已知某几何体的三视图如图所示,则该几何体的体积为A.273B.276C.274D.272【答案】D【解析】【分析】先还原几何体,再根据锥体体积公式求结果.【详解】几何体为一个三棱锥,高为33,底为一个直角三角形,直角边分别为333,,所以体积为1127=33333=322V⨯⨯⨯⨯,选D.【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.3.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为()A.132πB.7πC.152πD.8π【答案】B【解析】【分析】画出几何体的直观图,利用三视图的数据求解表面积即可.【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B . 【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.4.鲁班锁(也称孔明锁、难人木、六子联方)起源于古代中国建筑的榫卯结构.这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙.鲁班锁类玩具比较多,形状和内部的构造各不相同,一般都是易拆难装.如图1,这是一种常见的鲁班锁玩具,图2是该鲁班锁玩具的直观图,每条棱的长均为2,则该鲁班锁的表面积为( )A .8(6623)+B .6(8823)+C .8(632)+D .6(8832)+ 【答案】A 【解析】 【分析】该鲁班锁玩具可以看成是一个正方体截去了8个正三棱锥所余下来的几何体,然后按照表面积公式计算即可. 【详解】由题图可知,该鲁班锁玩具可以看成是一个棱长为222+的正方体截去了8个正三棱锥所余下来的几何体,且被截去的正三棱锥的底面边长为22,则该几何体的表面积为2116(222)42282322S ⎡⎤=⨯+-⨯⨯⨯+⨯⨯⨯⎢⎥⎣⎦8(6623)=++.故选:A. 【点睛】本题考查数学文化与简单几何体的表面积,考查空间想象能力和运算求解能力.5.四面体ABCD 的四个顶点都在球O 的表面上,AB BCD ⊥平面,BCD V 是边长为3的等边三角形,若2AB =,则球O 的表面积为( ) A .16π B .323π C .12π D .32π【答案】A 【解析】 【分析】先求底面外接圆直径,再求球的直径,再利用表面积2S D π=求解即可. 【详解】BCD V 外接圆直径23sin 3CD d CBD ===∠ , 故球的直径平方222222(23)16D AB d =+=+=,故外接球表面积216S D ππ== 故选:A 【点睛】本题主要考查侧棱垂直底面的锥体外接球表面积问题,先利用正弦定理求得底面直径d ,再利用锥体高h ,根据球直径22D d h =+求解即可.属于中等题型.6.《九章算术》卷五商功中有如下问题:今有刍甍(音meng ,底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.已知该刍甍的三视图如图所示,则此刍甍的体积等于( )A .3B .5C .6D .12【答案】B 【解析】 【分析】首先由三视图还原几何体,再将刍甍分为三部分求解体积,最后计算求得刍甍的体积.【详解】由三视图换元为如图所示的几何体,该几何体分为三部分,中间一部分是直棱柱,两侧是相同的三棱锥,并且三棱锥的体积113113⨯⨯⨯=, 中间棱柱的体积131232V =⨯⨯⨯= , 所以该刍甍的体积是1235⨯+=. 故选:B 【点睛】本题考查组合体的体积,重点考查空间想象能力和计算能力,属于中档题型.7.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2π B .3π C .4π D .6π 【答案】C 【解析】 【分析】设AE BF a ==,13B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解. 【详解】设AE BF a ==,则()()23119333288B EBFa aV a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=-- ⎪⎝⎭u u u u r ,()3,3,0AC =-u u u r ,所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯u u u u r u u u r u u u u r u u u r u u u u r u u u r ,所以异面直线A F '与AC 所成的角为4π. 故选:C 【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.8.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r,利用公式R =可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为2sin3AB r π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为R === 因此,三棱锥P ABC -的外接球的表面积为22284433R πππ⎛=⨯= ⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.9.在棱长为1的正方体1111ABCD A B C D -中,点12,P P 分别是线段1,AB BD (不包括端点)上的动点,且线段12PP 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是 A .124B .112C .16D .12【答案】A 【解析】由题意在棱长为1的正方体1111ABCD A B C D -中,点12,P P 分别是线段1,AB BD 上的动点,且线段12PP 平行于平面11121,AADD PP B AD B ∆~∆, 设1,(0,1)PB x x =∈,即122,PP P =到平面11AA B B 的距离为x , 所以四棱锥121PP AB 的体积为2111(1)1()326V x x x x =⨯⨯-⨯⨯=-,当12x =时,体积取得最大值124,故选A .点睛:本题考查了空间几何体的结构特征,及几何体的体积的计算,其中解答中找出所求四面体的底面面积和四面体的高是解答的关键,着重考查了分析问题和解答问题的能力,对于空间几何体的体积与表面积的计算时,要正确把握几何体的结构特征和线面位置关系在解答中的应用.10.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222B .232C 62+D 72【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABCAD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =,1AD =()22min32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆周长的最小值为:72+本题正确选项:D 【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.11.如图,在正方体1111ABCD A B C D -中,M , N 分别为棱111,C D CC 的中点,以下四个结论:①直线DM 与1CC 是相交直线;②直线AM 与NB 是平行直线;③直线BN 与1MB 是异面直线;④直线AM 与1DD 是异面直线.其中正确的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据正方体的几何特征,可通过判断每个选项中的两条直线字母表示的点是否共面;如果共面,则可能是相交或者平行;若不共面,则是异面. 【详解】①:1CC 与DM 是共面的,且不平行,所以必定相交,故正确;②:若AM BN 、平行,又AD BC 、平行且,AM AD A BN BC B ⋂=⋂=,所以平面BNC P 平面ADM ,明显不正确,故错误;③:1BN MB 、不共面,所以是异面直线,故正确; ④:1AM DD 、不共面,所以是异面直线,故正确; 故选C. 【点睛】异面直线的判断方法:一条直线上两点与另外一条直线上两点不共面,那么两条直线异面;反之则为共面直线,可能是平行也可能是相交.12.在ABC ∆中,设BAC α∠=,CA 与CB 所成的角是β,绕直线AC 将AB 旋转至AB ',则在所有旋转过程中,关于AB '与BC 所成的角γ的说法正确的是( )A .当4παβ-≥时,[],γαβαβ∈-+B .当4παβ-<-时,[],γβααβ∈-+C .当4παβ+≥时,[],γαβαβ∈-+D .当4παβ+<时,,γαβαβ∈⎡-+⎤⎣⎦ 【答案】D 【解析】 【分析】首先理解异面直线所成的角的范围是0,2πγ⎛⎤∈ ⎥⎝⎦,排除选项A,B,C,对于D 可根据 AB 绕AC 旋转,形成以AC 为轴的圆锥,AB '是母线,再将异面直线所成的角,转化为相交直线所成的角,判断最大值和最小值. 【详解】因为γ是异面直线所成的角,所以0,2πγ⎛⎤∈ ⎥⎝⎦A.当4παβ-≥时,αβ+的范围有可能超过2π,比如,3,46ππαβ==,所以不正确; B.当4παβ-<-时,当3,46ππβα==,此时[],γβααβ∈-+,也不正确; C.当4παβ+≥,当3,46ππαβ==,此时[],γαβαβ∈-+,故也不正确; D. 4παβ+<时,AB 绕AC 旋转,形成以AC 为轴的圆锥,AB '是母线,如图,过点A 作BC 的平行线AD ,且CAD β∠=,'AB 与BC 所成的角γ转化为AB '与AD 所成的角,由图象可知,当AB '是AB 时,角最大,为αβ+,当AB '在平面ABC 内时,不与AB 重合时,角最小,此时为αβ-故选:D【点睛】本题考查异面直线所成的角,重点考查轨迹,数形结合分析问题的能力,属于中档题型,本题的关键是判断,并画出AB 绕AC 旋转,形成以AC 为轴的圆锥.13.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .169πB .89πC .1627πD .827π 【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-, ∴圆柱的体积为23()(3)(02)2V r r r r π=-<<, 则33333163331616442()(3)()9442939r r r V r r r r πππ++-=-=g g g g …. 当且仅当33342r r =-,即43r =时等号成立. ∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.14.若圆锥的高等于底面直径,则它的底面积与侧面积之比为A .1∶2B .1∶3C .1∶5D .3∶2【答案】C【解析】【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C .【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题.15.若a ,b 是不同的直线,α,β是不同的平面,则下列四个命题:①若a P α,b β∥,a b ⊥r r ,则αβ⊥;②若a P α,b β∥,a b ∥,则αβ∥;③若a α⊥,b β⊥,a b ∥,则αβ∥;④若a P α,b β⊥,a b ⊥r r ,则αβ∥.正确的个数为( ) A .0B .1C .2D .3 【答案】B【解析】【分析】对每一个选项逐一分析得解.【详解】命题①中α与β还有可能平行或相交;命题②中α与β还有可能相交;命题④中α与β还有可能相交;∵a b P ,a α⊥,∴b α⊥,又b β⊥,∴αβP .故命题③正确.故选B .【点睛】本题主要考查空间直线平面位置关系的判断,意在考查学生对这些知识的理解掌握水平和空间想象能力.16.设A ,B ,C ,D 是同一个球面上四点,ABC ∆是斜边长为6的等腰直角三角形,若三棱锥D ABC -体积的最大值为27,则该球的表面积为( )A .36πB .64πC .100πD .144π【答案】C【解析】【分析】由题意画出图形,求出三棱锥D ABC -的外接球的半径,代入表面积公式求解.【详解】解:如图,ABC ∆是斜边BC 长为6的等腰直角三角形,则当D 位于直径的端点时,三棱锥D ABC -体积取最大值为27,由AB AC =,AB AC ⊥,6BC =,可得斜边BC 上的高3AE =,32AB AC == 由1132322732DE ⨯⨯=,解得9DE =, 则21AE EF DE==. ∴球O 的直径为10DE EF +=,则球O 的半径为11052⨯=. ∴该球的表面积为245100S ππ=⨯=.故选C .【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.17.某四面体的三视图如图所示,正视图,俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )A .22B .23C .4D .26【答案】B【解析】 解:如图所示,该几何体是棱长为2的正方体中的三棱锥P ABC - ,其中面积最大的面为:1232232PAC S V =⨯⨯= . 本题选择B 选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.18.已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥r r ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】 根据面面垂直的性质定理,以及充要条件的判定方法,即可作出判定,得到答案.【详解】由题意知,平面α⊥平面β,,,l a b αβαβ⋂=⊂⊂, 当a l ⊥时,利用面面垂直的性质定理,可得a b ⊥r r 成立,反之当a b ⊥r r 时,此时a 与l 不一定是垂直的,所以a l ⊥是a b ⊥r r 的充分不必要条件,故选A.【点睛】本题主要考查了充要条件的判定,其中解答中熟记线面位置关系的判定定理与性质定理,以及充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.19.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A .2B .5C 13D 22【答案】D【解析】【分析】 根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥P ABC -.13PAC PAB S S ∆∆=22PAC S ∆=,2ABC S ∆=22.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.20.已知棱长为1的正方体被两个平行平面截去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积为( )A.B.C.D.【答案】B【解析】【分析】根据三视图得到几何体的直观图,然后再根据题中的数据求出几何体的表面积即可.【详解】由三视图可得,该几何体为如图所示的正方体截去三棱锥和三棱锥后的剩余部分.其表面为六个腰长为1的等腰直角三角形和两个边长为的等边三角形,所以其表面积为.故选B.【点睛】在由三视图还原空间几何体时,一般以主视图和俯视图为主,结合左视图进行综合考虑.热悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.求解几何体的表面积或体积时要结合题中的数据及几何体的形状进行求解,解题时注意分割等方法的运用,转化为规则的几何体的表面积或体积求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考考前复习资料—高中数学立体几何部分错题精选一、选择题:1.(石庄中学)设ABCD 是空间四边形,E ,F 分别是AB ,CD 的中点,则BC AD EF ,,满足( )A 共线B 共面C 不共面D 可作为空间基向量正确答案:B 错因:学生把向量看为直线。

2.(石庄中学)在正方体ABCD-A 1B 1C 1D 1,O 是底面ABCD 的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM( )A 是AC 和MN 的公垂线B 垂直于AC 但不垂直于MN C 垂直于MN ,但不垂直于ACD 与AC 、MN 都不垂直 正确答案:A 错因:学生观察能力较差,找不出三垂线定理中的射影。

3.(石庄中学)已知平面α∥平面β,直线L ⊂平面α,点P ∈直线L,平面α、β间的距离为8,则在β内到点P 的距离为10,且到L 的距离为9的点的轨迹是( )A 一个圆B 四个点C 两条直线D 两个点正确答案:B 错因:学生对点线距离、线线距离、面面距离的关系不能灵活掌握。

4.(石庄中学)正方体ABCD-A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持A P ⊥BD 1,则动点P 的轨迹( )A 线段B 1C B BB 1的中点与CC 1中点连成的线段 C 线段BC 1D CB 中点与B 1C 1中点连成的线段正确答案:A 错因:学生观察能力较差,对三垂线定理逆定理不能灵活应用。

5. (石庄中学)下列命题中:① 若向量、与空间任意向量不能构成基底,则∥ 。

② 若a ∥b , b ∥c ,则c ∥a .③ 若 、 、是空间一个基底,且 =31+31 +31,则A 、B 、C 、D 四点共面。

④ 若向量 a + b , b + c , c + a 是空间一个基底,则 a 、 b 、 c 也是空间的一个基底。

其中正确的命题有( )个。

A 1B 2C 3D 4正确答案:C 错因:学生对空间向量的基本概念理解不够深刻。

6.(磨中)给出下列命题:①分别和两条异面直线AB 、CD 同时相交的两条直线AC 、BD 一定是异面直线②同时与两条异面直线垂直的两直线不一定平行③斜线b 在面α内的射影为c ,直线a ⊥c ,则a ⊥b ④有三个角为直角的四边形是矩形,其中真命题是( )正确答案:①错误原因:空间观念不明确,三垂线定理概念不清7.(磨中)已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的面数有( )A 、7B 、8C 、9D 、10 正确答案:A错误原因:4+8—2=108.(磨中)下列正方体或正四面体中,P 、Q 、R 、S 分别是所在棱的中点,这四个点不共面的一个图是( )正确答案:D错误原因:空间观点不强9.(磨中)a 和b 为异面直线,则过a 与b 垂直的平面( ) A 、有且只有一个 B 、一个面或无数个 C 、可能不存在 D 、可能有无数个 正确答案:C错误原因:过a 与b 垂直的夹平面条件不清 10.(一中)给出下列四个命题:(1)各侧面在都是正方形的棱柱一定是正棱柱.(2)若一个简单多面体的各顶点都有3条棱,则其顶点数V 、面数F 满足的关系式为2F -V=4. (3)若直线l ⊥平面α,l ∥平面β,则α⊥β.(4)命题“异面直线a 、b 不垂直,则过a 的任一平面与b 都不垂直”的否定. 其中,正确的命题是( )A .(2)(3)B .(1)(4)C .(1)(2)(3)D .(2)(3)(4) 正确答案:A11.(一中)如图,△ABC 是简易遮阳棚,A ,B 是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角应为( )A .75°B .60°C .50°D .45° 正确答案:C12.(蒲中)一直线与直二面角的两个面所成的角分别为α,β,则α+β满足( )QR ··S · P ··P ·BS · R · · S·P Q · R · C· R P · · ·D Q A QSA 、α+β<900B 、α+β≤900C 、α+β>900D 、α+β≥900 答案:B点评:易误选A ,错因:忽视直线与二面角棱垂直的情况。

13.(蒲中)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为( )A 、2个B 、4个C 、6个D 、8个 答案:B点评:易瞎猜,6个面不合,6个对角面中有4个面适合条件。

14.(蒲中)△ABC 的BC 边上的高线为AD ,BD=a ,CD=b ,将△ABC 沿AD 折成大小为θ的二面角B-AD-C ,若ba=θcos ,则三棱锥A-BCD 的侧面三角形ABC 是( ) A 、锐角三角形 B 、钝角三角形C 、直角三角形D 、形状与a 、b 的值有关的三角形 答案:C点评:将平面图形折成空间图形后线面位置关系理不清,易瞎猜。

15.(江安中学)设a ,b ,c 表示三条直线,βα,表示两个平面,则下列命题中逆命题不成立的是( )。

A. α⊥c ,若β⊥c ,则βα//B. α⊂b ,α∉c ,若α//c ,则c b //C. β⊂b ,若β⊥b ,则αβ⊥D. β⊂b ,c 是α在β内的射影,若c b ⊥,则α⊥b 正解:CC 的逆命题是β⊂b ,若αβ⊥,则a b ⊥显然不成立。

误解:选B 。

源于对C 是α在β内的射影理不清。

16.(江安中学)α和β是两个不重合的平面,在下列条件中可判定平面α和β平行的是( )。

A. α和β都垂直于平面B.α内不共线的三点到β的距离相等C. m l ,是α平面内的直线且ββ//,//m lD. m l ,是两条异面直线且ββαα//,//,//,//l m m l 正解:D对于βα,,A 可平行也可相交;对于B 三个点可在β平面同侧或异侧;对于m l C ,,在平面α内可平行,可相交。

对于D 正确证明如下:过直线m l ,分别作平面与平面βα,相交,设交线分别为11,m l 与22,m l ,由已知βα//,//l l 得21//,//l l l l ,从而21//l l ,则β//1l ,同理β//1m ,βα//∴。

误解:B往往只考虑距离相等,不考虑两侧。

17.(江安中学)一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的( )A.2923 B. 2719C. 3130D. 2723正解:D 。

当平面EFD 处于水平位置时,容器盛水最多2121sin 31sin 313131h ASB SB SA h DSE SE SD h S h S V V SAB SDE SABC SDE F ⋅∠⋅⋅⋅⋅∠⋅⋅⋅=⋅⋅=∴∆∆-- 27431323221=⋅⋅=⋅⋅=h h SB SE SA SD 最多可盛原来水得1-2723274= 误解:A 、B 、C 。

由过D 或E 作面ABC 得平行面,所截体计算而得。

18.(江安中学)球的半径是R ,距球心4R 处有一光源,光源能照到的地方用平面去截取,则截面的最大面积是( )。

A. 2R πB.21615R π C.2169R π D. 221R π 正解:B 。

如图,在Rt OPA ∆中,AB OP ⊥于B 则2OA OB OP =⋅即24R OB R =⋅14OB R ∴=又22221516AB OA OB R =-= ∴以AB 为半径的圆的面积为21516R误解:审题不清,不求截面积,而求球冠面积。

19.(江安中学)已知AB 是异面直线的公垂线段,AB=2,且a 与b 成30角,在直线a 上取AP=4,则点P 到直线b 的距离是( )。

E.22 F. 4 G. 142 b H. 22或142正解:A 。

过B 作BB ’∥a ,在BB ’上截取BP ’=AP ,连结PP ’,过P ’作P ’Q ⊥b 连结PQ ,∴PP ’⊥由BB ’和b 所确定的平面,∴PP ’⊥b∴ PQ 即为所求。

在Rt ∆PQP ’中,PP ’=AB=2,P ’Q=BP ’,BQ P 'sin ∠=AP ∙30sin =2, ∴PQ=2。

误解:D 。

认为点P 可以在点A 的两侧。

本题应是由图解题。

20.(丁中)若平面α外的直线a 与平面α所成的角为θ,则θ的取值范围是 ( ) (A ))2,0(π(B ))2,0[π(C )]2,0(π(D )]2,0[π错解:C错因:直线在平面α外应包括直线与平面平行的情况,此时直线a 与平面α所成的角为0 正解:D21.(薛中)如果a,b 是异面直线,P 是不在a,b 上的任意一点,下列四个结论:(1)过P 一定可作直线L 与a , b 都相交;(2)过P 一定可作直线L 与a , b 都垂直;(3)过P 一定可作平面α与a , b 都平行;(4)过P 一定可作直线L 与a , b 都平行,其中正确的结论有( ) A 、0个 B 、1个 C 、2个 D 、3个 答案:B错解:C 认为(1)(3)对D 认为(1)(2)(3)对错因:认为(2)错误的同学,对空间两条直线垂直理解不深刻,认为作的直线应该与a,b 都垂直相交;而认为(1)(3)对的同学,是因为设能借助于两个平行平面衬托从而对问题的分析欠严密。

22.(薛中)空间四边形中,互相垂直的边最多有( ) A 、1对 B 、2对 C 、3对 D 、4对 答案:C 错解:D错因:误将空间四边形理解成四面体,对“空间四边形”理解不深刻。

23.(案中)底面是正三角形,且每个侧面是等腰三角形的三棱锥是A 、一定是正三棱锥B 、一定是正四面体C 、不是斜三棱锥D 、可能是斜三棱锥 正确答案:(D )错误原因:此是正三棱锥的性质,但很多学生凭感觉认为如果侧面是等腰三角形,则侧棱长相等,所以一定是正三棱锥,事实上,只须考察一个正三角形绕其一边抬起后所构成的三棱锥就知道应选D24.(案中)给出下列四个命题:(1) 各侧面都是正方形的棱柱一定是正棱柱(2) 若一个简单多面体的各顶点都有三条棱,则其顶点数V ,面数F 满足的关系式为2F-V=4 (3) 若直线L ⊥平面α,L ∥平面β,则α⊥β(4) 命题“异面直线a,b 不垂直,则过a 的任一平面和b 都不垂直”的否定,其中,正确的命题是 ( ) A 、(2)(3) B 、(1)(4) C 、(1)(2)(3) D 、(2)(3)(4) 正确答案:(A )错误原因:易认为命题(1)正确二填空题:1. (如中)有一棱长为a 的正方体骨架,其内放置一气球,使其充气且尽可能地大(仍保持为球的形状),则气球表面积的最大值为__________.错解:学生认为球最大时为正方体的内切球,所以球的直径为a ,球的表面积为2a π。

相关文档
最新文档