含异步清零和同步时钟使能的加法计数器设计

合集下载

实验五 含异步清零和同步使能4位加法计数器的VHDL设计

实验五 含异步清零和同步使能4位加法计数器的VHDL设计

实验五含异步清零和同步使能4位加法计数器的VHDL设计一、实验目的1掌握计数器的VHDL设计方法;2掌握异步复位和同步复位和使能的概念;3掌握寄存器性能的分析方法(即分析芯片所能达到的最高时钟频率)。

二、实验内容1异步复位4位加法计数器的设计;2同步复位4位加法计数器的设计。

3异步清0和同步时钟使能的4位加法计数器三、实验原理复位:给计数器一个初值叫复位,如果所给初值为0,则称复位为清零。

异步复位:复位跟时钟无关,只要复位信号的复位电平出现,计数器立即复位,如图5-1所示;同步复位:复位跟时钟有关,当复位信号的复位电平出现时,计数器并不立即复位,而是要等到时钟沿到来时才复位,如图5-2所示。

异步复位4位加法计数器的VHDL设计代码见教材P122-P123,仿真波形如图5-3所示。

同步复位4位加法计数器的VHDL部分代码如下,仿真波形如图5-4所示。

.图5-1异步复位图5-2同步复位图5-3异步复位计数器仿真波形图5-4同步复位计数器仿真波形四、实验步骤(一)异步复位4位加法计数器的设计1建立一个设计工程,工程名为CNT4B;2打开文本编辑器,建立一个VHDL设计文件,其VHDL代码见教材P164中的例6-20,文件名存为CNT4B.VHD。

注意文件的扩展名要选为.vhd,而且要求工程名、文件名和设计实体名必须相同。

3选器件:ACEX1K,EP1K30TC144-3(旧)或Cyclone,EP3C40Q240C8目标芯片。

4编译;5建立波形文件,然后保存,其文件名必须与工程名一致;【波形设置:①设置仿真时间为10us:②设置输入信号的波形:时钟周期设置为200ns,其他输入信号的波形设置参看图6-3。

】6仿真,观察输出波形是否正确;7时序分析:分析芯片所能达到的最高时钟频率。

【打开时序分析器,然后执行菜单命令:analysis/register performance/start,可以看到最高时钟频率为100.00MHZ】(二)同步复位4位加法计数器的设计8建立一个设计工程,工程名为CNT4B_SYS;9打开文本编辑器,建立一个VHDL设计文件,其VHDL代码参看异步计数器代码和实验原理中的参考代码,文件名存为CNT4B_SYS.VHD。

实验一2 含异步清0

实验一2    含异步清0

1)根据DE2_pin_assignments文件内容、格式 已制作本设计引脚对应文件的引脚锁定文 件:CNT4B.csv 2) 由Assignments->Import Assignment,打开 对话框,调入引脚对应文件即可。
• 进行编译、下载,通过实验,检查引脚锁定是 否正确。
• 将波形文件存盘为CNT4B.vwf
• 设定CNT4B.v是目前的顶层文件
• 由Processing->start->start annlysis & elaboration对程序进行初步的分析
• 由view->utility window->node finder,得到 如下对话框,
Filter中选择Pins: all 然后按List得到输 入输出端口列表, 用鼠标将它们拖到 波形编辑窗口
• 将instance框中的名字改为CNT4B(选中右击选择Rename Instance)
• 为看清楚,按
,将窗口浮动
• 在CNT4B框双击(Double-click to add node), 弹出节点(noder)对话框,Filter项选择all, 然后点击List
选中要观察的端口COUT、OUTY然后单击>加 入,点OK。
功能仿真
• 由Processing->generate functional simulation netlist,提取功能仿真的网表 • 由assigments->settings,对仿真工具设定为 功能仿真,并将激gt; start simulation 进行功能仿 真,并对结果进行分析。
• 锁好引脚,进行全编译(compile),重新布 局布线,时序仿真 引脚锁定,仿真结果核对无误后,准备下载

同步和异步十进制加法计数器的设计

同步和异步十进制加法计数器的设计

同步和异步十进制加法计数器的设计1. 引言1.1 引言在计算机科学领域,同步和异步十进制加法计数器是常见的设计。

它们可用于对数字进行加法运算,是数字逻辑电路中的重要组成部分。

同步计数器和异步计数器的设计原理和工作方式有所不同,各有优劣势。

同步十进制加法计数器是一种通过时钟信号同步运行的计数器,采用同步电路设计。

它的设计目的是确保每一位数字在同一时刻进行加法运算,以保证正确性和稳定性。

同步计数器具有较高的精确度和可靠性,但需要更多的电路元件和较复杂的控制逻辑。

与之相反,异步十进制加法计数器采用异步电路设计,每一位数字都根据前一位数字的状态自主运行。

这种设计方式减少了电路复杂度和功耗,但可能会造成计算不稳定或出错的情况。

在选择计数器设计时需要根据实际需求和应用场景进行权衡。

通过对同步和异步十进制加法计数器的设计进行比较分析,可以更好地理解它们的优劣势和适用范围。

结合实际的应用案例,可以更好地理解它们在数字逻辑电路中的作用和价值。

2. 正文2.1 设计目的在设计同步和异步十进制加法计数器时,我们的主要目的是实现一个能够对十进制数字进行加法运算的电路。

具体来说,我们希望设计一个可以接受两个十进制数字作为输入,并输出它们的和的计数器。

设计的目的是为了实现数字的加法计算,并且保证计数器的正确性、稳定性和效率。

在设计过程中,我们需要考虑到各种可能的输入情况,例如进位、溢出等,并确保计数器能够正确处理这些情况。

我们也希望设计出一个简洁、高效的电路,以确保在实际应用中能够满足性能要求。

我们也需要考虑到电路的功耗和面积,以确保设计的成本和资源利用是否合理。

设计同步和异步十进制加法计数器的目的是为了实现对十进制数字的加法运算,保证计数器的正确性和性能,并在满足需求的前提下尽可能地降低成本和资源消耗。

2.2 同步十进制加法计数器的设计同步十进制加法计数器是一种利用时钟脉冲同步输入和输出的数字电路,用于实现十进制加法运算。

含异步清规和同步使能的加法计数器

含异步清规和同步使能的加法计数器

实验三含异步清零和同步使能的加法计数器一、实验目的1、了解二进制计数器的工作原理。

2、进一步熟悉QUARTUSII软件的使用方法和VHDL输入。

3、时钟在编程过程中的作用。

二、实验原理二进制计数器中应用最多、功能最全的计数器之一,含异步清零和同步使能的加法计数器的具体工作过程如下:在时钟上升沿的情况下,检测使能端是否允许计数,如果允许计数(定义使能端高电平有效)则开始计数,否则一直检测使能端信号。

在计数过程中再检测复位信号是否有效(低电平有效),当复位信号起作用时,使计数值清零,继续进行检测和计数。

其工作时序如图3-1所示:图3-1 计数器的工作时序三、实验内容本实验要求完成的任务是在时钟信号的作用下,通过使能端和复位信号来完成加法计数器的计数。

实验中时钟信号使用数字时钟源模块的1HZ信号,用一位拨动开关K1表示使能端信号,用复位开关S1表示复位信号,用LED模块的LED1~LED11来表示计数的二进制结果。

实验LED亮表示对应的位为‘1’,LED灭表示对应的位为‘0’。

通过输入不同的值模拟计数器的工作时序,观察计数的结果。

实验箱中的拨动开关、与FPGA的接口电路,LED灯与FPGA的接口电路以及拨动开关、LED与FPGA的管脚连接在实验一中都做了详细说明,这里不在赘述。

数字时钟信号模块的电路原理如图3-2所示,表3-1是其时钟输出与FPGA的管脚连接表。

图3-2 数字时钟信号模块电路原理表3-1 数字时钟输出与FPGA的管脚连接表按键开关模块的电路原理如图3-3所示,表3-2是按键开关的输出与FPGA的管脚连接表。

图3-3 按键开关模块电路原理信号名称FPGA I/O名称核心板接口管脚号功能说明S[0] Pin_AF5 JP1_91 ‘S1’SwitchS[1]Pin_AH6 JP1_93 ‘S2’SwitchS[2]Pin_AH7 JP1_95 ‘S3’SwitchS[3]Pin_AH8 JP1_97 ‘S4’SwitchS[4]Pin_AG10 JP1_99 ‘S5’SwitchS[5]Pin_AG11 JP1_101 ‘S6’SwitchS[6]Pin_AH14 JP1_90 ‘S7’SwitchS[7] Pin_AG7 JP1_92 ‘S8’SwitchS[8]Pin_AG8 JP1_94 ‘S9’SwitchS[9]Pin_AF9 JP1_96 ‘S10’SwitchS[10]Pin_AH10 JP1_98 ‘S11’SwitchS[11] Pin_AH11 JP1_100 ‘S12’Switch表3-2 按键开关与FPGA的管脚连接表四、实验步骤1、打开QUARTUSII软件,新建一个工程。

实验三 含异步清0和同步时钟使能的十进制

实验三 含异步清0和同步时钟使能的十进制

EDA技术基础实验报告实验名称:含异步清0和同步时钟使能的十进制加法法计数器姓名:李江虹学号:068专业及班级:通信工程(3)班指导老师:刘文进实验三含异步清0和同步时钟使能的十进制加法法计数器一、实验目的:学习时序电路的设计、仿真和硬件测试,进一步熟悉VHDL设计技术。

二、实验原理实验图1是一含计数使能、异步复位十进制加法计数器,例1是其VHDL描述。

由实验图1所示,图中间是4位锁存器;rst是异步清信号,高电平有效;clk是锁存信号;D[3..0]是4位数据输入端。

当ENA为'1'时,多路选择器将加1器的输出值加载于锁存器的数据端;当ENA为'0'时将"0000"加载于锁存器。

图1 含计数使能、异步复位十进制加法计数器三、实验内容在MAX+plusII上参照例1(4位二进制计数器)进行设计、编辑、编译、综合、适配、仿真。

说明例中各语句的作用,详细描述示例的功能特点,给出其所有信号的时序仿真波形。

【例1】LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT4B ISPORT (CLK : IN STD_LOGIC;RST : IN STD_LOGIC;LOAD : IN STD_LOGIC;DATA :IN STD_LOGIC_VECTOR(3 DOWNTO 0);OUTY : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);COUT : OUT STD_LOGIC );END CNT4B;ARCHITECTURE behav OF CNT4B ISSIGNAL CQI : STD_LOGIC_VECTOR(3 DOWNTO 0); BEGINP_REG: PROCESS(CLK, RST,LOAD)BEGINIF RST = '1' THEN CQI <="0000"; ELSIF CLK'EVENT AND CLK = '1' THEN IF LOAD = '1' THEN CQI <= DATA; ELSIF CQI>="1001"THENCQI<="0000";COUT <='1';ELSECQI<=CQI+1;COUT <='0';END IF;END IF;OUTY <= CQI ;END PROCESS P_REG ;END behav;四、引脚锁定以及硬件下载测试。

异步清零同步使能加法计数器

异步清零同步使能加法计数器

实验一学院:电子信息学院班级:xxxxx姓名:xxx 学号:xxxxxxxxxx一、实验名称含异步清零和同步时钟使能的加法计数器二、实验设备(1)EDA实验箱(型号GW48系列)(2)计算机(3)EDA软件(QuartusII)三、实验目的学习计数器的设计、仿真和硬件测试,进一步熟悉VerilogHDL设计技术。

四、实验内容(1)在QuartusII6.0上对例4-22进行编辑、编译、综合、适配、仿真。

说明例4-22各语句的作用,详细描述示例的功能特点,给出其所有信号的时序仿真波形。

(2)引脚锁定以及硬件下载测试。

引脚锁定后进行编译、下载和硬件测试实验。

将实验过程和实验结果写进实验报告。

(3)使用SignalTap II 对此计数器进行实时测试。

(4)从设计中去除SignalTap II ,要求全程编译后将生成的SOF文件转变成用于配置器件EPCS1的压缩的间接配置文件.jic ,并使用USB-Blaster对实验板上的EPCS1进行编程,最后进行验证。

(5)为此项设计加入一个可用于SignalTap II 采样的独立时钟输入端,并进行实时测试。

五、实验原理实验程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT10B ISPORT(CLK,RST,EN:IN STD_LOGIC;CQ:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);COUT:OUT STD_LOGIC);END CNT10B;ARCHITECTURE BEHAV OF CNT10B ISBEGINPROCESS(CLK,RST,EN)VARIABLE CQI:STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINIF RST ='1' THEN CQI := (OTHERS => '0');ELSIF CLK'EVENT AND CLK='1' THENIF EN ='1' THENIF CQI < 9 THEN CQI := CQI + 1;ELSE CQI := (OTHERS => '0');END IF;END IF;END IF;IF CQI = 9 THEN COUT <='1';ELSE COUT <= '0';END IF;CQ <= CQI;END PROCESS;END BEHAV;六、仿真分析当使能端EN为高电平复位端RST为低电平时,对脉冲进行计数,每计满十个输出进位信号,重新计数。

EDA实验二 含异步清零和同步使能的十进制加减法计数器

EDA实验二 含异步清零和同步使能的十进制加减法计数器

EDA实验二 含异步清零和同步使能的十进制加减法计数器一、实验目的1.了解加减计数器的工作原理。

2.进一步熟悉QUARTUSII 软件的使用方法和VHDL 输入。

3.熟悉仿真时序设定。

二、实验设备1.PC机 一台;四、实验内容完成一个0~99计数器,有四个输入信号:复位reset、使能enable、时钟clk和加减选择sel,三路输出信号:计数值、进位和借位信号。

要求每来一个时钟信号,加或减1(sel=‘0’时执行加,sel=‘1’时执行减);计数值为99时再加1,输出进位信号,并且计数值归零;计数值为0时再减1,输出借位信号,并且计数值变成99(即0~99循环计数);复位信号reset有效时(低电平有效)计数值清0,使能信号enable有效时(高电平有效)计数器才进行工作,否则不进行累加或累减。

五、实验步骤1.打开QUARTUSII 软件,新建一个VHDL文件。

2.输入程序代码,点击保存时,系统会提示建立一个新的工程(Project),按照QUARTUSII的提示建立好工程;3.按照实验原理和自己的想法,在VHDL 编辑窗口调整完成VHDL 程序;4.对自己编写的VHDL 程序进行编译,对程序的错误进行修改;5.进行仿真,附录:电路实体定义可参照如下:ENTITY counter ISPORT( clk, reset, enable ,sel : IN STD_LOGIC; --定义时钟、异步复位、同步使能、选择信号cq : OUT STD_LOGIC_VECTOR(6 downto 0); --计数值c1out : OUT STD_LOGIC; --进位信号c2out : OUT STD_LOGIC --借位信号);END counter;VHDL程序代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY counter ISPORT( clk, reset, enable ,sel : IN STD_LOGIC; --定义时钟、异步复位、同步使能、选择信号cq : OUT STD_LOGIC_VECTOR(6 downto 0); --计数值c1out : OUT STD_LOGIC; --进位信号c2out : OUT STD_LOGIC --借位信号);END counter;ARCHITECTURE counter99 OF counter ISBEGINPROCESS(clk, reset, enable ,sel)VARIABLE cot :STD_LOGIC_VECTOR(6 downto 0);BEGINIF reset='0' THEN cot:=(OTHERS=>'0');ELSIF clk'EVENT AND clk ='1' THENIF enable='1' THENIF sel='0' THEN c2out<='0';IF cot<99 THEN cot:=cot+1;c1out<='0';ELSE cot:=(OTHERS=>'0');c1out<='1';END IF;ELSIF sel='1' THEN c1out<='0';IF cot>0 THEN cot:=cot-1;c2out<='0';ELSE cot:="1100011";c2out<='1';END IF;END IF;END IF;END IF;cq<=cot;END PROCESS; END counter99;仿真结果如下:。

含异步清0和同步时钟使能的4位加法计数器 EDA技术与Verilog HDL实验报告

含异步清0和同步时钟使能的4位加法计数器 EDA技术与Verilog HDL实验报告

含异步清0和同步时钟使能的4位加法计数器一.实验目的熟悉在QuartusII下设计含异步清0和同步时钟使能的4位加法计数器。

二.实验内容在QuartusII下设计含异步清0和同步时钟使能的4位加法计数器,并编译、仿真验证其功能。

三.程序清单计数器顶层文件设计:10进制计数器文本输入:module CNT10(clk,rst,en,load,cout,dout,data);input clk,en,rst,load;input [3:0] data;output[3:0] dout;output cout;reg [3:0] q1;reg cout;assign dout = q1;always @(posedge clk or negedge rst)beginif (!rst) q1<=0;else if(en)beginif (!load) q1<=data;else if(q1<9) q1<=q1+1;else q1<=4'b0000;endendalways @(q1)if (q1==4'h9) cout= 1'b1;else cout= 1'b0;endmodule60位计数器文本输入:module CNT60(CLK,EN,RST,LOAD,COUT1,COUT2,DOUT1,DOUT2,DATA);input CLK,EN,RST,LOAD;input [3:0] DATA;output[3:0] DOUT1;output[2:0] DOUT2;output COUT1;output COUT2;reg [3:0] Q1;reg [2:0] Q2;reg COUT1;reg COUT2;assign DOUT1 = Q1;assign DOUT2 = Q2;always @(negedge CLK or negedge RST) beginif(!RST) Q1<=0;else if (EN) beginif (!LOAD) Q1<=DATA;else if (Q1<9) Q1<=Q1+1;else Q1<=4'b0000;endendalways @(Q1)if (Q1==4'h9) COUT1=1'b1;elseCOUT1=1'b0;always @(negedge COUT1 or negedge RST)beginif(!RST) Q2<=0;else if (EN) beginif (!LOAD) Q2<=DATA;else if (Q2<5) Q2<=Q2+1;else Q2<=4'b0000;endendalways @(Q2)if ((Q1==4'h9)&&(Q2==3'h5)) COUT2=1'b1;elseCOUT2=1'b0;endmodule60位计数器图形输入:四.实验步骤1、新建一个名称为CNT10的工程,并在该文件夹中新建一个CNT10.v的文件。

含异步清零和同步时钟使能的4位加法器

含异步清零和同步时钟使能的4位加法器

含异步清零和同步时钟使能的4位加法器宁波⼯程学院电信学院EDA系统设计与实践实验报告实验名称含异步清零和同步时钟使能的4位加法器班级电科(系统设计)08-2 姓名学号 0840*******组员姓名实验⽇期2011-5-12指导⽼师实验四含异步清零和同步时钟使能的4位加法器⼀.实验⽬的学习计数器的设计,仿真和硬件测试。

进⼀步熟悉VHDL的编程⽅法。

⼆.实验内容本实验的内容是Quartus 11建⽴⼀个含计数使能、异步复位的4位加分计数器,SmartSOPC试验箱上进⾏硬件测试,由KEY1控制技术使能端ena并由LED指⽰,KEY2控制复位端rst并由LED2指⽰。

计数值由数码管指⽰。

三.实验原理Rst是异步清零信号,⾼电平有效。

Ema为是能端,能开始与暂停程序,当ena为0时,能所存信号。

四.实验步骤(1)破解Quartus 11;(2)建⽴⼯程:启动Quartus 11,建⽴空⽩⼯程。

命名为giui;(3)创建源程序⽂件:新建VHDL源程序⽂件giui,输⼊程序代码并保存,进⾏编译,若在编译过程中发现错误,则找出并更正,直⾄编译成功。

(4)编译并运⾏:编译并运⾏程序或者原理图,编译⽆误后,进⾏引脚锁定;(5)外部连接⽅式跟第2节相似。

五.实验程序⼀.在⼀个数码管上显⽰0~Flibrary ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity giui isport(clk48:in std_logic;key_2bit:in std_logic;dig_4bit:out std_logic_vector(3 downto 0);seg:out std_logic_vector(7 downto 0));end giui;architecture m1 of giui issignal num1:std_logic_vector(3 downto 0);signal cnt:std_logic_vector(23 downto 0);signal t: std_logic;signal q:std_logic;beginfre:process(clk48,cnt)beginif clk48'event and clk48='1' thencnt<=cnt+1;end if;q<=cnt(23);end process fre;coun:process(q)beginif q'event and q='1' thenif t='1' then num1<="0000";elsenum1<=num1+1;end if;end if;end process;SEG<= "11000000" when num1="0000" else "11111001" when num1="0001" else "10100100" when num1="0010" else"10110000" when num1="0011" else"10011001" when num1="0100" else"10010010" when num1="0101" else"10000010" when num1="0110" else"11111000" when num1="0111" else"10000000" when num1="1000" else"10010000" when num1="1001" else"10001000" when num1="1010" else"10000011" when num1="1011" else"01000110" when num1="1100" else"10100001" when num1="1101" else"10000110" when num1="1110" else"11111111";dig_4bit<="1110" when t='1' else"1111" when t='0';end m1;⼆.4位加法器Library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity sun_adder isport(clk:in std_logic;key:in std_logic;led1:out std_logic;dig:out std_logic_vector(3 downto 0);seg:out std_logic_vector(7 downto 0)); end sun_adder;architecture a of sun_adder issignal tmp:std_logic_vector(23 downto 0); signal tmp1:std_logic_vector(10 downto 0); signal address,pp:std_logic_vector(3 downto 0); signal p:std_logic_vector(1 downto 0);signal tt,t,q,q1: std_logic;signal num1,num2,num3,num4:std_logic_vector(3 downto 0);beginprocess(clk)beginif clk'event and clk='1' then tmp<=tmp+1;tmp1<=tmp1+1;end if;end process;q<=tmp(23);q1<=tmp1(10);process(q1)beginif q1'event and q1='1' then case p iswhen "00"=>pp<="1110";when "01"=>pp<="1101";when "10"=>pp<="1011";when others=>pp<="0111";end case;dig<=pp;case pp iswhen "1110"=>address<=num1;when "1101"=>address<=num2;when "1011"=>address<=num3;when others=>address<=num4;end case;p<=p+1;end if;end process;process(key)beginIf key'event and key='1' thent<= not t;end if;end process;process(q)beginif q'event and q='1' thenif t='1' then num1<="0000";num2<="0000";num3<="0000";num4<="0000";else num1<=num1+1;if num1="1001" then num1<="0000";tt<='1';if num2="1001" then num2<="0000";if num3="1001" then num3<="0000";if num4="1001" then num4<="0000";else num4<=num4+1; end if;else num3<=num3+1; end if;else num2<=num2+1; `1212212345123451233123`12341234123412341312end if; else num1<=num1+1;tt<='0'; end if; end if;end if;end process;seg<= "11000000" when address="0000" else"11111001" when address="0001" else"10100100" when address="0010" else"10110000" when address="0011" else"10011001" when address="0100" else"10010010" when address="0101" else"10000010" when address="0110" else "11111000" when address="0111" else "10000000" when address="1000" else "10010000" when address="1001" else "11111111";led1<='0' when tt='1' else'1' when tt='0';end a;六.实验现象。

实验三 含异步清零和同步时钟使能的加法计数器设

实验三 含异步清零和同步时钟使能的加法计数器设

含异步清零和同步时钟使能的加法计数器设计(1)实验目的:学习计数器的设计、仿真和硬件测试,进一步熟悉VHDL设计技术。

(2)实验原理:实验程序为例4-22;实验原理参考4.4节(计数器设计),设计流程参考第5章。

【例4-22】设计一个带有异步复位和同步时钟使能的十进制加法计数器。

LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT10 ISPORT(CLK,RST,EN : IN STD_LOGIC;CQ : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);COUT : 0UT STD_LOGIC);END ENTITY CNT10;ARCHITECTURE behav OF CNT10 ISBEGINPROCESS (CLK,RST,EN)VARIABLE CQI : STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINIF RST=‘1’ THEN CQI:=(OTHERS =>‘0’);--计数器异步复位ELSIF C LK’E VENT AND CLK=‘1’ THEN --检测时钟上升沿IF EN=‘1’ THEN --检测是否允许计数(同步他能) IF CQI<9 THEN CQI:=CQI+1; --允许计数,检测是否小于9ELSE CQI := (OTHERS => ‘0’); --大于9,计数值清零END IF;END IF;END IF;IF CQI=9 THEN COUT<=‘1’; --计数大于9,输出进位信号ELSE COUT<=‘0’;END IF;CQ<=CQI; --将计数值向端口输出END PROCESS;END ARCHITECTURE behav;(3)实验内容1:在Quartus II 上对例4-22进行编辑、编译、综合、适配、仿真。

设计含异步清零和同步加载与时钟使能的计数器

设计含异步清零和同步加载与时钟使能的计数器

4-1 设计含异步清零和同步加载与时钟使能的计数器(1)实验目的:熟悉Quartus Ⅱ的VHDL文本设计流程全过程,学习计数器的设计,仿真和硬件测试。

掌握原理图与文本混合设计方法。

(2)实验原理:参考3.4节。

实验程序为例3-20。

(3)实验内容1:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY cnt10 ISPORT (CLK,RST,EN,LOAD : IN STD_LOGIC;DATA : IN STD_LOGIC_VECTOR(3 DOWNTO 0);DOUT : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);COUT : OUT STD_LOGIC );END cnt10;ARCHITECTURE behav OF cnt10 ISBEGINPROCESS (CLK, RST, EN, LOAD)V ARIABLE Q : STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINIF RST='0' THEN Q := (OTHERS=>'0');ELSIF CLK'EVENT AND CLK='1' THENIF EN='1' THENIF (LOAD='0') THEN Q := DATA; ELSEIF Q<9 THEN Q := Q + 1;ELSE Q := (OTHERS=>'0');END IF;END IF;END IF;END IF;IF Q = "1001" THEN COUT <= '1';ELSE COUT <= '0';END IF;DOUT <= Q;END PROCESS;END behav;实验内容2:(4)实验结果:实验内容1的时序仿真切图:实验内容2的时序仿真切图:。

设计含异步清零和同步时钟使能的加法计数器

设计含异步清零和同步时钟使能的加法计数器

附表1:广州大学学生实验报告开课学院及实验室:物理与电子工程学院-电子楼317室2016年 4 月21 日学院物电年级、专业、班姓名Jason.P 学号实验课程名称EDA技术实验成绩实验项目名称设计含异步清零和同步时钟使能的加法计数器指导教师一、实验目的:学习计数器的设计、仿真和硬件测试,进一步熟悉VerilogHDL设计技术。

二、实验内容:含异步清0和同步时钟使能的4位加法器(1)实验原理:上图是一含计数使能、异步复位的4位加法计数器,书中例3-15是其VerilogHDL描述。

由图2-1所示,图中间是4位锁存器;rst是异步清信号,高电平有效;clk是锁存信号;D[3:0]是4位数据输入端。

当ENA为‘1’时,多路选择器将加1器的输出值加载于锁存器的数据端;当ENA为‘0’时保持上一次的输出。

(2)实验步骤:(2)-1按照发给大家的文件“Quartus II 9.0基本设计流程-VerilogHDL.ppt”所讲述的步骤,在QuartusII上对例3-15(第四版)(第五版p124例5-15)进行编辑、编译、综合、适配、仿真。

说明例2-1各语句的作用,详细描述示例的功能特点,给出其所有信号的时序仿真波形。

(2)-2引脚锁定以及硬件下载测试:若目标器件是EP3C40Q240C8N,建议选实验电路模式5,用键8(PIO7)控制RST;用键7控制ENA;计数溢出COUT接发光管D8;OUTY是计数输出接数码1;时钟CLK接clock2,通过跳线选择4Hz信号。

引脚锁定后进行编译、下载和硬件测试实验。

将实验过程和实验结果写进实验报告。

三、实验HDL描述:module CNT10(CLK,RST,EN,LOAD,COUT,DOUT,DATA)input CLK,EN,RST,LOAD; //定义输入信号input[3:0] DATA; //定义4位的并行加载数据DATAoutput[3:0] DOUT; //定义4位的计数输出数据DOUToutput COUT; //定义进位输出信号COUTreg[3:0] Q1; //定义4位的寄存器型中间变量Q1reg COUT;assign DOUT = Q1; //将内部寄存器的计数结果输出至DOUTalways @(posedge CLK or negedge RST) //时序过程beginif(!RST) Q1 <= 0; //RST=0时,对内部寄存器单元异步清0else if(EN)begin //同步使能EN=1,则允许加载或计数if(!LOAD) Q1 <= DATA; //当LOAD=0,向内部寄存器加载数据else if(Q1<9) Q1 <=Q1+1; //当Q1小于9时,允许累加else Q1 <=4'b0000; //否则一个时钟后清零返回初值endendalways @(Q1) //组合过程if (Q1==4'h9) COUT = 1'b1;else COUT = 1'b0;endmodule四、仿真结果:图1图2由图1的时序波形可见,当EN=0时,DOUT的输出数据3保持了一段时间;当EN=1,且在时钟CLK的上升沿时间范围LOAD=0时,4位输入数据DATA=0被加载,在LOAD=1后作为计数器的计数初值(图1);当EN=1,LOAD=1时,输入的数据不被加载;RST在任意时刻均有效,即使CLK非上升沿时,计数也能即刻清0(图2:计数到3后清0);当计数到9时,COUT输出进位1,如图2所示。

设计含异步清零同步使能的38进制加法计数器

设计含异步清零同步使能的38进制加法计数器

一、实验题目:设计一个含异步清零同步使能38进制加法计数器。

二、实验目的:通过实践学习计数器的设计、仿真和硬件调试,进一步熟悉VHDL设计技术。

三、实验要求及设计思路:能熟练利用软件来设计计数器并通过实验来掌握计数器的工作原理。

本实验首先利用QuartusⅡ完成38进制计数器的文本编辑输入和仿真测试等步骤并给出仿真波形,最后在实验系统上验证此设计的功能。

四、实验程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT38 ISPORT (CLK,RST,EN:IN STD_LOGIC;CQ:OUT STD_LOGIC_VECTOR(6 DOWNTO 0);COUT:OUT STD_LOGIC);END CNT38;ARCHITECTURE behav OF CNT38 ISBEGINPROCESS (CLK,RST,EN)VARIABLE CQI:STD_LOGIC_VECTOR(6 DOWNTO 0);BEGINIF RST='1' THEN CQI:= (OTHERS=>'0');ELSIF CLK'EVENT AND CLK='1' THENIF EN='1' THENIF CQI<37 THEN CQI:=CQI+1;ELSE CQI:=(OTHERS=>'0');END IF;END IF;END IF;IF CQI=37 THEN COUT<='1';ELSE COUT<='0';END IF;CQ<=CQI;END PROCESS;END behav;五、功能仿真时序图与硬件电路图:六、设计总结:略。

含异步清0和同步时钟使能的4-位加法计数器-报告

含异步清0和同步时钟使能的4-位加法计数器-报告

含异步清0和同步时钟使能的4-位加法计数器-报告-CAL-FENGHAI.-(YICAI)-Company One1EDA设计课程实验报告实验题目:含异步清0和同步时钟使能的4 位加法计数器学院名称:专业:班级:姓名:高胜学号小组成员:指导教师:一、实验目的学习计数器的设计,仿真和硬件测试,进一步熟悉VHDL 的编程方法。

二、设计任务及要求1.设计总体要求:利用Quartus II建立一个含技术使能、异步复位的4位加法计数器,在SmartSOPC试验箱上进行硬件测试,由KEY1控制技术使能端ena并由LED1指示,KEY2控制复位端rst 并由LED2指示。

计数值由数码管指示。

2.设计基本要求:(1)进行正常的加法计数功能。

(2)由四个数码管显示其计数情况。

三、系统设计1、整体设计方案含异步清零与同步时钟使能计数器由译码显示电路、脉冲发生电路和16进制计数器这3个基本电路组成的。

此次设计要实现的功能有:正常的计数,异步清零,同步使能功能。

整体设计系统框图如图1所示:图1 含异步清零与同步时钟使能计数器系统结构图2、功能模块电路设计(1)各模块设计:译码显示电路模块框图(见图2):图2 译码显示电路系统输入输出模块框图脉冲发生电路模块框图(见图3):图3 秒脉冲发生电路系统输入输出模块框图16位进制计数电路系模块框图(见图4):图4 16位进制计数电路系统输入输出模块框图秒脉冲发生电路产生脉冲输入到16位计数器电路,计数器电路响应脉冲计数然后将计数响应输入到译码显示电路,译码显示电路响应,这时实验箱上8个数码管的后4位将进行从0到F计数的循环显示。

整体输入输出模块框图(见图5):图5 含异步清零与同步时钟使能计数器系统输入输出模块框图(2)模块逻辑表达(见表一和表二)功能 clk rst ena dout[3:0] 异步清零 X 0 X 0 0 0 0表一 16进制计数器的真值表表二译码显示电路的真值表(3)算法流程图译码显示电路流程图(见图6):图6 译码显示电路算法流程图16位计数器流程图(见图7):图7 16位计数器电路算法流程图(4)Verilog源代码译码显示电路代码:module dec(d,seg,dig); //定义模块名与输入输出input[3:0] d;output[7:0] seg;output[3:0] dig; //定义输入输出与数据类型reg[7:0] seg_r; //定义一个reg类型数据assign dig=4'b0000; //给dig赋值0assign seg=seg_r; //将reg类型数据与wire类型数据进行转换always @(d) //检测目标信号dbegincase(d) //case语句,目标公式为d4'b0000:seg_r=8'hc0; //当4位的d数据变化时对应的rge数据类型的seg_r数值4'b0001:seg_r=8'hf9;4'b0010:seg_r=8'ha4;4'b0011:seg_r=8'hb0;4'b0100:seg_r=8'h99;4'b0101:seg_r=8'h92;4'b0110:seg_r=8'h82;4'b0111:seg_r=8'hf8;4'b1000:seg_r=8'h80;4'b1001:seg_r=8'h90;4'b1010:seg_r=8'h88;4'b1011:seg_r=8'h83;4'b1100:seg_r=8'hc6;4'b1101:seg_r=8'ha1;4'b1110:seg_r=8'h86;4'b1111:seg_r=8'h8e;default:seg_r=8'h0; //其余d的显示的数据seg_r显示为0endcase //结束case语句end //结束always语句endmodule //结束程序16进制计数器电路代码:module jsqt(clk,rst,ena,dout); //定义模块名与输入输出input clk,rst,ena;output[3:0] dout; //定义输入输出与数据类型reg[3:0] dout_r; //定义一个reg数据类型assign dout=dout_r; //将reg类型数据与wire类型数据进行转换always @(posedge clk or negedge rst) //检测目标信号时钟或异步信号beginif(rst==0) //检测信号rst是否恒等于0dout_r=4'b0000; // 给reg数据类型的dout_r赋值0else if(ena==1) //检测信号ena是否恒等于1dout_r=dout_r+1; //数据dout_r加1end //结束always语句endmodule //结束程序四、系统调试1、仿真调试(1)仿真代码译码显示电路仿真代码:`timescale 1ns/1nsmodule dec_tp; //测试模块的名字reg[3:0] d; //测试输入信号定义为reg型wire[7:0] seg; //测试输出信号定义为wire型wire[3:0]dig; //测试输出信号定义为wire型parameter DELY=100; //延时100秒dec u1(d,seg,dig); //调用测试对象assign dig=4'b0000; //给dig赋值0initial begin //激励波形设定d=4'b0;#DELY d=4'b0001;#DELY d=4'b0010;#DELY d=4'b0011;#DELY d=4'b0100;#DELY d=4'b0101;#DELY d=4'b0110;#DELY d=4'b0111;#DELY d=4'b1000;#DELY d=4'b1001;#DELY d=4'b1010;#DELY d=4'b1011;#DELY d=4'b1100;#DELY d=4'b1101;#DELY d=4'b1110;#DELY d=4'b1111;#DELY $finish;endinitial $monitor($time,,,"seg=%d,dig=%d,d=%b",seg,d,dig); //输出格式i定义endmodulemodule dec(d,seg,dig); //命名模块名字input[3:0] d;output[7:0] seg;output[3:0] dig; //定义输入与输出reg[7:0] seg_r; // 定义seg_r的reg型数据assign dig=4'b0000; //给dig赋值0assign seg=seg_r; //将reg型数据转化为wire型数据always @(d) //检测d的数据是否变化begincase(d) //七段译码4'b0000:seg_r = 8'hc0; //显示04'b0001:seg_r = 8'hf9; //显示14'b0010:seg_r = 8'ha4; //显示24'b0011:seg_r = 8'hb0; //显示34'b0100:seg_r = 8'h99; //显示44'b0101:seg_r = 8'h92; //显示54'b0110:seg_r = 8'h82; //显示64'b0111:seg_r = 8'hf8; //显示74'b1000:seg_r = 8'h80; ///显示84'b1001:seg_r = 8'h90; //显示94'b1010:seg_r = 8'h88; //显示a4'b1011:seg_r = 8'h83; //显示b4'b1100:seg_r = 8'hc6; //显示c4'b1101:seg_r = 8'ha1; //显示d4'b1110:seg_r = 8'h86; //显示e4'b1111:seg_r = 8'h8e; ///显示fendcase //结束case语句end //结束always语句endmodule //结束程序16进制计数器仿真代码:`timescale 1ns/1nsmodule jsqt_tp; //测试模块的名字reg clk,rst,ena; //测试输入信号定义为reg型wire[3:0] dout; //测试输出信号定义为wire型parameter DELY=100; //延时100秒jsqt u1(clk,rst,ena,dout); //调用测试对象initial begin //激励波形设定clk=0;rst=1;ena=1;#DELY clk=1;rst=1;ena=1;#DELY clk=0;rst=1;ena=1;#DELY clk=1;rst=1;ena=1;#DELY clk=0;rst=1;ena=1;#DELY clk=1;rst=1;ena=1;#DELY clk=0;rst=1;ena=1;#DELY clk=1;rst=1;ena=1;#DELY clk=0;rst=1;ena=1;#DELY $finish;endinitial$monitor($time,,,"dout=%d,rst=%b,ena=%b,clk=%b",dout,rst,ena,clk); //输出格式i定义endmodulemodule jsqt(clk,rst,ena,dout); //定义模块名与输入输出input clk,rst,ena;output[3:0] dout; //定义输入输出与数据类型reg[3:0] dout_r; //定义一个reg数据类型assign dout=dout_r; //将reg类型数据与wire类型数据进行转换always @(posedge clk or negedge rst) //检测目标信号时钟或异步信号beginif(rst==0) //检测信号rst是否恒等于0dout_r=4'b0000; // 给reg数据类型的dout_r赋值0else if(ena==1) //检测信号ena是否恒等于1dout_r=0; //给dout_r赋初值dout_r=dout_r+4’b1; //数据dout_r加1end //结束always语句endmodule //结束程序(2)仿真波形图译码显示仿真波形图(见图8):图8 译码显示部分仿真波形图16进制计数器仿真波形图(见图9):图9 16进制计数器仿真波形图(3)波形分析由图6-1与图6-2可以看出给4位dig赋值0,每延迟100秒可以看见4位的d变化与8位seg产生的数据与代码上的编程相符合。

设计含异步清零和同步时钟使能的加法计数器.doc

设计含异步清零和同步时钟使能的加法计数器.doc

设计含异步清零和同步时钟使能的加法计数器.doc加法计数器是一种常见的数字电路,它可以用于计数器、频率分频等应用。

本文将介绍一种具有异步清零和同步时钟使能的加法计数器的设计方法。

一、电路原理加法计数器由若干个触发器组成,每个触发器的输出连接到下一个触发器的时钟端。

当计数器接受到一个时钟信号时,每个触发器的状态将根据前一个触发器的状态和时钟信号发生变化,从而实现计数的功能。

本文介绍的加法计数器还包含了异步清零和同步时钟使能功能,它们分别被连接到清零端和时钟端。

当清零端接受到一个高电平信号时,计数器的状态将被清零;当时钟端接受到一个高电平信号时,计数器将在时钟上升沿时计数。

二、电路实现本文中的加法计数器由4个D触发器和一些逻辑门组成,如图所示。

其中,D触发器的输入资源于四个运算器之中,运算器分别为。

①.异或门(XOR):将A,B两个数字按位异或,当两个输入不同时,输出为1;当两个输入相同时,输出为0。

②.与非器(NAND):将AB两个输入同时取反再进行与运算,输出为非AB的结果。

在加法计数器中,D触发器的输入端连接到异或门,异或门的两个输入端分别连接到计数器输入和进位信号。

同时,计数器输出也会连接到一个4位数显。

逻辑门的输出信号会被连接到触发器的时钟控制端或清零控制端,从而实现对计数器状态的控制。

三、时序分析1.异步清零当异步清零端接受到一个高电平信号时,计数器的状态将被清零。

具体来说,所有触发器的输出都将被强制为低电平信号。

这种操作可以通过将清零信号连接到每个D触发器的清零输入实现。

2.同步时钟使能当同步时钟使能端接受到高电平信号时,计数器只在时钟上升沿时计数。

这种操作可以通过将时钟使能信号连接到所有D触发器的时钟输入实现。

具体来说,当A和B两个输入都为0时,输出为0;当A和B两个输入都为1时,输出为0;当A和B两个输入中有一个为1时,输出为1。

四、总结本文介绍了一种具有异步清零和同步时钟使能的加法计数器的设计方法。

带有异步复位、同步计数使能和可预置型十进制计数器的verilog设计实验

带有异步复位、同步计数使能和可预置型十进制计数器的verilog设计实验

带有异步复位、同步计数使能和可预置型十进制计数器的verilog设计实验一、实验题目:带有异步复位、同步计数使能和可预置型十进制计数器的verilog设计。

二、实验目的:讨论学习经典数字计数器的Verilog描述方法和相关语法。

三、实验程序:module CNT10(CLK,RST,EN,LOAD,COUT,DOUT,DATA);input CLK,RST,EN,LOAD;input [3:0] DATA;output [3:0] DOUT;output COUT;reg [3:0] Q1;reg COUT;assign DOUT=Q1;always @(posedge CLK or negedge RST)beginif(!RST) Q1<=0;else if(EN)beginif(!LOAD) Q1<=DATA;else if(Q1<9) Q1<=Q1+1;else Q1<=4'b0000;endendalways @(Q1)if(Q1==4'h9) COUT=1'b1;else COUT=1'b0;endmodule四、实验仿真结果:五、仿真结果分析:(1)RST在任意时刻有效时,如CLK非上升沿时,计数也能清0。

(2)当EN=1,且在时钟CLK的上升沿时间范围LOAD=0时,4位输入数据DATA=0100被加载,在LOAD=1后作为计数器的计数初值,如图所示计数从0000加载到0100的时序。

计数到9时,COUT输出进位1。

(3)当EN=,LOAD=1,RST=1时,计数正常进行,在计数数据等于9时进位输出高电平。

另外,凡当计数从7计到8时有一毛刺信号,这是因为7到8的逻辑变化最大,每一位都发生了改变,导致各位信号传输路径不一致性增大。

六、硬件下载设置及测试过程:根据板子给定的引脚锁定图,选定相应的硬件把程序中的输入输出端和板子的相应引脚给锁定,编译并下载程序,定好DATA,选择合适的CLK,手动改变EN和LOAD的值,观察实验现象看是否符合程序的结果。

实验4 双向计数器设计

实验4 双向计数器设计

实验四 双向计数器设计一、实验目的学习时序电路的设计、仿真和硬件测试,进一步熟悉VHDL 设计技术; 掌握双向异步清零计数器(加/减1器)的设计方法。

二、设计描述及方法1. 设计电路的接口描述。

图5-1双向含异步清0和同步时钟使能的4位加法器管脚图如图5-1,引脚说明如下: • clk 是计数端口;• reset 是异步清零信号,高电平有效;• enable 是使能端,当它为高电平时,才能将加1器的输出值加载到锁存器的数据端 • dir 是加减操作的控制选择,高电平加1器;低电平减1器 • yout[3..0]是四位数据输出端,通过锁定数码管用以显示输出数据; •cout 是计数溢出端。

2. 真值表。

如表5-1所示:表5-1 双向含异步清0和同步时钟使能的4位加法器真值表3. 电路设计基本方法To 7-segment decoder To a LED这是一个单时钟十六进制计数器;“双向”指的是加1还是减1操作,可以用语句if dir=’1’then …else实现;“异步清零”指的是只要reset为高电平,立即清零,而不需要等待时钟脉冲(计数脉冲)到来;“同步时钟使能”是指当enable有效时还不能立即把内部输出值加载到锁存器的数据端,而是需要等到下一个时钟,在时钟信号的控制下再相应。

三、设计步骤完成计数器的VHDL描述,并对其进行波形仿真,确定结果正确。

四、硬件验证(选做)1.选择实验电路结构5对该设计进行硬件验证。

在该实验电路结构中,将键8(PIO7)对应为reset控制信号,键7(PIO6)对应为enable控制信号,键6(PIO5)对应为dir控制信号,yout是计数输出接数码1(PIO19-PIO16,低位靠右),计数溢出cout接发光管D8(PIO15);时钟clk接clock0,通过短路帽选择4Hz信号。

2.查阅系统引脚对照表,完成引脚锁定。

3.重新编译成功后,完成器件的下载配置。

EDA实验一设计含异步清零和同步加载与时钟使能的计数器

EDA实验一设计含异步清零和同步加载与时钟使能的计数器

EDA实验一设计含异步清零和同步加载与时钟使能的计数器一、实验目的熟悉QuartusII的VHDL文本设计流程全过程,学习计数器的设计、仿真和硬件测试。

掌握原理图与文本混合设计方法。

二、实验原理在进程语句中含有两个独立的IF语句。

第一个IF语句是非完整的条件语句,因而将产生计数器时序电路;第二个IF语句产生一个纯组合逻辑的多路选择器。

三、实验内容根据4.1节在QuartusII上对例3-20进行编辑、编译、综合、适配仿真。

说明例句中各语句作用。

给出所有时序信号的仿真波形,根据波形详细描述词设计的功能特点,包括RST、EN、LOAD、DATA、CLK 等型号的同步与异步特性。

查阅编译后的计数器的时序特点,从时序仿真图和了解从计数器时钟输入至计数数据输出的延时,包括不同优化约束后的改善情况,以及当选择不同FPGA目标器件后延时差距和毛刺情况,给出分析报告。

四、设计过程LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY CNT10 ISPORT(CLK,RST,EN,LOAD :IN STD_LOGIC;DATA:IN STD_LOGIC_VECTOR(3 DOWNTO 0);DOUT:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);COUT:OUT STD_LOGIC);END CNT10;ARCHITECTURE BEHAV OF CNT10 ISBEGINPROCESS(CLK,RST,EN,LOAD)VARIABLE Q :STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINIF RST='0' then q:=(OTHERS=>'0');ELSIF CLK'EVENT AND CLK='1' THENIF EN='1' THENIF(LOAD='0') THEN Q:=DATA;ELSEIF Q<9 THEN Q:=Q+1;ELSE Q:=(OTHERS=>'0');END IF;END IF;END IF;END IF;IF Q="1001"THEN COUT<='1';ELSE COUT<='0'; END IF;DOUT<=Q;END PROCESS;END BEHAV;(1)第一个IF语句中的条件句“IF Q<9 THEN Q:=Q+1”构成比较器(2)语句“IF RST='0' then q:=(OTHERS=>'0')”构成RST在锁存器上的异步清零端CLR(3)语句“ELSE Q:=(OTHERS=>'0')”构成了多路选择器(4)不完整条件语句与语句“IF Q<9 THEN Q:=Q+1 ”构成了加1器和锁存器(5)语句“IF(LOAD='0') THEN Q:=DATA;ELSE”构成了另一多路选择器(6)第二个IF语句构成了纯组合电路模块:四位数据比较器五、编译仿真波形六、分析结果由分析知,程序描述功能与波形完全一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EDA实验报告书
姓名学号实验时间




含异步清零和同步时钟使能的加法计数器设计
实验目的1.学习计数器的设计、仿真和硬件测试方法;
2.进一步熟悉VHDL设计技术;
设计要求设计一个24进制含异步清零和同步时钟使能的加法计数器,具体要求如下:
1.清零端高电平时,信号输出为0;使能端高电平时可以计数;
2.本计数器为上升沿触发;
3.计数器的输出为两路信号,分别代表计数值的个位和十位;两路信号以BCD码输出。

设计思路
根据十进制使能端加法计数器设计24进制计数器,设计异步清零;清零端高电平时,信号输出为0;使能端高电平时可以计数。

现根据书上设计出24进制计数器,再通过改进,变为两路输出BCD码。

设计原理图及源程序LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY nb IS
PORT(CLK,RD,EN:IN STD_LOGIC;
CQ,CP:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
COUT:OUT STD_LOGIC);
END nb;
ARCHITECTURE BBQ OF nb IS
SIGNAL CG: STD_LOGIC_VECTOR(3 DOWNTO 0); SIGNAL CS: STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
PROCESS(CLK,RD,EN)
BEGIN
IF RD='1' THEN CG<="0000";
CS<="0000";
ELSIF CLK'EVENT AND CLK='1' THEN
IF EN='1' THEN
IF (CS="0010" AND CG="0011") THEN
CG<="0000";
CS<="0000";
ELSIF CG="1001" THEN CG<="0000";
CS<=CS+1;
ELSE CG<=CG+1;
END IF;
END IF;
END IF;
IF (CS="0010" AND CG="0011") THEN COUT<='1';
ELSE
COUT<='0';
END IF;
CQ<=CG;
CP<=CS;
END PROCESS;
END BBQ;
仿








问题讨论设计一个60进制的加法计数器,具体要求与本实验中的24进制计数器相同LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY JINZHI60 IS
PORT(CLK,RD,EN:IN STD_LOGIC;
CQ,CP:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
COUT:OUT STD_LOGIC);
END JINZHI60 ;
ARCHITECTURE BBQ OF JINZHI60 IS
SIGNAL CS,CG: STD_LOGIC_VECTOR(3 DOWNTO 0);
BEGIN
PROCESS(CLK,RD,EN)
BEGIN
IF RD='1' THEN CG<="0000";
CS<="0000";
ELSIF CLK'EVENT AND CLK='1' THEN
IF EN='1' THEN
IF (CS="0101" AND CG="1001") THEN
CG<="0000";
CS<="0000";
ELSIF CG="1001" THEN CG<="0000";
IF CS="0101" THEN CS<="0000";
ELSE CS<=CS+1;
END IF;
ELSE CG<=CG+1;
END IF;
END IF;
END IF;
CQ<=CG;
CP<=CS;
IF (CS="0101" AND CG="1001") THEN COUT<='1';
ELSE
COUT<='0';
END IF;
END PROCESS;
END BBQ;
教师
评分
教师签名
日期操作成绩报告成绩。

相关文档
最新文档