方程与不等式组知识点总结
方程与不等式总结与经典例题
方程和不等式一、重点、难点提示:1.一元二次方程的一般形式:ax2+bx+c=0(a、b、c是常数,a≠0)。
在解一元二次方程,应按方程特点选择方法,各方法依次为:(1)直接开平方法;(2)配方法;(3)公式法;(4)因式分解法。
一元二次方程的求根公式是:x= (b2-4ac≥0)。
(注意符号问题)2.解分式方程的基本思想是:将分式方程转化为整式方程,转化的方法有两种:(1)去分母法;(2)换元法。
3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac。
当Δ>0时,方程有两个不相等的实数根x1= ,x2= ;当Δ=0时,方程有两个相等的实数根x1=x2=- ;当Δ<0时,方程没有实数根。
4.若一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2,则x1+x2=- , x1x2= 。
(注意两根的和是的相反数)。
以x1,x2为根的一元二次方程是x2-(x1+x2)x+x1x2=0。
5. 不等式的解法:解一元一次不等式和解一元一次方程类似。
不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。
6.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况见下表:二、例题分析: 例1.解不等式组 ,并把它的解集在数轴上表示出来。
说明:不等式组的解集是不等式组中各个不等式解集的公共部分,通常借助数轴来确定其解集,这样既直观又不易错。
注意除以负数时,改变不等号的方向。
解:解不等式3(x-2)+8>2x ,得x>-2解不等式 ≥x- ,得 x ≤-1。
所以不等式组的解集是 -2<x ≤-1。
它在数轴上表示如右图所示。
例2.解不等式组 ,并写出不等式组的整数解。
说明:求一元一次不等式组的整数解时,先求出不等式组的解集,再按要求取特殊解。
解:解不等式3(x+1)>4x+2, 得x<1。
解不等式≥,得x≥-2。
所以不等式组的解集是:-2≤x<1。
方程与不等式的解法例题和知识点总结
方程与不等式的解法例题和知识点总结在数学的学习中,方程与不等式是非常重要的内容,它们在解决实际问题中有着广泛的应用。
下面我们将通过一些具体的例题来深入理解方程与不等式的解法,并对相关知识点进行总结。
一、方程的解法方程是含有未知数的等式,求解方程的目的就是找出未知数的值,使得等式成立。
1、一元一次方程形如 ax + b = 0(a ≠ 0)的方程叫做一元一次方程。
例:解方程 3x + 5 = 14解:首先,将常数项移到等号右边:3x = 14 5,即 3x = 9然后,将系数化为 1:x = 9 ÷ 3,解得 x = 3知识点总结:解一元一次方程的一般步骤为:去分母(若有)、去括号、移项、合并同类项、系数化为 1。
2、二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组叫做二元一次方程组。
例:解方程组x + y = 5 ①2x y = 1 ②解:①+②得:3x = 6,解得 x = 2将 x = 2 代入①得:2 + y = 5,解得 y = 3所以方程组的解为 x = 2,y = 3知识点总结:解二元一次方程组的基本思想是消元,常用方法有代入消元法和加减消元法。
3、一元二次方程形如 ax²+ bx + c = 0(a ≠ 0)的方程叫做一元二次方程。
例:解方程 x² 4x + 3 = 0解:因式分解得:(x 1)(x 3) = 0所以 x 1 = 0 或 x 3 = 0解得 x₁= 1,x₂= 3知识点总结:一元二次方程的解法有直接开平方法、配方法、公式法和因式分解法。
求根公式为 x =b ± √(b² 4ac) /(2a)。
二、不等式的解法不等式是用不等号表示两个数或表达式之间关系的式子。
1、一元一次不等式形如 ax + b > 0 或 ax + b < 0(a ≠ 0)的不等式叫做一元一次不等式。
例:解不等式 2x 1 < 5解:移项得:2x < 5 + 1,即 2x < 6系数化为 1 得:x < 3知识点总结:解一元一次不等式的步骤与解一元一次方程类似,但要注意不等式两边乘或除以同一个负数时,不等号的方向要改变。
等式与不等式的解法与应用知识点总结
等式与不等式的解法与应用知识点总结等式与不等式是数学中非常基础且重要的概念,它们在解数学问题、推导理论以及应用实践中都起到了至关重要的作用。
本文将对等式与不等式的解法以及其在实际问题中的应用进行知识点总结。
一、等式的解法1. 一元一次方程:一元一次方程是指只有一个未知数,并且未知数的最高次数为1的方程。
解一元一次方程可以使用基本的代数运算法则,如加减乘除等。
常用的解法有加减消元法、变量相消法、代入法等。
2. 二元一次方程组:二元一次方程组是指有两个未知数的方程组,并且每个方程中未知数的最高次数为1。
解二元一次方程组可以使用消元法、代入法、加减消元法等解法。
3. 二次方程:二次方程是指未知数的最高次数为2的方程。
解二次方程可以使用配方法、求根公式、完全平方式等。
其中,求根公式为:x=(-b±√(b^2-4ac))/2a。
4. 分式方程:分式方程是指方程中带有分式的方程。
解分式方程需要将方程中的分式进行通分,并使用合适的解方程方法进行求解。
二、不等式的解法1. 一元一次不等式:一元一次不等式是指只有一个未知数,并且未知数的最高次数为1的不等式。
解一元一次不等式需要注意不等号的变换规则,可使用类似于解等式的代数运算法则进行解答。
2. 一次不等式组:一次不等式组是指含有多个一次不等式的方程组。
解一次不等式组可以使用区间法、图解法等。
区间法是将不等式右边等式化,然后通过判断不等式的符号来确定解集的范围。
3. 二次不等式:二次不等式是指未知数的最高次数为2的不等式。
解二次不等式需要根据二次不等式的形式和条件来判断解集的范围,可以通过求根、图像、区间等方法进行求解。
4. 绝对值不等式:绝对值不等式是指方程中含有绝对值的不等式。
解绝对值不等式需要考虑绝对值的定义和性质,可通过分情况讨论、画图等方法进行求解。
三、应用知识点总结1. 线性规划:线性规划是一种优化问题,它将问题转化为目标函数和约束条件下的最大值或最小值求解。
方程(组)与不等式(组)
方程和方程组知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元一次方程1、一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)2、一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)3、解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
4、一元一次方程有唯一的一个解。
三、二元一次方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。
2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (212121,,,,,c c b b a a 不全为0) 解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
(2)三元一次方程组:解法:代入消元法和加减消元法强化训练1.求适合的x ,y 的值.2.解下列方程组(1)(2) .(3)(4)3.解方程组:(1)(2).(3)4.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?.5.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.不等式及不等式组知识点:一、不等式与不等式的性质1、不等式:表示不等关系的式子。
(表示不等关系的常用符号:≠,<,>)。
2、不等式的性质:(l)不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a> b, c为实数⇒a+c>b+c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a>b, c>0⇒ac>bc。
初一数学方程与不等式解法总结解决方程的技巧分享
初一数学方程与不等式解法总结解决方程的技巧分享数学中的方程与不等式是我们初中数学学习中的重要内容,通过解方程与不等式可以帮助我们解决各种实际问题。
然而,对于初一学生而言,方程与不等式的解题可能会比较困难。
因此,本文将总结初一数学中解决方程与不等式的技巧,以帮助同学们更好地理解与掌握这一知识点。
一、方程解法总结1. 一元一次方程的解法一元一次方程是最简单的方程类型,形如ax + b = 0。
解一元一次方程的基本步骤如下:- 将方程变形为ax = -b的形式;- 通过移项将x的系数化为1;- 利用等式两边相等的性质,解得x = -b/a的结果,即为方程的解。
2. 一元一次方程的应用一元一次方程在日常生活中有很多应用,如解决购物价格折扣、人物行走速度等问题。
在应用题中,我们需要:- 定义未知数及其含义;- 根据题目中给出的信息列出方程;- 解方程求得未知数的值;- 根据问题进行解释与回答。
3. 一元二次方程的解法一元二次方程形如ax^2 + bx + c = 0,其中a、b、c为常数且a ≠ 0。
解一元二次方程的步骤如下:- 利用配方法,将方程变形为(a·x + b/2a)^2 = (b^2 - 4ac)/4a^2的形式;- 开方并使用平方根的正负解得两个方程;- 通过解两个方程,得出方程的两个根。
4. 一元二次方程的判别式与解的情况一元二次方程的判别式D = b^2 - 4ac可以用来判断方程根的性质:- 若D > 0,方程有两个不相等的实数根;- 若D = 0,方程有两个相等的实数根;- 若D < 0,方程无实数根。
二、不等式解法总结1. 一元一次不等式的解法一元一次不等式是最简单的不等式类型,形如ax + b > c或ax + b < c。
解一元一次不等式的基本步骤如下:- 将不等式变形为ax > c - b或ax < c - b的形式;- 通过移项将x的系数化为1;- 根据不等式的方向确定解的范围。
方程组与不等式组知识点总结
方程组与不等式组知识点总结一、方程组。
1. 二元一次方程组。
- 定义。
- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
把两个含有相同未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来,组成的方程组叫做二元一次方程组。
例如x + y=5 2x - y = 1。
- 解法。
- 代入消元法。
- 步骤:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含另一个未知数的代数式表示出来,如对于方程组y = 2x - 3 3x+2y = 8,由第一个方程y = 2x - 3,将y代入第二个方程得3x+2(2x - 3)=8,然后解这个一元一次方程求出x的值,再把x的值代入y = 2x - 3求出y的值。
- 加减消元法。
- 步骤:当方程组中两个方程的同一未知数的系数相等或互为相反数时,把这两个方程的两边分别相减或相加,消去这个未知数,得到一个一元一次方程。
例如对于方程组3x+2y = 11 5x - 2y = 13,将两个方程相加得(3x + 2y)+(5x - 2y)=11 + 13,即8x=24,解得x = 3,再把x = 3代入3x+2y = 11求出y的值。
2. 三元一次方程组。
- 定义。
- 含有三个未知数,并且含有未知数的项的次数都是1的整式方程组成的方程组叫做三元一次方程组。
例如x + y+z = 6 2x - y+z = 3 3x + 2y - z=4。
- 解法。
- 思路是通过消元将三元一次方程组转化为二元一次方程组,再转化为一元一次方程求解。
例如先消去z,可以将第一个方程x + y+z = 6与第三个方程3x + 2y - z = 4相加得到4x+3y = 10,再将第一个方程x + y+z = 6与第二个方程2x - y+z = 3相减得到-x + 2y=3,这样就得到了一个二元一次方程组4x + 3y=10 -x+2y = 3,然后用二元一次方程组的解法求解。
人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。
方程与不等式的关系与转化
方程与不等式的关系与转化一、方程与不等式的定义知识点1:方程的定义方程是一个含有未知数的等式,其中等号两边的表达式相等。
方程的目的是找到使等式成立的未知数的值。
知识点2:不等式的定义不等式是一个含有未知数的数学表达式,其中等号被大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)或不等号(≠)代替。
不等式的目的是找到使表达式成立的未知数的范围。
二、方程与不等式的关系知识点3:方程与不等式的联系方程和不等式都是用来描述变量之间关系的数学工具。
方程是通过等号连接两个表达式,表示它们在某个条件下相等;而不等式是通过不等号连接两个表达式,表示它们在某个条件下不相等或不具有大小关系。
知识点4:方程与不等式的区别方程是通过等号表示两个表达式的相等关系,而不等式是通过不等号表示两个表达式的不相等关系或不具有大小关系。
方程的解是唯一的,而不等式的解集是一个范围。
三、方程与不等式的转化知识点5:方程转化为不等式将方程中的等号改为不等号,可以得到相应的不等式。
例如,将2x + 3 = 7转化为2x + 3 ≥ 7,得到的解是x ≥ 2。
知识点6:不等式转化为方程将不等式中的不等号改为等号,可以得到相应的一般方程。
例如,将3x - 5 < 8转化为3x - 5 = 8,解这个方程得到的解是x = 5/3。
知识点7:线性方程与一元一次不等式的转化线性方程和不等式可以通过解集的性质进行转化。
例如,解线性方程2x - 5 = 3,得到的解是x = 4/2。
相应的不等式是2x - 5 ≥ 3,解集是x ≥ 4/2。
四、方程与不等式的解法知识点8:线性方程的解法线性方程可以通过代数方法(如移项、合并同类项、系数化)求解。
例如,解方程3x + 4 = 19,可以得到x = 5。
知识点9:一元一次不等式的解法一元一次不等式可以通过同解原理和数轴法进行解法。
例如,解不等式2x - 5 > 3,可以得到x > 4。
高中数学必修一等式与不等式知识点总结
高中数学必修一等式与不等式知识点总结一、基本概念1. 等式:左右两边相等的代数式2. 不等式:左右两边不相等的代数式3. 方程:带有未知数的等式4. 不等式组:包含两个或更多个不等式的集合5. 绝对值:一个数与0的距离,表示为|a|二、等式的性质1. 可以对等式两边同时加或减相同的量2. 可以对等式两边同时乘或除相同的非零量3. 可以交换等式两边的位置4. 可以用等式左边的代数式替换等式右边的代数式,反之亦然三、不等式的性质1. 可以对不等式两边同时加或减相同的量2. 可以对不等式两边同时乘或除相同的正数3. 可以交换不等式两边的位置,但是要改变不等式符号的方向4. 可以用不等式左边的代数式替换不等式右边的代数式,反之亦然,但是需要保证代数式符号的一致性四、一元一次方程1. 基本形式为ax+b=02. 解一元一次方程的步骤:1. 移项,将常数项移到一边2. 约项,将同类项合并3. 系数化为1,将未知数系数变为14. 检验解五、一元二次方程1. 基本形式为ax²+bx+c=02. 解一元二次方程的步骤:1. 求出判别式△=b²-4ac的值2. 当△>0时,方程有两个不相等的实根;当△=0时,方程有一个二重根;当△<0时,方程无实根,有两个共轭复数根3. 代入求解,根据公式x1,2=(-b±√△)/2a求出根4. 检验解六、一元一次不等式1. 基本形式为ax+b>0或ax+b<02. 解一元一次不等式的步骤:1. 移项,将常数项移到一边2. 约项,将同类项合并3. 乘以一个正数或负数,使得未知数系数的符号与不等式的符号一致4. 检验解七、一元二次不等式1. 基本形式为ax²+bx+c>0或ax²+bx+c<02. 解一元二次不等式的步骤:1. 求出解集,将不等式化为(ax-d)·(ax-e)>0或(ax-d)·(ax-e)<0的形式,再根据函数图像、零点、辅助函数等方法求解2. 将求出的解集与区间合并,得到不等式的解集以上是高中数学必修一等式与不等式知识点的总结,通过掌握这些知识点,可以有效地解决数学中的方程与不等式问题。
第2讲 方程(组)与不等式(组)
第2讲 方程(组)与不等式(组)知识点1 一元一次方程1.等式及其性质 ⑴ 等式:用等号“=”来表示等量关系的式子叫等式.⑵ 性质:① 如果,那么b ±c ;② 如果,那么bc ;如果,那么b c2. 方程、一元一次方程的解、概念(1) 方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程. 方程的解与解方程不同.(2) 一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为ax+b=0. 3. 解一元一次方程的步骤:①去分母;②去;③移;④合并;⑤系数化为1. 4. 一元一次方程的应用:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数. (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.b a ==±c a b a ==ac ba =()0≠c =c a ()0≠a(6)“答”就是写出答案,注意单位要写清楚.【典例】例1如果3m =3n ,那么下列等式不一定成立的是( ) A .m ﹣3=n ﹣3 B .2m +3=3n +2C .5+m =5+nD .m −3=n −3例2解方程:(1)2﹣3(x ﹣1)=2(x ﹣2); (2).例3若方程12﹣3(x +1)=7﹣x 的解与关于x 的方程6﹣2k =2(x +3)的解相同,求k 的值.例4若方程2(2x ﹣1)=3x +1与关于x 的方程2ax =(a +1)x ﹣6的解互为倒数,求a 的值.例5我市某区为鼓励毕业大学生自主创业,经过调研决定:在2021年对60名自主创业的大学生进行奖励,共计奖励50万元.奖励标准是:大学生自主创业连续经营一年以上的给予5000元奖励;自主创业且解决3人以上失业人员稳定就业的,再给予1万元奖励.问:该区自主创业大学生中连续经营一年以上的和自主创业且解决3人以上失业人员稳定就业的大学生分别有多少人?例6两辆汽车从相距80km 的两地同时出发相向而行,甲车的速度比乙车的速度快20km /h ,半小时后两车相遇? (1)两车的速度各是多少? (2)两车出发几小时后相距20km ?【随堂练习】1.在下列方程的变形中,正确的是( ) A .由2x +1=3x ,得2x +3x =1 B .由25x =34,得x =34×52C .由2x =34,得x =32D .由−x+13=2,得﹣x +1=62.解方程:(1)3x +2=4(2x +3); (2)﹣1.3.某同学在解关于y 的方程﹣=1去分母时,忘记将方程右边的1乘以12,从而求得方程的解为y =10.(1)求a 的值; (2)求方程正确的解.4.已知关于x 的方程2(x ﹣1)=3m ﹣1与3x ﹣2=﹣4的解相同,求m 的值.5.为加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格如表:每月用水量 单价(元)不超过23立方米的部分 m 超过23立方米的部分m +1.1(1)某用户4月份用水10立方米,共交费26元,求m 的值;(2)在(1)的前提下,该用户5月份交水费82元,请问该用户5月份用水多少立方米?知识点2 一元二次方程1.一元二次方程:在整式方程中,只含一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.一元二次方程的一般形式是)0(02≠=++a c bx ax .其中2ax 叫做二次项,bx 叫做一次项,c 叫做常数项;a 叫做二次项的系数,b 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.)0(2≥=a a x )0()(2≥=-a a b x(2)配方法:用配方法解一元二次方程的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程的求根公式 .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为0;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程的根的判别式为=∆. (1)>0一元二次方程有两个不相等的实数根,即242ab b ac -±-.(2)=0一元二次方程有两个相等的实数根,即2ba-. (3)<0一元二次方程没有实数根.4. 一元二次方程根与系数的关系关于x 的一元二次方程有两根分别为,,那么 a b -,c a. 【典例】例1若关于x 的方程(m +1)x |m |+1+x ﹣3=0是一元二次方程,求m 的值.()02≠=++a o c bx ax 2()x m n +=0n ≥20(0)ax bx c a ++=≠221,2440)b b ac x b ac -±-=-≥()002≠=++a c bx ax ac b 42-ac b 42-⇔()002≠=++a c bx ax =2,1x ac b 42-⇔==21x x ac b 42-⇔()002≠=++a c bx ax 20(0)ax bx c a ++=≠1x 2x =+21x x =⋅21x x例2解方程:9(x﹣1)2=16(x+2)2.例3用配方法解方程:x2﹣8x+13=0.例4若关于x的一元二次方程kx2﹣6x+9=0有实数根,求k的取值范围.例5岳池县是电子商务百强县,某商店积极利用网络优势销售当地特产—西板豆豉.已知每瓶西板豆豉的成本价为16元,当销售单价定为20元时,每天可售出80瓶.为了回馈广大顾客,该商店现决定降价销售(销售单价不低于成本价).经市场调查反映:若销售单价每降低0.5元,则每天可多售出20瓶.(1)当销售单价降低1元时,每天的销售利润为元;(2)为尽可能让利于顾客,若该商店销售西板豆豉每天的实际利润为350元,求西板豆豉的销售单价.例6在学校劳动基地里有一块长40米、宽20米的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横开辟三条等宽的小道,如图.已知这块矩形试验田中种植的面积为741平方米,小道的宽为多少米?【随堂练习】1.解方程:(1)(x﹣1)2﹣=0;(2)2x2+8x﹣1=0.2.已知关于x的方程x2+kx﹣2=0.(1)求证:不论k取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.3.惠友超市于今年年初以25元/件的进价购进一批商品.当商品售价为40元/件时,一月份销售了256件.二、三月份该商品十分畅销,销售量持续走高.在售价不变的基础上,三月份的销售量达到了400件.(1)求二、三月份销售量的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每件每降价1元,销售量增加5件.当每件商品降价多少元时,商场获利4250元?4.如图是一张长20cm、宽13cm的矩形纸板,将纸板四个角各剪去一个边长为xcm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.(1)这个无盖纸盒的长为cm,宽为cm;(用含x的式子表示)(2)若要制成一个底面积是144cm2的无盖长方体纸盒,求x的值.知识点3 分式方程1.分式方程:分母中含有未知数的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母中,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解,是否是所列分式方程的解;(2)检验所求的解,是否为增根.【典例】例1解方程:(1)=﹣2.(2)=.例2用换元法解方程(xx+1)2+5(x x+1)+6=0时,若设xx+1=t,则原方程可化为关于t的一元二次方程是.例3定义一种新运算“⊗”,规则如下:a⊗b=,(a≠b2),这里等式右边是实数运算,例如:1⊗3==﹣.求x⊗(﹣2)=1中x的值.例4疫情过后,为做好复工复产,某工厂用A、B两种型号机器人搬运原料.已知A型机器人每小时搬运的原料比B型机器人每小时搬运的原料的一半多50千克,且B型机器人搬运2400千克所用时间与A型机器人搬运2000千克所用时间相等,求这两种机器人每小时分别搬运多少千克原料.例5 2020年春节寒假期间,小伟同学完成数学寒假作业的情况是这样的:原计划每天都做相同页数的数学作业,做了5天后,由于新冠疫情加重,当地加强了防控措施,对外出进行限制,小伟有更多的时间待在家里,做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业,已知数学寒假作业本共有34页,求小伟原计划每天做多少页数学寒假作业?例6要在规定天数内修筑一段公路,若让甲队单独修筑,则正好在规定天数内按期完成;若让乙队单独修筑,则要比规定天数多8天才完成.现在由乙队单独修筑其中一小段,用去了规定时间的一半,然后甲队接着单独修筑2天,这段公路还有一半未修筑.若让两队共同再修筑2天,能否完成任务?【随堂练习】1.用换元法解方程x−1x=3x x−1−2时,设x−1x=y ,换元后化成关于y 的一元二次方程的一般形式为 .2.解方程: (1)=;(2)﹣3.3.若关于x 的方程有增根,则增根是多少?并求方程产生增根时m 的值.4.虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.5.某所学校有A、B两班师生前往一个农庄参加植树活动.已知A班每天植树量是B班每天植树量的1.5倍,A班植树300棵所用的天数比B班植树240棵所用的天数少2天,求A、B两班每天各植树多少棵?知识点4 方程组(1)二元一次方程:含有两个未知数(元)并且未知数的次数是2的整式方程.(2) 二元一次方程组:由2个或2个以上的含有相同未知数的二元一次方程组成的方程组叫二元一次方程组.(3)二元一次方程的解:适合一个二元一次方程的两个未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有无数个解.(4)二元一次方程组的解:使二元一次方程组成立的未知数的值,叫做二元一次方程组的解.(5)①代入消元法、②加减消元法.【典例】例1下列方程中,是二元一次方程的是()A.xy=2B.3x=4y C.x+1y=2D.x2+2y=4例2解方程组:(1);(2).例3已知方程组与有相同的解,求m 和n 值.例4糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?例5中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某种药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型 甲 乙 运载量(吨/辆) 10 12 运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?【随堂练习】1.如果3x 3m﹣2n﹣4y n﹣m+12=0是关于x 、y 的二元一次方程,那么m 、n 的值分别为( ) A .m =2,n =3 B .m =2,n =1C .m =﹣1,n =2D .m =3,n =42.如果方程组{ax −by =134x −5y =41与{ax +by =32x +3y =−7有相同的解,则a ,b 的值是( )A .{a =2b =1B .{a =2b =−3C .{a =52b =1D .{a =4b =−53.解方程组:.4.列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?5.某市要在A ,B 两景区安装爱心休闲椅,它有长条椅和弧形椅两种类型,其中每条长条椅可以同时供3人使用,每条弧形椅可以同时供5人使用.(列二元一次方程组解答) (1)市政府现在要为B 景区购买长条椅120条,弧形椅80条,若购买一条长条椅和一条弧形椅的价格共360元,为B 景区购买共花费了32800元,求长条椅和弧形椅的单价分别为多少元?(2)现决定从某公司为A 景区采购两种爱心休闲椅共400条,且正好可让1400名游客同时使用,求A 景区采购的长条椅和弧形椅分别为多少条?知识点5不等式(组)1. 用不等号连接起来的式子叫不等式;使不等式成立的未知数的值叫做不等式的解;一些使不等式成立的未知数的值叫做不等式的解集.求一个不等式的解的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质:(1)若<,则+<; (2)若>,>0则> (或> ); a b a c c b a b c ac bc c a cb(3)若>,<0则 < (或< ). 3.一元一次不等式:只含有一个未知数,且未知数的次数是一次且系数不等于0的不等式,称为一元一次不等式;一元一次不等式的一般形式为ax >b 或;解一元一次不等式的一般步骤:去分母、去括号 、移项、合并同类项、系数化为1.4.一元一次不等式组:几个含有相同未知数的一元一次不等式合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解:不等式(组)的解一般有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案. 7.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).a b c ac bc c a cb ax b <a b <x a x b <⎧⎨<⎩x a <x ax b >⎧⎨>⎩x b >x ax b>⎧⎨<⎩a x b <<x ax b <⎧⎨>⎩x【典例】例1如果a <b ,c <0,那么下列不等式中成立的是( ) A .a +c >b +c B .ac <bcC .ac 2>bc 2D .ac +1>bc +1例2解不等式10−x 3≤2x +1,并在数轴上将解集表示出来.例3解不等式组{2x −2≤xx +2>−12x −1,并把解集在数轴上表示出来.例4已知某校六年级学生超过130人,而不足150人,将他们按每组12人分组,多3人,将他们按每组8人分组,也多3人,该校六年级学生有多少人?例5为了美化校园,我校欲购进甲、乙两种工具,如果购买甲种3件,乙种2件,共需56元;如果购买甲种1件,乙种4件,共需32元. (1)甲、乙两种工具每件各多少元?(2)现要购买甲、乙两种工具共100件,总费用不超过1000元,那么甲种工具最多购买多少件?【随堂练习】1.若a >﹣1,则下列各式中错误的是( ) A .6a >﹣6 B .a 2>−12C .a +1>0D .﹣5a <﹣52.解不等式: (1)x +1>2x ﹣4; (2)−2x−13>4.3.解不等式组﹣2≤7x−53+2<5,并在数轴上表示出它的解集.4.某街道组织志愿者活动,选派志愿者到小区服务.若每一个小区安排4人,那么还剩下78人;若每个小区安排8人,那么最后一个小区不足8人,但不少于4人.求这个街道共选派了多少名志愿者?5.“端午节”将至,某商家预测某种粽子能够畅销,就准备购进甲、乙两种粽子.若购进甲种400个,乙种200个,需要用2800元;若购进甲种粽子700个,乙种粽子300个,需要4500元.(1)该商家购进的甲、乙两种粽子每个进价多少元?(2)该商家准备2500元全部用来购买甲乙两种粽子,计划销售每个甲种粽子可获利3元,销售每个乙种粽子可获利5元,且这两种粽子全部销售完毕后总利润不低于1900元,那么商家至少应购进甲种粽子多少个?综合运用1.若关于x 的方程x+m 3=x −m2与方程3+4x =2(3﹣x )的解互为倒数,求m 的值.2.解方程: (1)x−12=4x 3;(2)5x+13−2x−16=1.3.解不等式组{3−2(x −1)<3x 1−x−13≥0,把其解集在数轴上表示出来,并写出它的整数解.4.已知方程x 2﹣(k +1)x +k ﹣1=0是关于x 的一元二次方程. (1)求证:对于任意实数k ,方程总有两个不相等的实数根; (2)若方程的一个根是2,求k 的值及方程的另一个根.5.某工厂生产一批小家电,2018年的出厂价是144元,2019年,2020年连续两年改进技术,降低成本,2020年出厂价调整为100元.(1)这两年出厂价下降的百分比相同,求平均下降率.(2)某商场今年销售这批小家电的售价为140元时,平均每天可销售20台,为了减少库存,商场决定降价销售,经调查发现小家电单价每降低5元,每天可多售出10台,如果每天盈利1250元,单价应降低多少元?6.假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度.(2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?7.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎.该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从三水荷花世界打车到大旗头古村,总里程为23千米,耗时30分钟,求小强需支付多少车费.8.我市创全国卫生城市,梅溪湖社区积极响应,决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱,若购买4个垃圾箱比购买5个温馨提示牌多350元,垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)如果该街道需购买温馨提示牌和垃圾箱共3000个.该街道计划费用不超过35万元,而且垃圾箱的个数不少于温馨提示牌的个数的1.5倍,求有几种可供选择的方案?并找出资金最少的方案,求出最少需多少元?。
中考数学常见易错知识点汇总(方程组与不等式组)
中考数学常见易错知识点汇总(方程组与不
等式组)
方程(组)与不等式(组)
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0 的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带X 公因式要回头检验!
易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。
易错点6:解分式方程时首要步骤去分母,分数相相当于括
号,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
初中数学知识归纳二元一次方程组与不等式
初中数学知识归纳二元一次方程组与不等式初中数学知识归纳:二元一次方程组与不等式在初中数学学习中,二元一次方程组和不等式是我们必须要掌握的重要内容。
本文将对这两个概念进行归纳总结,帮助读者更好地理解和应用这些知识。
一、二元一次方程组二元一次方程组由两个含有两个未知数的方程组成,一般形式为:{ax + by = cdx + ey = f}其中a、b、c、d、e、f为已知的实数,x、y为未知数。
1. 解的概念解即是满足方程组中所有方程的变量值,使方程组中的等式成立。
对于二元一次方程组,它可能有唯一解、无解或者无穷解三种情况。
2. 解的求解方法(1)消元法:通过将方程组中的一方程乘以适当因子,使得两个方程中的某一未知数系数相等或当前系数可消去。
(2)代入法:将方程组中的一方程解出其中一个未知数,再代入另一个方程中去求解。
(3)等式法:将方程组两个方程相加或相减,消去一个未知数,再求解另一个未知数。
3. 实际应用二元一次方程组在日常生活和实际问题中有广泛应用。
例如,通过解决方程组可以计算某商品的单价和数量,或者找到两架飞机的速度等。
二、不等式不等式是数学中的一种表达式形式,表示两个数或表达式的大小关系。
不等式有三种基本形式:大于(>)、小于(<)和大于等于(≥)。
1. 解的概念不等式中的解是使不等式成立的取值范围。
对于一元不等式,解可以用数轴表示;对于多元不等式,解可以用数平面或空间中的区域表示。
2. 不等式的性质(1)加减性质:对不等式两边同时加或减一个数,不等号方向不改变。
(2)乘除性质:对正数乘除不等式两边,不等号方向不改变;对负数乘除不等式两边,不等号方向改变。
3. 实际应用不等式在实际问题中有着广泛的应用。
例如,通过解决不等式可以求解某个数的范围或满足某种条件的取值范围。
综上所述,初中数学知识中的二元一次方程组和不等式是我们必须要掌握的重要内容。
通过对二元一次方程组的解法和不等式的性质的学习,我们可以更好地理解和应用这些知识。
专题二 方程(组)与不等式(组)
x+a≥0 不等式组 有解, 即可求出 a 的取值范围. 1-2x>x- 2
解析: ∵由 x+ a≥0, 得 x≥- a; 由 1- 2x> x- 2, 得 x<1.故其解集为- a≤ x<1, ∴- a<1, 即 a>- 1, ∴a 的取值范围为 a>- 1.
宇轩图书
知识结构
典例精选
能力评估检测
【解题方法】解决方程 (组)与不等式(组)问题常用 的数学思想就是转化思想;常用的数学方法有:换元 法,分类讨论法,整体代入法,设参数法等.
宇轩图书
知识结构
典例精选
能力评估检测
宇轩图书
知识结构
典例精选
能力评估检测
(2013· 漳 州 ) 如 图, 10 块相同的长方形墙砖拼成一个 矩形, 设长方形墙砖的长和宽分 别为 x 厘米和 y 厘米, 则依题意 列方程组正确的是 ( )
宇轩图书
知识结构
典例精选
能力评估检测
规律方法 1.求不等式组的公共解, 要遵循以下原则: 同大取 大,同小取小,小大大小中间找,大大小小解不了. 2.已知不等式组的解集, 求不等式中另一未知数的 问题 .可以先将另一未知数当作已知处理,求出不等式 组的解集并与已知解集比较,进而求得另一个未知数 的取值范围 .
x+2y=75, 即 x+ 2y= 75,所以列方程组为 故选 x=3y.
B. 答案:B
宇轩图书
知识结构
典例精选
能力评估检测
规律方法 由实际问题抽象出二元一次方程组,关键是弄清 题意,找出合适的等量关系,列出方程组.
宇轩图书
数学中的不等式与方程组
数学中的不等式与方程组一、不等式的定义与性质数学中的不等式是指数之间的大小关系,包括大于、小于、大于等于、小于等于等。
不等式可以用来描述实际问题中的约束关系,常见于数学、物理、经济等领域的建模与求解过程中。
不等式的定义:设a和b为实数,则a不等于b可以表示为a≠b,a 大于b可以表示为a>b,a小于b可以表示为a<b,a大于等于b可以表示为a≥b,a小于等于b可以表示为a≤b。
不等式的性质包括传递性、对称性、加法性、乘法性等。
传递性指若a>b,b>c,则a>c;对称性指若a>b,则b<a;加法性指若a>b,则a+c>b+c,乘法性指若a>b,且c>0,则ac>bc。
这些性质在不等式的推导与解答过程中起到关键作用。
二、一元一次不等式的解法一元一次不等式是指只含有一个未知数,并且未知数的最高次数为一的不等式。
解一元一次不等式的基本思路是找到未知数的取值范围使不等式成立。
对于形式为ax+b>0的不等式,可按以下步骤求解:1. 若a>0,则不等式解集为(-∞, -b/a);2. 若a<0,则不等式解集为(-b/a, +∞);3. 若a=0且b>0,则不等式无解;4. 若a=0且b≤0,则不等式解集为(-∞,+∞)。
对于形式为ax+b<0的不等式,求解步骤与以上类似,只需将“>”号替换为“<”号即可。
类似地,对于形式为ax+b≥0和ax+b≤0的不等式,只需将“>”号替换为“≥”,“<”号替换为“≤”即可得到解集。
三、一元二次不等式的解法一元二次不等式是指未知数的最高次数为二的不等式。
解一元二次不等式的方法可以归结为求解一元二次方程的方法,即先化简不等式为二次方程,然后通过判别式和根的位置关系来确定不等式的解集。
对于形式为ax²+bx+c>0的一元二次不等式,可按以下步骤求解:1. 求出对应的一元二次方程ax²+bx+c=0的判别式Δ=b²-4ac;2. 若Δ>0,则方程有两个不相等的实根x₁和x₂,此时不等式的解集为(-∞, x₁)∪(x₂, +∞);3. 若Δ=0,则方程有两个相等的实根x₁=x₂,此时不等式的解集为(-∞, x₁)∪(x₁, +∞);4. 若Δ<0,则方程无实根,此时不等式的解集为空集。
最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编
中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。
(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。
(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。
对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。
(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。
注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。
等式与不等式的认识与运算知识点总结
等式与不等式的认识与运算知识点总结等式和不等式是数学中非常重要的概念。
等式表示两个数量相等的关系,而不等式则表示两个数量之间的大小关系。
在数学中,对这两个概念的理解和应用至关重要。
本文将对等式与不等式的认识和运算知识点进行总结。
一、等式的认识与性质等式是数学中用“=”号表示的两个表达式相等的关系。
对于任意的数值和变量,可以用等式来表达它们之间的相等关系。
1. 等式的性质(1)等式有自反性:对于任意的数值或表达式,它永远等于自己,即a = a。
(2)等式有对称性:如果a = b,则b = a。
(3)等式有传递性:如果a = b,且b = c,则a = c。
(4)等式可以进行加、减、乘、除的运算。
对等式的两边同时进行相同的运算,等式仍然成立。
二、不等式的认识与性质不等式是用“<”、“>”、“≤”、“≥”等符号表示的两个数量大小关系的式子。
不等式可以表示两个数的大小关系,也可以表示一组数的大小关系。
1. 符号的含义(1)< 符号表示小于,表示左边的数小于右边的数。
(2)> 符号表示大于,表示左边的数大于右边的数。
(3)≤ 符号表示小于等于,表示左边的数小于或等于右边的数。
(4)≥ 符号表示大于等于,表示左边的数大于或等于右边的数。
2. 不等式的性质(1)不等式有传递性:如果a < b,且b < c,则a < c。
(2)对于不等式,可以进行加、减、乘、除运算,但需要注意不等号的方向。
三、等式与不等式的运算1. 等式的运算对于等式,可以进行以下运算:(1)加法运算:若a = b,则a + c = b + c。
(2)减法运算:若a = b,则a - c = b - c。
(3)乘法运算:若a = b,则a * c = b * c。
(4)除法运算:若a = b,则a / c = b / c(其中c ≠ 0)。
2. 不等式的运算对于不等式,可以进行以下运算:(1)加法运算:若a < b,则a + c < b + c。
方程与不等式(组)知识点总结
方程与不等式组知识点总结方程与方程组一、一元一次方程的概念1、方程含有未知数的等式叫做方程。
2、方程的解能使方程两边相等的未知数的值叫做方程的解。
3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。
二、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
三、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如的一元二次方程。
根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
四、一元二次方程根的判别式根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即五、一元二次方程根与系数的关系如果方程的两个实数根是,那么,。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程与不等式组知识点总结方程与方程组一、一元一次方程的概念1、方程含有未知数的等式叫做方程。
2、方程的解能使方程两边相等的未知数的值叫做方程的解。
3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,( ) 叫做一元一次方程的标准形式,a是未知数x的系数,b 是常数项。
二、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式( )它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中( )叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
三、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如( )的一元二次方程。
根据平方根的定义可知,( )是b的平方根,当( )时,( ) ,( ),当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式( ),把公式中的a看做未知数x,并用x代替,则有( )。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程( )( )的求根公式:( ) 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
四、一元二次方程根的判别式根的判别式一元二次方程( )中,( ) 叫做一元二次方程( )的根的判别式,通常用“( )来表示,即( )五、一元二次方程根与系数的关系如果方程( )的两个实数根是( )( ),,那么( ),( )。
也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
六、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
七、二元一次方程组1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是()2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。
4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
5、二元一次方正组的解法(1)代入法(2)加减法6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。
7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。
不等式(组)一、不等式的概念1、不等式用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
求不等式的解集的过程,叫做解不等式。
3、用数轴表示不等式的方法二、不等式基本性质)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
三、一元一次不等式1、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、一元一次不等式的解法解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1四、一元一次不等式组1、一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
求不等式组的解集的过程,叫做解不等式组。
当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
2、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
方程(组)与不等式(组)单元检测一、填空题深邃1.若代数式13x x +-的值等于13,则x = . 2.方程x x 21)32(2-=-与方程)1(28+=-x a x (a 是常数)有相同的解,则a 的值是 .3.已知二元一次方程组 23,32x y x y +=-=的解满足21x my -=-,则m 的值为 .4.满足不等式)1(3x -≤)9(2+x 的负整数解是 .5.已知3=x 是方程122-=--x a x 的解,那么不等式31)52(<x a -的解集是 .6.若二次三项式5)1(222+++-k x k x 是一个完全平方式,则k = . 7.已知方程0242=--k x x 的一个根为α,比另一根β小4,则βα、、k 的值分别为 .8.若a 、b 、c 是△ABC 的三条边长,那么方程04)(2=+++c x b a cx 的根的情况是 .9.某种商品经过两次降价,使价格降低了19%,则平均每次降价的百分数为 .10.若代数式224x x +的值为4,则x 的取值是 . 11.已知菱形ABCD 的边长是5,两条对角线交于O ,且AO 、BO 的长分别是关于x 的方03)12(22=++-+m x m x 的两根,则m 等于 .12.某市收取水费按以下规定:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过的部分每立方米按2元收费. 如果某户居民在某月所交水费的平均价为每立方米1.5元,那么这户居民这个月共用了 立方米的水.二、选择题1.与方程232x x +=-有相同解的方程是( )A .2311x +=B .321x -+=C .213x -=D .211233x x +=-2.若2,1x y =-⎧⎨=⎩是方程组1,7ax by bx ay +=⎧⎨+=⎩的解,则))((b a b a -+的值为( )A .335-B .335C .16-D .16 3.如果关于x 的方程5432b x a x +=+的解不是负值,则a 、b 的关系是( )A .a >b 53B .b ≥a 35C .5a ≥3bD .5a =3b4.已知三角形两边长分别为4和7,第三边的长是方程066172=+-x x 的根,则第三边的长为( )A .6B .11C .6或11D .75.关于x 的方程20x mx n ++=的一个根为0,一个根不为0,则m ,n 满足( )A .0,0m n ==B .0,0m n ≠≠C .0,0m n ≠=D .0,0m n =≠6.以1 )A .2220x x --=B .2320x x +-=C .2220y y -+=D .2320y y -+=7.关于方程21233x x x -=---的解,下列判断正确的是( )A .有无数个解B .有两个解C .有唯一解D .无解8.要把一张面值为10元的人民币换成零钱,现有足够的面值为2元、1元的人民币,那么共有换法为( )A .4种B .6种C .8种D .10种9.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,则这种服装每件成本价是( )A .120元B .125元C .135元D .140元10.某村有一块面积为58公顷的土地,现计划将其中的41土地开辟为茶园,其余的土地种粮食和蔬菜.已知种粮食的土地面积是种蔬菜的土地面积的4倍,若设种粮食x 公顷,种蔬菜y 公顷,则下列方程中正确的是( )A .4,1584x y x y =⎧⎪⎨+=-⎪⎩B .4,1584x y x y =⎧⎪⎨+=-⎪⎩C .4,3584x y x y =⎧⎪⎨+=⨯⎪⎩D .4,3584x y x y =⎧⎪⎨+=⨯⎪⎩。