超分子凝胶结构多样性与超分子手性

超分子凝胶结构多样性与超分子手性

选修三 分子结构与性质

第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。 3.说出δ键和π键的明显差别和一般规律。 教学重点、难点: 价层电子对互斥模型 教学过程: [复习引入] NaCl、HCl的形成过程

结构化学课后答案第四章

04分子的对称性 【4.1】HCN 和2CS 都是直线型分子,写出该分子的对称元素。 解:HCN :(),C υσ∞∞; CS 2:()()2,,,,h C C i υσσ∞∞∞ 【4.2】写出3H CCl 分子中的对称元素。 解:()3,3C υσ 【4.3】写出三重映轴3S 和三重反轴3I 的全部对称操作。 解:依据三重映轴S 3所进行的全部对称操作为: 1133h S C σ=,2233S C =, 33h S σ= 4133S C =,52 33h S C σ=,63S E = 依据三重反轴3I 进行的全部对称操作为: 1133I iC =,2233I C =,3 3I i = 4133I C =,5233I iC =,63I E = 【4.4】写出四重映轴4S 和四重反轴4I 的全部对称操作。 解:依据S 4进行的全部对称操作为: 1121334 4442444,,,h h S C S C S C S E σσ==== 依据4I 进行的全部对称操作为: 11213344442444,,,I iC I C I iC I E ==== 【4.5】写出xz σ和通过原点并与χ轴重合的2C 轴的对称操作12C 的表示矩阵。 解: 100010001xz σ????=-??????, ()1 2100010001x C ?? ??=-?? ??-?? 【4.6】用对称操作的表示矩阵证明: (a ) ()2xy C z i σ= (b ) ()()()222C x C y C z = (c ) ()2yz xz C z σσ= 解: (a ) ()()11 2 2xy z z x x x C y C y y z z z σ-?????? ??????==-?????? ??????--??????, x x i y y z z -????????=-????????-????

分子的对称性与点群

分子的对称性与点群 摘要:分子也像日常生活中见到的物体一样,具有各种各样的对称性。分子的对称性是分子的很重要的几何性质,它是合理解释许多化学问题的简明而重要的基础。例如,往往从对称性入手,我们就能获得有关分子中电子结构的一些有用的定性结论,并从光谱推断有关分子的结构。 关键词:对称性点群对称操作 一.对称操作与点群 如果分子的图形相应于某一几何元素(点、线、面)完成某种操作后,所有原子在空间的排布与操作前的排布不可区分,则称此分子具有某种对称性。一般将能使分子构型复原的操作,称为对称操作,对称操作所据以进行的几何元素称为对称元素。描述分子的对称性时,常用到“点群”的概念。所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。而全部对称元素的集合构成对称元素系。每个点群具有一个持定的符号。一个分子的对称性是高还是低,就可通过比较它们所属的点群得到说明。 二.分子中的对称元素和对称操作 2.1 恒等元及恒等操所谓点群,就是指能使一个分子的图象复原的全部点操作的集合。作 分别用E、E^表示。这是一个什么也没有做的动作,保持分子不动,是任何分子都具有的对称元素与对称操作。

2.2旋转轴和旋转操作 分别用C n 、 C ^n 表示。 如果一个分子沿着某一轴旋转角度α能使分 子复原,则该分子具有轴C n , α是使分子复原所旋转的最小角度, 若一个分子中存在着几个旋转轴,则轴次高的为主轴 (放在竖直位 置),其余的为副轴。分子沿顺时针方向绕某轴旋转角度 α,α=360° /n (n=360°/α(n=1,2,3……) 能使其构型成为等价构型或复原, 即分子的新取向与原取向能重合,就称此操作为旋转操作,并称此分 子具有 n 次对称轴。n 是使分子完全复原所旋转的次数, 即为旋转 轴的轴次, 对应于次轴的对称操作有n 个。 C n n =E ﹙上标n 表示操 作的次数,下同﹚。 如NH3 (见图 1) 旋转 2π/3 等价于旋转 2π (复 原), 基转角 α=360°/n C3 - 三重轴;再如平面 BF3 分 子, 具有一个 C3 轴和三个 C2 轴,倘若分子中有一个以 上 的旋转轴,则轴次最高的为主轴。 2.3 对称面与反映操作 分别用σ、σ^表示。对称面也称为镜面, 它将分子分为两个互为镜 像的部分。对称面所对应的操作是反映, 它使分子中互为镜像的两 个部分交换位置而使分子复原。 σ^?=E ^ ﹙n 为偶数﹚, σ^2n =E ^﹙n 为奇数﹚。 对称面又分为: σh 面﹙垂直于主轴的对称面﹚、σ v 面﹙包含主轴的对称面﹚与σd 面﹙包含主轴并平分垂直于主轴的两 个C 2轴的夹角的平面﹚, σd 是σv 面的特殊类型。 图1

天然手性小分子分离研究进展

综述 题目:天然手性小分子分离研究进展 姓名:吴文凡 学号:z1415005 科目:天然药物化学

天然手性小分子分离研究进展 摘要:综述了色谱法和石英晶体微天平传感器技术在天然手性小分子分离研究的新进展,也同时介绍了分离天然手性小分子分离的手性固定相柱的制备,并探讨手性分子与手性固定相间识别的方法;也同时对紫外光谱和荧光光谱等在天然手性小分子分离的应用进行了阐述。 关键词:天然手性小分子;手性固定相;石英晶体微天平传感器; Abstract: The chromatography and quartz crystal microbalance sensor technology in the new progress of the study of natural chiral separation of small molecules, and also describes the preparation of small molecule chiral separation natural separation of chiral stationary phase column, and to explore chiral molecules chiral stationary phase identification method; also for UV and fluorescence spectra of small molecules in natural chiral separation applications are described. Key words: natural chiral small molecules; chiral stationary phase; quartz crystal microbalance sensors; 天然手性小分子是手性分子的一种,其分离方法类似于手性分子,手性是自然界特别是生物体的本质属性,作为生命活动重要基础的生物大分子和许多作用于受体的活性物质均具有手性特征,如酶、载体、受体、血浆蛋白和多糖等.对映异构体在生物活性、生理活性和药理活性等方面存在较大差异甚至可能完全相反的作用,因此获得单一的对映异构体对生理学和药理学的研究有着非常重要的意义[1].近年来,有关手性识别与分离的技术发展迅速,其中色谱法、传感器法和光谱法等具有适用性好、应用范围广、灵敏度高、检测速度快等优点,在分离识别和纯化手性化合物中受到研究者的极大关注。 1.色谱法 色谱法可满足各种条件下对映体拆分和测定的要求,能够快速对手性样品进行定性、定量分析和制备拆分.目前,高效液相色谱、气相色谱、超临界流体色谱、模拟移动床色谱和毛细管电泳等在手性研究中得到了广泛应用.其中,高效液相色谱法(HPLC )进行手性药物对映体的光学拆分已成为药学研究中的一大热点,开发一些新型、具有不对称中心的手性固定相成为发展手性色谱技术的前沿领域之一.在手性固定相材料中,选择剂和手性分子间形成非对映异构体络合物,但由于不同对映体分子间存在空间结构的差异,直接影响两者的结合和络合物的稳定性.根据这些差异有望实现对手性底物的拆分[2].以环糊精衍生物、多糖衍生物和蛋白质等为手性选择剂的手性固定相材料备受研究者的关注,它们对许多手性药物对映体表现出良好的分离性能,已有许多填充手性固定相的色谱柱实现商品化,广泛应用在制药工业、化学品和食品等行业中.下文针对新型环糊精手性固定相、多糖手性固定相和蛋白质手性分离材料的制备及在拆分手性对映体方面的研究进行综述。 1.1环糊精类手性固定相 泽环糊精由7个葡萄糖单元通过糖苷键连接形成,内部有一个疏水性手性空腔,可与有机物、无机物及生物分子形成主客体包合物.1965年,Solms等[3 ]首先开发了适用于液相色谱标准粒径的环糊精聚合物固定相.通过化学修饰可改变泽环糊精的内腔深度和氢键作用位点,引人静电作用和n- n作用位点,满足识别不同类型和结构的底物要求,提高泽环糊精衍生物的手性识别能力。环糊精手性固定相在巴比妥酸、阻断剂、镇静安眠剂、抗组胺剂、生物碱、胡萝卜素、二肽、多肽、氨基酸、芳香醇、黄酮类等的分析检测和制备方面得到很好的应用[4 ]。

分子结构和对称性

普化无机试卷(分子结构和对称性) 一、填空题 1. (1801) ClO 2F 的结构是 ,其点群是 。 2. (1802) 用VSEPR 理论判断H 2Se 和H 3O +的结构和点群分别是H 2Se 和H 3O + 。 3. (1804) 如果金属三羰基化合物分别具有C 3v 、D 3h 和C s 对称性,其中每一种在IR 光谱中的CO 伸缩振动谱带数各有 , 和 个。 4. (1806) PF 5分子和SO 32 -离子的对称群(若有必要,可利用VSEPR 理论确定几何形状)分别是 和 。 5. (1807) NH 4+中的C 3轴有 个,各沿 方向。 6. (1808) 二茂钌分子是五角棱柱形,Ru 原子夹在两个C 5H 5环之间。该分子属 点群, 极性(有、无)。 7. (1809) CH 3CH 3具有S 6轴的构象是 。 8. (1813) (H 3Si)3N 和(H 3C)3N 的结构分别是 和 ,原因是 。 9. (1814) 下列分子(或离子)具有反演中心的是 ,具有S 4轴的是 。 (1) CO 2,(2) C 2H 2,(3) BF 3,(4) SO 42 - 10. (1815) 平面三角形分子BF 3,四面体SO 42 -离子的点群分别是 和 。 11. (1817) 确定下列分子或离子的点群: (1) CO 32 - ;(2) SiF 4 ;(3) HCN ; (4) SiFClBrI 12. (1818) (1) 手性的对称性判据是 。

(2) NH2Cl,CO32-,SiF4,HCN,SiFClBrI,BrF4-中具有光学活性的是。 13. (1822) 分子中的键角受多种因素的影响,归纳这些因素并解释下列现象。 OF2< H2O AsF3 > AsH3 101.5?104.5?96.2?91.8? 14. (1829) 配离子[Cr(ox)3]3-(其中ox代表草酸根[O2CCO2]2-)的结构属于D3群。该分子(是、否)为手性分子。因为。 二、问答题 15. (1800) 绘出或写出AsF5及其与F-形成的配合物的分子形状(若需要,可使用VSEPR理论),并指出其点群。 16. (1803) 有关O2配位作用的讨论中认定氧有O2、O2-和O22-等三种形式。试根据O2的分子轨 道能级图,讨论这些物种作为配体时的键级、键长和净自旋。 17. (1805) 已知N、F、H的电负性值分别为3.04、3.98和2.20,键的极性是N—F大于N—H,但分子的极性却是NH3 >NF3,试加以解释。 18. (1810) (一) 试说明哪些对称元素的存在使分子没有偶极矩? (二) 用对称性判断确定下列分子(或离子)中哪些有极性。 (1) NH2Cl,(2) CO32-,(3) SiF4,(4) HCN,(5) SiFClBrI,(6) BrF4- 19. (1811) 长久以来,人们认为H2与I2的反应是典型的双分子反应:H2和I2通过侧向碰撞形成一个梯形活化配合物,然后I—I键、H—H键断裂,H—I键生成。请从对称性出发,分析这种机理是否合理。 20. (1812) 画出或用文字描述下列分子中对称元素的草图: (1) NH3分子的C3轴和σv对称面; (2) 平面正方形[PtCl4]2-离子的C4轴和σh对称面。 21. (1816) 确定下列原子轨道的对称元素: 轨道。 (1) s轨道;(2) p轨道;(3) d xy轨道;(4) d z2 22. (1819) H2O和NH3各有什么对称元素?分别属于什么点群? 23. (1820)

分子的性质

分子的性质 《选修三第二章第三节分子的性质》导学案(第3课时)学习 时间 2011 — 2012学年上学期周【课标要求】知识与技能要 求: 1、从分子结构的角度,认识“相似相溶”规律。2、了解“手性 分子”在生命科学等方面的应用。3、能用分子结构的知识解释无机 含氧酸分子的酸性。【复习】分子的极性判断标准,分子间作用力 对物质性质的影响。【阅读与思考】阅读教材P50“溶解性”部分内容,什么事“相似相容”原理?溶解度影响因素?“相似相容”原理有 何应用?【思考与交流】1.比较NH3和CH4在水中的溶解度。怎 样用相似相溶规律理解它们的溶解性不同? 2.为什么在日常生活 中用有机溶剂(乙酸乙酯等)溶解油漆而不用水? 3.在一个小试管里 放入一小粒碘晶体,加入约5 mL蒸馏水,观察碘在水中的溶解性(若有不溶的碘,可将碘水溶液倾倒在另一个试管里继续下面的实验)。在碘水溶液中加入约1 mL四氯化碳(CCl4),振荡试管,观察 碘被四氯化碳萃取,形成紫红色的四氯化碳溶液。再向试管里加入 1mL浓碘化钾(KI)水溶液,振荡试管,溶液紫色变浅,这是由于在 水溶液里可发生如下反应:I2+I-===I-3。实验表明碘在纯水还 是在四氯化碳中溶解性较好?为什么?【实践】每个同学亮出自己 的左又手。看能否完全重合?【科学史话】P52-53【回顾与思考】 H2S04和HN03是强酸,而H2S03和HN02是弱酸,即从酸性强弱 来看:H2S03Br2>Cl2>F2,Rn>Xe>Kr>Ar>Ne>He(2)对物质溶解性的影响如: 在273 K、101 kPa时,氧气在水中的溶解量(49 cm3?L-1)比氮气在 水中的溶解量(24 cm3?L-1)大,就是因为O2与水分子之间的作用 力比N2与水分子之间的作用力大所导致的。【典例解悟】1.欲提取 碘水中的碘,不能选用的萃取剂是()A.酒精B.四

水溶性高分子简介

水溶性高分子简介 摘要:本文介绍了水溶性高分子的分类,物理性能,制造以及未来的发展前景。关键词:水溶性高分子聚乙烯醇聚乙二醇 引言 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。是一种亲水性的高分子材料,在水中能够溶解或溶胀而形成溶液或分散液。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;②阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。这些集团不但使得高分子有亲水性,而且还带来很多宝贵的性能,如粘合性,成膜性,润滑性,分散性,减磨性等等。 1水溶性高分子的分类 1.1天然水溶性高分子。 以天然动植物为原料,通过物理过程或者物理化学的方法提取而成。最常见的如淀粉类、纤维素、植物胶、动物胶等。天然高分子虽然受到合成高分子的不断冲击,产量逐渐下降,但是仍然有很大一部分市场被其牢牢统治着。 1.2改性天然高分子。 主要有改性纤维素和改性淀粉两大类。如羧甲基淀粉、醋酸淀粉、羟甲基纤维素、羧甲基纤维素等。这类高分子兼有天然高分子和合成高分子的优点,拥有广泛的市场,因此产量很大。 1.3合成高分子。 合成高分子材料分为聚合类和缩合类两类,如聚丙烯酰胺(PAM)、水解聚丙烯酰胺(HPAM))、聚乙烯吡咯烷酮(PVP)等。按大分子链连接的水化基团分为:非离子型和离子型。按荷电性质分为:非离子、阳离子、阴离子和两性离子高分子,其中后三类为聚电解质。按基团间是否存在较强的非共价键联结又分为缔合聚合物和非缔合聚合物。 2水溶性高分子的物理性能 2.1溶解性 溶解性是达到平衡的溶液便不能容纳更多的溶质,在特殊条件下,溶液中溶解的溶质会比正常情多,这时它便成为过饱和溶液。每份溶剂所能溶解的溶质的最大值就是“溶质在这种溶剂的溶解度”。 为了提高水溶性,一是在分子中引入足够的亲水基团到大分子上面变为水溶性高分子。二是降低聚合物的结晶度。三是利用聚电解质的反离子力作用促进溶解。

超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其

广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐药性小、生物相容性好、高疗效以及开发成本低、周期短、成功可能性大等诸多优点而备受关注,在抗肿瘤、抗炎镇痛、抗疟、抗菌、抗真菌、抗结核、抗病毒、抗癫痫、作为心血管和磁共振

水溶性高分子增稠剂综述

1 绪论 增稠剂实质上是一种流变助剂,加入增稠剂后能调节流变性,使胶黏剂和密封剂增稠,防止填料沉淀,赋予良好的物理机械稳定性,控制施工过程的流变性(施胶时不流挂、不滴淌、不飞液),还能起着降低成本的作用。特别对于胶黏剂和密封剂的制造、储存、使用都很重要,能够改进和调节黏度,获得稳定、防沉、减渗、防淌、触变等性能。 1.1定义 能明显增加胶黏剂和密封剂黏度的物质称为增稠剂(chickening agent),有水性和油性之分。尤其是水相增稠剂应用更为普遍。在水体系中,当增稠剂达到一定浓度后,亲油端基缔合形成胶束;在水基高分子体系中,增稠剂的亲油基团主要与聚合物粒子缔合,以这种方式完成增稠特性的高分子化合物称为水性增稠剂。 1.2分类及机理 水溶性高分子增稠剂的分类有以下几种: 1.2.1纤维素类[1] 纤维素类在水基体系中是一类非常有效的增稠剂,广泛应用于化妆品的各种领域。纤维素是天然有机物, 它含有重复的葡萄糖苷单元,每个葡萄糖苷单元含有3 个羟基, 通过这些羟基可以形成各种各样的衍生物。纤维素类增稠剂通过水合膨胀的长链而增稠,纤维素增稠的体系表现明显的假塑性流变形态。使用量一般质量分数为1%左右。

纤维素类增稠剂纤维素类增稠剂的增稠机理是疏水主链与周围水分子通过氢键缔合,提高了聚合物本身的流体体积,减少了颗粒自由活动的空间,从而提高了体系黏度。也可以通过分子链的缠绕实现黏度的提高,表现为在静态和低剪切有高黏度,在高剪切下为低黏度。这是因为静态或低剪切速度时,纤维素分子链处于无序状态而使体系呈现高粘性;而在高剪切速度时,分子平行于流动方向作有序排列,易于相互滑动,所以体系黏度下降。 1.2.2 聚丙烯酸类 聚丙烯酸类增稠剂[2]自1953 年Goodrich 公司将Carbomer934引入市场至今已有40年的历史了, 现在这系列增稠剂已经有了更多的选择(见表1) 。 聚丙烯酸类增稠剂的增稠机理有2 种, 即中和增稠与氢键结合增稠。中和增稠是将酸性的聚丙烯酸类增稠剂中和, 使其分子离子化并沿着聚合物的主链产生负电荷, 同性电荷之间的相斥促使分子伸直张开形成网状结构达到增稠效果; 氢键结合增稠是聚丙烯酸类增稠剂先与水结合形成水合分子, 再与质量分数为10 %~ 20 %的羟基给予体(如具有5个或以上乙氧基的非离子表面活性剂)结合, 使其卷曲的分子在含水系统中解开形成网状结构达到增稠效果。 1.2.3 天然胶及其改性物 天然胶主要有胶原蛋白类和聚多糖类,但是作为增稠剂的天然胶主要是聚多糖类( 见表1) 。 增稠机理是通过聚多糖中糖单元含有3个羟基与水分子相互作用形成三维水化网络结构,从而达到增稠的效果。它们的水溶液的流变形态大部分是非牛顿流体, 但也有些稀溶液的流变特性接近牛顿流体。 1.2.4无机高分子及其改性物 无机高分子类增稠剂一般具有三层的层状结构或一个扩张的格子结构,最有商业用途的两类是蒙脱土和水辉石。 其增稠机理是无机高分子在水中分散时,其中的金属离子从晶片往外扩散,随着水合作用的进行,它发生溶胀,到最后片晶完全分离,其结果形成阴离子层状结构片晶和金属离子的透明胶体悬浮液。在这种情况下,片晶带有表面负电荷,它的

水溶性高分子及其应用

水溶性高分子及其应用 马建 常州轻工职业技术学院 10线缆331 1013433138 摘要:水溶性高分子材料是一种亲水性的高分子材料,在水中能溶解或溶胀而形成溶液或分散液。它具有性能优异、使用方便、有利环境保护等优点,广泛应用于国民经济的各个领域。本文主要论述了水溶性高分子材料的概念、分类、功能和应用、以及研究发展现状及前景。 关键词:水溶性 高分子 发展应用 1、 水溶性高分子的概念 水溶性高分子化合物又称为水溶性树脂或水溶性聚合物。通常所说的水溶性高分子是一种强亲水性的高分子材料,能溶解或溶胀于水中形成水溶液或分散体系”。在水溶性聚合物的分子结构中含有大量的亲水基团。亲水基团通常可分为三类:①阳离子基团,如叔胺基、季胺基等;② 阴离子基团,如羧酸基、磺酸基、磷酸基、硫酸基等;③极性非离子基团,如羟基、醚基、胺基、酰胺基等。 2、分类 a 、按来源分类 1 )天然水溶性高分子。 天然水溶性高分子以植物或动物为原料,通过物理的或物理化学的方法提取而得。许多天然水溶性高分子一直是造纸助剂的重要组分,例如常见的有表面施胶剂天然淀粉、植物胶、动物胶 (干酪素)、甲壳质以及海藻酸的水溶性衍生物等。 2)半合成水溶性高分子 。 这类高分子材料是由上述天然物质经化学改性而得。用于造纸工业中主要有两类:改性纤维素 (如羧甲基纤维素) 和改性淀粉 (如阳离子淀粉)。 3)合成水溶性高分子。 此类高分子的应用最为广泛,特别是其分子结构设计十分灵活的优势可以较好地满足造纸生产环境多变及造纸工业发展的要求。 b 、按分子量分类 可分为低分子量、高分子量、超高分子量 C 、按用途分类 可分为驱油剂(聚丙烯酰胺、改性淀粉、瓜胶),絮凝剂(聚丙烯酸、改性纤维素、壳聚糖) 3、功能 O OH O OH O CH 2OH OH O OH O CH 2OH OH O OH COOH

手性分子与旋光性

手性分子和旋光性 一、手性分子与非手性分子 不具有对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,其关系正和左、右手的关系相似,因此现在普遍地称这类分子为手 它可以写出结构式(i)和(ii),(i)和(ii)与左、右手一样具有实体和镜象的关系,因此乳酸是一个手性分子。实体和镜象互称为对映体。一对对映体从表观上看,它们是“非常对称”的,这种实体和镜象不能重叠的而表观上或结构上又“非常对称”的关系可看作是一种“特殊的对称”。 从对称因素考虑,乳酸只有一个C 简单对称轴,任何一个物体或分子旋转360° 1 (n=1)时,都可复原。为了和许多其它只具有C n>1简单对称轴的手性分子区别开来,所以把这种手性分子称为不对称分子,而后者称为非对称分子。 乳酸分子还有一个特点,它的一个碳原子和四个不同的基团相连,这种碳原子称为不对称碳原子或手性碳原子,氮、磷、硫原子也可连接不同的基团,这种原子,均可称为手性中心。现在已知绝大多数手性分子(不对称分子)含有一个或多个不对称碳原子,但并不能因此就将含有手性碳原子作为产生手性分子的绝对条件,产生手性分子的必要与充分条件是实体和镜象不能重叠。

二、对映体和光活性 实体和镜象不能重叠的分子成为一对对映体。这二者的物理性质及化学性质,如溶解度、熔点、密度、焓等,都是相同的。它们的化学反应性能也是相同的,只有在特殊的环境下,如在手性溶剂或试剂存在下,才表现出差异,生物体内的大多数反应是在手性的环境下进行的。但一对对映体对偏振光的作用不同,一个可以把偏振光向左旋,另一个则把偏振光向右旋,而非手性分子对偏振光没有这种作用,因此手性分子又称为光活性分子。光活性并不是手性分子的唯一特征,个别手性分子显示不出旋光性来,因此用手性这个名词,就更恰当一些。偏振光是检查手性分子的一种最常用的方法,因此需要对它略加讨论。 普通的光线含有各种波长的射线,是在各个不同的平面上振动的,图3-1(i)代表一束光线朝着我们的眼睛直射过来,它包含有在各个平面上(如A,B,C,D…)振动的射线,假若使光线通过一个电气石制的棱镜,又叫尼可尔(Nicol)棱镜,一部分射线就被阻挡不能通过,这是因为这种棱镜具有一种特殊的性质,只有和棱镜的晶轴平行振动的射线才能全部通过。假若这个棱镜的晶轴是直立的,那么只有在这个垂直平面上振动的射线才可通过,这种通过棱镜的光叫做平面偏光。图3-1(ii)表示凡在虚线平面上振动的射线都将受到全部地或者部分地阻挡。图3-1(iii)表示通过棱镜的光线是仅含有在箭头所示平面上振动的偏光。 用两块电气石制的棱镜放在眼睛和一个光源之间,若两个棱镜的轴彼此平行,则通过第一个棱镜的射线也可通过第二个棱镜,我们看到的是透明的图3-2(i),若两个棱镜的轴互相垂直,通过第一个棱镜的射线就不能通过第二个棱镜,此时看到两镜相交处是不透明的[图3-2(ii)]。电气石棱镜对于光的作用可以用一本书和一

最新几种水溶性高分子在水中的聚合

几种水溶性高分子在水中的聚合

几种水溶性高分子在水中的聚合 一、丙烯酰胺水溶液聚合 一、实验目的 1.掌握溶液聚合的方法和原理。 2.学习如何选择溶液。 3.掌握聚合物的处理方法。 二、实验原理 将单体溶于溶剂中而进行聚合的方法叫做溶液聚合。生成聚合物有的溶解有的不溶,前一种情况称为均相聚合,后者则称为沉淀聚合。自由基聚合,离子型聚合和缩聚均可用溶液聚合的方法。 在沉淀聚合中,由于聚合物处在非良溶剂中,聚合物链处于卷曲状态,端基被包裹,聚合一开始就出现自动加速现象,不存在稳态阶段。随着转化率的提高,包裹程度加深,自动加速效应也相应增强,沉淀聚合的动力学行为与均相聚合有明显不同。均相聚合时,依双基终止机理,聚合速率与引发剂浓度的平方根成正比。而沉淀聚合一开始就是非稳态,随包裹程度的加深,其只能单基终止,故聚合速率将与引发剂的浓度的一次方成正比。 在均相溶液聚合中,由于聚合物是处在良溶剂环境中,聚合物处于比较伸展状态,包裹程度浅链扩散容易,活性端基容易相互靠近而发生双基终止。只有在高转化率时,才开始出现自动加速现象,若单体浓度不高,则有可能消除

自动加速效应,使反应遵循正常的自由基聚合动力学规律。因而溶液聚合是实验室中研究聚合机理及聚合动力学等常用的方法之一。 进行溶液聚合时,由于溶剂并非完全是惰性的,其对反应会产生各种影响,选择溶剂时应考虑以下几个问题: (1)对引发剂分解的影响:偶氮类引发剂(偶氮二异丁腈)的分解速率受溶剂的影响很小,但溶剂对有机过氧化物引发剂有较大的诱导分解作用。这种作用按下列顺序依次增大:芳烃、烷烃、醇类、醚类、胺类,诱导分解的结果使引发剂的引发效率降低。 (2)溶剂的链转移作用:自由基是一个非常活泼的反应中心,它不仅能引发单体分子,而且还能与溶剂反应,夺取溶剂分子的一个原子,如氢或氯,以满足它的不饱和原子价。溶剂分子提供这种原子的能力越强,链转移作用就越强。链转移的结果使聚合物分子量降低。若反应生成自由基活性降低,则聚合速度也将减小。 (3)对聚合物的溶解性能,溶剂溶解聚合物的性能控制着活性链的形态(卷曲或舒展)及其粘度,它们决定了链终止速度与分子量的分布。 与本体聚合相比,溶液聚合体系具有粘度降低、混合及传热较容易、不易产生局部过热、温度容易控制等优点。但由于有机溶剂费用高,回收困难等原因,使得溶液聚合在工业上很少应用,只有直接使用聚合物溶液的情况下,如涂料、胶粘剂。浸渍剂和合成纤维放丝液等采用溶液聚合的方法。 丙稀酰胺为水溶性单体,其聚合物也溶于水。本实验采用水为溶剂进行溶液聚合,其优点是:价廉、无毒、链转移常数小、对单体及聚合物溶解性能好,为均相聚合。

!高分子材料和亲水基团

合成高分子线型 支陡型 『可反复加工,茅次便 ? 1龍溶解在适当的有机 [溶剂里 网 状 结 构 r加工成型后受热不 再熔化 不易浴譯,只有一定 浄皮的眯丈 应用广泛的咼分子材料 1.亲水基团: 亲水基团:又称疏油基团,具有溶于水,或容易与水亲和的原子团。可能吸引水分子或溶解于水,这类分子形成的固体表面易被水润湿。 1)阴离子表面活性剂的亲水基(团): 羧酸基(—CooH磺酸基(—SOH)、硫酸基与磷酸基。 2)阳离子表面活性剂: 氨基(—NH)、季铵基。 3)非离子表面活性剂: 由含氧基团组成的醚基、羟基(—OH、醛基(—CHO,羰基、嵌段聚醚 2.疏水基团: 疏水基团:烃基、酯基 F天然(棉花、蚕丝、麻)塑料 『合成材料*合成纤维合成 橡胶功能高分子材料 *复合材料 三大合成材料:塑料、合成纤维、合成橡胶; 合成高分子的结构有:线型结构、支链型结构、网状结构(体型结构)按结构分类

塑料、纤维、橡胶的命名: 塑料:聚… 或…树脂 如:聚乙烯、聚氯乙烯、酚醛树脂注意:树脂的含义是指未加工处理的聚合 物。 纤维:聚… (俗称:…纶)如:聚酯、六大纶(涤纶、晴纶、氨纶等) 橡胶:… 橡胶如:乙丙橡胶(乙烯丙烯橡胶)、顺丁橡胶 二、塑料 塑料的主要成分: 合成树脂及加工助剂塑料:是添加了特定用途添加剂的树脂。 1.塑料的分类: 1)热塑性塑料(聚乙烯, 聚氯乙烯, 聚丙烯等)特性:加热熔化,可反复加工,多次使用。线性结构,有弹性。 热塑性塑料具有长链状的线型结构。受热时,分子间作用力减弱,易滑动;冷却时,相互引力增强,会重新硬化。 特别注意:烷烃分子中的碳碳单键可以围绕键轴旋转而不影响键的强度。耳机线为什么总缠在一起? 聚乙烯分子链上的碳原子完全由碳碳单键相连,碳碳单键可旋转,使它不可能成一条直线,只能成不规则的卷曲状态。高分子化合物具有一定的弹性。 2)热固性塑料(酚醛树脂) 特性:一旦加工成型就不会受热熔化,网状结构,硬化定型。热固性塑料再次受热时,链与链间会形成共价键,产生一些交联,形成体型网状结构,硬化定型。 2.线型塑料——聚乙烯(PE) 单体:CH2=CH 无毒,化学稳定性好,适合做食品和药物的包装材料。 高压聚乙烯又称低密度聚乙烯(LDPE ,

【CN110078932A】手性CSub3Sub超分子聚合物及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910326820.2 (22)申请日 2019.04.23 (71)申请人 上海大学 地址 200444 上海市宝山区上大路99号 (72)发明人 张阿方 吴金雕 林尧东 仲国强  徐刚 刘延军 李文  (74)专利代理机构 上海上大专利事务所(普通 合伙) 31205 代理人 顾勇华 (51)Int.Cl. C08G 83/00(2006.01) (54)发明名称 手性C 3超分子聚合物及其制备方法 (57)摘要 本发明提供一种手性C 3分子及其制备方法。 该分子的结构式为:。该C 3分子能够在 溶剂中,通过超分子作用力下,自发组装堆叠形 成超分子聚合物。该C 3超分子聚合物在二氯甲烷 中呈现出超强的手性信号,并且具有极强的荧光 效应。在超分子聚合物的基础上,发生丁二炔基 元在紫外光照下的拓扑聚合反应,使得聚合物中 相邻的C 3分子之间形成共价键,从而实现从超分 子聚合物向共价聚合物的转变,形成更稳定的聚合物。该方法利用超分子化学方便可设计的优点,实现了超高的手性诱导以及避免了传统共价化学合成聚合物产生的各种不可控因素。基于超分子聚合物实现的手性诱导、传递和放大,在手性材料、光学器件、生物医用材料等方面有重要 应用价值。权利要求书1页 说明书4页 附图4页CN 110078932 A 2019.08.02 C N 110078932 A

权 利 要 求 书1/1页 CN 110078932 A 1.一种手性C3分子, 其特征在于该分子的结构式为:Array 其中n= 1~6,R1=H或C1~C3的烷基,R2 = H或C1~C3的烷基,X为C1~C3的烷基。 2.一种制备根据权利要求1中所述的手性C3分子的方法,其特征在于该方法的具体步骤为:将该C3分子溶于有机溶剂或水中,在超分子作用力下,即苯环-丁二炔组成的扩展共轭核的强π-π堆叠作用和肽链的氢键作用,能够自发组装形成超分子螺旋聚合物,具有动态可逆的特征,并且在手性中心的诱导下,形成的聚合物具有明显的手性增强和有序二级结构。 3.一种根据权利要求1所述的C3分子的制备方法,其特征在于该方法的具体合成步骤如下: 步骤a:在惰性气体保护下,将Boc保护的二肽甲酯、DMAP、寡聚乙二醇单体溶于二氯甲烷中,冰盐浴20 min,加入EDC?HCl,1 h后撤去冰盐浴,室温过夜反应,经分离提纯得到产物; 步骤b:将步骤a产物溶于二氯甲烷中,冰浴下加入TFA,10min后撤去冰浴,搅拌反应1 h,滴加甲醇终止反应,蒸干溶剂得到产物; 步骤c:将4-戊炔酸溶于二氯甲烷中,加入HOBt,搅拌溶解,取步骤b产物和DiEA搅拌溶于二氯甲烷中,把两种混合溶液搅拌加入烧瓶中,在惰性气体保护下,把体系放入冰盐浴中冷冻20 min,加入EDC?HCl,室温过夜反应,经分离提纯得到产物; 步骤d:将步骤c产物、1,3,5-三(2-溴乙炔基)苯、三乙胺,溶于四氢呋喃的反应管中,用液氮冻住反应液,用泵抽气15 min,解冻,加入催化剂Pd(PPh3)2Cl2,CuI,再用液氮冻住反应液,用泵抽气15 min,解冻,如此循环冻抽3次,油浴升温至29o C,避光过夜反应,经分离提纯得到目标C3产物。 2

分子的性质(知识点总结+典例导析)

分子的性质 【学习目标】 1、知道极性共价键和非极性共价键;结合常见物质分子立体结构会判断极性分子和非极性分子。 2、理解范德华力、氢键的概念及其对物质性质的影响。 3、从分子结构的角度,认识“相似相溶”规律。 4、了解“手性分子”的结构及其在生命科学等方面的应用。 5、能用分子结构的知识解释无机含氧酸分子的酸性。 【要点梳理】 要点一、共价键的极性--极性键和非极性键 1、分类依据: 共用电子对是否偏移,发生偏移为极性键;不发生偏移为非极性键。 说明:极性键中共用电子对偏向的一方带负电荷用δ-表示;共用电子对偏离的一方带正电荷用δ+表示。 2、判断技巧: 形成共价键的两原子是否为同种原子,如相同,为非极性键;如不同,为极性键。 原子电负性(元素非金属性)差值越大的,共用电子对偏移程度大,键的极性就越大。 要点诠释:化学键类型和物质类别的关系 1)、不含有化学键的物质:稀有气体分子。 2)、只含非极性共价键的物质:同种非金属元素构成的单质。如:H2、P4、金刚石等 3)、只含极性共价键的物质:一般是不同非金属元素构成的共价化合物。如:HCl、NH3等 4)、既有非极性共价键又有极性共价键的物质:如:H2O2、C2H2、CH3CH3、C6H6等 5)、只含有离子键的物质:活泼金属与活泼非金属元素形成的化合物。如:Na2S、CsCl、K2O、NaH等 6)、既有离子键又有非极性键的物质:如:Na2O2、CaC2等 7)、既有离子键又有极性键的物质:如:NaOH 8)、有离子键、共价键、配位键组成的物质:如:NH4Cl 要点二、分子的极性 1、非极性分子: 正负电荷中心重合的分子称为非极性分子,它的分子中各个键的极性的向量和等于零。 例如:X2型双原子分子(如H2、Cl2、Br2等)、XY n型多原子分子中键的极性互相抵消的分子(如CO2、CCl4等)都属非极性分子。 2、极性分子: 正负电荷中心不重合的分子称为极性分子,它的分子中各个键的极性向量和不等于零。 例如:XY型双原子分子(如HF、HCl、CO、NO等),XY n型多原子分子中键的极性不能互相抵消的分子(如SO2、H2O、NH3等)都属极性分子。 3、分子极性的判断方法: (1)全部由非极性键构成的分子一般是非极性分子。(O3例外) (2)由极性键构成的双原子分子一定是极性分子。 (3)在含有极性键的多原子分子中,如果结构对称则键的极性得到抵消,其分子为非极性分子。 如果分子结构不对称,则键的极性不能完全抵消,其分子为极性分子。 (4)ABn型分子极性简便判别方法 A.孤对电子法 在ABn型分子中,若中心原子A无孤对电子(未成对电子),则是非极性分子,若中心原子A有孤对电子则是极性分子。 例如:CO2、CH4、SO3中心原子(C、S)无孤对电子,是非极性分子。而像H2O、NH3、NP3中心原子(O、N)有孤对电子,则为极性分子。 B.空间形状法

!高分子材料和亲水基团

应用广泛的高分子材料 1.亲水基团: 亲水基团:又称疏油基团,具有溶于水,或容易与水亲和的原子团。可能吸引水分子或溶解于水,这类分子形成的固体表面易被水润湿。 1)阴离子表面活性剂的亲水基(团): 羧酸基(-COOH)、磺酸基(-SO H)、硫酸基与磷酸基。 3 2)阳离子表面活性剂: )、季铵基。 氨基(-NH 2 3)非离子表面活性剂: 由含氧基团组成的醚基、羟基(-OH)、醛基(-CHO),羰基、嵌段聚醚。 2.疏水基团: 疏水基团:烃基、酯基 三大合成材料:塑料、合成纤维、合成橡胶; 合成高分子的结构有:线型结构、支链型结构、网状结构(体型结构)

一、塑料、纤维、橡胶的命名: 塑料:聚… 或…树脂 如:聚乙烯、聚氯乙烯、酚醛树脂 注意:树脂的含义是指未加工处理的聚合物。 纤维:聚… (俗称:…纶) 如:聚酯、六大纶(涤纶、晴纶、氨纶等) 橡胶:… 橡胶 如:乙丙橡胶(乙烯丙烯橡胶)、顺丁橡胶 二、塑料 塑料的主要成分: 合成树脂及加工助剂 塑料:是添加了特定用途添加剂的树脂。 1.塑料的分类: 1)热塑性塑料 (聚乙烯, 聚氯乙烯, 聚丙烯等) 特性:加热熔化,可反复加工,多次使用。线性结构,有弹性。 热塑性塑料具有长链状的线型结构。受热时,分子间作用力减弱,易滑动;冷却时,相互引力增强,会重新硬化。 特别注意:烷烃分子中的碳碳单键可以围绕键轴旋转而不影响键的强度。 耳机线为什么总缠在一起? 聚乙烯分子链上的碳原子完全由碳碳单键相连,碳碳单键可旋转,使它不可能成一条直线,只能成不规则的卷曲状态。高分子化合物具有一定的弹性。 2)热固性塑料(酚醛树脂) 特性:一旦加工成型就不会受热熔化,网状结构,硬化定型。 热固性塑料再次受热时,链与链间会形成共价键,产生一些交联,形成体型网状结构,硬化定型。

相关文档
最新文档