集合的表示法-中职数学基础模块教案设计

合集下载

集合的表示方法教案

集合的表示方法教案

集合的表示方法教案一、教学目标1. 了解集合的基本概念,理解集合的表示方法。

2. 学会使用列举法、描述法表示集合,能熟练运用集合的表示方法解决实际问题。

3. 培养学生的逻辑思维能力,提高学生的数学素养。

二、教学内容1. 集合的基本概念2. 列举法表示集合3. 描述法表示集合4. 集合的表示方法在实际问题中的应用三、教学重点与难点1. 教学重点:列举法、描述法表示集合,集合的表示方法在实际问题中的应用。

2. 教学难点:集合的表示方法在实际问题中的应用。

四、教学方法1. 采用讲授法、案例分析法、讨论法、实践操作法等多种教学方法,引导学生掌握集合的表示方法。

2. 通过设置有趣的实际问题,激发学生的学习兴趣,培养学生的动手操作能力和解决问题的能力。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考集合的概念,引发学生对集合表示方法的好奇心。

2. 讲解集合的基本概念:讲解集合的定义、元素的特点等基本概念。

3. 演示列举法表示集合:以具体例子为例,演示如何用列举法表示集合,让学生跟随演示操作。

4. 讲解描述法表示集合:讲解描述法的概念、常用描述法等。

5. 练习:让学生独立完成一些练习题,巩固所学知识。

6. 集合的表示方法在实际问题中的应用:通过实例分析,让学生学会如何运用集合的表示方法解决实际问题。

8. 布置作业:布置一些有关集合表示方法的练习题,巩固所学知识。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 练习题评价:检查学生完成的练习题,评估学生对集合表示方法的掌握程度。

3. 小组讨论评价:评估学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力。

七、教学拓展1. 介绍其他表示集合的方法:如图示法、Venn图等,让学生了解集合表示方法的多样性。

2. 集合的运算:简要介绍集合的并集、交集、补集等运算,为学生进一步学习集合论打下基础。

八、教学资源1. PPT课件:制作精美的PPT课件,展示集合的表示方法的相关知识点。

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念教学目标:理解集合的含义及集合中元素的特点。

掌握集合的表示方法,如列举法、描述法等。

教学内容:集合的定义与表示方法。

集合的性质与运算。

教学过程:1. 引入新课:通过生活中的实例引入集合的概念。

2. 讲解与演示:讲解集合的定义,展示不同类型的集合及其表示方法。

3. 练习与讨论:学生独立完成练习题,分组讨论集合的性质与运算。

1.2 集合的关系教学目标:理解集合之间的大小关系,包括子集、真子集、并集、交集等。

教学内容:集合之间的基本关系。

集合关系的表示方法。

教学过程:1. 引入新课:通过图形展示集合之间的关系。

2. 讲解与演示:讲解集合之间的子集、真子集、并集、交集等概念。

3. 练习与讨论:学生独立完成练习题,分组讨论集合关系的应用。

第二章:函数2.1 函数的概念教学目标:理解函数的定义及其表示方法。

掌握函数的性质,如单调性、奇偶性等。

教学内容:函数的定义与表示方法。

函数的性质。

教学过程:1. 引入新课:通过生活中的实例引入函数的概念。

2. 讲解与演示:讲解函数的定义,展示不同类型的函数及其表示方法。

3. 练习与讨论:学生独立完成练习题,分组讨论函数的性质。

2.2 函数的图像教学目标:理解函数图像的特点及绘制方法。

学会利用函数图像分析函数的性质。

教学内容:函数图像的特点。

绘制函数图像的方法。

教学过程:1. 引入新课:通过实例展示函数图像的特点。

2. 讲解与演示:讲解函数图像的绘制方法,展示不同类型函数的图像。

3. 练习与讨论:学生独立完成练习题,分组讨论函数图像的应用。

第三章:不等式与不等式组3.1 不等式的概念教学目标:理解不等式的定义及其性质。

学会解一元一次不等式。

教学内容:不等式的定义与性质。

一元一次不等式的解法。

教学过程:1. 引入新课:通过生活中的实例引入不等式的概念。

2. 讲解与演示:讲解不等式的定义,展示不等式的性质。

3. 练习与讨论:学生独立完成练习题,分组讨论一元一次不等式的解法。

中职数学基础模块上册(人教版)全套教案

中职数学基础模块上册(人教版)全套教案

中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】了解集合的概念,掌握集合的表示方法,能够正确理解和运用集合的基本运算。

【教学内容】1. 集合的定义2. 集合的表示方法3. 集合的基本运算(并集、交集、补集)【教学步骤】1. 引入集合的概念,通过实例讲解集合的表示方法。

2. 讲解集合的基本运算,结合实例进行演示和练习。

【课后作业】1. 判断题:判断下列各题的真假。

(1)集合{1, 2, 3} 包含元素1, 2, 3。

(2)集合{1, 2, 3} 和集合{3, 4, 5} 的交集是{1, 2, 3}。

(3)集合{1, 2, 3} 的补集是{4, 5, 6}。

2. 选择题:选择正确答案。

(1)下列哪个选项是集合{1, 2, 3, 4, 5} 的补集?A. {1, 2, 3}B. {2, 3, 4}C. {1, 4, 5}D. {1, 2, 3, 4, 5}(2)设A = {x | x 是小于5 的正整数},B = {x | x 是大于等于2 且小于等于4 的整数},则A ∩B 是哪个集合?A. {2, 3, 4}B. {1, 2, 3, 4}C. {2, 3, 4, 5}D. {1, 2, 3}1.2 集合的关系【教学目标】理解集合之间的包含关系,掌握集合的并集、交集、补集的定义及运算方法。

【教学内容】1. 集合的包含关系2. 集合的并集3. 集合的交集4. 集合的补集【教学步骤】1. 讲解集合的包含关系,通过实例说明集合之间的包含关系。

2. 讲解集合的并集、交集、补集的定义及运算方法,结合实例进行演示和练习。

【课后作业】1. 判断题:判断下列各题的真假。

(1)集合{1, 2, 3} 包含于集合{1, 2, 3, 4, 5}。

(2)集合{1, 2, 3} 和集合{3, 4, 5} 的并集是{1, 2, 3, 4, 5}。

(3)集合{1, 2, 3} 和集合{3, 4, 5} 的交集是{3}。

中职数学基础模块上册集合的表示法word教案1.doc

中职数学基础模块上册集合的表示法word教案1.doc

百度文库- 让每个人平等地提升自我长春市第二中等专业学校课时教案数学护理专业2012年9月4日第2周第1次章节1.1.2 集合的表示法课题教学1. 掌握集合的列举法与描述法目2. 会用适当的方法表示集合的教学集合的表示法重点教学集合表示法的选择与规范书写难点技.通过集合语言的学习与运用,培养学生的数学思维能力能课教法新授课讲练结合型(教具)板书集合的表示法1. 列举法2. 描述法例题设计作课后业小结教教签务研字科室长春市第二中等专业学校教案副页No. 1教学教师时过程行为间引入课题:集合的表示法过程行为间*创设情景兴趣导入问题不大于 5 的自然数所组成的集合中有哪些元素质疑小于 5 的实数所组成的集合中有哪些元素?解决不大于 5 的自然数所组成的集合中只有0、 1、 2、 3、 4、引导5 这6 个元素,这些元素是可以一一列举的.而小于 5 的实数有无穷多个,而且无法一一列举出来,但元素的特征是明显的:讲解(1)集合的元素都是实数;( 2)集合的元素都小于 5.归纳当集合中元素可以一一列举时,可以用列举的方法表示集合;当集合中元素无法一一列举但元素特征是明显时,可以分总结析出集合的元素所具有的特征性质,通过对元素特征性质的描45 述来表示集合.*动脑思考探索新知集合的表示有两种方法:( 1)列举法.把集合的元素一一列举出来,写在花括号内,仔细元素之间用逗号隔开.如不大于 5 的自然数所组成的集合可以分析表示为0,1,2,3,4,5 .讲解关键当集合为无限集或为元素很多的有限集时,在不发生误解词语的情况下可以采用省略的写法.例如,小于100 的自然数集可以表示为 0,1,2,3, ,99 ,正偶数集可以表示为 2,4,6, .( 2)描述法.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于强调5 的实数所组成的集合可表示为{ x | x 5, x R} .如果从上下文能明显看出集合的元素为实数,那么可以将 x R 省略不写.如不等式 3 x 6 0 的解集可以表示为{ x | x 2} .说明为了简便起见,有些集合在使用描述法表示时,可以省过程行为 间略竖线及其左边的代表元素,直接用中文来表示集合的特征性50质.例如所有正奇数组成的集合可以表示为{正奇数 }.* 巩固知识 典型例题例 2 用列举法表示下列集合:( 1)由大于 4 且小于 12 的所有偶数组成的集合;( 2)方程 x 2 5x 6 0 的解集.分析这两个集合都是有限集. ( 1)题的元素可以直接列举出来;( 2)题的元素需要解方程 x 2 5x6 0 才能得到.解( 1)集合表示为2,0,2,4,6,8,10 ;说明( 2)解方程 x 2 5 x 6 0 得 x 11, x 2 6 .故方程解集为强调1,6 .例 3用描述法表示下列各集合:引领( 1)不等式 2x 10 的解集;( 2)所有奇数组成的集合;讲解 ( 3)由第一象限所有的点组成的集合.说明分析 用描述法表示集合关键是找出元素的特征性质. ( 1)题解不等式就可以得到不等式解集元素的特征性质;(2)题奇数引领分析2k 1(k Z ) 的形式”.( 3)题元的特征性质是“元素都能写成强调素的特征性质是“为第一象限的点” ,即横坐标与纵坐标都为含义正数.解 ( 1 ) 解 不 等 式 2x 10 得 x1,所以解集为2说明x x1 ; 260( 2)奇数集合 x x 2 k 1,k Z ;( 3)第一象限所有的点组成的集合为 x, y x 0, y 0 .* 运用知识 强化练习过程行为间教材练习 1.1.21.用列举法表示下列各集合:( 1)方程 x2 3x 4 0 的解集;(2)方程 4 x 3 0 的解集;巡视(3)由数 1, 4, 9,16, 25 组成的集合;(4)所有正奇数组成的集合.2.用描述法表示下列各集合:指导( 1)大于 3 的实数所组成的集合;( 2)方程 x2 4 0 的解集;( 3)大于 5 的所有偶数所组成的集合;( 4)不等式2x 5 3 的70 解集.* 理论升华整体建构本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征总结性质直观明确 .归纳因此表示集合时,要针对实际情况,选用合适的方法.例75 如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示.* 巩固知识典型例题例 4 用适当的方法表示下列集合:引领( 1)方程 x+5=0 的解集;分析(2)不等式 3x-7>5 的解集;(3)大于 3 且小于 11 的偶数组成的集合;( 4)不大于讲解5 的所有实数组成的集合;80 解 (1) { - 5} ;(2) { x| x>4} 说明;* 运用知识强化练习提问选用适当的方法表示出下列各集合:(1) 由大于 10 的所有自然数组成的集合;巡视(2) 方程x2 9 0 的解集;(3) 不等式 4 x 6 5 的解集;指导(4) 平面直角坐标系中第二象限所有的点组成的集合;(5) 方程 x2 4 3 的解集;归纳85 (6) 不等式组3x 30, 的解集.强调x 6 0* 归纳小结强化思想过程行为间本次课学了哪些内容?重点和难点各是什么?引导( 1)本次课学了哪些内容?88 ( 2)通过本次课的学习,你会解决哪些新问题了?提问( 3)在学习方法上有哪些体会?*继续探索活动探究(1) 阅读理解:教材,学习与训练;说明(2) 书面作业:教材习题,学习与训练训练题;90(3) 实践调查:探究生活中集合知识的应用。

中职数学(基础模块)教案

中职数学(基础模块)教案

中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1.2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1.3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“”的正确使用.教学难ZYB重油煤焦油专用泵点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合高温导热油泵的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.教学重点:⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.教学难点:一元二次不等式的解法.课时安排:2课时.2.4含绝对值的不等式知识目标:(1)理解含绝对值不等式或的解法;(2)了解或的解法.能力目标:(1)通过含绝对值不等式的学习;培风冷式离心油泵养学生的计算技能与数学思维能力;(2)通过数形结合的研究问题,培养学生的观察能力.教学重点:(1)不等式或的解法.(2)利用变量替换解不等式或.教学难点:利用变量替换解不等式或.课时安排:2课时.3.1函数的概念及其表示法知识目标:(1)理解函数的定义;(2)理解函数值的概念及表示;(3)理解函数的三种表示方法;(4)掌握利用“描点法”作函数图像的方法.能力目标:(1)通过函数概念的学习,培养学生的数学思维能力;(2)通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3)会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.教学重点:(1)函数的概念;(2)利用“描点法”描绘函数图像.教学难点:(1)对函数的概念及记号的理解;(2)利用“描点法”描绘函数图像.课时安排:2课时.3.2函数的性质知识目标:⑴理解函数的单BWCB沥青泵调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.能力目标:⑴通过利用函数图像研究函数性质,培养学生的观察能力;⑵通过函数奇偶性的判断,培养学生的数学思维能力.教学重点:⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.教学难点:函数奇偶性的判断.(*函数单调性的判断)课时安排:2课时.3.3函数的实际应用举例知识目标:(1)理解分段函数的概念;(2)理解分段函数的图像;(3)了解实际问题中的分段函数问题.能力目标:(1)会求分段函数的定义域和分YHB立式齿轮泵段函数在点处的函数值;(2)掌握分段函数的作图方法;(3)能建立简单实际问题的分段函数的关系式.教学重点:(1)分段函数的概念;(2)分段函数的图像.教学难点:(1)建立实际问题的分段函数关系;(2)分段函数的图像.课时安排:2课时.4.1实数指数幂(1)知识目标:⑴复习整数指数幂的知识;⑵了解n次根式的概念;⑶理解分数指数幂的定义.能力目标:⑴掌握根式与分数指数幂之间的转化;⑵会利用计算器求根式和分数指数幂的值;⑶培养计算工具使用技能.教学重点:分数指数幂的定义.教学难点:根式和分数YHB轴头齿轮油泵指数幂的互化.课时安排:2课时.4.1实数指数幂(2)知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点.能力目标:⑴正确进行实数指数幂的运算;⑵培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力.教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.课时安排:2课时.4.2指数函数知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.教学重点:⑴指数函数的概念、图像和性质;⑵指数沥青拌合站增压泵函数的应用实例.教学难点:指数函数的应用实例.课时安排:2课时.4.3对数知识目标:⑴理解对数的概念,理解常用对数和自然对数的概念;⑵掌握利用计算器求对数值的方法;⑶了解积、商、幂的对数.能力目标:⑴会进行指数式与对数式之间的互化;⑵会运用函数型计算器计算对数值;⑶培养计算工具的使用技能.教学重点:指数式与对数式的关系.教学难点:对数的YCB齿轮泵概念.课时安排:2课时.4.4对数函数知识目标:⑴了解对数函数的图像及性质特征;⑵了解对数函数的实际应用. 能力目标:⑴观察对数函数的图像,总结对数函数的性质,培养观察能力;⑵通过应用实例的介绍,培养学生数学思维能力和分析与解决问题能力.教学重点:对数函数的图像及性质.教学难点:对数函数的应用中实际ZYB-33.3A问题的题意分析.课时安排:2课时.5.1角的概念推广知识目标:⑴了解角的概念推广的实际背景意义;⑵理解任意角、象限角、界限角、终边相同的角的概念.能力目标:(1)会判断角所在的象限;(2)会求指定范围内与已知角终边相同的角;(3)培养观察能力和计算技能.教学重点:终边相同角的概念.教学难点:终边相同角的表示和确定.课时安排:2课时.5.2弧度制知识目标:⑴理解弧度制的概念;⑵理解角度制与弧度制的换算关系.能力目标:(1)会进行角度制与弧度制的换算;(2)会利用计算器进行角度制与弧度制的换算;(3)培养学生的计算技能与计算工具使用技能.教学重点:弧度制的概念,弧度与角度的换算.教学难点:弧度制的概念.课时安排:2课时.5.3任意角的正弦函数、余弦函数和正切函数知识目标:⑴理解任意角的三角函数的定义及定义域;⑵理解三角函数在各象限的正负号;⑶掌握界限角的三ZYB系列渣油泵角函数值.能力目标:⑴会利用定义求任意角的三角函数值;⑵会判断任意角三角函数的正负号;⑶培养学生的观察能力.教学重点:⑴任意角的三角函数的概念;⑵三角函数在各象限的符号;⑶特殊角的三角函数值.教学难点:任意角的三角函数值符号的确定.课时安排:2课时.5.4同角三角函数的基本关系知识目标:理解同角的三角函数基本关系式.能力目标:⑴已知一个三角函数值,会利用同角三角函数的基本关系式求其他的三角函数值;⑵会利用同角三角函数的基本关系式求三角式的值.教学重点:同角的三角函数基本关系式的应用.教学难点:应用平方关系求正弦或余弦值时,正负号的确定.课时安排:2课时.5.5诱导公式知识目标:了解“”、“”、“180°”的诱导公式.能力目标:(1)会利用简化公式搅拌站渣油泵将任意角的三角函数的转化为锐角的三角函数;(2)会利用计算器求任意角的三角函数值;(3)培养学生的数学思维能力及应用计算工具的能力.教学重点:三个诱导公式.教学难点:诱导公式的应用.课时安排:2课时.5.6三角函数的图像和性质知识目标:(1)理解正弦函数的图像和性质;(2)理解用“五点法”画正弦函数的简图的方法;(3)了解余弦函数的图像和性质.能力目标:(1)认识周期现象,以正弦ZYB型增压渣油泵函数、余弦函数为载体,理解周期函数;(2)会用“五点法”作出正弦函数、余弦函数的简图;(3)通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.教学重点:(1)正弦函数的图像及性质;(2)用“五点法”作出函数y=sinx在上的简图.教学难点:周期性的理解.课时安排:2课时.5.7已知三角函数值求角知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.教学重点:已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.教学难点:已知三角函数值,利用计算器求指定范围内的角.课时安排:2课时.6.1数列的概念知识目标:(1)了解数列的有关ZYB重油泵概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.教学重点:利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.教学难点:根据数列的前若干项写出它的一个通项公式.课时安排:2课时.6.2等差数列(一)知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力.教学重点:等差数列的通项公式.教学难点:等差数列通项公式的推导.课时安排:2课时.6.2等差数列知识目标:理解等差数列通项公式及前项和公式.能力目标:通过学习前项和公ZYB煤焦油泵式,培养学生处理数据的能力.教学重点:等差数列的前项和的公式.教学难点:等差数列前项和公式的推导.课时安排:2课时.6.3等比数列知识目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力.教学重点:等比数列的通项公式.教学难点:等比数列通项公式的推导.课时安排:2课时.6.3等比数列知识目标:理解等比数列前项和公式.能力目标:通过学习等沥青拌合站重油泵比数列前项和公式,培养学生处理数据的能力.教学重点:等比数列的前项和的公式.教学难点:等比数列前项和公式的推导.课时安排:3课时.7.1平面向量的概念及线性运算知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.教学重点:向量的线性运算.教学难点:已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.课时安排:2课时.7.2平面向量的坐标表示知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.教学重点:向量线性运算的坐标表高温导热油泵示及运算法则.教学难点:向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键. 课时安排:2课时.7.3平面向量的内积知识目标:(1)了解平面向量内积的概念及其几何意义;(2)了解平面向量内积的计算公式.为利用向量的内积研究有关问题奠定基础.能力目标:通过实例引出向量内积的定义,培养学生观察和归纳的能力.教学重点:平面向量数量积的概念及计算公式.教学难点:数量积的概念及利用数量积来计算两个非零向量的夹角.课时安排:2课时.8.1两点间的距离与线段中点的坐标知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.教学重点:两点间的距离公式与YHB润滑齿轮泵线段中点的坐标公式的运用教学难点:两点间的距离公式的理解课时安排:2课时.8.2直线的方程知识目标:(1)理解直线的倾角、斜率的概念;(2)掌握直线的倾角、斜率的计算方法.能力目标:采用“数形结合”的方法,培养学生有条理地思考问题.教学重点:直线的斜率公式的应用.教学难点:直线的斜率概念和公式的理解.课时安排:2课时.8.2直线的方程(二)知识目标:(1)了解直线与方程的关系;(2)掌握直线的点斜式方程、斜截式方程,理解直线的一般式方程.能力目标:培养学生解决问题的能沥青拌合站增压泵力与计算能力.教学重点:直线方程的点斜式、斜截式方程.教学难点:根据已知条件,选择直线方程的适当形式求直线方程.课时安排:2课时.8.3两条直线的位置关系(一)知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:两条直线平行的条件.教学难点:两条直线平行的判断及应用.课时安排:2课时.8.3两条直线的位置关系(二)知识目标:(1)掌握两条直线平行的条件;(2)能应用点到直线的距离公式解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:两条直线的位置关系,点到直线的距离公式.教学难点:两条直线的位置关系的ZYB点火增压燃油泵判断及应用.课时安排:2课时.8.4圆(一)知识目标:(1)了解圆的定义;(2)掌握圆的标准方程和一般方程.能力目标:培养学生解决问题的能力与计算能力.教学重点:圆的标准方程和一般方程的理解与应用.教学难点:对圆的标准方程和一般方程的正确认识.课时安排:2课时.8.4圆(二)知识目标:(1)理解直线和圆的位置关系;(2)了解直线与圆相切在实际中的应用.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:直线与圆的位置关系的理解和掌握.教学难点:直线与圆的位置关系的判定.课时安排:2课时.9.1平面的基本性质知识目标:(1)了解平面的概念、平面的基本性质;(2)掌握平面的表示法与画法.能力目标:培养学生的空间想象能3GR普通型三螺杆泵力和数学思维能力.教学重点:平面的表示法与画法.教学难点:对平面的概念及平面的基本性质的理解.课时安排:2课时.9.2直线与直线、直线与平面、平面与平面平行的判定与性质知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:直线与直线、直线与平面、平面与平面平行的判定与性质.教学难点:异面直线的想象与理YCB齿轮泵解.课时安排:2课时.9.3直线与直线、直线与平面、平面与平面所成的角知识目标:(1)了解两条异面直线所成的角的概念;(2)理解直线与平面垂直、直线与平面所成的角的概念,二面角及其平面角的概念.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:异面直线的概念与两条异面直线所成的角的概念、直线与平面所成的角的概念、二面角及其平面角的概念.教学难点:两条异面直线所成的角的概念、二面角的平面角的确定.课时安排:2课时.9.4直线与直线、直线与平面、平面与平面垂直的判定与性质知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:直线与平面、平面与平面垂直的判定方法与性质.教学难点:判定空间直线与直KCB型不锈钢齿轮泵线、直线与平面、平面与平面垂直.课时安排:2课时.9.5柱、锥、球及其简单组合体(一)知识目标:(1)了解棱柱、棱锥的结构特征;(2)掌握棱柱、棱锥面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.教学重点:正棱柱、正棱锥的结构特征及相关的计算.教学难点:正棱柱、正棱锥的相关计算.课时安排:2课时.9.5柱、锥、球及其简单组合体(二)知识目标:(1)了解圆柱、圆锥、球的结构特征;(2)掌握圆柱、圆锥、球的面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.教学重点:圆柱、圆锥、球的结构特征及相关的计算.教学难点:简单组合体的结构特征及其面积、体积的计算.课时安排:2课时.10.1计数原理知识目标:掌握分类计数原理和分步计数原理.能力目标:培养学生的观察、分析能力.教学重点:掌握分类计数原理和分步计数原理.教学难点:区别与运用分类计数原理RYB电动齿轮泵和分步计数原理.课时安排:2课时.10.2概率(一)知识目标:(1)理解必然事件、不可能事件、随机事件的意义;(2)理解事件的频率与概率的意义以及二者的区别与联系.能力目标:培养学生的观察、分析能力.教学重点:事件的概率的定义.教学难点:概率的计算.课时安排:2课时.10.2概率(二)知识目标:掌握古典概型,互斥事件的概念.能力目标:培养学生的观察、分析能力.教学重点:运用公式计算等可能事件的概率.教学难点:概率的计算.课时安排:2课时.10.3总体、样本与抽样方法(一)知识目标:理解总体、个体、样本等概念.能力目标:培养学生认识世界、探ZYB增压燃油泵索世界的辩证唯物观.教学重点:总体、个体、样本、样本的容量的概念.教学难点:总体、个体、样本之间的关系.课时安排:2课时.10.3总体、样本与抽样方法(二)知识目标:了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.教学难点:对简单随机抽样、系统抽样、分层抽样等三种抽样方法的理解.课时安排:2课时.10.4用样本估计总体知识目标:(1)了解用样本的频率分布估计总体;(2)掌握用样本均值、方差和标准差估计总体的均值、方差和标准差.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:计算样本均值、样NYP高粘度保温泵本方差及样本标准差.教学难点:列频率分布表,绘频率分布直方图.课时安排:2课时.10.5一元线性回归知识目标:(1)了解相关关系的概念;(2)掌握一元线性回归思想及回归方程的建立.能力目标:增强学生的数据处理能力,计算工具的使用能力,分析问题和解决问题的能力,培养严谨、CYB稠油泵细致的学习和工作作风.教学重点:掌握一元回归方程.教学难点:理解相关关系、回归分析概念.课时安排:2课时/ktyzyb/KZYB.html//七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。

中职数学教案:集合及其表示

中职数学教案:集合及其表示
数学中一些常用数集及其记法。
1.下列各语句中的对象能否组成集合?如果能组成集合,写出它的元素.如果不能组成集合,请说明理由.
(1)某校汉字录入速度快的学生;
(2)某校汉字录入速度为90字符/min及以上的所有学生;
(3)方程(2x-3)(x+1)=0的所有实数解;
(4)大于-5且小于5的整数;
(5)大于3且小于1的所有实数;
知的圆上所有的点都是这个圆的元素.
含有有限个元素的集合称为有限集.不含任何元素的集合称为空集,记作,空集
也是有限集.
含有无限个元素的集合称为无限集.由数组成的集合称为数集.
例如,例1(1)和(2),小于6的所有自然数组成的集合和方程x2+3x−4=0的所有实数解组成的集合都是有限集.
又例如,例1(3)所有的平行四边形组成的集合,不等式x−3<0的所有解组成的集合都是无限集。
重点
元素与集合之间的关系;集合的描述法.
难点
空集的理解;用描述法表示集合.
教法
教学
设备பைடு நூலகம்
制作多媒体课件
教学
环节
教学活动内容及组织过程
个案补充
















1.1.1集合的概念
中国古代四大发明是:造纸术、印刷术、指南针和火药.四大发明可以组成一个集合.
图书馆里,为便于查找,会按照某种方式将同一类的书刊摆放在一起.比如,可以所有数学书籍放在一起组成数学书籍专区,专区内所有数学书就可以组成一个集合.
(6)非常接近0的数.
2.用符号“”或“”填空.

集合的表示方法教案

集合的表示方法教案

集合的表示方法教案第一章:集合的基本概念1.1 集合的定义引导学生理解集合的概念,通过实例讲解集合的构成要素:元素和集合本身。

强调集合中元素的互异性,即集合中的元素不重复。

1.2 集合的表示方法介绍集合的表示方法,包括列举法、描述法和图像法。

讲解列举法的使用,例如用大括号{}括起来,里面写上集合中的元素。

介绍描述法的概念,例如用集合的属性来描述集合中的元素。

讲解图像法的表示方法,例如用Venn图来表示集合的交集、并集和补集。

1.3 集合的性质引导学生了解集合的几个基本性质:确定性、互异性、无序性。

通过实例讲解集合的性质,让学生能够辨别和应用。

第二章:集合的运算2.1 集合的交集讲解交集的定义,即两个集合共有的元素构成的集合。

引导学生通过列举法或描述法表示交集。

举例说明交集的运算,并让学生进行练习。

2.2 集合的并集讲解并集的定义,即两个集合中所有元素构成的集合。

引导学生通过列举法或描述法表示并集。

举例说明并集的运算,并让学生进行练习。

2.3 集合的补集讲解补集的定义,即在全集之外的所有元素构成的集合。

引导学生通过列举法或描述法表示补集。

举例说明补集的运算,并让学生进行练习。

第三章:集合的推理3.1 集合的包含关系讲解集合的包含关系的概念,即一个集合是否包含另一个集合的所有元素。

引导学生通过列举法或描述法表示包含关系。

举例说明包含关系的推理,并让学生进行练习。

3.2 集合的相等关系讲解集合的相等关系的概念,即两个集合是否包含相同的元素。

引导学生通过列举法或描述法表示相等关系。

举例说明相等关系的推理,并让学生进行练习。

3.3 集合的德摩根定律讲解德摩根定律的概念,即补集的运算法则。

引导学生通过列举法或描述法应用德摩根定律。

举例说明德摩根定律的应用,并让学生进行练习。

第四章:集合的应用4.1 集合在数学中的应用讲解集合在数学中的应用,例如解决方程组、不等式等问题。

举例说明集合在数学中的应用,并让学生进行练习。

集合的表示方法教案

集合的表示方法教案

集合的表示方法教案一、教学目标1. 了解集合的基本概念,掌握集合的表示方法。

2. 能够运用集合的表示方法解决实际问题。

3. 培养学生的逻辑思维能力和团队协作能力。

二、教学内容1. 集合的概念:集合是由一些确定的、互不相同的对象组成的整体。

2. 集合的表示方法:a) 列举法:将集合中的元素一一列举出来,用大括号括起来,如{1, 2, 3, 4, 5}。

b) 描述法:用文字描述集合中的元素,如“所有偶数组成的集合”,表示为{x | x 是偶数}。

c) 区间表示法:用区间表示集合中的元素范围,如{x | 1 ≤x ≤10}。

三、教学重点与难点1. 重点:集合的表示方法。

2. 难点:集合的描述法和区间表示法的运用。

四、教学方法1. 讲授法:讲解集合的概念和表示方法。

2. 案例分析法:分析实际问题,引导学生运用集合的表示方法解决问题。

3. 小组讨论法:分组讨论,培养学生的团队协作能力。

五、教学过程1. 导入:通过引入实际问题,引发学生对集合表示方法的思考。

2. 新课导入:讲解集合的概念和表示方法。

3. 案例分析:分析实际问题,引导学生运用集合的表示方法解决问题。

4. 练习巩固:布置练习题,让学生巩固所学知识。

5. 小组讨论:分组讨论,培养学生的团队协作能力。

6. 总结:回顾本节课所学内容,强调集合的表示方法的重要性。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学评估1. 课堂问答:通过提问,了解学生对集合表示方法的掌握程度。

2. 练习题:布置课堂练习题,评估学生对集合表示方法的运用能力。

3. 小组讨论:评估学生在小组讨论中的参与程度和团队协作能力。

七、教学拓展1. 集合的运算:介绍集合的并集、交集、补集等运算。

2. 应用领域:探讨集合在数学、物理、计算机科学等领域的应用。

八、教学资源1. 教材:提供相关教材,供学生课后复习。

2. 网络资源:推荐相关网站和在线教程,帮助学生自主学习。

3. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。

中职数学教案:集合的表示方法

中职数学教案:集合的表示方法
(3)既不是正数也不是负数的集合的元素;
二.(4)平方等于—1的数的集合的元素。
讲授新课:
(一)集合分类:
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分 , , ,0等符号的含义
学生活动:分别列举集合说明集合分类
小结:
本节课学习了集合的表示方法
(字母表示、列举法、描述法、文氏图共4种)
课后作业:
1,2




教后札记
{x∈I|p(x) }
例如,不等式 的解集可以表示为: 或 ,
所有直角三角形的集合可以表示为:
注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}
(2)注意区别:实数集,{实数集}.
4、文氏图:用一条封闭的曲线的内部来表示一个集合.
练习:
1、教材第8页练习
2、习题1-1A:1,
(二) 集合的表示方法:
1、大写的字母表示集合;
2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法;
例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24}
注:(1)大括号不能缺失.
(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3,…,100}
(3)按照集合中元素的个数可以把集合分为、、。
回顾
(1)集合概念与集合元素的三个特征。
(2)元素与集合的关系和表示符号。
教学过程:
一.引入

高教版中职数学基础模块上册电子教案

高教版中职数学基础模块上册电子教案

高教版中职数学基础模块上册电子教案第一章:集合1.1 集合的概念教学目标:理解集合的概念,掌握集合的表示方法。

能够列举常见的集合类型,如自然数集、整数集、实数集等。

教学内容:集合的定义及表示方法集合的类型及特点教学活动:1. 引入集合的概念,通过实际例子讲解集合的表示方法。

2. 引导学生思考集合的特点,如无序性、确定性等。

3. 练习列举常见的集合类型,加深对集合概念的理解。

教学评价:课堂练习:列举五个常见的集合,并说明其表示方法。

课后作业:练习题,加深对集合概念的理解。

1.2 集合的运算教学目标:理解并掌握集合的运算规则,包括并集、交集、补集等。

能够运用集合的运算解决实际问题。

教学内容:集合的并集、交集、补集的定义及运算规则集合运算的应用教学活动:1. 引入集合的运算概念,通过实际例子讲解并集、交集、补集的运算规则。

2. 引导学生通过集合运算解决实际问题,如统计数据、几何图形等。

3. 练习集合运算,加深对集合运算的理解和应用能力。

教学评价:课堂练习:运用集合运算解决实际问题,如统计数据、几何图形等。

课后作业:练习题,加深对集合运算的理解和应用能力。

第二章:函数2.1 函数的概念教学目标:理解函数的基本概念,掌握函数的表示方法。

能够识别和理解函数的定义域、值域等基本要素。

教学内容:函数的定义及表示方法函数的定义域、值域等基本要素教学活动:1. 引入函数的概念,通过实际例子讲解函数的表示方法。

2. 引导学生思考函数的定义域、值域等基本要素,加深对函数概念的理解。

3. 练习识别和理解函数的基本要素,巩固对函数概念的认识。

教学评价:课堂练习:识别和理解给定的函数,说明其定义域、值域等基本要素。

课后作业:练习题,加深对函数概念的理解。

2.2 函数的性质教学目标:理解并掌握函数的性质,包括单调性、奇偶性、周期性等。

能够运用函数的性质解决实际问题。

教学内容:函数的单调性、奇偶性、周期性等性质函数性质的应用教学活动:1. 引入函数的性质概念,通过实际例子讲解单调性、奇偶性、周期性等性质。

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】1. 了解集合的概念,掌握集合的表示方法。

2. 能够运用集合的概念解决实际问题。

【教学内容】1. 集合的定义及表示方法。

2. 集合的性质。

3. 集合之间的基本关系。

【教学重点】1. 集合的概念及表示方法。

2. 集合的性质。

【教学难点】1. 集合的表示方法。

2. 集合之间的基本关系。

【教学过程】1. 引入新课:通过生活中的实例,引导学生理解集合的概念。

2. 讲解集合的定义及表示方法,如列举法、描述法等。

3. 讲解集合的性质,如无序性、确定性、互异性。

4. 讲解集合之间的基本关系,如子集、真子集、并集、交集等。

5. 课堂练习:让学生运用集合的概念解决实际问题。

1.2 集合之间的关系【教学目标】1. 掌握集合之间的基本关系,如子集、真子集、并集、交集等。

2. 能够运用集合之间的关系解决实际问题。

【教学内容】1. 集合之间的子集、真子集关系。

2. 集合之间的并集、交集关系。

3. 集合的补集概念。

【教学重点】1. 集合之间的基本关系。

2. 集合的补集概念。

【教学难点】1. 集合之间的基本关系。

2. 集合的补集概念。

【教学过程】1. 复习上节课的内容,引导学生理解集合之间的关系。

2. 讲解集合之间的子集、真子集关系。

3. 讲解集合之间的并集、交集关系。

4. 讲解集合的补集概念。

5. 课堂练习:让学生运用集合之间的关系解决实际问题。

第二章:函数与方程2.1 函数的概念【教学目标】1. 了解函数的概念,掌握函数的表示方法。

2. 能够运用函数的概念解决实际问题。

【教学内容】1. 函数的定义及表示方法。

2. 函数的性质。

【教学重点】1. 函数的概念及表示方法。

2. 函数的性质。

【教学难点】1. 函数的表示方法。

2. 函数的性质。

【教学过程】1. 引入新课:通过生活中的实例,引导学生理解函数的概念。

2. 讲解函数的定义及表示方法,如解析式、表格法等。

中职数学基础模块1.1.2集合的表示方法教学设计教案人教版

中职数学基础模块1.1.2集合的表示方法教学设计教案人教版

列举出来,写在大括号 “{} 内”表示这个集合,这
种表示集合的方法叫列举法.
例如,由 1, 2, 3, 4, 5, 6这 6个数组成的
集合,可表示为:
{1 , 2, 3, 4, 5, 6} . 又如,中国古代四大发明构成的集合,可以 表示为:
{ 指南针,造纸术,活字印刷术,火药 } . 有些集合元素较多,在不发生误解的情况
第 2 页 (总 页)
太原市教研科研中心研制
课时 教 学流 程
2. 性质描述法.
障碍.
给定 x 的取值集合 I ,如果属于集合 A 的
任意元素 x 都具有性质 p( x),而不属于集合 A
的元素都不具有性质 p(x),则性质 p(x)叫做集合 A
通过教师讲解、师生问
通过例 2,让学生
的一个特征性质,于是集合 A 可以用它的特征 答,详细说明什么是特征性
述法表示,只能用列举法.
如:集合 {2} .
以学生为主体,关
2. 有些集合的元素不能
注学 生对本 节课的 体
无遗漏地一一列举出来, 或者 验.
不便于、不需要一一列举出
来,常用描述法.
如:集合 { x Q |1≤ x≤
4} .
第 4 页 (总 页)
太原市教研科研中心研制
课 时 教 学 设 计 尾 页(试用)
使 用 教 材 的 构 想
第 1 页 (总 页)
太原市教研科研中心研制
课时 教 学流 程
☆补充设计 ☆
导入:
教师行为
1. 集合、 元素、 有限集和无限集的概念是什么?
2. 用符号“ ”与“ ”填空白:
(1) 0 N ;
(2) - 2
Q;
(3)- 2

语文版中职数学基础模块上册1.2《集合的表示法》教案

语文版中职数学基础模块上册1.2《集合的表示法》教案

学习内容::集合的表示法学习目标:1、知道集合的两个表示法—列举法和描述法2、能根据给出的实例,选用适当的方法表示元素的集合重点、难点:重点:集合的表示法难点:正确选用两个表示法来表示集合一.学前预习、体验感悟1.什么是列举法?什么是描述法?2.列举法和描述法的特点是什么?3.你会选用这两个表示法吗?预习疑难摘要:.二.合作探索、建构数学问题1:对于下列给定的对象所组成的集合,分别指出它们的元素是哪些?(1)1,4,7,10(2)小于5的正整数;(3)江苏省的地级市。

怎样表示这些集合呢?用列举法表示集合要注意些什么?思考:用列举法表示那类集合最方便?问题2:对于小于3的所有实数组成集合,你能用列举法表示吗?在数轴上怎样表示呢?如果x是上述集合中的元素,x具有怎样的特征呢?三.合作交流、应用数学例1:用列举法表示下列集合:(1)由1,2,3,4,5,6组成的集合;(2)方程x-1=0的解组成的集合;(3)小于100的所有自然数组成的集合。

例2:用描述法表示下列集合:(1)大于6的所有实数组成的集合;(2)不等式2x-3<0的解组成的集合;(3)所以三角形组成的集合。

例3:用列举法表示下列集合:(1){x|x=2k+1,k∈N};(2){x| x是中华人民共和国的首都};(3){x| x是等腰直角三角形内角的度数}。

例4:用适当的方法表示下列集合:(1)大于-1且小于3的整数组成的集合;(2)不等式4x-5<3的解集;(3)平面直角坐标系中,直线y=x上的点组成的集合。

例5:用“∈”或“∉”填空:(1)-1____{x | x 为整数}; (2)正方形____{平行四边形} ;(3)21____{无理数}; (4)2008____{ x | x =2n+1,n 为整数} ; (5)(-1,2)____{直角坐标平面内第二象限的点}.例6:若A={x |0122=-+ax x }且1∈A ,求a 的值,并用列举法表示出集合A .四.体会交流、总结回顾1、在本节课中,我们学习了哪两种集合的表示法?2、怎样选用这两种表示法来表示集合。

中职数学基础模块1.1.2集合的表示方法教学设计教案人教版

中职数学基础模块1.1.2集合的表示方法教学设计教案人教版

课时教学设计首页(试用)第页(总页)课时教学流程☆补充设计☆2•性质描述法.给定x的取值集合1,如果属于集合A的任意兀素x都具有性质p(x),而不属于集合A 的元素都不具有性质p(x),则性质p(x)叫做集合A 的一个特征性质,于是集合A可以用它的特征性质描述为{x曰| p(x)},它表示集合A是由集合1中具有性质p(x)的所有元素构成的•这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1)特征性质明确;通过教师讲解、师生问答,详细说明什么是特征性质.出示例子:正偶数构成的集合.它的每一个元素都具有性质“能被2整除且大于0”,而这个集合外的其他元素都不具有这种性质,性质“能被2整除,且大于0”就是此集合的一个特征性质.引导学生根据上面的描述总结集合的特征性质是什么?师生共同归纳出性质描述法.教师强调用特征性质描述法时应注意的两个要点.讲解例题2,板书详细的解题过程.师:(1) 一个集合的特征性质不是唯一的.如平行四边形全体也可表示为{ x | x是有一组对边平行且相等的四边形}.(2)在几何中,通常用大写字母表示点(元素),用小写子母表示点的集合.学生模仿练习.请学生在黑板上写下答案,引导全班学障碍.通过例2,让学生掌握由扌田述法表示集合的不冋类型:有限集、无限集或代数、几何的表示方法,并使学生规范解题步骤.通过练习,进一步突出重点,深化两种表示方法的灵活运用.(2)若兀素范围为R,“ x运R ”可以省略不写.例2用性质描述法表示下列集合:(1) 大于3的实数的全体构成的集合;(2) 平行四边形的全体构成的集合;(3) 平面a内到两定点A, B距离相等的点的全体构成的集合.解(1){ x | x >3};(2) { x | x 是两组对边分别平行的四边形};(3) l = { P 乏a , |PA|=|PB|, A, B 为ot 内两定点}.练习2用性质描述法表示下列集合:(1) 目前你所在班级所有同学构成的集合;(2) 正奇数的全体构成的集合;(3) 绝对值等于3的实数的全体构成的集合;(4) 不等式4 x —5<3的解构成的集合;(5) 所有的正方形构成的集合.生统一订正.老师点拨、解答学生疑 难.师生共同分析总结:1. 有些集合的公共属性 不明显,难以概括,不便用描 述法表示,只能用列举法.如:集合{2}.2. 有些集合的元素不能 无遗漏地一一 一列举出来, 或者 不便于、不需要一一列举出来,常用描述法.女口:集合{x Q |1 < x < 4}.小结:本节课学习了以下内容:1.列举法. 2•性质描述法.3.比较两种表示集合的方法,分析它们所适 用的不同情况.以学生为主体,关 注学生对本节课的体 验.1.列举法. 2•性质描述法. 课时教学设计尾页(试用)板书设计☆补充设计☆3.比较两种表示集合的方法,分析它们所适用的不同情况.作业设计教材P9,练习B组第1, 2题.教学后记。

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案一、教案内容:第1章集合1.1 集合的概念教学目标:了解集合的概念,掌握集合的表示方法。

教学重点:集合的概念,集合的表示方法。

教学难点:理解集合的相等性和包含性。

教学准备:教材、黑板、粉笔。

教学过程:引入集合的概念,讲解集合的表示方法,举例说明。

1.2 集合的关系教学目标:了解集合之间的关系,掌握集合的并、交、补运算。

教学重点:集合之间的关系,集合的并、交、补运算。

教学难点:理解集合的运算法则。

教学准备:教材、黑板、粉笔。

教学过程:讲解集合之间的关系,举例说明并、交、补运算。

二、教案内容:第2章函数2.1 函数的概念教学目标:了解函数的概念,掌握函数的表示方法。

教学重点:函数的概念,函数的表示方法。

教学难点:理解函数的定义域和值域。

教学准备:教材、黑板、粉笔。

教学过程:引入函数的概念,讲解函数的表示方法,举例说明。

2.2 函数的性质教学目标:了解函数的性质,掌握函数的单调性、奇偶性、周期性。

教学重点:函数的性质,函数的单调性、奇偶性、周期性。

教学难点:理解函数的性质。

教学准备:教材、黑板、粉笔。

教学过程:讲解函数的性质,举例说明单调性、奇偶性、周期性。

三、教案内容:第3章实数与不等式3.1 实数的概念教学目标:了解实数的概念,掌握实数的分类。

教学重点:实数的概念,实数的分类。

教学难点:理解实数的性质。

教学准备:教材、黑板、粉笔。

教学过程:引入实数的概念,讲解实数的分类,举例说明。

3.2 不等式的解法教学目标:了解不等式的解法,掌握不等式的解法技巧。

教学重点:不等式的解法,不等式的解法技巧。

教学难点:理解不等式的解法。

教学准备:教材、黑板、粉笔。

教学过程:讲解不等式的解法,举例说明解法技巧。

四、教案内容:第4章平面几何4.1 点、线、面的关系教学目标:了解点、线、面的关系,掌握直线、平面的方程。

教学重点:点、线、面的关系,直线、平面的方程。

教学难点:理解点、线、面的关系。

中职数学教案:集合的表示法

中职数学教案:集合的表示法
解由不等式 ,得 .
因此不等式 的解集可以用描述法表
示为 .
例6分别用列举法和描述法表示方程 的解集.
解解方程 ,得 .故方程的
解组成的集合用列举法表示为{-3,3},用描
述法表示为 .
温馨提示
有些集合只能用列举法或描述法表示,有些集合两种方法都适用,要根据需要具体问题进行具体分析.
三、总结交流
1.集合的表示法,
2.如何区分两种表示法
四、拓展思维
课后练习




教后札记
江苏省XY中等专业学校2022-2023-1教案课时总编号:
备课组别
数学
上课
日期
主备
教师
授课教师
课题:
1.2.1集合的表示法
教学
目标
知识目标:知道列举法、描述法的一般格式.
能力目标:能选择合适的方法表示给定的集合.
素质目标:感受集合语言的意义和作用.
重点
集合的描述法
难点
用描述法表示集合
教法
讲授法、讨论法、练习法
小于6的正整数组成集合如何用列举法表示?
四大发明组成的集合如何用列举法表示?
太阳系八大行星组成的集合如何用列举法表示?
由“study”和“student”中的字母组成的集合如何用列举法表示?

集合{1,2,3}与集合{3,2,1}是同一个集合么?
3.例题分析:
例3用列举法表示下列集合.
(1)中国古典长篇小说四大名著组成的集合;
描述法表示集合时,在花括号“{ }”中画一条竖线,竖线的左侧是集合的代表元素及取值范围,竖线的右侧是元素所具有的特征性质.
6.例4用描述法表示下列集合:

人教社2023中等职业学校公共基础课程数学基础模块上册教学设计-集合的表示方法

人教社2023中等职业学校公共基础课程数学基础模块上册教学设计-集合的表示方法

1.1.2集合的表示方法【教学目标】1.初步掌握列举法和描述法等集合的表示方法.2.提升运用数学语言的能力;提高分析㊁比较㊁归纳的逻辑思维能力.3.感受集合语言的意义和作用,学习从数学的角度认识世界,积累数学抽象的经验.【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.【教学难点】集合特征性质的概念,集合的描述法.【教学方法】本节课采用自主探究㊁合作交流等方法.在教学中通过列举例子,引导学生讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.【教学过程】教学环节教学内容师生互动设计意图导入1.集合㊁元素㊁有限集和无限集的概念是什么2.我们知道,自然数集用字母N表示,那么小于100的自然数组成的集合除了用自然语言描述外,还可以用什么方式表示呢教师指出:刚才我们复习了集合的有关概念,这节课我们一起研究如何将集合表示出来.回顾旧知,引入新知.新课1.列举法当集合的元素不多时,我们常常把集合的所有元素一一列举出来(相邻元素之间用逗号分隔),并写在大括号内,这种表示集合的方法称为列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为教师强调以下两点:(1)注意区别a与{a}.a是集合{a}的一个元素,而{a}表示一个集合.例如,某个代表团只有一个人,这个人本身和这个人加深对概念的理解.教学环节教学内容师生互动设计意图新课{1,2,3,4,5,6}.又如,中国古代四大发明组成的集合,可以表示为{指南针,造纸术,印刷术,火药}.如果一个集合元素较多,且能按照一定的规律排列,那么在不发生误解的情况下,可按照规律列出几个元素为代表,其他元素用省略号表示.例1用列举法表示下列集合:(1)大于3且小于10的奇数的全体组成的集合;(2)一元二次方程x2-5x+6=0的解集.解(1){5,7,9};(2){2,3}.练习1用列举法表示下列集合:(1)大于3小于9的自然数的全体;(2)绝对值等于1的实数的全体;(3)一年中不满31天的月份的全体;(4)大于3.5且小于12.8的整数的全体.组成的代表团是完全不同的.(2)用列举法表示集合时,一般不必考虑元素的前后顺序.教师提问:集合{1,2}与{2,1}表示的是同一个集合吗?学生回答:是.教师指出:一般情况下,用列举法表示集合时,集合中的元素不区分顺序,但有时需要区分,例如,小于100的自然数的全体组成的集合可以表示为{0,1,2,3, ,99}.教师用多媒体展示例1.学生口答.加深对集合元素无序性的理解.通过例1,巩固集合的列举法.通过练习1,进一步巩固列举法的使用.教学环节教学内容师生互动设计意图新课2.描述法一般地,如果属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有性质p(x),则性质p(x)称为集合A的特征性质,于是集合A可以用它的特征性质p(x)表示为{xɪI p(x)},它表示集合A是由集合I中具有性质p(x)的所有元素组成的.这种用特征性质表示集合的方法,称为性质描述法,简称描述法.例2用描述法表示下列集合:(1)大于3的实数的全体组成的集合;(2)平行四边形的全体组成的集合;(3)在直角坐标平面内,直线y=x上所有点的坐标组成的集合.解(1){x x>3};(2){x x是两组对边分别平行的四边形};(3){(x,y)y=x}.练习2用适当的方法表示下列集合:(1)目前你所在班级所有同学组成的集合;教师详细说明什么是特征性质.教师出示例子:正偶数组成的集合.师生分析:它的每一个元素都具有性质 能被2整除且大于0 ,而这个集合外的其他元素都不具有这种性质,性质 能被2整除,且大于0 就是此集合的特征性质.教师强调用性质描述法时应注意的两个要点:(1)特征性质明确;(2)若元素范围为R,xɪR 可以省略不写.教师讲解例2,板书详细的解题过程.教师指出:一个集合的特征性质不是唯一的.如平行四边形的全体也可表示为{x x是有一组对边平行且相等的四边形}.学生练习.教师请部分学生在黑板上写下答案,引导全班学生统一订正.集合的性质描述法的理解是难点,此处通过举例,由特殊到一般,便于学生突破这一难点.通过例2,让学生掌握用描述法表示不同类型的集合.教学环节教学内容师生互动设计意图新课(2)正奇数的全体组成的集合;(3)绝对值等于3的实数的全体组成的集合;(4)不等式4x-5<3的解组成的集合;(5)所有正方形组成的集合.教师答疑.通过练习,进一步突出重点,巩固集合的两种表示方法.小结本节课学习了以下内容:1.列举法.2.性质描述法.3.比较两种表示集合的方法,分析它们所适用的不同情况.师生共同分析总结:1.有些集合的公共属性不明显㊁难以概括,不便用描述法表示,只能用列举法.如:集合{2}.2.有些集合的元素不能无遗漏地一一列举出来,或者不便于㊁不需要一一列举出来,常用描述法.如:集合{xɪQ1ɤxɤ4}.进一步加深对两种表示集合方法的理解.作业本节练习B组第1~2题.学生课后完成.巩固所学知识.。

1.2集合的表示方法 高教版中职教材—数学(基础模块)上册电子教案

1.2集合的表示方法 高教版中职教材—数学(基础模块)上册电子教案

【课题】1.2集合的表示方法【教学目标】1、掌握集合的常见表示方法:列举法和描述法;2、理解集合的两种表示方法的优缺点和适用范围;3、能运用合适的方法表示相应的集合。

【教学重点】集合的两种表示方法:列举法和描述法【教学难点】集合表示法的选择与规范书写【教学设计】1、针对集合不同情况,认识到可以用列举和描述两种方法表示集合;2、然后再对表示法进行对比分析,完成知识的升华。

【课时安排】2课时(95分钟)【教学过程】✧简单问题导入首先我们来看两个小问题:问题:不大于5的自然数所组成的集合中有哪些元素?小于5的实数所组成的集合中有哪些元素?解决:不大于5的自然数所组成的集合中只有0、1、2、3、4、5这6个元素,这些元素是可以一一列举的.而小于5的实数有无穷多个,而且无法一一列举出来,但元素的特征是明显的:(1) 集合的元素都是实数;(2)集合的元素都小于5。

归纳:1、当集合中元素可以一一列举时,可以用列举的方法表示集合;2、当集合中元素无法一一列举但元素特征是明显时,可以分析出集合的元素所具有的特征性质,通过对元素特征性质的描述来表示集合。

✧动脑思考探索新知一、列举法概念(书P5):一般的,把集合中的元素一一列举出来,写在大括号内,这种表示集合的方法叫做列举法。

用列举法表示集合,元素之间要用逗号分隔。

通过书上例题说明那么集合中的每个确定的对象叫做这个集合的元素,小写英文字母a ,b ,c ,…表示集合的元素。

拓展:集合中的元素具有下列特点:1、互异性:一个给定的集合中的元素都是互不相同的;2、无序性:一个给定的集合中的元素排列无顺序;3、确定性:一个给定的集合中的元素必须是确定的。

不能确定的对象,不能组成集合。

例如:某班个子高的同学,不能组成集合,到底多少身高才算高个子,没有确定的标准;某班个子高于180cm 的同学,可以组成集合。

关系:元素a 是集合A 的元素,记作a A ∈(读作“a 属于A ”);如果a 不是集合A 的元素,记作a A ∉(读作“a 不属于A ”)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习内容::集合的表示法
学习目标:
1、知道集合的两个表示法—列举法和描述法
2、能根据给出的实例,选用适当的方法表示元素的集合
重点、难点:
重点:集合的表示法
难点:正确选用两个表示法来表示集合
一.学前预习、体验感悟
1.什么是列举法?什么是描述法?
2.列举法和描述法的特点是什么?
3.你会选用这两个表示法吗?
预习疑难摘要:

二.合作探索、建构数学
问题1:对于下列给定的对象所组成的集合,分别指出它们的元素是哪些?
(1)1,4,7,10
(2)小于5的正整数;
(3)江苏省的地级市。

怎样表示这些集合呢?
用列举法表示集合要注意些什么?
思考:用列举法表示那类集合最方便?
问题2:对于小于3的所有实数组成集合,你能用列举法表示吗?在数轴上怎样表示呢?
如果x是上述集合中的元素,x具有怎样的特征呢?
三.合作交流、应用数学
例1:用列举法表示下列集合:
(1)由1,2,3,4,5,6组成的集合;
(2)方程x-1=0的解组成的集合;
(3)小于100的所有自然数组成的集合。

例2:用描述法表示下列集合:
(1)大于6的所有实数组成的集合;
(2)不等式2x-3<0的解组成的集合;
(3)所以三角形组成的集合。

例3:用列举法表示下列集合:
(1){x|x=2k+1,k∈N};
(2){x| x是中华人民共和国的首都};
(3){x| x是等腰直角三角形内角的度数}。

例4:用适当的方法表示下列集合:
(1)大于-1且小于3的整数组成的集合;
(2)不等式4x-5<3的解集;
(3)平面直角坐标系中,直线y=x上的点组成的集合。

例5:用“∈”或“∉”填空:
(1)-1____{x | x 为整数}; (2)正方形____{平行四边形} ;
(3)2
1____{无理数}; (4)2008____{ x | x =2n+1,n 为整数} ; (5)(-1,2)____{直角坐标平面内第二象限的点}.
例6:若A={x |0122=-+ax x }且1∈A ,求a 的值,并用列举法表示出集合A .
四.体会交流、总结回顾
1、在本节课中,我们学习了哪两种集合的表示法?
2、怎样选用这两种表示法来表示集合。

五.自我检测
1、说出下列用描述法表示的集合中的元素,并用列举法表示出这些集合.
(1)A={x | x 为12的正约数};(2)B={ x |0122=+-x x }
2、用“∈”或“∉”填空
(1)1____{ 0,1,2,3} ;(2)2____{ x | x 为奇数} ;(3)2____{有理数}.
(4)2008____{ x | x =2n ,n 为整数};(5)0____{ x | 012=++x x } ;
(6)π____{ x | x < 3 ,x 是实数} ;(7)(1,-1)____{(x , y ) | x >0, y <0 }
3、在数轴上表示出下列方程或不等式的解,并用适当的方法表示出它们的解的集合,指出这些集合是有限集还是无限集.
(1)x >-1 ; (2)0232
=+-x x ; (3) 315x -<-<,x 为整数.
4、根据下列集合的元素通用标识符说出这些集合中元素的特征.
(1)A={ x | 2x y =} ;(2)B={ y | 2x y =} ;(3)C={( x ,y ) | 2x y =}.
5、已知(1,2)∈{( x ,y ) | {
1
1=+=+ay bx by ax },求a ,b 的值.
6、2是否是集合M={1,x ,x x -2}中的元素?如果是,求出x 的值;如果不是,说明理由.。

相关文档
最新文档