条件概率条件分布与条件数学期望

合集下载

3.6 条件分布与条件期望--概率论课件

3.6 条件分布与条件期望--概率论课件
=
-r
r x
2 2
r 2 x2
x r


r x r x
2
2
2
2
0,
1 dy, 2 r
r xr
其他
r xr 其他
2 r 2 x 2 , 2 r 0,
同理,
fY ( y ) f ( x, y )dx
2 r y , r y r 2 r 0, 其他
1 2 2 F | ( x | y ) 为 N a1 ( y a2 ), 1 (1 ) 分布 2
2 2 2 F| ( y | x) 为 N a2 ( x a1 ), 2 (1 ) 分布 1
注意
FX Y ( x y ), f X Y ( x y ) 仅是 x 的函数,
y是常数, 对每一 fY (y) >0 的 y 处, 只要
符合定义的条件, 都能定义相应的函数. FY X ( y x), fY X ( y x) 相仿论述. 类似于乘法公式:
f ( x, y ) f X ( x ) f Y X ( y x ) fY ( y ) f X Y ( x y )
( x a1 )( y a2 )
1 2
( y a2 ) 2 2 2
1 e 2 2
( y a2 )2 2 2 2
1 ( x a1 )2 ( x a1 )( x a2 ) 2 ( y a2 )2 exp 2 2 2 2 2 1 2 2 21 1 2(1 ) 1 1
2 x a1 1 1 y a2 exp 2 2 2(1 ) 1 2 2 1 1

§3.5---条件分布与条件期望

§3.5---条件分布与条件期望
在Y y 的条件下X的条件分布密度记为PX|Y(x | y)
FX|Y(x | y) P(X x |Y y)
lim P(X x | y Y y y) y0
lim P(X x, y Y y y) y0 P( y Y y y)
lim F (x, y y) F (x, y) 分子、分母同除 y y0 FY ( y y) FY ( y)
Pij PJ
i=1,2,.....
Pj|i
Pij Pi
j=1,2,........
例3.5.5.设(X, Y)的联合密度为:
P( x,
y)
24(1
0
x)
y
0 x 1, 0 y x 其它
求条件密度函数 PX|Y (x | y)和 PY|X ( y | x)
解:PX (x)
P(x, y)dy
5 4 20
PX 0,Y 1 P(X 0)P(Y 1| X 0) 2 3 6
5 4 20
PX 1,Y 0 P(Y 1)P(Y 0 | X 1)
32 6 5 4 20
PX 1,Y 1 P(X 1)P(Y 1| X 1)
32 6 5 4 20
XY 0 1
0
2
6
20 20
1
X|Y 3 1
2
P
4/7 3/7
例3.5.3 设随机变量X,Y独立,X P(1),Y P(2)
在X Y n 条件下,求X 的条件分布?
解:由已知条件和泊松分布的可加性得:XY P(1 2)
所以 P(X k |XY n)
P(X k, XY P(XY n)
n)
P(X k ,Y n k) P(XY n)
6
6
20 20

第三章 条件概率与条件期望

第三章  条件概率与条件期望

2012/3/2
Copyright©Pei Zhang ,2012
6
例3.2
• 有n个零件,零件i在雨天运转的概率为pi, 在非雨天运转的概率为qi,i=1,2,……,n。 明天下雨的概率为。计算在明天下雨时, 运转的零件数的条件期望。
2012/3/2
Copyright©Pei Zhang ,20Zhang ,2012
12
例3.6(几何分布的均值)
• 连续抛掷一枚正面出现的概率为p的硬 币直至出现正面为止,问需要抛掷的 次数的期望是多少?
2012/3/2
Copyright©Pei Zhang ,2012
13
例3.7
• 某矿工身陷在有三个门的矿井之中,经 第1个门的通道行进2小时后,他将到达 安全地。经第二个门的通道前进3小时 后,他将回到原地。经过第三个门的通 道前进5小时后,他还是回到原地。假 定这个矿工每次都等可能地选取任意一 个门,问直到他到达安全地所需时间的 期望是多少?
• 连续地做每次成功率为p的独立试验。N 是首次成功时的试验次数,求Var(N)
2012/3/2
Copyright©Pei Zhang ,2012
16
三、通过取条件期望计算概率
• E是一个事件,定义示性随机变量X为:
1,若E发生 X 0,若E不发生 由X的定义推出: E[X]=P(E) E[X|Y=y]=P(E|Y=y)
7
第二节
连续随机变量的条件概率与条件期望
• X和Y是连续随机变量,联合密度函数为 f(x,y),那么在Y=y时X的条件概率密度函数 定义为:
f ( x, y ) f X |Y ( x | y) fY ( y )
• 给定Y=y时X的条件期望定义为:

条件概率,条件分布,条件期望

条件概率,条件分布,条件期望

FX Y ( x y )
x
y
f X Y ( x y ) d x [ f ( x , y ) fY ( y )]d x .
y
x
FY X ( y x )
说明

fY X ( y x ) d y [ f ( x , y ) f X ( x )]d y .
定义
设二维随机变量( X ,Y ) 的概率密度为
f ( x , y ), ( X ,Y ) 关于 Y 的边缘概率密度为 fY ( y ).若 f ( x, y) 对于固定的 y , fY ( y ) 0, 则称 为在Y y fY ( y ) 的条件下 X 的条件概率密度 , 记为 f ( x, y) f X Y ( x y) . fY ( y )
为在事件A发生的条件下事件B发生的条件概率.

条件分布
一、离散型随机变量的条件分布
问题
考虑一大群人, 从其中随机挑选一个人 , 分别 用 X 和 Y 记此人的体重和身高 , 则X 和 Y 都是随 机变量, 他们都有自己的分布 .
现在如果限制Y 取值从1.5 m 到1.6 m , 在这个限制下求X 的 分布 .
一 条件概率 (Conditional Probability) 条件概率是指在事件A发生的条 件下,另一事件B发生的概率,记用 P(B|A).
引例 从所有有两个孩子的家庭随机抽取一个家庭记录男 孩女孩的情况。
则试验所有可能的结果为(男孩记为“b”,女孩记为“g”) (b,b) (b,g) (g,b) (g,g) 设A={ 至少一个男孩}, B ={ 至少一个女孩}, 考虑在事件A发生的条件下,事件B发生的概率。
定义 设 ( X ,Y ) 是二维离散型随机变量 , 对于固定

条件分布与条件期望

条件分布与条件期望



这表明,二元正态分布的条件分布仍为正态分布:
1 2 2 N r y , 1 r 2 1 1 2



31
二.条件数学期望
32
1.条件数学期望的概念
33
条件分布的数学期望称为条件数学期望.
34
对于离散型随机变量,当 Y y j 时,随机变量 X 的条 件分布律为
1 2 PX Y n
n!
n
e
1 2

所以,当 X Y n 时, X 的取值为 0, 1,
2, , n .
13
PX k X Y n
PX k , X Y n PX k , Y n k PX Y n PX Y n
PX k PY n k k! n k ! PX Y n 1 2 n e 1 2 n!
n! 1 k!n k ! 1 2
k
1k
e 1
2 n k
e 2
2 2 1
17
所以,
PY k PX nP Y k X n
n 0

PX nP Y k X n PX nP Y k X n
n 0 nk
k 1


n 0
k 1
n
n!
e 0
nk

n
n!
e C p 1 p
f X x 0 .
26

设二维随机变量 X , Y 服从平面区域
x, D
y:
x y 1

条件分布律条件分布函数条件概率密度ppt课件

条件分布律条件分布函数条件概率密度ppt课件

第三章 随机变量及其分布
一、随机变量的独立性
§4随机变量的独立性
设 (X, Y )是二维随机变量,其联合分布函数为 F (x, y) ,又随机变量X 的分布函数为FX (x), 随机变量Y 的分布函数为FY ( y).
如果对于任意的x, y,有
F (x, y) FX (x) FY (y)
则称 X, Y 是相互独立的随机变量.
第三章 随机变量及其分布
一 、离散型随机变量的条件分布律
§3条件分布
设 ( X ,Y ) 是二维离散型随机变量,其分布律为 P{ X= xi ,Y= yj }= pi j , i , j=1,2,...
(X, Y ) 关于 X 和关于 Y 的边缘分布律分别为:
P{ X xi } pi• pi j , i 1,2, j 1
1 2
- 2)
(y
- 2 )2
2 2
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
又随机变量Y 的边缘密度函数为
§3条件分布
fY (y)
1
- ( y-2 )2
e 2
2 2
2 2
(- < y < )
因此,对任意的 y,fY ( y) 0,
( ) ( ) f X Y
xy
f (x, y) fY (y)
所以,当0 < y < 1时, 0,
其它.
fY (y) f (x,
-
y)dx
y 1 dx - ln(1 -
0 1- x
y
y).
所以,随机变量 Y 的密度函数为
1
fY
(y)
ln(1 -
0,
y),

计量经济学中的“条件”与“无条件”

计量经济学中的“条件”与“无条件”

计量经济学中的“条件”与“⽆条件”初学者难免困惑于计量经济学中诸多的 “条件” 与 “⽆条件”,⽐如条件概率与⽆条件概率,条件分布与⽆条件分布,条件期望与⽆条件期望,条件⽅差与⽆条件⽅差,条件中位数与⽆条件中位数,条件分位数与⽆条件分位数。

这些 “条件” 与 “⽆条件” 的概念,究竟有什么区别与联系,在实践中⼜该如何应⽤呢?本⽂将为你逐⼀辨析。

条件概率 vs ⽆条件概率什么是概率?简单说,概率(probability)就是在⼤量重复试验下,随机事件发⽣的频率趋向的某个稳定值。

⽐如,记随机事件 “下⾬” 为,则其发⽣的概率⼀般记为。

“⽆条件概率”(unconditional probability)其实就是我们⼀般所说的概率,只是为了与 “条件概率” 相区别,有时才强调它是 “⽆条件的”。

事实上,计量经济学更关⼼条件概率。

⽐如,记事件 “出太阳” 为,则在出太阳的前提条件下降⾬的 “条件概率” (conditional probability) 可定义为其中,为与同时发⽣的概率,参见下⾯的维恩图(Venn diagram)。

在此图中,矩形的⽅框表⽰整个世界(包括所有可能的随机试验结果,即样本空间),不妨将其⾯积标准化为 1。

圆形的⾯积即为事件发⽣的(⽆条件)概率,⽽圆形的⾯积则为事件发⽣的(⽆条件)概率。

考虑在给定发⽣情况下,发⽣的条件概率。

此时,世界所处的状态只能是,⽽之外的状态均为不可能。

进⼀步,在发⽣的情况下,如果也发⽣,则表明与同时发⽣,故为集合与集合的交集,即。

因此,将此交集的概率除以 “全集” 的发⽣概率,即为在给定发⽣情况下,发⽣的条件概率。

在实践中,究竟应该使⽤(⽆条件)概率还是条件概率呢?看⼀个简单例⼦就能明⽩。

⽐如,假设股市崩盘的(⽆条件)概率为万分之⼀;⽽在经济陷⼊严重萧条的情况下,股市崩盘的条件概率为百分之⼀。

此时,如果已知经济已陷⼊严重萧条,你会使⽤哪种概率来预测股市崩盘的可能性呢?如果仍使⽤万分之⼀的⽆条件概率,就显得过于僵化,因为既然经济已经严重萧条,⾃然应将此条件考虑在内,⽽使⽤百分之⼀的条件概率。

第六章条件概率与条件期望

第六章条件概率与条件期望

第六章 条件概率与条件期望6.1 定义和性质设为概率空间,),,(P F ΩF ∈B 且,记0)(>B P ())()()(B P AB P B A P A P B ==),P ,,则易证明为概率空间。

考虑F ∈∀A ),,(B P F Ω,(F Ω上的随机变量ξ在此概率空间上的积分,若存在则称它为∫ΩξB dP ξ在给定事件B 之下的条件期望,记为(B E ξ),即()B ∫Ω=B dP ξE ξ。

命题1:若ξE 存在,则(B E ξ)存在且()∫=BdP B P B E ξξ)(1。

由此可见,ξ在给定事件B 之下的条件期望的意义是ξ在B 上的“平均值”。

此外给定事件在给定事件A B 的条件概率)B ()(I E B A P A =0)(>n B P 可看成条件期望的特殊情形。

设{}为的一个分割且,令F ⊂n B Ω)2,1,L =(=n n B σA ,则。

若F A ⊂ξE 存在,()∑为nE B n I n B ξ),A (Ω上的可测函数,称其为给定σ-代数A 之下关于P 的条件期望,记作()A ξE ,即()()∑=E ξA nB n I ξn B E 。

命题2:A ∈B ∀且,0)(>B P ()()∫=BdP E B P B E A ξξ)(1。

证明:A ∈B ∀,{L ,2,1⊂}∃K 使得∑∈=K i i B B ,()()()()∑∫∫∑∑∫∑∫∈∈=====K i BB Ki i i nn n BnB nBdPdP B P B E B B P B E dP IB E dP E inξξξξξξ)()(I A由此可见,若称满足下式的(),A Ω上的可测函数()A ξE 为ξ在给定σ-代数A 的条件期望:()∫∫=BBdP dP E ξξA ,A ∈∀B则由于不定积分,∫=BdP B v ξ)(A ∈∀B 为),(A Ω上的符号测度且v ,由Radon-Nikodym 定理存在唯一的(P <<P s a ..),A Ω上的可测函数满足上式,即()dPdvE =A ξ(Ω,故由命题2,两者定义一样。

概率论与数理统计3-6 条件分布与条件期望、回归与第二回归

概率论与数理统计3-6 条件分布与条件期望、回归与第二回归

p(u, y)du.

1 yy
lim
[ p(u, v)du]dv.
y0 y y

lim
y0
1 y
y y y
p
(u)dv
p
( y)

0.
F
(
x
y)

x
p(u, y) p ( y)
du.
由此可见:在 y的条件下,的分布列仍是
§3.6 条件分布与条件期望、回归 与第二回归
一、条件分布
在离散型R.V中,我们利用条件概率公式
P(A B)

P( AB) , P(B)
P(B)
0.
求出了离散型R.V .的条件分布列:P(

xi


yj)

Pi
.
j
类似的问题对连续型R.V .也存在.
由于连续型R.V .取单点值的概率为零,所以用分布列
lim P( x, y y y) . y0 P( y y y)
P( x, y y y)
lim
.
y0 P( , y y y)
设(,)的p d f 为p(x, y),则上式又变为
x yy
密度为P ( y


那么称 xP (


x y
), 如果

x
P

(y
x
x )dx为在(
)dx . y)发生的条件下的条件
数学期望,记为 E( y).即
E(

y)


xP

(y

第五节条件分布

第五节条件分布
F ( x, y ) y dFY ( y ) dy
def.

x

p(u , y )du pY ( y )
p( x , y )连续 pY ( y ) 0,连续
P( X x Y y )
定义3 若 pY (y) > 0, 则称 FX Y ( x y )
x
为给定Y = y 的条件下X 的条件分布函数. p( x , y ) 称 pX Y ( x y) pY ( y ) 为给定Y = y 的条件下X 的条件概率密度函数. y p( x,v ) dv 类似地, 称 FY X ( y x) pX ( x )



pY ( y) p( x , y)dx pY X ( y x) p X ( x)dx



类似于Bayes公式
p ( x , y ) p X Y ( x y) pY ( y )
pY X ( y x) p X ( x)




pY X ( y x) p X ( x)dx
X


r x
=

r 2 x2

1 dy , 2 2 2 r x r
0,
2 r 2 x2 r x r , r x r r 2 0, 其他 其他
同理
2 r 2 y2 , r y r pY ( y ) r 2 0, 其他


P( X xi Y y j )P(Y y j ) i 1,2,
j 1

j 1
j 1
P(Y y j ) pij P( X xi ,Y y j )

概率论公式

概率论公式


n
注:如果有 n 个变量服从同一个 0-1 分布, Xi ~ b(1, p) ,则其和 X Xi 服从二项 i
分布 X ~ b(n, p)
11. Poisson 分布
X ~ P() P( X k) k e , k 0,1,...
F
(x)

0, 1,
x x

c c
E(X ) c
Var( X ) 0
9. 二项分布
X ~ b(n, p)
P( X k) Cnk pk (1 p)nk E(X ) np
Var( X ) np(1 p)
10. 二点分布(0-1 分布)
X ~ b(1, p)
P( X x) px (1 p)1x , x 0,1
p(
x)


2
n 2
1 (
n
)
e

x 2
x
n 2
1
,
x

0
2

0, x 0
E(X ) n
Var( X ) 2n
Gamma 分布变为 2 分布:
当 X ~ Ga(,) ,则 2 X ~ Ga(, 1) 2 (2 ) 2
20. 严格单调函数Y g(X )
pY ( y) px[h(x)] | h '(x) |
21. K 阶原点矩和中心矩
k E(X k ) k E( X E( X ))k
中心矩和原点矩关系:
k
k Cik i (i )ki i0
22. 变异系数
Cv
(
X
)

( E(

条件数学期望

条件数学期望

F(x| y)
x
P(X xi |Yy)
xi x
p(t| y)dt x p(t, y)dt
p(y)
大家好
18
二、条件数学期望
定义:若随机变量X在Y=yj条件下的条件分 布列为 pi j ,又
xi pi j ,
i1
则称
xi pi j
i 1
为X在Y=yj条件下的数学期望,简称条件期望,
3、随机变量X对Y求条件期望后再求期望,等于
对这个随机变量直接求期望。
大家好
31
条件分布数学期望的性质
4.若X与Y独立,则 EXYyEX
5.条件期望有所谓平滑性:
E E X X Y y d Y y F E E X Y
6.对随机变量X,Y的函数 X,Y恒有:
E X , Y Y y E X ,y Y y
记为 E{XYyj}
大家好
19
例1设(X,Y)的联合分布律为
YX 1
2
3
-1 0.2 0.1
0
0 0.1 0
0.3
1 0.1 0.1
0.1
( 1 ) E { Y |X 求 2 } ( 2 ) E ; { X |Y 0 }.
解题思路: ( 1)写X 出 2的 在条Y 件 的下 概率分布即 ,可 再求 按得 定; 义 ( 2)写 Y 出 0的 在 条 X 的 件概 下率分即 布可 ,求 再得 按
大家好
小结
• 1、条件分布 • 2、条件数学期望及运算 • 3、条件数学期望性质及证明
大家好
33
谢谢
大家好
34
条件密度
fY
X
x
y
f x,y fX x

条件概率及条件分布知识点整理

条件概率及条件分布知识点整理

条件概率及条件分布知识点整理
1. 条件概率
条件概率是指在已知某一事件发生的条件下,其他事件发生的概率。

用符号表示为 P(A|B),表示在事件 B 已经发生的情况下,事件 A 发生的概率。

条件概率的计算公式为:
P(A|B) = P(A∩B) / P(B)
其中,P(A∩B) 表示事件 A 和事件 B 同时发生的概率,P(B) 表示事件 B 发生的概率。

2. 条件分布
在概率论和统计学中,条件分布是指在给定某个条件下,随机变量的概率分布。

条件分布可以通过条件概率来计算。

给定随机变量 X 和随机变量 Y,条件分布可以表示为
P(X|Y=y),表示在事件 Y=y 发生的条件下,随机变量 X 的概率分布。

条件分布的计算公式为:
P(X|Y=y) = P(X∩Y=y) / P(Y=y)
其中,P(X∩Y=y) 表示随机变量 X 和事件 Y=y 同时发生的概率,P(Y=y) 表示事件 Y=y 发生的概率。

3. 应用
条件概率和条件分布在概率论和统计学中有广泛的应用。

一些
常见的应用包括:
- 贝叶斯定理:用于计算后验概率,即在已知观测数据的情况下,更新先验概率。

- 马尔科夫链:用于建模状态转移过程,在给定当前状态的情
况下,预测未来状态的概率分布。

- 事件独立性检验:通过计算条件概率是否等于边缘概率,来判断事件是否独立。

- 条件随机场:用于序列标注、自然语言处理等任务,通过建模给定条件下,序列输出的概率分布。

以上是关于条件概率和条件分布的简要介绍。

在实际应用中,我们可以根据具体问题选择适当的概率模型和方法来进行推断和计算。

条件分布律条件分布函数条件概率密度

条件分布律条件分布函数条件概率密度

pqnm1, n m 1, m 2,
P X m, Y n q p q p q p
m1
nm1
n2 2
n 2, 3, ; m 1, 2, , n 1
返回主目录
第三章 随机变量及其分布
二、条件分布函数
§3条件分布
设 ( X ,Y ) 是二维连续型随机变量,由于
f (x, y)
fY X
( y) 在Y
.
y的条件下的条件密度函
数。
第三章 随机变量及其分布
三、连续型随机变量的条件密度函数
§3条件分布
设X, Y 是二维连续型随机变量 ,其联合密度函数为 f x, y
又随机变量 X 的边缘密度函数为:
fX x f x, ydy

随机变量 Y 的边缘密度函数为:
存在,则称为在条件Y= y下X的条件分布函数,写
成 P{ X x |Y= y },或记为 FX|Y(x|y).
返回主目录
第三章 随机变量及其分布
§3条件分布
P{X x, y Y y }
FX |Y
(x
|
y)

lim
0
P{y Y y }
lim F (x, y ) F (x, y ) 0 FY ( y ) FY ( y )
(X, Y ) 关于 X 和关于 Y 的边缘分布律分别为:

P{X xi} pi pi j , i 1,2, j 1

P{Y y j} p j pi j , j 1,2, i 1
返回主目录
第三章 随机变量及其分布
由条件概率公式自然地引出如下定义:

条件分布律 条件分布函数 条件概率密度

条件分布律 条件分布函数 条件概率密度

m1
m1
n 2,3,
在Y=n 条件下随机变量 X 的条件分布律为
当 n=2,3,… 时,
P{X m | Y n} p2qn2 1 , m 1,2, , n 1; (n 1) p2qn2 n 1
P X m, Y n q p q p q p
y x2 y2 1
x
返回主目录
第三章 随机变量及其分布
例 2(续)
§3条件分布
因此当 1 y 1时,

f X Y x y
fY y f x, y

2
所以,
1 y
2 2 1 y


2
1
1
0
f X Y
xy

2
1 y 2
1
其它
1 y x 1 y

,
fY (y)
返回主目录
第三章 随机变量及其分布
x
f (u, y)du
FX|Y (x | y) fY ( y) ,
FX|Y (x | y)
x
f (u, y) du, fY ( y)
§3条件分布
称为在条件Y= y下X的条件分布函数,
f X |Y (x | y)
f (x, y) .
2
2


1 y
2
1

y
2

上的均匀分布.
即当 1 y 1时,X 在Y y下的条件分布是区间
返回主目录
第三章 随机变量及其分布
例3
§3条件分布
设二维随机变量 X, Y 服从二元正态分布:
X, Y ~ N 1, 2, 1, 2, r

条件分布与条件期望课件

条件分布与条件期望课件
“给定X时,Y的条件分布”:
P(Y=1|X=1)=0.1/0.6=1/6 P(Y=1|X=2)=0.2/0.4=1/2
P(Y=2|X=1)=0.3/0.6=1/2 P(Y=2|X=2)=0.05/0.4=1/8 P(Y=3|X=1)=0.2/0.6=1/3 P(Y=3|X=2)=0.15/0.4=3/8
身高Y
体重X 的分布
体重X
条件分布与条件期望
身高Y 的分布
现在若限制1.7<Y<1.8(米),在这个条件下去求 X的条件分布,这就意味着要从该校的学生中把身 高在1.7米和1.8米之间的那些人都挑出来,然后在挑 出的学生中求其体重的分布.
容易想象,这个分布与不加这个条件时的分布 会很不一样.
例如,在条件分布中体重取大值的概率会显著 增加.
条件分布与条件期望
运用条件概率密度,我们可以在已知某一随机 变量值的条件下,定义与另一随机变量有关的事件 的条件概率.
即: 若(X,Y)是连续型r.v, 则对任一集合A,
P (X A |Y y )A p X |Y (x |y )d x
特别,取 A(,u),
定义在已知 Y=y下,X的条件分布函数为
1, pX(x)0,
0x1,p(y| 其它
x)11x, 0,
0xy1 其它
求(X,Y)的联合密度p(x,y)和Y的边际密度pY(y) 及P(Y>0.5).
解:
p(x,y)p(y|x)pX(x) 1 1x, 0xy1
0,
其 它
条件分布与条件期望
y
pY(y)
x<y
y =x
0
1
x
p(x,y)0的区域
2
e
21 12

概率与统计学的主要公式及解题技巧

概率与统计学的主要公式及解题技巧

一、基本概率公式及分布1、概率常用公式:P(A+B)=P(A)+P(B)-P(AB);P(A-B)=P(A)-P(AB);如A 、B 独立,则P(AB)=P(A)P(B);P(A )=1-P(A);B 发生的前提下A 发生的概率==条件概率:P(A|B)=P(AB)P(B);或记:P(AB)=P(A|B)*P(B);2、随机变量分布律、分布函数、概率密度分布律:离散型X 的取值是x k (k=1,2,3...),事件X=x k 的概率为:P{X=x k }=P k ,k=1,2,3...;---既X 的分布律;X X1X2....xn PkP1P2...pnX 的分布律也可以是上面的表格形式,二者都可以。

分布函数:F(x)=P{X ≤x},-∞ t ∞;是概率的累积!P(x1<X<x2)=F(x2)-F(x1);P{X>a}=1-P{X<a}离散型rv X;F(x)=P{X ≤x}=x k tp k ;(把X<x 的概率累加)连续型rvX ;F(x)=−∞xf x dx ,f(x)称密度函数;既分布函数F(X)是密度函数f(x)和X 轴上的(-∞,x)围成的面积!性质:F(∞)=1;F(−∞)=0;二、常用概率分布:①离散:二项分布:事件发生的概率为p,重复实验n次,发生k 次的概率(如打靶、投篮等),记为B(n,p)P{X=k}=n k p k(1−p)n−k,k=0,1,2,...n;E(X)=np,D(X)=np(1-p);②离散:泊松分布:X~Π(λ)P{X=k}=λk e−λk!,k=0,1,2,...;E(X)=λ,D(X)=λ;③连续型:均匀分布:X在(a,b)上均匀分布,X~U(a,b),则:密度函数:f(x)=1b−a,a t0,其它=0,x x−a b−a1,x≥b,a t分布函数F(x)=−∞x f x dx④连续型:指数分布,参数为θ,f(x)=1θe−xθ,0 t0,其它F(x)=1−e−xθ0,x 0;⑤连续型:正态分布:X~N(μ,σ2),most importment!密度函数f(x),表达式不用记!一定要记住对称轴x=µ,E(X)=µ,方差D(X)=σ2;当µ=0,σ2=1时,N(0,1)称标准正态,图形为:分布函数F(x)为密度函数f(x)从(-∞,x)围成的面积。

第二节分布函数(Distributionfunction),数学期望(Expectation(金融计量-浙大蒋岳祥))

第二节分布函数(Distributionfunction),数学期望(Expectation(金融计量-浙大蒋岳祥))

上课材料之三:第二节 分布函数(Distribution function),数学期望(Expectation)与方差(Variance)本节主要介绍概率及其分布函数,数学期望,方差等方面的基础知识。

一、概率(Probability)1、概率定义(Definition of Probability)在自然界和人类社会中有着两类不同的现象,一类是决定性现象,其特征是在一定条件必然会发生的现象;另一类是随机现象,其特征是在基本条件不变的情况下,观察到或试验的结果会不同。

换句话说,就个别的试验或观察而言,它会时而出现这种结果,时而出现那样结果,呈现出一种偶然情况,这种现象称为随机现象。

随机现象有其偶然性的一面,也有其必然性的一面,这种必然性表现为大量试验中随机事件出现的频率的稳定性,即一个随机事件出现的频率常在某了固定的常数附近变动,这种规律性我们称之为统计规律性。

频率的稳定性说明随机事件发生可能性大小是随机事件本身固定的,不随人们意志而改变的一种客观属性,因此可以对它进行度量。

对于一个随机事件A ,用一个数P (A )来表示该事件发生的可能性大小,这个数P (A )就称为随机事件A 的概率,因此,概率度量了随机事件发生的可能性的大小。

对于随机现象,光知道它可能出现什么结果,价值不大,而指出各种结果出现的可能性的大小则具有很大的意义。

有了概率的概念,就使我们能对随机现象进行定量研究,由此建立了一个新的数学分支——概率论。

概率的定义定义在事件域F 上的一个集合函数P 称为概率,如果它满足如下三个条件: (i )P (A )≥0,对一切∈A F (ii )P (Ω)=1;(iii )若∈i A ,i=1,2…,且两两互不相容,则∑∑∞=∞==⎪⎭⎫ ⎝⎛11)(i i i i A P A P 性质(iii )称为可列可加性(conformable addition )或完全可加性。

推论1:对任何事件A 有)(1)(A P A P -=;推论2:不可能事件的概率为0,即0)(=φP ; 推论3:)()()()(AB P B P A P B A P -+=⋃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 设B表示取得一等品,A表示取得合格品,则
(1)因为100 件产品中有 70 件一等品,P(B) 70 0.7
(2)方法1:因为95
件合格品中有
70
100 件一等品,所以
Q B AAB B
P(B A) 70 0.7368
方法2:
95
P(B
A)
P( AB) P( A)
70 95
100 100
P B A P(AB) n(AB) P(A) n(A)
例1:在5道题中有3道理科题和2道文科题,如果 不放回地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
解:设第1次抽到理科题为事件A,第2次抽到理科题 为事件B,则第1次和第2次都抽到理科题为事件AB.
解:设第1次抽到理科题为事件A,第2次抽到理科题 为事件B,则第1次和第2次都抽到理科题为事件AB.
(2)Q n( AB) A32 6
P( AB) n( AB) 6 3 n() 道文科题,如果 不放回地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
在原样本空间 的概率
称为在事件A发生的条件下,事件B发生的条件概率。 一般把P(B|A)读作A发生的条件下B的概率。 注意: (1)条件概率的取值在0和1之间,即0≤P(B|A) ≤1 (2)如果B和C是互斥事件,则
P(B∪C |A)= P(B|A)+ P(C|A)
反思
求解条件概率的一般步骤: (1)用字母表示有关事件 (2)求P(AB),P(A)或n(AB),n(A) ( 3 )利用条件概率公式求
法三:第一次抽到理科题,则还剩下两道理科、 两道文科题,故第二次抽到理科题的概率为1/2
例2 一张储蓄卡的密码共有6位数字,每位数字
都可从0—9中任选一个。某人在银行自动取款 机上取钱时,忘记了密码的最后一位数字,求:
(1)任意按最后一位数字,不超过2次就按对 的概率;
(2)如果他记得密码的最后一位是偶数,不超 过2次就按对的概率。
解1:设A={出现的点数不超过3}={1,2,3} B={出现的点数是奇数} ={1,3,5}
只需求事件 A 发生的条件下,
事件 B 的概率即P(B|A)
51
B3
A
2
P(B | A) n( AB) 2
4,6
n( A) 3 解法一(减缩样本空间法)
例 2 考虑恰有两个小孩的家庭.
(1)若已知 某一家有一个女孩,求这家另一个是男孩 的概率;
2.2.1 条件概率
浙江省富阳市新登中学高二数学备课组 2013-3-17
复习引入:
事件概率加法公式:
若事件A与B互斥,则. P( A U B) P( A) P(B)
注: 1.事件A与B至少有一个发生的事件叫做A与B的
和事件,记为 A U B (或 A B );
2.事件A与B都发生的事件叫做A与B的积事件,
(2)若已知某家第一个是男孩,求这家有两个男孩 (相当于第二个也是男孩)的概率
(假定生男生女为等可能)
例3
设P(A|B)=P(B|A)=
(1)从5道题中不放回地依次抽取2道的事件数为
n() A52 20
根据分步乘法计数原理,n( A) A31 A41 12
P( A) n( A) 12 3 n() 20 5
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
(1)P( A)
P( A1)
P(
A1 A2
)
1 10
9g1 10g9
1 5
(2)P(A |
B)
P( A1
|
B)
P( A1A2
|
B)
1 5
4g1 5g4
2 5
练习:设 100 件产品中有 70 件一等品,25 件二
等品,规定一、二等品为合格品.从中任取1 件,
求 (1) 取得一等品的概率;
(2) 已知取得的是合格品,求它是一等品的概率.
(3)在第一次抽到理科题的条件 下,第二次抽到理科题的概率。
法一:由(1)(2)可得,在第一次抽到理科题
的条件下,第二次抽到理科题的概率为
3
P(B
A)
P( AB) P( A)
10 3
1 2
5
法二:因为n(AB)=6,n(A)=12,所以
P(B A) n( AB) 6 1 n( A) 12 2
由古典概型可知,最后一名同学抽到中奖奖券的
概率为:P(B) n(B) 1 n() 3
一般地,我们用来 表示所有基本事件 的集合,叫做基本 事件空间(或样本 空间)
如果已经知道第一名同学没有抽到中奖 奖券,那么最后一名同学抽到中奖奖券 的概率又是多少?
“第一名同学没有抽到中奖奖券”为事件A “最后一名同学抽到中奖奖券”为事件B 第一名同学没有抽到中奖奖券的条件下,最后 一名同学抽到中奖奖券的概率记为P(B|A)
记为 A I B (或 AB );
3.若 AB 为不可能事件,则说事件A与B互斥.
三张奖券中只有一张能中奖,现分别 由3名同学无放回地抽取,问最后一 名同学抽到中奖奖券的概率是否比前
两位小?
解:记“最后一名同学中奖”为事件B Ω 为所有结果组成的全体
B
一般地,n(B)表示 事件B包含的基本 事件的个数
二、内涵理解:
为什么上述例中P(B|A) ≠ P(B)? 样本空间不一样 P(B)以试验下为条件,样本空间是
P(B|A)以A发生为条件,样本空间缩小为A
Ω
B
A
P(B |A)相当于把A看作 新的样本空间求AB发生 的概率
条件概率的定义:
一般地,设A,B为两个事件,且P(A)>0,则
P(B A) P( AB) P( A)
0.7368
B 70 95A
5
反思
求解条件概率的一般步骤: (1)用字母表示有关事件 (2)求P(AB),P(A)或n(AB),n(A) ( 3 )利用条件概率公式求
P B A P(AB) n(AB) P(A) n(A)
例题2 在某次外交谈判中,中外双方都为了自身的利益 而互不相让,这时对方有个外交官提议以抛掷一 颗骰子决定,若已知出现点数不超过3的条件下再 出现点数为奇数则按对方的决议处理,否则按中 方的决议处理,假如你在现场,你会如何抉择?
相关文档
最新文档