有理数补充资料-第3讲
第3讲 有理数的乘除、乘方
第3讲有理数的乘除与乘方(教师讲义)一、教学目标1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算,进一步掌握有理数的混合运算.二、例子【知识点一:乘法运算】【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸1111 12(2111)42612 -⨯-+-02.24(9)5025-⨯ 03.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】已知两个有理数a 、b ,如果ab <0,且a +b <0,那么( )A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a_____0,b______0,|a|_____|b|.03.(山东烟台)如果a +b <0,0b a>,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >0【知识点二:除法运算】【例3】计算①(72)(18)-÷- ②11(2)3÷- ③13()()1025-÷ ④0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:①(72)(18)72184-÷-=÷= ②17331(2)1()1()3377÷-=÷-=⨯-=- ③131255()()()()10251036-÷=-⨯=- ④0(7)0÷-=【变式题组】 01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯ ⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯【知识点三:乘方运算】【例4】计算(1)323-; (2)()524-- (3)()()2332---; (4) -34÷241×(-32)2. 【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:(1)原式= (2)原式=(3)原式= (4)原式=【变式题组】(1)8十(-3)2×(-2)3 ⎥⎦⎤⎢⎣⎡-+-⨯-)95()32()3()2(22(3) 332)3()31()1(-⨯--- (4)已知223(2),1x y =-=- 求2008xy 的值;解:∵223(2),1x y =-=- x=2或x=-2 y=-1⑴当2,1x y ==-时,200820082(1)2xy =-=当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=-【知识点四:有理数的混合运算】【例5】计算[]24)3(23)5.01(1--⨯÷--- 【解法指导】先算乘方,再乘除,最后加减,有括号先算括号里的。
第3讲有理数加减乘除及混合运算(学生版)
第3讲有理数加减乘除及混合运算1.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数。
2.有理数减法法则即减去一个数,等于加这个数的相反数。
有理数的减法可以转化为加法来进行。
如果你记不住上面的加减法规则,请参照以下:傻瓜加减法则1、遇见小数减大数,负号表示“差多少”(其实就是符号不同的两数相加的情况)2、遇见减去负数时,负负得正变加号(其实就是小学的去括号变号问题)3.有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.4.几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个有理数相乘,有一个因数为0,积就为0.注意:第一个因数是负数时,可省略括号.5.有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.(两数相除,同号得正,异号得负,并把绝对值相除.)0除以任何一个不为0的数,都得0.【例题1】选择正确答案(1)若a+b=a b+,则a 、b 的关系是( )A 、a 、b 绝对值相等B 、a 、b 异号C 、a 、b 的和是非负数D 、a 、b 同号或其中至少一个为0 (2)若一个有理数减去它的相反数是一个负数,则( ) A 、这个有理数一定是负数 B 、这个有理数一定是正数C 、这个有理数可以为正数、负数D 、这个有理数为零(3)已知有理数a 、b 、c 在数轴上的位置如图所示。
则下列结论错误的是( ) A 、b +c<0 B 、-a +b +c<0 C 、a b+>a c+ D 、a b+<a c+(4)已知|a|>a,|b|>b,且|a|>|b|,则( ) A 、a>b B 、a<b C 、不能确定 D 、a=b(5)一个数在数轴上对应点与其相反数在数轴上对应点的距离为12单位长,则这个数是( ) A 、12或-12 B 、14或-14 C 、12或-14 D 、-12或14【例题2】计算:(1) 7.27.27.2---+ (2) 13616--++-【例题3】计算:.)702.11()6514(537(6155(5213(---++++-+)532()]57()323(6.8[324-+-++-+【例题4】如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y 的值是多少?【练习1】|x|=4,|y|=6,求代数式|x+y|的值【例题5】完成下列填空1、两数相乘,同号得 ,异号得 ,并把绝对值 。
精品 2014年七年级数学上册暑期讲义+同步练习--有理数 第03课 绝对值
3.绝对值不大于 11.1 的整数有( A.11 个 4.下列说法正确的是( B.12 个 )
A.两个有理数不相等,那么这两个数的绝对值也一定不相等 B.任何一个数的相反数与这个数一定不相等 C.两个有理数的绝对值相等,那么这两个有理数不相等 D.两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。 5.如果 m>0, n<0, m<|n|,那么 m,n,-m, -n 的大小关系( A.-n>m>-m>n B.m>n>-m>-n C.-n>m>n>-m ) D.n>m>-n>-m
2 2 │和3 3
B.│-
3 2 │和2 3
C.│-
2 3 │和 3 2
D.│-
2 2 │和 3 3
5.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数. 6.化简: 3.7 ______ ; 3.3 ______ ; 0.75 ______ ; 1 ______ ; 5 ______ ; 3 4
1 1 1 1 , , , ,...... ,请你找出其中排列的规律,并按此规律填空: 2 6 12 20 (1)第 9 个数是 ,第 14 个数是 , (2)若 n 是大于 1 的整数,按上面的排列规律,写出第 n 个数。
第 6 页 共 8 页
日期:
月
日
) B.整数 )
课堂测试题 03 满分:100 分 姓名:
13.已知 x 2014 , y 2013 ,且 x>0,y<0,求 x+y 的值。
14.已知|a|+|b|=9,且|a|=2,求 b 的值。
第3讲 有理数的乘除及乘方 -提高班
第3讲有理数的乘除及乘方中考内容中考要求A B C有理数的运算理解有理数的运算律;理解乘方的意义掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)运用运算律简化运算;运用有理数的运算解决简单问题科学记数法和近似数会用科学记数法表示数;了解近似数;会按实际问题的要求对结果取近似值中考大纲知识网络图3.1有理数的乘法一. 有理数的乘法1. 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2. 有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值.3. 有理数乘法的应用:要得到一个数的相反数,只要将它乘1-.4. 多个有理数相乘:(1)几个不是0的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为0,那么积等于0. 5. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.ab ba =(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.()()ab c a bc =(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.()a b c ab ac +=+二. 倒数1. 倒数的概念:乘积是1的两个数互为倒数. (1)倒数是成对出现的,单独一个数不能称为倒数.(2)互为倒数的两个数的乘积一定是1,即a ,b 互为倒数,则1a b ⨯=;反之亦然. (3)0没有倒数.2. 求一个非零有理数的倒数,把它的分子和分母颠倒位置即可. (1)非零整数可以看作分母为1的分数; (2)带分数一定要先化成假分数之后再求倒数.知识概述【例】(2017秋•顺义区期末)四个互不相等的整数的积为4,那么这四个数的和是( ) A .0 B .6C .﹣2D .2【练习】(2017秋•蓬溪县期末)如果a +b <0,并且ab >0,那么( ) A .a <0,b <0 B .a >0,b >0 C .a <0,b >0 D .a >0,b <0【例】(2016秋•芝罘区期末)已知abc >0,a >c ,ac <0,下列结论正确的是( ) A .a <0,b <0,c >0 B .a >0,b >0,c <0 C .a >0,b <0,c <0 D .a <0,b >0,c >0【例】(2017秋•滨海新区期末)对于有理数a 、b ,如果ab <0,a +b <0.则下列各式成立的是( )A .a <0,b <0B .a >0,b <0且|b |<aC .a <0,b >0且|a |<bD .a >0,b <0且|b |>a3.2有理数的除法一.有理数的除法1. 有理数除法法则:(1)除以一个不等于0的数,等于乘这个数的倒数.小试牛刀再接再厉总述思考:多个不是的数相乘,先做哪一步,再做哪一步?知识概述1a b a b÷=⋅,(0b ≠)(2)法则的另一说法:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.2. 有理数除法的运算步骤:先将除法换成乘法,然后确定积的符号,最后求出结果.3. 分数:分数可以理解为分子除以分母.二.有理数的乘除混合运算先将除法换成乘法,然后确定积的符号,最后求出结果. 注意:乘除混合运算要“从左到右”运算.【例】(2017秋•临沂月考)若x=(﹣1.125)×÷(﹣)×,则x 的倒数是( ) A .1 B .﹣1 C .±1 D .2【练习】(2017秋•郯城县月考)÷(﹣10)×(﹣)÷(﹣)【例】(2017秋•昌平区期末)计算:(﹣3)×6÷(﹣2)×.【练习】(2017秋•安图县期末)÷(﹣1)×.【例】(2017秋•怀柔区期末)计算:3×(﹣)÷(﹣1).5.(2017秋•城关区校级期中)计算: (1)﹣5÷(﹣1);(2)(﹣)÷(﹣)÷(﹣1).小试牛刀再接再厉3.3有理数的乘方一. 有理数的乘方1. 乘方的概念:求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,n 个相同的因数a 相乘,即n a a a a⋅⋅⋅⋅⋅⋅⋅个,记作,读作“a 的n 次方”;(2)在中,a 叫做底数,n 叫做指数;(3)当看作a 的n 次方的结果时,读作a 的n 次幂. 注意:()224-=,其底数为()2-,()()()22224-=-⨯-=;224-=-,其底数为2,()()222121224-=-⨯=-⨯⨯=-;239=749⎛⎫⎪⎝⎭,其底数为37,2333977749⎛⎫=⨯= ⎪⎝⎭; 239=77,其底数为3,23339777⨯==; 221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,带分数的乘方运算,一定要先化成假分数后再运算.2. 一个数可以看作这个数本身的一次方,例如,5就是15,指数1通常省略不写.3. 幂的正负规律:(1)负数的奇次幂是负数,负数的偶次幂是正数,即“奇负偶正”; (2)正数的任何次幂都是正数; (3)0的任何正整数次幂都是0. 二. 科学记数法n a n a n a 总述思考:加减乘除混合运算的运算顺序是什么?知识概述1. 科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是正整数).2. 用科学记数法表示一个n 位整数,其中10的指数是1n -,10的指数比整数的位数少1. 3. 万410=,亿810= 三.近似数1. 准确数:表示实际数量的数.2. 近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近.3. 精确度:表示近似数与准确数的接近程度. 4. 精确度的类型: (1)纯数字类按四舍五入法对圆周率π取近似数时 3π≈(精确到个位)3.1π≈(精确到十分位,或叫精确到0.1)3.14π≈(精确到百分位,或叫精确到0.01) 3.142π≈(精确到千分位,或叫精确到0.001)(2)带单位类近似数2.6万(精确到千位) (3)科学记数法类近似数43.5110⨯(精确到百位)【例】(2018•金牛区校级模拟)下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A .1个B .2个C .3个D .4个【练习】(2018•河北二模)下列各对数中,数值相等的是( ) A .+32与+22 B .﹣23与(﹣2)3 C .﹣32与(﹣3)2 D .3×22与(3×2)2小试牛刀再接再厉【练习】(2018•绵阳)四川省公布了2017年经济数据GDP排行榜,绵阳市排名全省第二,GDP总量为2075亿元,将2075亿用科学记数法表示为()A.0.2075×1012B.2.075×1011C.20.75×1010D.2.075×1012【例】(2018•绍兴)绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116 000 000方,数字116 000 000用科学记数法可以表示为()A.1.16×109B.1.16×108C.1.16×107D.0.116×109【例】(2016秋•吴中区期末)阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×)100=____,2100×()100=_____;(2)通过上述验证,归纳得出:(a•b)n=_____;(abc)n=______.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.总述总结:“奇负偶正”你了解全了吗?3.4有理数的混合运算知识概述一.有理数混合运算顺序:1.先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号的顺序依次进行. 二. 进行有理数混合运算时的易错点:1. 乘方概念错误,如326=等.2. 底数错误,如2(2)4-=-,224-=等.3. 运算顺序发生错误,如1232123÷⨯=÷=等.4. 分配律运算错误,如112(2)22241522-⨯-=-⨯-⨯=--=-等.【例】(2017秋•招远市期末)形如的式子叫做二阶行列式,其运算法则用公式表示为=xn ﹣ym ,依此法则计算的结果为( )A .17B .﹣17C .1D .﹣1【练习】(2017秋•费县期末)现定义一种新运算“*”,规定a*b=ab +a ﹣b ,如1*3=1×3+1﹣3,则(﹣2*3)*5等于( ) A .71 B .47 C .﹣47 D .﹣71【例】(2017秋•揭西县期末)计算:(﹣2)2÷×(﹣2)﹣=______.【练习】(2017秋•河口区期末)计算8﹣23÷的值为_____.【例】(2017秋•泸县期末)计算:﹣14﹣×[2﹣(﹣3)2].小试牛刀再接再厉【例】(2018•杭州二模)计算:﹣23+6÷3×圆圆同学的计算过程如下:原式=﹣6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.【练习】(2018•邵阳县模拟)计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【巩固】(2017秋•贵阳期末)计算:(1)1﹣43×(﹣)(2)7×2.6+7×1.5﹣4.1×8.。
Q3-第3讲--绝对值拓展(答案卷).docx
第二章有理数及其运算第三讲绝对值的拓展绝对值,不仅仅是有理数中的一个重要概念,也是初中数学中一个异常活跃且举足轻重的元素,它不但描述了有理数与数轴的密切联系,而且是有理数运算的基本工具,可以说深刻理解了绝对值概念,是学好初中数学的第一个关键。
★=绝对值知识拓展=★1、定义:一个数a的绝对值就是数轴上表示数d的点与原点的距离。
记作:|a|。
a (a > 0) a («>0)2、代数意义:|。
|彳0 (a = 0) => |Q L-a (a < 0) -a (a < 0)几何意义:从数轴上看,|a|表示数。
的点与原点的距离(即长度,非负)。
|d_4、基本性质:非负性:20(1)| db |=| a | • | 纠(3 ) \a^=\a2 \=a2(5) \a+b\<^a\-^-\b\5、数学方法:(1)数形结合思想(2)分类讨论思想(3)特殊值法1、去掉绝对值的符号:注意讨论绝对值内部整体正、0、负,尤其是绝对值内部为负时,去掉绝对值后前面要填上负号。
2、绝对值非负性的运用3、正数-负数二正数;负数-正数二负数★=考点例题指导=★总>|考点一|:绝对值的意义【例1] (1)已知\a\= 1,|Z?|=2,则a — b的值为_____________________________________________________________________ ;(2) G是任意有理数,则\-a\-a的值等于;(3) 已知\a\=2」纠=4,且|a +纠=)a| + |b|,则匕2 =a-b(4) 已知兀vyvO,设M=|x|,N=|y|,P = 士』,则M,N,P的大小关系是___________________________ O【例2】若|a|=5」创=3, ^\a-b\=b-a t求\a + h\的值。
© 变式训练(一)★=易错点归纳=★Q、数b的两点间的距离。
第二章有理数及其运算第三讲有理数的运算法则(教案)
-有理数混合运算:掌握混合运算的顺序和法则,解决实际问题。
举例解释:
-加法重点:强调两个正数或两个负数相加时,结果的符号不变,绝对值为两个数绝对值之和。如:3 + 4 = 7,-3 + (-4) = -7。
-减法重点:强调减法实际上是加上相反数,如:5 - 3 = 5 + (-3)。
第二章有理数及其运算第三讲有理数的运算法则(教案)
一、教学内容
本节课选自教材第二章“有理数及其运算”的第三讲,主题为“有理数的运算法则”。教学内容主要包括以下几点:
1.有理数的加法法则:掌握同号相加、异号相加的规律,理解“正负相抵”的概念。
-同号相加:两个正数或两个负数相加,结果为同号的较大绝对值。
五、教学反思
在今天的教学中,我重点关注了有理数的运算法则这一章节。我尝试通过日常生活中的例子引入新课,希望这样能让学生感受到数学与生活的紧密联系。在理论讲解部分,我尽力将有理数的概念和运算法则阐述清楚,同时用具体的案例帮助学生理解这些抽象的规则。
课堂上,我发现学生在异号相加和乘法符号规律这两个部分有些吃力。我通过反复举例和对比分析,尽量让学生明白这些难点。在实践活动和小组讨论中,我鼓励学生积极思考,提出问题,并尝试解决问题。看到他们认真讨论、动手操作的样子,我觉得他们已经开始体会到数学学习的乐趣。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“有理数的运算法则”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量,比如温度上升和下降?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数运算法则的奥秘。
第03讲 有理数的乘除法 (解析版)
第3讲有理数的乘除法一、知识梳理1.有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘;0与任何数相乘,都得0;乘积是1的两个数互为倒数;乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.【例1】.(1)计算:4×(﹣3)的结果是()A.1B.﹣1C.12D.﹣12【分析】原式利用有理数的乘法法则计算即可求出值.【解答】解:原式=﹣4×3=﹣12.故选:D.(2)计算(﹣3)×(﹣2)的结果等于()A.﹣6B.6C.﹣5D.5【分析】根据有理数的乘法法则计算即可解答本题.【解答】解:(﹣3)×(﹣2)=+(3×2)=6.故选:B.(3)(﹣8)×(﹣25)×(﹣0.02).【分析】先确定符号,再用乘法的结合律,8×25=200,进行计算即可.【解答】解:原式=﹣200×0.02=﹣4.(4)(﹣8)×9×(﹣1.25)×(﹣)【分析】根据有理数的乘法法则和乘法的交换律进行计算即可.【解答】解:(﹣8)×9×(﹣1.25)×(﹣)=(﹣8)×(﹣1.25)×9×(﹣)=10×(﹣1)=﹣10.(5)﹣12×(1﹣+)【分析】由于12是3,4,6的公倍数,可利用乘法分配律进行计算,使计算简便.【解答】解:原式=﹣12×﹣(﹣12)×+(﹣12)×=﹣16﹣(﹣9)+(﹣10)=﹣17【变式训练1】.(1)计算(﹣9)×的结果是()A.3B.27C.﹣27D.﹣3【分析】先确定积的符号,再把绝对值相乘.【解答】解:原式=﹣(9×)=﹣3,故选:D.(2)计算(﹣2)×(﹣4)的结果等于()A.8B.﹣8C.6D.﹣6【分析】根据有理数乘法法则进行计算即可得出答案.【解答】解:(﹣2)×(﹣4)=8.故选:A.(3)计算:﹣2×3×(﹣).【分析】根据有理数的乘法法则计算即可.【解答】解:﹣2×3×(﹣)=2×3×=6×=1.(4)计算:4.5×1.25×(﹣8).【分析】根据乘法结合律简便计算即可求解.【解答】解:4.5×1.25×(﹣8)=4.5×[1.25×(﹣8)]=4.5×(﹣10)=﹣45.(5)计算:﹣60×(+﹣﹣)【分析】根据乘法算式的特点,可以用括号内的每一项与﹣60相乘,计算出结果.【解答】解:原式=(﹣60)×+(﹣60)×﹣(﹣60)×﹣(﹣60)×=﹣45﹣50+44+35=﹣16.2.有理数的除法除以一个不等于0的数,等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.【例2】.(1)﹣的倒数是()A.﹣2B.C.﹣D.±【分析】利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.【解答】解:﹣的倒数是:﹣2.故选:A.(2)已知a,b互为倒数,|c﹣1|=2,则abc的值为()A.﹣1或3B.﹣1C.3D.±2【分析】利用倒数的定义求出ab值,利用绝对值求出c的值,代入代数式即可解答.【解答】解:∵a,b互为倒数,∴ab=1,∵|c﹣1|=2,∴c=3或﹣1,∴abc=﹣1或3,故选:A.(3)计算:=.【分析】将有理数的除法转化为乘法,然后再计算.【解答】解:原式=,故答案为:﹣.【变式训练2】.(1)﹣7的倒数是()A.﹣B.C.﹣7D.7【分析】根据倒数:乘积是1的两数互为倒数,即可得出答案.【解答】解:∵﹣7×(﹣)=1,∴﹣7的倒数是:﹣.故选:A.(2)若有理数a,b满足a•b=1,则下列说法正确的是()A.a=b B.|a|=|b|C.a,b互为相反数D.a,b互为倒数【分析】利用倒数的定义判断即可.【解答】解:由ab=1,得到a与b互为倒数.故选:D.(3)计算:=.【分析】根据除以一个数,等于乘这个数的倒数计算即可.【解答】解:原式=﹣3×(﹣)=,故答案为:.3.有理数的四则混合运算乘除混合运算:先将除法化成乘法,然后确定积的符号,最后求出结果;加减乘除混合运算:按照“先乘除,后加减”的顺序进行,有括号的先算括号. 【例3】.(1)25÷(﹣5)×÷(﹣).【分析】根据有理数的乘除法法则计算即可.【解答】解:原式==.(2)计算:11+(﹣22)﹣3×(﹣11);【分析】首先计算乘法,再利用加法法则计算即可得到结果.【解答】解:(1)11+(﹣22)﹣3×(﹣11)=11+(﹣22)+33=﹣11+33=22.【变式训练3】.(1)计算:(﹣2)÷(﹣1.2)×(﹣1).【分析】将带分数变为假分数,除法变为乘法,再约分计算即可求解.【解答】解:(﹣2)÷(﹣1.2)×(﹣1)=﹣××=﹣.(2)计算:3×(﹣4)+18÷(﹣6);【分析】先算乘除,再算加法;【解答】解:(1)原式=﹣12+(﹣3)=﹣15;二、课堂训练1.下列各数中,与﹣5的乘积得0的数是()A.5B.﹣5C.0D.1【分析】可以根据任何数与0相乘都得0得到答案,也可以根据乘法和除法互为逆运算进行求解.【解答】解:∵0÷(﹣5)=0,∴0×(﹣5)=0,故选:C.2.计算(﹣2)×(﹣3)的结果等于()A.﹣5B.5C.﹣6D.6【分析】根据有理数乘法法则进行计算即可.【解答】解:根据有理数乘法法则:负负得正,(﹣2)×(﹣3)=6.故选:D.3.有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>b B.b>﹣a C.a+b>0D.ab<0【分析】本题主要考查有理数的乘法,数轴,有理数的加法,根据数轴上点的特征可得a<0<b,且|a|>|b|,据此逐项判断可求解.【解答】解:由数轴可知:a<0<b,且|a|>|b|,故A选项错误;∴b<﹣a,故B选项错误;a+b<0,故C选项错误;ab<0,故D选项正确.故选:D.4.以下叙述中,正确的是()A.﹣a一定是负数B.若|a|=0.5,则a=0.5C.a与﹣a互为相反数D.﹣a的倒数是【分析】根据绝对值、相反数、倒数、正数与负数的概念与性质逐一判断即可.【解答】解:A、a表示一个实数,可以是正数或负数或零,故选项A不符合题意,B、|a|=0.5,则a=0.5或﹣0.5,故选项B不符合题意,C、a与﹣a互为相反数,选项C符合题意,D、a表示一个实数,可以是正数或负数或零,零没有倒数,选项D不符合题意.故选:C.5.一种盐水的含盐率是10%,盐与水的比是()A.1:10B.1:11C.1:9D.1:8【分析】直接利用盐水中含有盐,进而得出盐和水的比.【解答】解:∵盐水的含盐率是10%,∴盐和水的比是:1:(10﹣1)=1:9.故选:C.6.已知|a|=4,|b|=2,那么ab=8或﹣8.【分析】根据绝对值的定义,可求解a,b,再代入根据相关运算法则计算即可求解.【解答】解:∵|a|=4,|b|=2,∴a=±4,b=±2,∴a=4,b=2时,ab=4×2=8;当a=4,b=﹣2时,ab=4×(﹣2)=﹣8.当a=﹣4,b=2时,ab=(﹣4)×2=﹣8.当a=﹣4,b=﹣2时,ab=(﹣4)×(﹣2)=8.∴ab的值为8或﹣8.故答案为:8或﹣8.7.有一桶水,倒出后,桶内还剩20L水,桶内原有水50L.【分析】直接利用有理数的除法运算法则计算得出答案.【解答】解:由题意可得:20÷(1﹣)=50(L).故答案为:50.8.如果a+3的相反数是﹣5,那么a的倒数是.【分析】先根据只有符号不同的两个数互为相反数求出a,再根据乘积是1的两个数互为倒数解答.【解答】解:∵a+3的相反数是﹣5,∴a+3=5,∴a=,∵()×()=1,∴a的倒数是.故答案为:.9.计算:(﹣)÷(﹣2)×.【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:原式=××=.10.计算:.【分析】先变形,然后根据乘法分配律可以解答本题.【解答】解:=×﹣×+×=(+)×=()×=(﹣1)×=﹣.三、课后巩固1.计算|﹣2×4×0.25|的结果是()A.﹣4B.﹣2C.2D.4【分析】利用有理数的乘法法则,以及绝对值的代数意义计算即可求出值.【解答】解:原式=|﹣2×4×|=|﹣2|=2.故选:C.2.有理数a,b在数轴上的对应点如图,下列式子:①a>0>b;②|b|>|a|;③ab<0;④a﹣b>a+b;⑤<﹣1,其中错误的个数是()A.1B.2C.3D.4【分析】利用数轴,结合绝对值的意义和有理数的乘除法法则进行逐一判定.【解答】解:从数轴上可以看出a<0,b>0,且|a|>|b|.则:①a>0>b,错误;②|b|>|a|,错误.∵a<0,b>0,∴ab<0.∴③ab<0,正确.∵b>0,∴﹣b<0.∴﹣b<b.∴a﹣b<a+b.∴④a﹣b>a+b,错误.∵|a|>|b,a<0,b>0,∴a<﹣b.∴.∴⑤<﹣1,正确.综上,错误的个数有3个,故选:C.3.如果a与﹣6互为倒数,那么a是()A.﹣6B.6C.﹣D.【分析】根据倒数的定义回答即可.【解答】解:∵a与﹣6互为倒数,∴a=﹣.故选:C.4.下面各式化成最简整数比正确的是()A.1:=2:3B.:=3:2C.0.9:=3:5D.24:36=2:3【分析】根据比例的基本性质即可得答案.【解答】解:A、×2≠1×3,故A不符合题意,B、×3≠×2,故B不符合题意,C、×3≠0.9×5,故C不符合题意,D、36×2=24×3,且2:3已经是最简形式,故D符合题意,故选:D.5.一种纺织品的合格率是98%,300件产品中有m件产品不合格,则m值为()A.2B.4C.6D.8【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:∵一种纺织品的合格率是98%,300件产品中有m件产品不合格,∴m值为:300×98%=6.故选:C.6.计算:﹣0.125÷=﹣.【分析】将有理数的除法转化为有理数的乘法进行计算即可.【解答】解:原式=﹣×=﹣,故答案为:﹣.7.若a<c<0<b,则a×b×c>0.(用“>”“=”“<”填空)【分析】先判断a,b,c的正负,再根据同号两数相乘得正,异号两数相乘得负,即可得出结果.【解答】解:∵a<c<0<b,∴a,c为负数,b为正数,∴a×c>0,∴a×b×c>0.故答案为>.8.﹣2.4的倒数是﹣【分析】直接利用倒数的定义得出答案.【解答】解:﹣2.4=﹣的倒数是:﹣.故答案为:﹣.9.计算:÷(×2).【分析】首先计算乘法,然后计算除法,求出算式的值是多少即可.【解答】解:÷(×2)=÷=10.(﹣48)÷8﹣(﹣25)×(﹣6)【分析】根据除以一个数等于乘以这个数的倒数,可转化成法,根据两数相乘同号得正,异号得负,再把绝对值相乘,可得积,再根据有理数的减法,可得答案.【解答】解:原式=(﹣48)×(﹣6)=﹣6﹣150=﹣(6+150)=﹣156.。
数学 第三讲有理数的四则运算
第三讲有理数的四则运算二有理数的加减法1. 有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
2. 有理数加法的运算步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:(1)先确定加法类型(同号还是异号);(2)确定和的符号;(3)绝对值的加减运算。
3. 有理数加法的运算律(1)两个加数相加,交换加数的位置,和不变。
a+b=b+a(加法交换律)(2)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b+c)(加法结合律)4. 有理数加法的运算技巧(1)分数与小数均有时,应先化为统一形式。
(2)带分数可分为整数与分数两部分参与运算。
(3)多个加数相加时,若有互为相反数的两个数,可先结合相加,得零。
(4)若有可以凑整的数,即相加得整数时,可先结合相加。
(5)若有同分母的分数或易通分的分数,应先结合在一起。
(6)符号相同的数可以先结合在一起。
5. 有理数的减法法则减去一个数,等于加这个数的相反数。
a-b=a+(-b)6. 有理数减法的运算步骤(1)把减号变为加号(改变运算符号)(2)把减数变为它的相反数(改变性质符号)(3)把减法转化为加法,按照加法运算的步骤进行运算。
7. 有理数加减法混合运算的步骤(1)把算式中的减法转化为加法;(2)省略加号与括号;(3)利用运算律及技巧简便计算,求出结果。
注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即求几个正数、负数和0的和,这个和称为代数和。
为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式,例如:(+3)+(-0.15)+(-9)+(+5)+(-11)=3-0.15-9+5-11,它的含义是正3,负0.15,负9,正5,负11的和。
浙教版数学七年级上册第3讲 有理数(3)
第3讲 有理数(3)知识理解1、下列各组数中,互为相反数的一组是 ( )A 、+ (-2)和-( + 2)B 、-|-2|和-| + 2|C 、-(-2)和-|-2|D 、-( + 2)和-| + 2|2、数轴上的点A 、B 分别表示-2和3,则线段AB 的中点所表示的数是 ( )A 、12 B 、12- C 、52- D 、523、已知a 、b 互为相反数,下列各式中成立的是 ( )A 、ab <0B 、a -|b |=0C 、|a -b |=|a | + |b |D 、a ÷b =-1 4、a , b 是有理数,若|a |=2, |b |=3,则|a + b |= ( )A 、5B 、1C 、1或5D 、1,5,-1或-5 5、若|-x |=4, |y |=2,且x >y ,则xy 的值是 ( )A 、-8B 、8C 、-8或8D 、以上答案都不对 6、若a >0, b <0 ,化简3|||2|a b a b +-+得 ( )A 、bB 、5bC 、2a + bD 、2a + 5b7、一艘潜水艇的高度为-40米,如果它再下滑30米,则它这时所在的高度为__________. 8、若|-x |=2,则x =___________;若|x -3|=0,则x =__________;若|x -3|=1,则x =__________. 9、实数a , b 在数轴上位置如图所示,则|a |, |b | 的大小关系是___________.10、比较下列各组有理数的大小:(1)-0.6________-60 (2) -3.8________-3.9 (3) 0________|-2| (4)34______45-- 11、绝对值小于122的所有整数为_____________,绝对值小于3的整数是__________. 12、已知|a |=1,|b |=2,且a , b 异号,则3a + b =__________.13、若|a |=4,|b |=3,且|a |=-a ,则2a + b =____________________. 输入 (1)2345…… 输出……13 26 311 418 527……方法运用15、已知|a |=|b |=9,|a |=2,求b 的值.16、已知a =3,|b |=2,|c |=1,且a <b <c ,求a , b , c 的值.17、已知|x |=2003,|y |=2002,且x >0 ,y <0,求x +y 的值.18、已知|x +y +3|=0,求|x +y | 的值.19、|2||3||4|0a b c -+-+-=,求a +2b +3c 的值.20、如果a , b 互为相反数,c , d 互为倒数,x 的绝对值是1,求代数式2a bx cd x+++的值.21、已知|a |=3, |b |=5, a 与b 异号,求|a -b |的值.22、已知|a +1|与|b -2|互为相反数,求式子()||a b a a ---的值.23、若2、2、5和a 的平均数是5,而3、4、5、a 和b 的平均数也是5, (1) 求a , b ;(2) 若|c |=-c , 求||||c a b c ---的值.实际应用24、某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 误差,现抽查6瓶请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?综合思考25、在标有6,12,18,24,30……的卡片中,小明拿了相邻的3张. (1)若相邻的3张数字之和为342,求这3张卡片上各自的数字?(2)你能拿到数码相邻的3张卡片,使其上数字之和是86吗?试说明理由?26、有理数a , b , c , d 在数轴上如图所示:①在数轴上有若干个点,每相邻两个点之间的距离是1个单位长,有理数a ,b ,c ,d 所表示的点是这些点中4个,且在数轴上位置如图所示,如果3a =4b -3,求c + 2d 的值;②在数轴上,N 点与原点的距离是N 与30所对应点之间的距离的4倍,那么N 点表示的数是多少?27、有若干个数,123,,,n a a a a K K ,若112a =-,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数”(1) =1a =2a (2) 求91011a a a ⋅⋅的值;(3) 是否存在M 的值,使111()n n n M a a a a -+÷⋅⋅=?若存在,请求出M 的值.初中数学试卷。
北师大版七年级上册数学 第二章 有理数及其运算第3讲 有理数
图1ab第3讲 有理数【知识梳理】(一)正数与负数1.正数:大于零的数叫正数;2.负数:小于零的数叫负数(正数前面加上“—”号)3.“0”既不是 ,也不是 ,“0”是自然数; 4.有理数的分类:(二)数轴1.规定了 、 、 的直线叫做数轴. 2.有理数大小比较:数轴上表示两个数,右边的数总比左边的数 ,如图1,b ________a ;(三)相反数1.像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数. 2.“0”的相反数是 ; 3.数a 的相反数是 ;数-a 的相反数是 ;有理数整数分数或 有理数正整数 正分数负分数负整数4.两个互为相反的数到原点的距离 ,而且在原点的左右两侧. (四)绝对值1.一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值,记作a ,a 0; 2.如果字母a 表示一个数,用式子表示就是: (1)当a 是正数(即a >0)时,a = ; (2)当a 是负数(即a <0)时,a = ; (3)当a =0时,a = .3.正数 0,负数 0,正数大于负数;两个负数比较,绝对值大的反而 .(五)有理数的加减运算 1.加法法则:(1).同号相加,取 的符号, 相加.(2).异号相加,取绝对值较 的加数的符号,并用较 的绝对值减去较 的绝对值. (3).一个数同 相加,仍得这个数.2.有理数的减法法则:减去一个数,等于加上这个数的 .3.加减混合运算:把加法,减法统一成加法.【典型例题】考点1【例1】把下列各数分别填在题后相应的集合中:25-,0,1-,0.73,2,5-,87,52.29-,+28.(1)整数集合: { ……} (2)负整数集合:{ ……} (3)负分数集合:{ ……} (4)自然数集合:{ ……} (4)非负数集合:{ ……} 【变式1】把下列各数填在相应的数集的圈里.41,-31,0.2,0,-70,6.7,215,π… … … …-4 -3 -2 -1 0 1 2 3 4负整数集 非正数集 自然数集 正数集【变式2】下列说法正确的个数是( ).①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数; ③一个整数不是正的就是负的;④一个分数不是正的就是负的. A .1 B .2 C .3 D .4考点2【例2】(1)在数轴上表示下列各数的点:323-,0 ,3 , -0.5 ,21,-3,212(2)用“<”符号把上面所给数字连接起来.(3)以上绝对值等于3的数有 个,它们是 . (4)绝对值小于2的数有 个,它们是 . 【变式1】数轴上到原点的距离为3的点所表示的数是 . 【变式2】数轴上的点A 表示的数是-4,如果点B 在点A 的左边,且与点A 相隔1个单位,则点B 表示的数是________.考点3【例3】(1)若-x =9,则x = ________;(2)比-6的相反数大7的数是_______. 【变式1】5的相反数是 ; 的相反数是15. 【变式2】比6的相反数小7的数是_______. 考点4【例4】6-= ;6--= ; 绝对值等于6的数是 .点要用实心圆点点在数轴上【变式1】绝对值等于其相反数的数一定是( ). A .负数B .正数C .负数或零D .正数或零【变式2】7x =,则______=x ; 7x -=,则______=x . 考点5 【例5】计算: (1)1132+(-0.25)+(-381)+3.25+0.125 (2)61587733⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭【变式1】计算:(1) ()()()()0.550.550.350.65----+-- (2) ()⎪⎭⎫ ⎝⎛---+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-6115.065212【课堂训练】(一)选择题1.如果+10%表示“增加10%”,那么“减少8%”可以记作( )A .-18%B .-8%C .+2%D .+8%2.下列各数:9,05.0,101,324,650,76.8,1,54--+---,,中,( )A.只有1,–7,+101,–9是整数B.其中有三个数是正整数C.非负数有1,8.6,+101,0,D.只有54-,324-、-0.05是负分数 3.数轴上的点A 到原点的距离是6,则点A 表示的数为( ) A .6或6-B .6C .6-D .3或3-4.下列各图中,是数轴的是( )A .B .-10 1-1C .D .5.一个数的相反数是最大的负整数,这个数是( )A.0B.1C.-1D.±1 6.计算 -2-6的结果是( )A .-4B .8C .-8D .47.不改变原式的值,将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号和的形式是( )A .-6-3+7-2B .6-3-7-2C .6-3+7-2D .6+3-7-28.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数 ②一个正数与一个负数相加得正数③两个负数和的绝对值一定等于它们绝对值的和 ④两个正数相加,和为正数 ⑤两个负数相加,绝对值相减 ⑥正数加负数,其和一定等于0 A .0个B .1个C .2个D .3个(二)填空题9、一个数a 在数轴上对应的点在原点的左边,且a =3,则a =_______.10.化简:(1)| 2.85|--= ;(2)|12|+-= ; (3)⎪⎭⎫⎝⎛--213= ;(4)()5+--=11.已知甲地的海拔高度是300m ,乙地的海拔高度是-50m ,那么甲地比乙地高 m.12.已知(a -3)2+2-b =0,则a +b = .13.是否存在满足下面条件的数,存在的话,把它们写出来:(1)最小的正有理数:(2)最小的负整数;(3)最大的非整数(4)最小的整数(5)最大的负有理数(6)最小的有理数(7)最小的自然数是(8)最大的负整数是(9)最小的非负整数是(10)有理数中,最小的正整数是(11)有理数中最大的负整数是14.计算(1).13522463⎛⎫⎛⎫---+--⎪ ⎪⎝⎭⎝⎭(2).()112 2.511222---+--【课后作业】1.用公式表示“比-3℃低6℃的温度”正确的是()A.-3+6 B、-3-6 C、6-3 D、6+32.在6,2005,122,0,-3,+1,14-,-6.8中,正整数和负分数共有().A.3个B.4个C.5个D.6个3.下列说法中正确的有()(1)互为相反数的两个数的绝对值相等; (2)正数和零的绝对值都等于它本身;(3)只有负数的绝对值是它的相反数; (4)一个数的绝对值的相反数一定是负数.A、1个B、2个C、3个D、4个4.某市2012年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高().A.-10℃B.-6℃C.6℃D.10℃5.如果aa22-=-,则a的取值范围是().A .0a >B .0a ≥C .0a ≤D .0a <6.已知5m =,2n =,m n n m -=-,则m n +的值是 . 7.温度上升5℃,又下降7℃,后来又下降3℃,三次共上升 ℃.8.计算:(1).12-(-18)+(-7)-15 (2).|+3|-|-6|-(+8) (3).135202463⎛⎫⎛⎫---+-- ⎪ ⎪⎝⎭⎝⎭ (4).()1122.511222---+--。
初一-第3讲-有理数的概念及分类
有理数的基本概念和分类现在开始学习有理数及其运算,主要内容是有理数的有关概念 .首先是借助生活中的实例引入负数,体会引入负数的必要性和广泛的应用性.理解有理数的意义及分类,判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量.其次是通过与温度计的类比认识数轴,用数轴上的点表示有理数,借助数轴引入相反数的概念及互为相反数的一对数在数轴上的位置关系,利用数轴比较有理数的大小.第三是借助数轴引入绝对值的概念及求一个数的绝对值,利用绝对值比较两个负数的大小,通过应用题解决实际问题,体会绝对值的意义和作用.教学建议:从我们所学过的数引入课题重点知识归纳及讲解1、正数和负数的概念比0大的数叫做正数;在正数前面加上“-”号的数叫做负数;0既不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”号,一般地“+”号往往省略不写,但负数前面的“-”号不能省略 .对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数 .2、有理数的概念及分类整数和分数统称为有理数:正数、负数和零也统称为有理数.整数包括正整数、零和负整数、分数包括正分数和负分数;正数包括正整数和正分数;负数包括负整数和负分数.到目前为止,我们学过的数细分有五类:正整数、正分数、零、负整数、负分数,因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.有时为了研究的需要,整数也可以看作是分母为1的分数,但本章中的分数是指不包括分母是1的分数.通常把正数和零统称为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数 .3、数轴的概念及画法规定了原点、正方向和单位长度的直线叫做数轴.数轴的概念中包含有三层含义:一是说数轴是一条直线,可以向两端无限延伸;二是说数轴具有原点,正方向和单位长度三要素,三者缺一不可;三是说数轴原点的选定,正方向的取向、单位长度大小的确定,是根据实际需要规定的.画数轴的步骤:(1)画一条直线,一般画成水平的直线;(2)在直线上选取一点为原点,用实心点表示,在原点下边标上0;(3)用箭头表示正方向,一般规定向右为正;(4)选取适当的长度为单位长度,用细短线画出,并在下边标上对应的数.4、相反数的概念如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等,这就是相反数的几何意义 .一般地,数a的相反数是-a,这里a表示任意一个数,可以是正数、负数或零,还可以代表任意一个代数式,表示或求一个数的相反数,只要在这个数的前面添上一个“-”号就可以了.相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数;不能理解为只要符号不同的两个数就互为相反数,只有符号不同的两个数是说除了符号不同以外完全相同 .5、绝对值的概念在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值记作“|a|”.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,这就是绝对值的代数意义,也可表示为:6、绝对值的有关性质(1)对任意有理数a,都有|a|≥0;(2)若|a|=0,则a=0;(3)若|a|=|b|,则a=b或a=-b;(4)若|a|=b(b>0),则a=±b;(5)若|a|+|b|=0,则a=0且b=0;(6)对任意有理数a,都有|a|=|-a|.7、有理数大小的比较法则在数轴上表示的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.三、难点知识剖析1、负数的产生及其意义随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,为了满足实际需要,引入了负数,负数是由于实际需要产生的,负数也是客观存在的数.正数和负数通常表示具有相反意义的量,若正数表示某种意义的量,则负数就表示其相反意义的量,反之亦然. 2、数集的概念把一些数放在一起,就组成一个数的集合,简称数集.所有的有理数组成的数集叫做有理数集,类似地,所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,等等.3、多重符号的化简规律单独一个有理数前面的“+”号和“-”号,一般都是性质符号,读作“正”号或“负”号.括号前是“+”号时,去掉括号和“+”号后,括号内的数不变,括号前是“-”号时,去掉括号和“-”号后,括号内的数就变成它的相反数.在一个数的前面添加一个“+”号,仍然与原数相同;在一个数的前面添加一个“-”号,就成为原数的相反数.4、两个负有理数的大小比较两个负有理数的大小比较与其它数一样,可以利用数轴找准两个负有理数在数轴上的对应点,右边的数总比左边的数大.两个负有理数的大小比较,还可以利用绝对值,求这两个数的绝对值,比较两个数绝对值的大小,绝对值大的反而小.5、有关绝对值的计算及化简灵活正确运用绝对值的代数意义及有关性质.四、典型例题解析例1、一个物体沿着南北两个相反方向运动,如果把向南的方向规定为正,那么走6km,走-4.5km,走0km的意义各是什么?分析:正数与负数可表示具有相反意义的量,正数表示向南运动,则负数表示向北运动 .0表示原地不动,0表示正数与负数的分界,在实际问题中也有确定的意义.解:走 6km表示物体向南走6km;走-4.5km表示物体向北走4.5km;走 0km表示物体原地不动.例2、某老师把某一小组五名同学的成绩简记为:+10、-5、0、+8、-3,又知记为0的实际成绩表示90分,正数表示超过90分,则这五位同学的平均成绩为多少分?分析:由题意先求出这五位同学的实际成绩,如简记为+10的学生实际成绩为100,然后再求平均成绩.解:依题意知,五位同学的实际成绩分别为:100、85、90、98、87,其平均成绩为:(分).例3、如图所示的数轴上,A、B、C、D、E各点分别表示什么数?分析:根据各点在原点的左侧,右侧还是在原点上,来确定数是负数,正数还是 0,根据各点距离原点多少个长度单位,来确定数的值.解:点A表示数3;点B表示数;点C表示数0;点D表示-3;点E表示数-4.例4、在数轴上画出表示下列各数的点,并用“ <”连接起来;分析:首先画出数轴,三要素要齐全;再把各数在数轴上的对应点找出来;然后根据这些数在数轴上的位置顺序比较大小,再用“ <”连接起来.解:这些数在数轴上的表示如图所示 .它们从小到大的排列为:.例5、化简下列各数的符号:分析:(1)-(-3)表示-3的相反数,即3,所以-(-3)=3;(2)+(-4)表示-4本身,即-4,所以+(-4)=-4;(3)因为-(-5)表示-5的相反数,即5;-[-(-5)]表示-(-5)的相反数,即表示5的相反数,即-5,所以-[-(-5)]=-5.(4)因为-(+2)表示+2的相反数,即-2;+[-(+2)]表示-(+2)本身,即-2本身;-{+[-(+2)]}表示+[-(+2)]的相反数,即-2的相反数,即2,所以-{+[-(+2)]}=2.解:(1)-(-3)=3;(2)+(-4)=-4;(3)-[-(-5)]=-5;(4)-{+[-(+2)]}=2.例6、利用绝对值比较下列有理数的大小 .(1)-0.6,-60 (2)分析:比较负数的大小,先求出各数的绝对值,关键是比较绝对值的大小,绝对值大的反而小,比较分数大小,一般要化成同分母的分数来比较 .解:(1)|-0.6|=0.6 |-60|=60∵ 0.6<60,∴-0.6>-60.(2)例7、已知|a|=5,求a.分析:除 0以外,绝对值相等的数都有两个,它们互为相反数,一定不能遗漏.解:∵ |5|=5,|-5|=5∴ a=5或a=-5例8、已知|a+2|+|b-3|=0,求a和b的值.分析:由绝对值的非负性可知, |a+2|≥0,|b-3|≥0,而且只有当|a+2|和|b-3|都等于0时,|a+2|+|b-3|=0才成立,因为只有0的绝对值等于0,所以a=-2,b=3.解:∵ |a+2|+|b-3|=0,又∵ |a+2|≥0,|b-3|≥0,∴ |a+2|=0,|b-3|=0.∴ a+2=0,b-3=0.∴ a=-2,b=3.例9、已知有理数a、b、c如图所示,试比较a,-a,b,-b,c,-c,0的大小,并用符号“<”连接起来.分析:a与-a,b与-b,c与-c是互为相反数,它们在数轴上表示的点关于原点对称,即与原点的距离相等,且分布在原点的两旁,据此先描出-a,-b,-c在数轴上表示的点的位置,即可比较出大小.解:-a,-b,-c在数轴上表示的点位置如图所示,它们的大小关系为:a<-c<b<0<-b<c<-a例10、解方程:|x-6|=5.分析:绝对值是5的数是+5或-5,从而得出关于x的两个等式,然后再求出x即可.解:∵ |x-6|=5,∴ x-6=5或x-6=-5,∴ x=5+6或x=6-5即x=11或x=1.1、“甲比乙大-3岁”表示的意义是()A.甲比乙小3岁B.甲比乙大3岁C.乙比甲大-3岁D.乙比甲小3岁2、正整数集合与负整数集合合并在一起组成的集合是()A.整数集合B.有理数集合C.自然数集合D.以上说法都不对3、下列说法中正确的个数有()(1)0是整数;(2)-1是负分数;(3)3.2不是正数;(4)自然数一定是正数;(5)负分数一定是负有理数.A.1个B.2个C.3个D.4个4、文具店、书店和玩具店依次坐落在一条南北走向的大街上,文具店在书店北边20m处,玩具店位于书店南边100m处,小明从书店沿街向南走了40m,接着又向南走了-60m,则此时小明的位置在()A.玩具店B.文具店C.文具店北边40m D.玩具店南边-60m5、下列各对数中,互为相反数的有()(1)(-1)与+(-1);(2)+(+1)与-1;(3)-(-2)与+(-2);(4)-(-)与+(+);(5)+[-(+1)]与-[+(-1)];(6)-(+2)与-(-2). A.6对B.5对C.4对D.3对6、一个数的相反数小于它本身,这个数是()A.任意有理数B.零C.负有理数D.正有理数7、绝对值等于4的数是()A.4B.-4 C.±4D.以上都不对8、绝对值大于2而小于5的所有正整数之和为()A.7B.8C.9D.109、下列各式中,正确的是()A.-|-16|>0B.|0.2|>|-0.2| C.D.|-6|<010、若有理数a、b在数轴上的对应点如图所示,则下列结论中正确的是()A.a>b B.|a|<b C.|a|>|b|D.a>|b|答案:ADCBC DCACC11、下列各数:-2,5,-,0.63,0,8,-0.05,-6,9,,1,其中正数有____________个,负数有____________个,正分数有____________个,负分数有____________个,自然数有____________个,整数有____________个.12、如果将点B向左移动3个单位长度,再向右移动5个单位长度,这时点B表示的数是0,那么点B原来表示的数是____________.13、在数轴上,点A表示的数是-2,点B表示的数是+4,则线段AB的中点所表示的数是____________.14、如果|a|+|b|=5,且a=-1,则b=____________.11、7,4,3,2,5,7 12、-213、1 14、±4【巩固练习】1、课桌的高度比标准高度高2毫米记作+2毫米,那么比标准高度低3毫米记作什么?现有5张课桌,量得它们的尺寸比标准尺寸高+1毫米,-1毫米,0毫米,+3毫米,-1.5毫米,若规定课桌的高度比标准高度最高不超过2毫米,最低不能少于2毫米就算合格,问上述5张课桌中有几张合格?1、-3毫米,4张2、画出数轴,把下列各组数分别表示在数轴上,并按由小到大的顺序排列,用“<”连接起来.(1)-1,0,-2,4,-4,1(2)-1,-3,0,2,1,4,-53、化简下列各数的符号,并分别归纳符号化简规律(1)-(+7);(2)-(-5);(3)-[+(-)];(4)-[-(-4)];(5)+{-[+(-3)]};(6)-{-[-(-1.5)]}.3、(1)-7 (2)+5(3)+(4)-4(5)+3 (6)+1.5符号化简规律:一个数前面有“+”号可以直接去掉;一个数前面有偶数个“-”号,其结果为正;一个数前面有奇数个“-”号,其结果为负 .4、比较下列各组数的大小:4、若|a|=3,|b|=4,且a、b同号,求|a+b|的值.。
六年级数学拓展内容(竞赛内容)第三讲 有理数(3)
第三讲 有理数(3)【例1】计算:11112481024++++【例2】计算: 11212312341235859()()()()23344455556060606060++++++++++++++++【例3】计算:11111111111111(1)()(1)()23200923420102320092010232009--+-+++---+--+++【例4】请你从下表归纳出333331234n +++++的公式并计算出:33333123450+++++的值。
练习:1、计算:23201012222S =+++++123452468103691215481216205101520252、计算111112123123100+++⋅⋅⋅+++++++⋅⋅⋅+的值.3、计算:111132010241111111111(1)(1)(1)(1)(1)(1)(1)(1)223234232010+++++++++++++的值。
快速训练题计算:1、⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛+95759277292、9819375.41213145232852÷⎪⎭⎫⎝⎛+⨯-3、1.1973117325.1762585.3⨯⎪⎭⎫ ⎝⎛÷+÷⎪⎭⎫ ⎝⎛-⨯4、()()()()320613632⨯-+---5、()2212271324÷⨯-+⨯6、224431313131÷⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-7、()31213261⨯÷--⨯8、()()()232332--⨯⨯÷-9、()()()222323223+-+⨯-+-⨯10、⎪⎭⎫⎝⎛-÷÷⎪⎭⎫ ⎝⎛-⨯-9727.2325.13211、2312312312⎪⎭⎫ ⎝⎛+÷-⨯÷12、()()713132274244⨯-⨯-⎪⎭⎫ ⎝⎛-13、()()()()()8253958347823232222⨯+-⨯+⨯--⨯---⨯-⨯14、1995994199219949931994⨯-⨯15、873.31197.0372.2736.611217.0÷+⨯+÷-⨯-⨯ 16、16163125883225443325⨯+⨯+⨯17、()[]5.16.47.34.52.52.96.142.55.1010⨯-⨯+⨯-⨯÷-18、⎪⎭⎫ ⎝⎛⨯-⨯-⨯+⨯-17985.03718721817885.0 19、29.2304342942927.443043029.4-⨯-⨯20、()()[]22223434435.01441094112140--⨯-⨯÷-÷⎪⎭⎫ ⎝⎛+⨯-21、⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+++⨯⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛-+9532121916131219161121916132953补充练习1、一次考试共有5道题,其中有81%的人做对第一题,第二题有91%的做对第二题,有85%的人做对第3题,79%的人做对第4题,74%的人做对第5题,做对三道题或三道以上的为合格,合格率最多是多少?,合格率最少是多少?2、有一台天平,只有5克和30克砝码各一个,现在要把300克盐平均分成三等份,至少要用这台天平秤几次?3、某修建队要安装一条31米长的管道,现有3米和5米长的水管,已知3米长的水管每根32元,5米长的水管每根50元,请问安装这条水管至少需要多少元?4、采石场采出了200块花岗岩石料,其中有120块各重7吨,其余的每块各重9吨,每节火车车厢至多载重40吨.问:为了运出这批石料,至少需要多少节车厢?5、某种健身球由1个黑球和1个白球组成一套,已知两个车间都生产这种健身球,甲车间每月用16天生产黑球,14天生产白球,共生产448套,乙车间每月用12生产黑球,18天生产白球,共生产了720套。
第三讲 有理数的四则运算
第三讲 有理数的四则运算一、 知识点:1、 有理数乘法法则:两个有理数相乘,同号得正,异号得负,绝对值相乘. 任何有理数和0相乘都得02、有理数除法法则:两个有理数相除,同号得正,异号得负,绝对值相除. 0除以任何非0的数都得0.(注意:0不能作除数.)3、除法的法则也可以这样说,除以一个数,就等于乘以这个数的倒数. (注意:0没有倒数,即0不能作除数.)4、如何求一个数的倒数互为倒数的两个数乘积为1,所以知道其中一个数,求它的倒数就用1除以这个数即可. 如:求53-的倒数,1÷(53-)=35- 所以35-是53-的倒数. 5、几个非0的有理数相乘除除,结果的符号怎样确定?6、有理数的四则运算和整数的四则运算一样,先算乘除,后算加减,有括号先算括号里的。
二、 例题:填空题:1.-2的倒数是 ;-0.2的倒数是 ,负倒数是 。
2. 被除数是215-,除数是1211-的倒数,则商是 。
3. 若0<a b ,0<b ,则a 0。
4. 若0<c ab ,0>ac ,则b 0。
5、一个数的相反数是-5,则这个数的倒数是 。
6、若a ·(-5)=58,则a = 。
解答题:1、(1)(—0.1)÷10;(2)(—271)÷(—145);(3)61÷(—2.5) (4)(—10)÷(—8)÷(—0. 25);2、(1))5489(5.4⨯-÷-; (2)0÷(—5)÷100;(3)3.5÷()323()154-⨯-; (4))75.0(813542313-÷⎪⎭⎫ ⎝⎛-÷÷⎪⎭⎫ ⎝⎛-.3、求下列各数的倒数,并用“>”连接. -32,-2,|21|,3,-1三、 课堂练习:一、 选择题1.若ab>0,a+b>0,则a 、b 两数( )(A)同为正数. (B)同为负数. (C)异号. (D)异号且正数绝对值较大.2.互为相反数的两数的积是( )(A)等于0. (B)小于0. (C)非正数. (D)非负数.3.如果两个数的差乘以这两个数的和时,积为零,则这两个数 ( )(A)相等. (B)互为倒数. (C)互为相反数. (D)绝对值相等.4.下列各对数中互为倒数的是( )(A)-7和7. (B)-1和1. (C)-312和27. (D)0.25和-14. 5.(-6)÷3⨯13的值为( ) (A)-6. (B)6. (C)-23. (D)23. 6. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.35 7.天安门广场面积约为44万平方米,请你估计一下,它的百万分之一可能会是( )(A)教室地面的面积 (B)黑板面的面积 (C)课桌面的面积 (D)铅笔盒盒面的面积8.一个非零有理数和它的相反数的商是( )(A)0. (B)1. (C)-1. (D)以上结论都不对.二、填空题9.等式[(-7.3÷(-517)=0 表示的数是 .10. 7.20.9 5.6 1.7---+=。
第03讲有理数的加减(知识解读真题演练课后巩固)(原卷版)
第3讲有理数的加减1.理解有理数加法和减法法则;2.能利用加法和减法法则进行简单的有理数的加法、减法运算;3.能掌握加法、减法的运算定律和运算技巧,熟练计算;4.通过将减法转化成加法,初步培养学生数学的归一思想知识点1 :加法法则⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
知识点2:加法运算定律(1)加法交换律:两数相加,交换加数的位置,和不变。
即a+b=b+a(2)加法结合律:在有理数加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
即a+b+c=(a+b)+c=a+(b+c)知识点3 :减法法则减法法则:减去一个数,等于加上这个数的相反数。
即a-b=a+(﹣)b【题型 1 有理数的加减法的概念辨析】【典例1】(2023•青龙县二模)把18﹣(+10)+(﹣7)﹣(﹣5)写成省略括号的形式后,正确的是()A.18﹣10﹣7﹣5B.18﹣10﹣7+5C.18+10﹣7+5D.18+10﹣7﹣5【典例1-2】(2023•江源区一模)计算8﹣(5﹣2)的结果等于()A.2B.5C.﹣2D.﹣8(2023•香坊区一模)哈市某天的最高气温为11℃,最低气温为﹣6℃,【变式1-1】则最高气温与最低气温的差为()A.17℃B.5℃C.﹣17℃D.﹣5℃【变式1-2】(2022秋•辉县市校级期末)把(+5)﹣(+3)﹣(﹣7)+(﹣2)写成省略括号的和的形式是()A.﹣5﹣3+7﹣2B.5﹣3﹣7﹣2C.5﹣3+7﹣2D.5+3﹣7﹣2【变式1-3】(2023春•闵行区期中)如果两个数的和是正数,那么()A.这两个加数都是正数B.一个加数为正数,另一个加数为0C.一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对D.以上皆有可能【题型 2 有理数的加减法在数轴上的运用】【典例2】(2023•珠晖区校级模拟)如图,数轴上A、B两点所表示的数之和为()A.2B.﹣2C.4D.﹣4【变式2-1】(2022秋•泗水县期末)有理数a,b在数轴上的对应点如图所示,则下面式子中错误的是()A.b<0<a B.|b|>|a|C.b﹣a>0D.a﹣b>a+b【变式2-2】(2022秋•鹤峰县期中)已知a,b是有理数,若a在数轴上的对应点的位置如图所示,a+b<0,有以下结论:①b<0;②b﹣a>0;③|﹣a|>﹣b;④<﹣1.则所有正确的结论是()A.①③B.①④C.②③D.②④【变式2-3】(2021秋•牡丹区期末)在数轴上,到原点的距离等于1的点表示的所有有理数的和是.【题型3有理数的加减法混合运算】【典例3】(2022秋•张店区校级月考)计算:(1)+(﹣)+(﹣);(2)43+(﹣77)+27+(﹣43);(3)(+1.25)+(﹣)+(﹣)+(+1).【变式3-1】(2022秋•商水县校级月考)计算:(1)25+(﹣18)+4+(﹣10);(2)(﹣3)+(+7)+(5.5).【变式3-2】(2022•南京模拟)计算:(1)(﹣2)+(+3)+(+4)+(﹣3)+(+5)+(﹣4);(2).(1)(﹣2.7)+1.5+(﹣0.9)+(﹣0.3)+3.9;(2)(﹣3)+9+(﹣1)+3+(﹣14)+5.【典例4】计算下列各题,能简算的要简算.(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)2﹣(+10)+(﹣8)﹣(+3);(3)598﹣12﹣3﹣84.【变式4-1】(2022•南京模拟)计算:(﹣4)﹣(﹣5)+(﹣4)﹣3.(1)7+(﹣2)﹣3.4;(2)(﹣21.6)+3﹣7.4+(﹣);(3)31+(﹣)+0.25;(4)7﹣(﹣)+1.5;(5)49﹣(﹣20.6)﹣;(6)(﹣)﹣7﹣(﹣3.2)+(﹣1)【题型 4 有理数的加减法与绝对值综合】【典例5】(2021秋•广丰区期末)计算:﹣﹣|﹣|﹣(﹣)+1.【变式5-1】(2021秋•大洼区期末)计算:7+(﹣14)﹣(﹣9)﹣|12|.【变式5-2】(2022秋•庆云县校级月考)计算:(1)0﹣5;(2)(﹣1.13)﹣(+1.12);(3)﹣5+(﹣2);(4)﹣3﹣|﹣6|;(5)(﹣0.75)+3|;(6)6.47﹣4.【变式5-3】(2022秋•临泽县校级月考)计算:(1)﹣7﹣(﹣10)+4;(2)1+(﹣2)﹣5+|﹣2﹣3|;(3);(4)12﹣(﹣6)+(﹣9);(5)(﹣40)﹣28﹣(﹣19)+(﹣24);(6)15﹣[1﹣(﹣20﹣4)].【题型5有理数的加减法中的规律计算】【典例6】(2022秋•椒江区校级月考)在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式;①|7﹣21|=;②||=;(2)用合理的方法计算:||+||﹣|﹣|;(3)用简单的方法计算:|﹣1|+|﹣|+|﹣|+|﹣|+…+||.【变式6-1】(2022秋•卧龙区校级月考)阅读下面的计算过程,体会“拆项法”计算:﹣5+(﹣9)+17+(﹣3).解:原式=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=(﹣1)启发应用用上述的方法完成下列计算:(﹣3)+(﹣1)+2﹣(+2).【变式6-2】(2021秋•长兴县月考)在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式;①|7﹣21|=;②|﹣+0.8|=;③|﹣|=;(2)用合理的方法计算:|﹣|+|﹣|﹣|﹣|;(3)用简单的方法计算:|﹣|+|﹣|+|﹣|+…+|﹣|.【变式6-3】﹣=,﹣=,﹣=,…,﹣=.(1)可得﹣=.(2)利用上述规律计算:+++++.【题型 6 有理数的加减法的实际应用】【典例7】(2022秋•洛川县校级期末)为了庆祝中华人民共和国成立72周年,空军航空开放活动在其机场举行,某特技飞行队做特技表演时,其中一架Jkmkmkmkmkm.(1)求该飞机完成这四个表演动作后离地面的高度;(2)已知飞机平均上升1km需消耗5L燃油,平均下降1km需消耗3L燃油,那么这架飞机在做完这四个表演动作过程中,一共消耗了多少升燃油?【变式7-1】(2022秋•市中区期末)2021年9月28日,第十三届中国航展在广东珠海举行,中国空军航空大学“红鹰”飞行表演队在航展上表演特技飞行,如图所示,表演从空中某一位置开始,上升的高度记作正数,下降的高度记作负数,五次特技飞行高度记录如下:+2.5,﹣1.2,+1.1,﹣1.5,+0.8.(单位:千米)(1)求飞机最后所在的位置比开始位置高还是低?高了或低了多少千米?(2)若飞机平均上升1千米需消耗6升燃油,平均下降1千米需消耗4升燃油,则飞机在这5次特技飞行中,一共消耗多少升燃油?【变式7-2】(2022秋•万源市校级期末)某仓库原有商品300件,现记录了10天内该类商品进出仓库的件数如下所示(“+”表示进库,“﹣”表示出库):+30,﹣10,﹣15,+25,+17,+35,﹣20,﹣15,+13,﹣35.(1)请问经过10天之后,该仓库内的商品是增加了还是减少了?此时仓库还有多少商品?(2)如果商品每次进出仓库需要人工搬运费是每件3元,请问这10天要付多少人工搬运费?【变式7-3】(2022秋•罗山县期末)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?【题型7 有理数的加减法中的新定义问题】【典例8】(2022秋•海珠区校级期末)现将偶数个互不相等的有理数分成个数相同的两排,需满足第一排中的数越来越大,第二排中的数越来越小.例如,轩轩将“1,2,3,4”进行如下分组:第一列第二列第一排12第二排43然后把每列两个数的差的绝对值进行相加,定义为该分组方式的“M值”.例如,以上分组方式的“M值”为M=|1﹣4|+|2﹣3|=4.(1)另写出“1,2,3,4”的一种分组方式,并计算相应的“M值”;(2)将4个自然数“a,6,7,8”按照题目要求分为两排,使其“M值”为6,求a的值.【变式8-1】(2021秋•沿河县期末)定义:对于一个有理数x,我们把[x]称作x 的对称数:若x≥0,则[x]=x﹣2,若x<0,则[x]=x+2:例:[1]=1﹣2=﹣1,[﹣2]=﹣2+2=0.(1)求[2]+[﹣1]的值;(2)若x<﹣1时,解方程:[2x]+[x+1]=1.【变式8-2】(2021秋•永春县期中)设[a]表示不超过a的最大整数,例如:.(1)填空:=;[3.6]=.(2)令(a)=a﹣[a],求(3)﹣[﹣2.4]+(﹣7)(说明:此式第一,三项表示所定义的运算).【变式8-3】(2022春•衡阳县期末)定义:对于确定位置的三个数:a,b,c,计算a﹣b,,,将这三个数的最小值称为a,b,c的“分差”,例如,对于1,﹣2,3,因为1﹣(﹣2)=3,=﹣1,=﹣,所以1,﹣2,3的“分差”为﹣.(1)﹣2,﹣4,1的“分差”为;(2)调整“﹣2,﹣4,1”这三个数的位置,得到不同的“分差”,那么这些不同“分差”中的最大值是;(3)调整﹣1,6,x这三个数的位置,得到不同的“分差”,若其中的一个“分差”为2,求x的值.1.(2022•沈阳)计算5+(﹣3),结果正确的是()A.2B.﹣2C.8D.﹣8 2.(2022•天津)计算(﹣3)+(﹣2)的结果等于()A.﹣5B.﹣1C.5D.1 3.(2021•西宁)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(﹣2),根据这种表示法,可推算出图2所表示的算式是()A.(+3)+(+6)B.(+3)+(﹣6)C.(﹣3)+(+6)D.(﹣3)+(﹣6)4.(2022•呼和浩特)计算﹣3﹣2的结果是()A.﹣1B.1C.﹣5D.55.(2022•杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.﹣8℃B.﹣4℃C.4℃D.8℃6.(2022•河北)与﹣3相等的是()A.﹣3﹣B.3﹣C.﹣3+D.3+ 7.(2021•河北)能与﹣(﹣)相加得0的是()A.﹣﹣B.+C.﹣+D.﹣+ 8.(2022•台湾)算式+﹣(﹣)之值为何?()A.B.C.D.9.(2019•德州)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}=.1.(2022秋•徐州月考)下列说法正确的有()个①在数轴上0和−1之间没有负数②有理数分为正有理数和负有理数③绝对值是它本身的数只有0④两数之和一定大于每个加数A.0个B.1个C.2个D.3个2.(2022秋•赣州期末)有理数a,b在数轴上的位置如图,则下列说法中,错误的是()A.a<0B.b>0C.b﹣a>0D.a+b<0 3.(2021春•随县期末)已知[x]表示不超过x的最大整数.如:[3.2]=3,[﹣0.7]=﹣1.现定义:{x}=[x]﹣x,如{1.5}=[1.5]﹣1.5=﹣0.5,则{3.9}+{﹣}﹣{1}=.4.(2022秋•通州区期末)计算:(﹣17)﹣(﹣46)﹣(+13)+(﹣16).5.(2022秋•薛城区校级月考)计算:(1)﹣20﹣(﹣18)+(﹣14)+13;(2)﹣85﹣(﹣77)+|﹣85|﹣(﹣3);(3)(﹣2.5)﹣(﹣2)+2;(4).6.(2022秋•甘井子区期中)计算下列各题:(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣+(﹣)+﹣(﹣)﹣1.7.(2021秋•沭阳县校级月考)计算题(1)(﹣20)+16;(2)(﹣18)+(﹣13);(3)+(﹣)++(﹣);(4)|﹣45|+(﹣71)+|﹣5|+(﹣9).8.(2022秋•滕州市校级月考)计算(1)(8)+(﹣15)﹣(9)﹣(﹣12)(2)16+(﹣25)+14﹣(﹣40)(3)5.27+(﹣6)﹣(﹣2.27)+1.73(4)2﹣2.25﹣(﹣1)+2(5)(﹣6)﹣(﹣4)+(﹣3)﹣(﹣5)(6)(﹣)+4+(﹣3)﹣22.5+(﹣).9.(2022秋•西城区校级期中)在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=﹣6+7;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+2|=9;②|﹣+|=;(2)用简单的方法计算:|﹣|+|﹣|+|﹣|+…+|﹣|.10.(2021秋•绿园区期末)某村共有8块小麦试验田,每块试验田今年的收成与去年相比情况如下(增产为正,减产为负,单位:kg):55,﹣40,10,﹣16,27,﹣5,﹣23,38.那么今年的小麦总产量与去年相比是增加了还是减少了?增加或减少了多少?11.(2022秋•市南区校级期末)某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?12.(2021秋•康定市期末)某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km)第1批第2批第3批第4批第5批5km2km﹣4km﹣3km6km (1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.3升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米加1.6元收费,在这过程中该驾驶员共收到车费多少元?13.找规律,完成下列各题:(1)如图①,把正方形看作1,=.(2)如图②,把正方形看作1,=.(3)如图③,把正方形看作1,=.(4)计算:=.(5)计算:=.。
03第三讲附录2 数的抽象构造(3)——实数的构造
定义3: ®按等价关系“~”划分的等价类(以
[(rn)]表示(rn)所属的等价类)叫做实数,一切实
数组成的集合叫做实数集,记为R.
实数集上的运算
定义4(实数加法)实数集R上的二元运算加法
“+”规定如下:对于任意[(rn)],[(sn)]∈ R,
[(rn)]+[(sn)]=[(rn+sn)]
例 证明方程x2=2的解不是有理数. 证明:假设x=p/q, 其中(p,q)=1, 则X2=p2/q2 , 即
p2=2q2 ∴ 2|p2 ∴ 2|p ∴ 4|p2 , 即4|2q2 ∴ 2|q2 ∴ 2|q ∴ 2|(p,q), 即2|1
有理数域缺乏完备性
代数≠拓扑
微积分的基础是极限运算,尽管有理数集是一 个域,在加减乘除运算下都封闭,但它在极限 运算下并不是一个封闭的数域。因为尽管某些 有理序列本身收敛(cauchy序列意义下),但 在有理数范围内找不到一个极限值。即有理数 域并不完备。
讨论题
9为什么0.999…=1 ? 9用“实数就是十进制小数”的观 点在有理数理论的基础上构造 实数理论
上述定义是合理的,这需要证明
若(rn), (sn)是有理数Cauchy序列, 则(rn+sn)也是有理
数Cauchy序列. R中的加法运算与等价类代表的选取无关。即
若(rn)~(xn), (sn)~(yn), 则(rn+sn)~(xn+yn).
定义5(实数乘法)实数集R上的二元运算乘法
Cauchy序列。
定理7 实数序列极限存在的充要条件是它是实 数Cauchy序列。
Dedekind构造
实数的构造
定义1 设A, B ⊆ Q, 二元组(A,B)称为Dedekind 分割, 当且仅当满足: 1) A∪B=Q 2) A∩B=Ø 3) 对于任意a∈A, b∈B, 有a<b. 并称集A为分割的下类,集B为分割的上类。
第3讲有理数的加减法、乘除法及混合运算
第3讲有理数的加减法、乘除法及混合运算进门测易1.﹣2019的相反数是()A.﹣2019B.﹣C.2019D.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:C.2.若实数a、b互为相反数,则下列等式中成立的是()A.a﹣b=0B.a+b=0C.ab=1D.ab=﹣1【解答】解:∵实数a、b互为相反数,∴a+b=0.故选:B.3.﹣25的绝对值是()A.﹣25B.25C.D.【解答】解:|﹣25|=25,故选:B.4.若a是非零实数,则()A.a>﹣a B.C.a≤|a|D.a≤a21【解答】解:当a=﹣1时,a<﹣a,a=,故选项A、B错误;当a=时,a>a2,故选项D错误;当a时非0实数时,a≤|a|,故选项C正确.故选:C.5.下面说法:①﹣a一定是负数;②若|a|=|b|,则a=b;③一个有理数中不是整数就是分数;④一个有理数不是正数就是负数.其中正确的个数有()A.1个B.2个C.3个D.4个【解答】解:①﹣a一定是负数,说法错误,如果a=﹣1,则﹣a=1;②若|a|=|b|,则a=b,说法错误,例如|3|=|﹣3|,但是3≠﹣3;③一个有理数中不是整数就是分数,说法正确;④一个有理数不是正数就是负数,说法错误,还有0,0既不是正数也不是负数;正确的个数有1个,故选:A.6.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①②B.①③C.①②③D.①②③④【解答】解:0是绝对值最小的有理数,所以①正确;相反数大于本身的数是负数,所以②正确;数轴上在原点两侧且到原点的距离相等的数互为相反数,所以③错误;两个负数比较,绝对值大的反而小,所以④错误.故选:A.2中1.如果a与﹣3互为相反数,那么a等于()A.﹣3B.3C.D.【解答】解:∵a与﹣3互为相反数,∴a=3.故选:B.2.若m﹣2的相反数是5,那么﹣m的值是()A.+7B.﹣7C.+3D.﹣3【解答】解:∵m﹣2的相反数是5,∴m﹣2=﹣5,解得:m=﹣3,故﹣m=3.故选:C.3.下列各组数中,互为相反数的一组是()A.﹣和0.333B.﹣[+(﹣7)]和﹣(﹣7)C.﹣0.25和0.25D.﹣(﹣6)和6【解答】解:A、﹣和互为相反数,此选项错误;B、﹣[+(﹣7)]=7,﹣(﹣7)=7,则﹣[+(﹣7)]=﹣(﹣7),此选项错误;C、﹣0.25和0.25互为相反数,此选项正确;D、﹣(﹣6)=6,此选项错误;故选:C.34.若|﹣a|=a,则a应满足的条件为.【解答】解:∵|﹣a|=a,∴a≥0,故答案为:a≥0.5.绝对值小于2.5的所有整数是.【解答】解:绝对值小于2.5的所有整数是﹣2、﹣1、0、1、2.故答案为:﹣2、﹣1、0、1、2.难1.若a﹣5和﹣7互为相反数,求a的值.【解答】解:根据性质可知a﹣5+(﹣7)=0,得a﹣12=0,解得:a=12.2.(1)已知:x和2x﹣12互为相反数,求x的值(2)已知:a是1的相反数,b的相反数是﹣3,c是最大的负整数,求a+b+c的值.【解答】解:(1)∵x和2x﹣12互为相反数,∴x+2x﹣12=0,解得:x=4;(2)∵a是1的相反数,∴a=﹣1,∵b的相反数是﹣3,∴b=3,4∵c是最大的负整数,∴c=﹣1,∴a+b+c=﹣1+3﹣1=1.3.如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点或点.(填“A”、“B”“C”或“D”)【解答】解:由图示知,b﹣a=4,①当a>0,b>0时,由题意可得|a|=3|b|,即a=3b,解得a=﹣6,b=﹣2,舍去;②当a<0,b<0时,由题意可得|a|=3|b|,即a=3b,解得a=﹣6,b=﹣2,故数轴的原点在D点;③当a<0,b>0时,由题意可得|a|=3|b|,即﹣a=3b,解得a=﹣3,b=1,故数轴的原点在C点;综上可得,数轴的原点在C点或D点.故填C、D.4.﹣4,5,﹣7三数的和比这三数的绝对值的和小多少?【解答】解:根据题意得:|﹣4|+|5|+|﹣7|﹣(﹣4+5﹣7)=4+5+7+4﹣5+7=22,则﹣4、﹣5、+7三个数的和比这三个数绝对值的和小22.5.化简:|2x﹣3|+|3x﹣5|﹣|5x+1|【解答】解:①当x<﹣时,原式=3﹣2x+5﹣3x+5x+1=9.②当﹣≤x时,原式=3﹣2x+5﹣3x﹣5x﹣1=﹣10x+7.③当≤x<时,原式=2x﹣3+5﹣3x﹣5x﹣1=﹣6x+1.④当x≥时,原式=2x﹣3+3x﹣5﹣5x﹣1=﹣95有理数的加减法及混合运算知识讲解1. 有理数加法法则①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数加减,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加仍得这个数.✓方法指引:在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.)2. 加法运算律加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).2. 有理数减法法则减去一个数,等于加这个数的相反数.即:a-b=a+(-b)✓方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.3. 有理数加减混合运算的方法有理数加减法统一成加法.✓方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的6和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.典型例题1.计算:(1)(+)+(﹣)(2)(﹣10.5)+(﹣1.3)(3)(﹣)+(﹣)+(﹣)+(+)(4)(+0.56)+(﹣0.9)+(+0.44)+(﹣8.1)【解答】解:(1)(+)+(﹣)=﹣==;(2)(﹣10.5)+(﹣1.3)=﹣11.8;(3)(﹣)+(﹣)+(﹣)+(+)=(﹣﹣)+(﹣+)7=﹣1﹣2=﹣3;(4)(+0.56)+(﹣0.9)+(+0.44)+(﹣8.1)=(0.56+0.44)+(﹣0.9﹣8.1)=﹣8.2.计算:(1)(﹣2)+3+1+3+(﹣3)+2+(﹣4);(2)3+(﹣2)+5+(﹣8).【解答】解:(1)(﹣2)+3+1+3+(﹣3)+2+(﹣4)=(﹣2﹣3﹣4)+(3+1+3+2)=﹣9+9=0(2)3+(﹣2)+5+(﹣8)=(3+5)﹣(2+8)=9﹣11=﹣2.3.﹣﹣【解答】解:﹣﹣=(﹣)+(﹣)=(﹣)+(﹣)=﹣.4.计算:﹣(+9)﹣12﹣(﹣).【解答】解:﹣(+9)﹣12﹣(﹣)=﹣(﹣)﹣9﹣12=1﹣21=﹣2085.0.47﹣4﹣(﹣1.53)﹣1.【解答】解:0.47﹣4﹣(﹣1.53)﹣1=(0.47+1.53)﹣(4+1)=2﹣6=﹣4.6.计算:(+5)﹣(﹣3)+(﹣7)﹣(+12)【解答】解:原式=5+3﹣7﹣12,=﹣11.7.计算:【解答】解:原式=1+﹣=1﹣=1.8.计算:﹣5+(+2)+(﹣1)﹣(﹣)【解答】解:﹣5+(+2)+(﹣1)﹣(﹣)=(﹣5﹣1)+(2+)=﹣7+3=﹣4.变式练习1.计算:(﹣)+(0.75)+(+)++1【解答】解:原式=﹣++++1=﹣++++1=﹣++1=.92.(﹣3)+(+15.5)+(﹣6)+(﹣5)【解答】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.3.计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96).【解答】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.4.计算(1)﹣5++(﹣1)(2)﹣++(﹣)(3)|﹣|++(﹣)【解答】解:(1)﹣5++(﹣1)=﹣6+=﹣;(2)﹣++(﹣)=﹣;(3)|﹣|++(﹣)10=+﹣=﹣=.5.10﹣(﹣7)【解答】解:10﹣(﹣7)=10+7=17.6.计算:(﹣5)﹣(+12)﹣(﹣7).【解答】解:原式=﹣5+(﹣12)+7=﹣17+7=﹣10.7.计算:12﹣(﹣18)+(﹣5)﹣6.【解答】解:12﹣(﹣18)+(﹣5)﹣6=12+18﹣5﹣6=30﹣5﹣6=19.8.计算:3+(﹣)﹣2.【解答】解:3+(﹣)﹣2=3﹣2﹣=1﹣=.9.(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4.11【解答】解:(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4=﹣﹣﹣+++4=﹣4++4=.有理数的乘除法及混合运算知识讲解1.(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同零相乘,都得0.(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.(4)方法指引:①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.2. 倒数:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.✓方法指引:①倒数是除法运算与乘法运算转化的“桥梁”和“渡船”.正像减法转化为加法与相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0没有倒数,这与相反数不同.【规律方法】求相反数、倒数的方法求求求求求求求求求求求求求求求求求求求求求求求求求求求求“-”求求12求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求求注意:0没有倒数.3.(1)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•(b≠0)(2)方法指引:①两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.②有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.4. 有理数乘除混合运算的方法有理数乘除法统一成乘法.✓方法指引:①在一个式子里,有乘法也有除法,根据有理数除法法则,把除法都转化成乘法,然后确定积的符号,最后把各乘数的绝对值相乘求出结果.②把除法都转化成乘法后,就可以应用乘法的运算律,使计算简化.典型例题1.(﹣8)×(﹣)×(﹣1.25)×【解答】解:原式=﹣8×1.25××=﹣.2.计算:()×24.【解答】解:原式=×24+×24﹣×24=3+16﹣1813=19﹣18=1.3.用简便方法计算:(﹣9)×18.【解答】解:原式=(10﹣)×(﹣18)=﹣180+=﹣179.4.(﹣)÷(﹣)【解答】解:原式=×=.5.计算:6÷(﹣3)×().【解答】解:6÷(﹣3)×()=﹣2×()=3.6.计算:【解答】解:原式=﹣16÷5=﹣.7.计算:×(﹣4)÷1【解答】解:原式=.8.(﹣)×(﹣)÷(﹣2).【解答】解:原式=(﹣)×(﹣)×(﹣)=﹣.14变式练习1.×(﹣)××.【解答】解:×(﹣)××=(×)×(﹣×)=×(﹣)=﹣.2.(﹣3)××(﹣)×(﹣)【解答】解:(﹣3)××(﹣)×(﹣)=(﹣)×(﹣)×(﹣)=×(﹣)=﹣3.﹣99×36.【解答】解:﹣99×36=(﹣100+)×36=﹣100×36+×36=﹣3600+=﹣3599.154.计算:(1)﹣0.75×(﹣0.4 )×1;(2)0.6×(﹣)×(﹣)×(﹣2).【解答】解:(1)原式=﹣0.75×(﹣0.4 )×=××=;(2)原式=0.6×(﹣)×(﹣)×(﹣2)=﹣×××=﹣1.5.计算:【解答】解:原式=××=.6.计算(1)﹣2.5÷(2)﹣4×÷(﹣)×2【解答】解:(1)原式=﹣××(﹣)=1;(2)原式=﹣4××(﹣2)×2=8.7.计算:﹣×16【解答】解:原式=﹣××=﹣.8.÷(﹣1)×.【解答】解:原式=﹣××=﹣.有理数的加减乘除混合运算知识讲解1. 有理数加减乘除混合运算的方法(1)有理数的加减乘除混合运算的顺序:先乘除,后加减,有括号的先计算括号里面的;(2)同级运算中,按照自左向右的顺序计算.典型例题1.(1)﹣1﹣2×|﹣|+(﹣6)×(﹣)(2)(﹣+﹣)×(﹣36)【解答】解:(1)﹣1﹣2×|﹣|+(﹣6)×(﹣)=﹣1﹣2×+2=﹣1﹣+2=;(2)(﹣+﹣)×(﹣36)=16+(﹣30)+1517=1.2.计算:①13+(﹣5)﹣(﹣21)﹣19.②(﹣3)×6÷(﹣2)×.【解答】解:①原式=13﹣5+21﹣19=34﹣24=10;②原式===.3.计算:(﹣24)÷4+(﹣4)×(﹣).【解答】解:原式=﹣6+6=0.4.计算:(﹣3)×2+(﹣24)÷4﹣(﹣3)【解答】解:(﹣3)×2+(﹣24)÷4﹣(﹣3)=﹣6﹣6+3=﹣9.变式练习1.计算:(1)2+3÷18(2)(3)2(4)1【解答】解:(1)2+3÷=2+3×5=2+15=17;(2)==4;(3)2=2÷()×=2÷×=2×=15;(4)1==÷[()×]19=÷(4×)===.2.计算:﹣1﹣(1+0.5)×|﹣|÷(﹣4)【解答】解:﹣1﹣(1+0.5)×|﹣|÷(﹣4)=﹣1﹣=﹣1+=﹣.3.计算:【解答】解:原式=×(﹣)+×2=1﹣+=1+=.4.计算:(1)﹣7﹣3+8(2)20【解答】解:(1)原式=﹣10+8=﹣2;(2)原式=﹣×6+4﹣30=﹣30.出门测易1. 8+(﹣21)【解答】解:8+(﹣21)=﹣(21﹣8)=﹣13.2. 9+(﹣17)+21+(﹣23)【解答】解:原式=9+21+(﹣17)+(﹣23)=30+(﹣40)=﹣10 3.计算:12﹣(﹣18)+(﹣7)﹣20【解答】解:原式=12+18﹣7﹣20=30﹣27=3.4.计算:.【解答】解:原式=×(﹣60)﹣×(﹣60)﹣×(﹣60)=﹣40+55+56=71.5.计算:(﹣1)×(﹣)=.【解答】解:原式=×=.中211.计算:(﹣5)+(﹣17)﹣(+3).【解答】解:原式=﹣5﹣17﹣3=﹣25.2.计算:1.25【解答】解:原式===.3.(﹣+)÷(﹣)【解答】解:原式=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=(﹣9)﹣(﹣1)+(﹣4)=(﹣9)+(+1)+(﹣4)=﹣12.4.计算:3×(﹣)÷(﹣1).【解答】解:原式==.5.计算:(1)﹣(﹣).(2)10+()×(﹣12).22【解答】解:(1)﹣(﹣)==1;(2)10+()×(﹣12)=10+(﹣3)+6+(﹣8)=5.难1.计算(1)9+(﹣7)+10+(﹣3)+(﹣9)(2)12+(﹣14)+6+(﹣7)(3)﹣(4)﹣4.2+5.7+(﹣8.7)+4.2.【解答】解:(1)原式=9﹣7+10﹣3﹣9=0;(2)原式=12﹣14+6﹣7=﹣3;(3)原式=﹣﹣﹣+=﹣1﹣=﹣1;(4)原式=﹣4.2+4.2+5.7﹣8.7=﹣3.2.计算:10﹣8﹣(﹣6)﹣(+4).【解答】解:10﹣8﹣(﹣6)﹣(+4),=10﹣8+6﹣4,=10+6﹣8﹣4,23=4.3.计算题(1)(﹣6)+(+11)(2)﹣28+(﹣4)+29+(﹣24)(3)(﹣0.6)﹣(3)﹣(+7)+2﹣2(4)12.32﹣14.17﹣|﹣2.32|+(﹣5.83)【解答】解:(1)原式=11﹣6=5;(2)原式=﹣(28+4+24)+29=﹣56+29=﹣27;(3)原式=﹣+(﹣7)+2﹣3﹣2=﹣8﹣﹣2=﹣10;(4)原式=12.32﹣2.32﹣(14.17+5.83)=10﹣20=﹣10.4.计算:(1)(2)2×(﹣7)﹣6×(﹣9).【解答】解:(1)原式=;(2)原式=﹣14+54=40.5.(1)(﹣)×(﹣3)÷(﹣1)÷3(2)[(+)﹣(﹣)﹣(+)]÷(﹣)【解答】解:(1)原式=﹣×××=﹣;24(2)原式=(+﹣)×(﹣105)=﹣15﹣35+21=﹣29.课后巩固易1.计算﹣6+4的结果为()A.10B.﹣10C.2D.﹣2【解答】解:原式=﹣2,故选:D.2.计算4+(﹣3)的结果等于()A.﹣7B.7C.﹣1D.1【解答】解:4+(﹣3)=4﹣3=1故选:D.3.计算(﹣5)﹣3的结果等于()A.﹣8B.﹣2C.2D.8【解答】解:(﹣5)﹣3=(﹣5)+(﹣3)=﹣8,故选:A.4.计算﹣3﹣5结果正确的是()A.﹣8B.﹣2C.2D.8【解答】解:﹣3﹣5=﹣8,故选:A.5.按照有理数加法则,计算(﹣180)+(+20)的正确过程是()A.﹣(180﹣20)B.+(180+20)C.+(180﹣20)D.﹣(180+20)25【解答】解:(﹣180)+(+20)=﹣(180﹣20)=﹣160,故选:A.6.下列计算正确的是()A.5+(﹣6)=﹣11B.﹣1.3+(﹣1.7)=﹣3 C.(﹣11)﹣7=﹣4D.(﹣7)﹣(﹣8)=﹣1【解答】解:A.5+(﹣6)=﹣1,此选项错误;B.﹣1.3+(﹣1.7)=﹣3,此选项正确;C.(﹣11)﹣7=(﹣11)+(﹣7)=﹣18,此选项错误;D.(﹣7)﹣(﹣8)=(﹣7)+8=1,此选项错误;故选:B.7.计算﹣1的结果是()A.1B.﹣1C .D .﹣【解答】解:原式=(﹣)=1.故选:A.8.计算﹣×=.【解答】解:﹣×=﹣,故答案为:﹣.9.把(﹣)÷(﹣)转化为乘法是()A.(﹣)×B .(﹣)×C.(﹣)×(﹣)D.(﹣)×(﹣)26【解答】解:把(﹣)÷(﹣)转化为乘法是(﹣)×(﹣),故选:D.10.计算(﹣6)÷(﹣2)的结果是()A.3B.﹣3C.4D.﹣4【解答】解:(﹣6)÷(﹣2)=3,故选:A.11.计算﹣4÷×(﹣2)=.【解答】解:原式=﹣16×(﹣2)=32,故答案为:32.中1.比﹣2大3的数是()A.3B.1C.﹣2D.﹣3【解答】解:比﹣2大3的数是﹣2+3=1,故选:B.2.下列说法中,正确的个数有()①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤两个有理数的和一定大于其中每一个加数;27⑥若a=|b|,则a=bA.1个B.2个C.3个D.4个【解答】解:①﹣a不一定是负数,此结论错误;②|﹣a|一定是非负数,此选项错误;③倒数等于它本身的数是±1,此结论正确;④绝对值等于它本身的数是所有非负数,此结论错误;⑤两个有理数的和不一定大于其中每一个加数,此结论错误;⑥若a=|b|,则a=±b,此结论错误;故选:A.3.温度由﹣4℃上升7℃后的温度为()A.﹣3℃B.3℃C.﹣11℃D.11℃【解答】解:根据题意知,升高后的温度为﹣4+7=3(℃),故选:B.4.计算:﹣1﹣的值为()A .B .﹣C .D .﹣【解答】解:﹣1﹣=﹣1+(﹣)=﹣,故选:D.5.北京、武汉两个城市在2019年一月份的平均气温分别是﹣4.5℃、3.5℃,则2019年一月份武汉市的平均气温比北京市的高()A.﹣7℃B.7℃C.8℃D.﹣8℃【解答】解:3.5﹣(﹣4.5)=8(℃)答:2019年一月份武汉市的平均气温比北京市的高8℃.286.已知a=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.3B.﹣3C.﹣13D.13【解答】解:∵|b|=8,∴b=±8,又∵a=5,a+b<0,∴b=﹣8,则a﹣b=5﹣(﹣8)=13,故选:D.7.在下列变形中,错误的是()A.(﹣2)﹣3+(﹣5)=﹣2﹣3﹣5B.(﹣3)﹣(﹣5)=﹣3﹣﹣5C.a+(b﹣c)=a+b﹣cD.a﹣(b+c)=a﹣b﹣c【解答】解:A.(﹣2)﹣3+(﹣5)=﹣2﹣3﹣5,本选项正确;B.(﹣3)﹣(﹣5)=﹣3++5,本选项错误;C.a+(b﹣c)=a+b﹣c,本选项正确;D.a﹣(b+c)=a﹣b﹣c,本选项正确;故选:B.8.把(﹣8)+(+3)﹣(﹣5)﹣(+7)写成省略括号的代数和形式是()A.﹣8+3﹣5﹣7B.﹣8﹣3+8﹣7C.﹣8+3+5+7D.﹣8+3+5﹣7【解答】解:由题意得:(﹣8)+(+3)﹣(﹣5)﹣(+7)=﹣8+3+5﹣7,299.下列说法正确的是()A.绝对值是它本身的数只有0B.如果几个数积为0,那么至少有一个因数为0C.整数只包括正整数和负整数D.﹣1是最大的负有理数【解答】解:A、绝对值是它本身的数是非负数,故此选项错误;B、如果几个数积为0,那么至少有一个因数为0,正确;C、整数只包括正整数和负整数、0,故此选项错误;D、﹣1是最大的负整数,故此选项错误.故选:B.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A .B.49!C.2450D.2!【解答】解:==50×49=2450故选:C.11.若a+b<0且ab<0,那么()A.a<0,b>0B.a<0,b<0C.a>0,b<0D.a,b异号,且负数绝对值较大30【解答】解:∵a+b<0且ab<0,∴a>0,b<0且|a|<|b|或a<0,b>0且|a|>|b|,即a,b异号,且负数绝对值较大,故选:D.12.计算:﹣2.5÷×(﹣)=()A.﹣2B.﹣1C.2D.1【解答】解:﹣2.5÷×(﹣)=﹣××(﹣)=1.故选:D.13.现有以下五个结论:①正数、负数和0统称为有理数;②若两个非0数互为相反数,则它们相除的商等于﹣1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数.其中正确的有()A.0个B.1个C.2个D.3个【解答】解:①正有理数、负无理数和0统称为有理数,此结论错误;②若两个非0数互为相反数,则它们相除的商等于﹣1,此结论正确;③数轴上的每一个点均表示一个确定的实数,此结论错误;④绝对值等于其本身的有理数是零和正数,此结论错误;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数,也有可能是0,此结论错误.故选:B.难1.亚民驾驶一辆宝马汽车从A地出发,先向东行驶15公里,再向西行驶25公里,然后又向东行驶20公里,再向西行驶40公里,问汽车最后停在何处?已知这种汽车行驶100公里消耗的油量为8升,并且31汽车最后回到A地,问亚民这次消耗了多少升汽油?【解答】解:设向东为正,向西为负,则15+(﹣25)+20+(﹣40)=﹣30(公里),即汽车在A地西边30公里处;|15|+|﹣25|+|20|+|﹣40|+|﹣30|=130,130×=10.4(升),则亚民消耗了10.4升油.2.已知|a|=3,|b|=2,且a<b,求a+b的值.【解答】解:∵|a|=3,|b|=2,且a<b,∴a=﹣3,b=2或﹣2,则a+b=﹣1或﹣5.3.列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.【解答】解:(1)根据题意知乙数为﹣2020﹣(﹣7)=﹣2020+7=﹣2013;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.4.已知:|m|=7,|n|=5,且m<n.求:m﹣n+4的值.【解答】解:∵|m|=7,|n|=5,且m<n,∴m=﹣7,n=±5,(1)m=﹣7,n=5时,m﹣n+4=﹣7﹣5+4=﹣8.(2)m=﹣7,n=﹣5时,m﹣n+4=﹣7﹣(﹣5)+4=2.32∴m﹣n+4的值是﹣8或2.5.列式计算:(1)4 与﹣3的和的相反数.(2)﹣1减去﹣与的和,所得的差是多少?【解答】解:(1)4 与﹣3的和的相反数是:﹣(4﹣3)=﹣1;(2)根据题意得:﹣1﹣(﹣+)=﹣,答:所得的差是﹣.6.阅读下面文字:对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫折项法,你看懂了吗?仿照上面的方法,计算:(1)﹣1+(﹣2)+7+(﹣4)=计算:(2)(﹣2017)+2016+(﹣2015)+16.33【解答】解:(1)原式=(﹣1﹣2+7﹣4)+(﹣﹣+﹣)=﹣,故答案为:﹣;(2)原式=(﹣2017+2016﹣2015+16)+(﹣+﹣+)=﹣2000﹣=﹣20007.小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,在输入数b,就可以得到运算:a*b=(a﹣b)﹣|b﹣a|.(1)求(﹣3)*2的值;(2)求(3*4)*(﹣5)的值.【解答】解:(1)(﹣3)*2=(﹣3﹣2)﹣|2﹣(﹣3)|=﹣5﹣5=﹣10;(2)∵3*4=(3﹣4)﹣|4﹣3|=﹣2,(﹣2)*(﹣5)=[(﹣2)﹣(﹣5)]﹣|﹣5﹣(﹣2)|=0,∴(3*4)*(﹣5)=0.8.乘积是6的两个负整数之和为.【解答】解:乘积是6的两个负整数为﹣1和﹣6或﹣2与﹣3,之和为﹣7或﹣5,故答案为:﹣7或﹣59.已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.【解答】解:∵|x|=5,34∴x=5或﹣5,∵|y|=3,∴y=3或﹣3,(1)当x﹣y>0时,x=5,y=3或x=5,y=﹣3,此时x+y=5+3=8或x+y=5+(﹣3)=2,即x+y的值为:8或2;(2)当xy<0,x=5,y=﹣3或x=﹣5,y=3,此时|x﹣y|=8或|x﹣y|=8,即|x﹣y|的值为:8;(3)①x=5时,y=3时,x﹣y=5﹣3=2;②x=5时,y=﹣3时,x﹣y=5+3=8;③x=﹣5时,y=3时,x﹣y=﹣5﹣3=﹣8;④x=﹣5时,y=﹣3时,x﹣y=﹣5+3=﹣2,综上:x﹣y=±2或±8.10.现有以下五个结论:①有理数包括所有正数、负数和0;②若两个数互为相反数,则它们相除的商等于﹣1;③数轴上的每一个点均表示一个确定的有理数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数则乘积为负数.其中正确的有()A.0个B.1个C.2个D.3个【解答】解:①有理数包括所有正有理数、负有理数和0;故原命题错误;②若两个数(除零)互为相反数,则它们相除的商等于﹣1;故原命题错误;③数轴上的每一个点均表示一个确定的实数;故原命题错误;④绝对值等于其本身的有理数是零和正数,故原命题错误;⑤几个非零的有理数相乘,负因数个数为奇数则乘积为负数,故原命题错误.35故选:A.11.÷()【解答】解:原式=÷=×3=.36。