第三章 一些重要的概率分布

合集下载

几种常见的概率分布律

几种常见的概率分布律

的概率,其值为 ϕ4
=
⎛ ⎜⎝
1 2
⎞4 ⎟⎠
=1 16

ϕ 3 (1 − ϕ ) 表示有三个显性基因和一个隐性基因组合出现的概率。其中
显形基因有三个,隐性基因一个,该项的系数表示这样的组合共有四种。
它们是RRYy,RRyY,RrYY和rRYY。这四种组合的概率均为

ϕ
3
(1

ϕ
)
=
⎛ ⎜⎝
1 2
⎞3 ⎟⎠
上式正是二项式展开式的第x+1项,因此产生理论分布中“二项分布”这一名 称。故该式称为二项分布的概率函数。
• 二项展开式,
⎡⎣ϕ +(1−ϕ)⎤⎦n =Cn0ϕ0 (1−ϕ)n +Cn1ϕ1 (1−ϕ)n−1 +"+Cnxϕx (1−ϕ)n−x +"+Cnnϕn (1−ϕ)0 = p(0) + p(1) + p(2) +"+ p( x) +"+ p(n)
⎛ ⎜⎝
1 2
⎞10 ⎟⎠
=
2−10
=
0.0009766
( ) p(1)
=
10! ⎛
1!(10 −1)!⎜⎝
1 2
⎞1 ⎟⎠
⎛ ⎜⎝
1 2
⎞9 ⎟⎠
=
10
2−10
= 0.0097656
( ) p(2) =
10! ⎛ 1 ⎞2 ⎛ 1 ⎞8
2!(10 − 2)!⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠
= 45
2−10
(1) 二项分布图形的形状取决于P 和 n 的大小; (2) 当P = 0.5时,无论 n 的大小, 均为对称分布; (3) 当P ≠ 0.5,n 较小时为偏态分 布,n 较大时逼近正态分布。

几种重要的概率分布

几种重要的概率分布

1、均匀分布(uniform)定义:设连续型随机变量X的分布函数为F(x)=(x-a)/(b-a),a≤x≤b 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]. 若[x1,x2]是[a,b]的任一子区间,则P{x1≤x≤x2}=(x2-x1)/(b-a) 这表明X落在[a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关,因此X落在[a,b]的长度相等的子区间内的可能性是相等的,所谓的均匀指的就是这种等可能性. 在实际问题中,当我们无法区分在区间[a,b]内取值的随机变量X取不同值的可能性有何不同时,我们就可以假定X服从[a,b]上的均匀分布若随机变量X的密度函数为则称随机变量X服从区间[a,b]上的均匀分布。

记作X~U(a,b).均匀分布的分布函数为图像如下图所示:均匀分布的数学期望E(X)=1/(2*(b+a)),方差为D(X)=1/(12*(b-a)2)。

2、正态分布如果连续型随机变量X的密度函数为其中,-∞<x<+∞,且-∞<μ<+∞,σ为参数。

则称随机变量X服从参数为(μ,σ2)的正态分布,记作X~N(μ,σ2)若μ=0,σ=1,则称N(0,1)为标准正态分布。

正态分布有几个特点:①μ变化而σ不变时,图像沿着X轴移动,图像的形状不改变。

如图:②μ不变而σ改变时,图像的位置不变,但形态发生改变。

σ越大图像就越胖。

3.F分布F分布定义为:设X、Y为两个独立的随机变量,X服从自由度为k1的>2分布,Y服从自由度为k2的>2 分布,这2 个独立的>2分布被各自的自由度除以后的比率这一统计量的分布。

即:上式F服从第一自由度为k1,第二自由度为k2的F分布F分布的性质1、它是一种非对称分布;2、它有两个自由度,即n1 -1和n2-1,相应的分布记为F(n1 –1,n2-1),n1 –1通常称为分子自由度,n2-1通常称为分母自由度;3、F分布是一个以自由度n1 –1和n2-1为参数的分布族,不同的自由度决定了F 分布的形状。

概率论第三章 多维随机变量及其分布

概率论第三章  多维随机变量及其分布

1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R

概率分布函数

概率分布函数

第三章 几种重要的概率分布
例 4 一页书上印刷错误的个数 X 是一个离散型随机变量,它服从参数 为 的泊松分布,一本书共有 300 页,有 21 个印刷错误,求任取 1 页 书上没有印刷错误的概率。 21 7 解:由于 300 页中有 21 个印刷错误,从而平均每页有 个印刷
300 100 7 错误,即离散型随机变量 X 的数学期望 E ( X ) , 100 又由于离散型随机变量 X 服从参数为 的泊松分布,因此数学期望
由概率加法公式得:
n
m m nm b(m; n, p) C n p q , 其中m 0,1,2,, n; q 1 p
m m nm 且 b(m; n, p) Cn p q ( p q) n 1 n
概率 b(m; n, p) 实际上是二项式 ( p q) n 的展开式中的通项公式。
2 2
返回主目录
第三章 几种重要的概率分布
小结与提问: 本次课,我们介绍了贝努里概型与二项公式、二项分布。 二项分布是离散型随机变量的概率分布中的重要分布,我们 应掌握二项分布及其概率计算,能够将实际问题归结为贝努
里概型,然后用二项分布计算有关事件的概率、数学期望与
方差。。 课外作业:P150 习题三 3.01,3.02,3.03,3.04,3.05
m m nm b(m; n, p) C n p q , 其中m 0,1,2,, n; q 1 p
m 0
m 0
称为概率计算的二项公式。
返回主目录
第三章 几种重要的概率分布
二、二项分布
定义 如果随机变量 X 的概率分布为
i PX i C n p i q n i
(0 p 1, p q 1)

第三章第二次课 几种常见的理论分布

第三章第二次课 几种常见的理论分布

第三章第二次课: 回顾概率基础知识,通过离散型和连续型随机变量的概率分布引出本次讲授内容。

第二节几种常见的理论分布重点:掌握正态分布、二项分布、泊松分布的定义、特点和概率计算。

难点:二项分布的概率函数特征,正态分布的特征。

一、二 项 分 布一)、贝努利试验及其概率公式将某随机试验重复进行n 次,若各次试验结果互不影响, 即每次试验结果出现的概率都不依赖于其它各次试验的结果,则称这n 次试验是独立的。

对于n 次独立的试验,如果每次试验结果出现且只出现对立事件A 与A 之一,在每次试验中出现A 的概率是常数p (0<p <1),因而出现对立事件A 的概率是1-p=q ,则称这一串重复的独立试验为n 重贝努利试验,简称贝努利试验(Bernoulli trials )。

在生物学研究中,我们经常碰到的一类离散型随机变量,如入孵n 枚种蛋的出雏数、n 头病畜治疗后的治愈数、n 尾鱼苗的成活数等,可用贝努利试验来概括。

在n 重贝努利试验中,事件A 可能发生0,1,2,…,n 次,现在我们来求事件A 恰好发生k (0≤k ≤n )次的概率P n (k)。

先取n =4,k =2来讨论。

在4次试验中,事件A 发生2次的方式有以下24C 种: 21A A 43A A 4321A A A A 4321A A A A 4321A A A A 4321A A A A 4321A A A A其中A k (k =1,2,3,4)表示事件A 在第k 次试验发生;k A (k =1,2,3,4)表示事件A 在第k 次试验不发生。

由于试验是独立的,按概率的乘法法则,于是有 P (21A A 43A A )=P (4321A A A A )=…= P (4321A A A A )= P (1A )·P (2A )·P (3A )·P (4A )=242-qp又由于以上各种方式中,任何二种方式都是互不相容的,按概率的加法法则,在4 次试验中,事件A 恰好发生2次的概率为)2(4P = P (21A A 43A A )+P (4321A A A A )+…+ P (4321A A A A )=24C 242-qp一般,在n 重贝努利试验中,事件A 恰好发生k (0≤k ≤n)次的概率为)(k P n =kn C kn k qp - k =0,1,2…,n (3-14)若把(4-14)式与二项展开式∑=-=+nk kn k k n nqp C p q 0)(相比较就可以发现,在n 重贝努利试验中,事件A 发生k 次的概率恰好等于np q )(+ 展开式中的第k +1项,所以也把(4-14)式称作二项概率公式。

4 第三章 几种常见的概率分布律

4 第三章 几种常见的概率分布律

φ-事件A发生的概率(每次试验都是恒定的)
1-φ- 事件 A 发生的概率 p(y)-y的概率函数=P(Y=y)
F(y)= P(Y≤y)=
p( yi )
yi y
5
例3.1 从雌雄各半的100只动物中,每次抽一只, 做放回式抽样,若抽样试验共进行10次,问其中 包括0,1,2,3只雄性动物的概率是多少?包括 3只及3只以下的概率是多少?
1
e dz y

(
y )2 2 2

2
24
F(y) 1
1 2

y
25
正态分布的特性
当y=μ时,f(y)有最大值,正态分布曲线是以平均数 为中心的分布。
当y不论向哪个方向远离μ时, f(y)的值都减小,但永 远不会等于0,正态分布以y轴为渐近线, y的取值区 间(-∞,+∞)。
36
标准正态分布的概率计算
如:设y服从标准正态分布,求概率 P(y>0.3) 。 解:标准正态分布关于y=0对称,所以
P(y>0.3)=P(y<-0.3)= (0.30) 0.3821
37
标准正态分布的概率计算
例:设y服从标准正态分布,求概率P(-1.83 <y <0.3) 。
解:即求标准正态分布曲线下在(-1.83,-0.30)范围 内的面积
k,
k
1,
k

2,
...
20
第四节 正态分布
第四节 正态分布
正态分布:两头少,中间多,两侧对称。 一、正态分布的密度函数和累积分布函数
正态分布密度函数
f (y)
1
e
(
y )2 2 2

第三章 常用概率分布之正态分布

第三章 常用概率分布之正态分布

图4.13 离均差的绝对值≤1 , 2 和3 的概率值
随机变量x在区间( μ – kσ, μ + kσ )外取值的概率P ( x<μ – kσ ) + P( x>μ + kσ )为两尾概率,记为α P ( x<μ – kσ ) + P( x>μ + kσ )=α P ( x<μ – kσ ) = P( x>μ + kσ )=α/2 两尾分位数Uα
=0.0227
0.020
fN (x)
0.020
fN (x)
0.016
0.016
0.012
0.012
0.008
P( y 40) 0.9773
P( y 26) 0.2119
0.008
0.004
0.004
0.000 10 15 20 25 30 35 40 45
0.000 10 15 20 25 30 35 40 45
第三章
常用概率分布
第一节 事件与概率 第二节 概率分布 第三节 二项式分布 第四节 正态分布 第五节 样本平均数抽样分布与标准误 第六节 t分布,x2分布和F分布
第三章
常用概率分布
第一节 事件与概率 第二节 概率分布 第三节 二项式分布 第四节 正态分布 第五节 样本平均数抽样分布与标准误 第六节 t分布,x2分布和F分布
首先计算:
查附表2,当u=-0.8时,FN(26)=0.2119,说明这 一分布从-∞到26范围内的变量数占全部变量数的 21.19%,或者说,y≤26概率为0.2119. 同理可得: FN(40)=0.9773
所以:P(26<y≤40)=FN(40)-FN(26)=0.9773-0.2119

概率论几种重要的分布

概率论几种重要的分布

概率论几种重要的分布
概率论中有许多重要的分布,包括以下几种:
1. 正态分布(Normal Distribution):也称为高斯分布,是最常见的分布之一。

它具有钟形曲线,对称,以及均值和方差完全定义。

在许多实际应用中,自然界中许多现象都遵循正态分布。

2. 二项分布(Binomial Distribution):描述了在固定次数的独立重复试验中成功次数的概率分布。

每个试验有两个可能的结果,成功和失败,并且每次试验的成功概率保持不变。

3. 泊松分布(Poisson Distribution):用于描述稀有事件在固定时间或空间上的发生次数的概率分布。

它假设事件发生的概率相等,且事件之间是相互独立的。

4. 均匀分布(Uniform Distribution):也称为矩形分布,是一种概率分布,其中所有可能的结果的概率是相等的。

在定义了一个范围之后,均匀分布将这个范围内的概率均匀地分布。

5. 指数分布(Exponential Distribution):用于描述独立事件发生间隔的概率分布。

它假设事件是以恒定速率独立地发生的,即它具有无记忆性。

6. t分布(Student t-Distribution):用于小样本情况下的统计推断,当样本量较小时,t分布的尾部更加重,与正态分布相比,更容易出现极端值。

以上只是一些重要的分布,概率论还有很多其他的分布,根据实际应用的不同,可以选择合适的分布模型。

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

d 几种常见的概率分布律

d  几种常见的概率分布律

三、服从二项分布的随机变量的特征数
平均数: μ=nφ
方差: σ2=nφ(1-φ)
随着样本含量的增加,偏斜度和峭度趋 向于0,二项分布逐渐接近于正态分布。
四、二项分布应用实例
例:3.2 例:3.3 例:3.4
【例3.4】
用 棕 色 正 常 毛 (bbRR) 的 家 兔 和 黑 色 短 毛 (BBrr)兔杂交,杂种F1为黑色正常毛长的 家兔,F1雌、雄兔近亲交配,问最少需要 多少只F2代的家兔,才能以99%的概率至 少得到一只棕色短毛兔?
二、二项分布概率函数表达式:
p( y) Cny y (1)ny , y 0,1,2,, n
n=试验次数(或样本含量) y=在n次试验中事件A出现的次数 φ=事件A发生的概率(每次试验都是恒定的) 1-φ=事件A的对立事件发生的概率 p(y)=Y的概率函数=P(Y=y)
例:3.1
从雌雄各半的100只动物中做一抽样试验。第一次从这100只动 物中随机抽取一只,记下性别后放回,再做第二次抽取。共 做了10次抽样,计算抽中3只和3只以下雄性动物的概率。
(5)曲线和X坐标轴所夹的面积等于1。 (6)正态分布表查出的φ(u)的值表示随机变量
U落入区间(-∞, u)的概率。 (7)累积分布函数图形的特点是围绕点
(0, 0.5)对称。 (8)正态分布的偏斜度γ1=0 ,峭度γ2=0。
5. 一些重要值
68.27%
68.27%
95.00%
95.00%
99.00%
解: n=10 y=3,2,1,0 φ=1/2 p( y) Cny y (1)ny
p(3) 10! ( 1 )3 ( 1 )7 120 (210 ) 0.1171876 3!(10 3)! 2 2

第三章 概率分布

第三章 概率分布

第二节 概率分布
概率:一次试验某一个结果发生的可能性大小 概率分布:试验的全部可能结果及各种可能结果发生 的概率
一、随机变量 随机试验的所有可能结果中,若对于每一种可能结果 都有唯一的实数x与之对应,则称x为随机试验的随 机变量。
【例4.3】 对100头病畜用某种药物进行治疗,其可能 结果是“0头治愈”、 “1头治愈”、“2头治愈”、 “…”、“100头治愈”。若用x表示治愈头数,则x的 取值为0、1、2、…、100。
【例4.4】 孵化一枚种蛋可能结果只有两种,即“ 孵出小鸡”与“未孵出小鸡”。 若用变量x表示试验 的两种结果,则可令x=0表示“未孵出小鸡”,x=1表 示“孵出小鸡”。
【例4.5】 测定某品种猪初生重,表示测定结果的 变量x所取的值为一个特定范围(a,b),如0.5―1.5kg,x 值可以是这个范围内的任何实数。
但在相同条件下进行大量重复试验时,其试验结
果却呈现出某种固有的特定的规律性——频率的稳定
性,通常称之为随机现象的统计规律性
概率
论与数理统计
(二)随机试验与随机事件
1、随机试验 通常我们把根据某一研究目的 ,在一定条件下对 自然现象所进行的观察或试验统称为随机试验。
随机试验满足下述三个特性
(1)可重复性:试验可以在相同条件下多次重复进行; (2)结果多样性:每次试验的可能结果不止一个,并且事先 知道会有哪些可能的结果; (3)未知性:每次试验总是恰好出现这些可能结果中的一个, 但在一次试验之前却不能肯定这次试验会出现哪一个结果。
一类随机现象或不确定性现象:事前不可预言其 结果的,即在保持条件不变的情况下,重复进行观察, 其结果未必相同。即在个别试验中其结果呈现偶然性、 不确定性现象。例
随机现象特点:

第三章 常见的概率分布率

第三章 常见的概率分布率
1头感染。设各头家畜没有相互传染疾病的 可能,问:应该如何评价这两种疫苗?
(--)二项分布的生物学应用:
1.预测后代分离比及基因组合。 例1、4对独立基因自由组合,后代3个显性 基因5个隐性基因概率?
2 推断所需群体和样本大小
例1、小麦自然变异概率φ=0.0045 (1)调查100株,获两株或两株以上变异株
例4
豌豆红花纯合基因AA,白花纯合基 因aa,杂交后F2后代 红花:白花 =3:1 , 每次随机观察4株。共观 察100次,则红花0株,1株,2株, 3株,4株的次数各多少?
例5
设在家畜中感染某种疾病的概率为20%,
现有两种疫苗,用疫苗A 注射了15头家畜 后无一感染,用疫苗B 注射 15头家畜后有
第三章 几种常见的概率分布律
3.1 二项分布-----离散型概率分布 率(binomial distribution) 例1、某射击手命中概率0.9,连续 射四次,恰好命中0、1、2、3、4 的概率。
3.1.1二项分布的概率函数
如果在一次试验中某事件发生的概率为φ, 那么在n次实验中(独立重复试验)恰好发 生x次的概率。
σ/√n –平均数的标准误差 (standard error of mean )
μ x = μ ,σ x =σ2/n
例1
小麦株高服从正态分布μ =110cm, σ=10cm.
现随机抽一株 问 (1)x>112cm的概率? (2)抽取n=36的样本,则样本的平均数株 高X>112cm的概率? (3)抽取n=100的样本, X>112cm的概率
拐点落在 -处
拐点落在 一个处
以平均数和标准差不同的正态分布系列曲线
正态分布
68-95-99.7规则

几个重要的分布

几个重要的分布

在前面的章节中我们讲到随机变量可以用其概率密度函数的一些数字特征(或矩)来描述,比如期望值和方差。

但是,由于随机变量种类繁多,因此假设知道其概率密度函数实际上是较高的要求。

但在实际中,一些随机变量经常发生,因此统计学家能够确定其概率密度函数并归纳出其性质。

这里,我们主要关注的是一些基本的概率密度函数。

但是,在任何一本标准的统计学教科书上,你都会发现统计学家还对其他的一些概率密度函数作了仔细的研究。

本章主要讨论的4种概率分布是:(1) 正态分布;(2) 2分布;(3) t 分布;(4) F 分布。

我们将考察上述各概率密度的主要特征、性质及其用途。

读者必须掌握本章的全部内容,因为,这些概率分布是经济计量理论和实践的核心内容。

3.1 正态分布对于连续型随机变量而言,正态分布(normal distribution )是最重要的一种概率分布,稍具统计知识的读者都会熟悉其“钟型”形状(见图2 -2)。

经验表明:对于其值依赖于众多微小因素且每一因素均产生微小的或正或负影响的连续型随机变量来说,正态分布是一个相当好的描述模型。

比如考虑体重这一随机变量,它就近似服从正态分布,因为遗传、骨骼结构、饮食、锻炼、新陈代谢等都对人的体重有影响,但又没有一种因素起到压到一切的主导作用。

与此相类似,人的身高、考试分数等都近似地服从正态分布。

为了简便,通常用:X ~N (u ,2)(3 -1)1表示随机变量X 服从正态分布。

符号~表示随机变量服从什么样的分布,N 表示正态分布,括号内的参数u ,2称为正态分布的(总体)均值(或期望)和方差。

需要指出的是:X 是一个连续型随机变量,可取区间(-∞,+∞)内的任意一值。

第3章■一些重要的概率分布1 正态变量的概率密度函数:其中,e x p {}表示以e 为底的指数形式,e=2.718 28,π=3.141 59。

µ和2分别是正态分布的参数,均值和方差。

下载图3-1 正态曲线下的区域正态分布的性质正态分布曲线(见图2 -2)以均值u为中心,对称分布。

数学初中二年级下册第三章概率分布的认识与运算

数学初中二年级下册第三章概率分布的认识与运算

数学初中二年级下册第三章概率分布的认识与运算数学初中二年级下册第三章:概率分布的认识与运算在初中数学的学习中,概率是一门重要的数学分支。

概率分布是概率的重要内容之一,它描述了不同事件发生的可能性。

在初中二年级下册的数学教材中,第三章主要介绍了概率分布的认识与运算。

本文将深入探讨这一章节的内容,帮助读者更好地理解和运用概率分布。

1. 基本概念引入概率分布是指在一次试验中,各种可能结果发生的概率情况。

在初中二年级下册第三章的学习中,通过一系列的例子和练习,我们可以了解到概率分布的基本概念和计算方法。

2. 离散型概率分布离散型概率分布是指概率与某个随机变量关联的概率分布。

在学习中,我们主要学习了两种离散型概率分布:均匀分布和二项分布。

2.1 均匀分布均匀分布是指在一个区间内,各个数值出现的概率是相等的。

我们可以通过一种数学方法来计算均匀分布的概率,即通过区间的长度与总数的比值来计算。

2.2 二项分布二项分布是离散型概率分布的另一种常见形式。

它描述了在一次试验中,成功和失败发生的次数的概率分布。

我们可以通过二项分布的计算公式来求解其中的概率。

3. 连续型概率分布与离散型概率分布不同,连续型概率分布是指概率与某个随机变量关联的概率分布。

在初中二年级下册第三章的学习中,我们主要学习了两种连续型概率分布:正态分布和均匀分布。

3.1 正态分布正态分布是一种非常常见的概率分布,在自然界和社会现象中的许多现象都可以近似地遵循正态分布。

我们需要掌握正态分布的概率性质和计算方法,以解决一些实际问题。

3.2 均匀分布与离散型概率分布中的均匀分布类似,连续型概率分布中的均匀分布是指在一个区间内,概率密度函数是常数的概率分布。

我们可以利用区间长度与总长度的比值来计算均匀分布的概率。

4. 概率计算应用概率分布的认识与运算不仅仅只是理论上的探讨,它在实际应用中也有着广泛的应用。

在日常生活中,我们可以利用概率计算解决一些实际问题,比如抽奖、游戏中的胜率计算等。

第三章 多维随机变量及概率分布

第三章  多维随机变量及概率分布

第三章多维随机变量及概率分布3.1二维随机变量的概念3.1.1二维随机变量及其分布函数到现在为止,我们只讨论了一维随机变量及其他布,但有些随机现象用一个随机变量来描述还不够,而需要用几个随机变量来描述。

例如,在打靶时,以靶心为原点建立直角坐标系,命中点的位置是由一对随机变量(X,Y)(两个坐标)来确定的。

又如考察某地区的气候,通常要考察气温X,风力Y,这两个随机变量,记写(X,Y)。

定义3.12个随机变量X,Y组成的整体Z=(X,Y)叫二维随机变量或二维随机向量。

定义3.2(1)二元函数F(x,y)=P(X≤x,Y≤y)叫二维随机变量(X,Y)的联合分布函数,简称分布函数。

记作(X,Y)~F(x,y)。

(2)二维随机变量(X,Y)中,各分量X,Y的分布函数叫二维随机变量(X,Y)的边缘分布函数。

因为X<+∞,Y<+∞即-∞<X<+∞,-∞<Y<+∞,分别表示必然事件,所以有X~F x(x)=P(X≤x)=P(X≤x,Y<+∞)=F(x,+∞)Y~F Y(y)=P(Y≤y)=P(x<+∞,Y≤y)=F(+∞,y)公式可见X,Y的边缘分布可由联合分布函数求得。

3.1.2二维离散型随机变量定义3-3若二维随机变量(X,Y)只取有限多对或可列无穷多对(x i,y j),(i,j=1,2,…),则称(X,Y)为二维离散型随机变量。

设二维随机变量(X,Y)的所有可能取值为(x i,y j)(i,j=1,2,…),(X,Y)在各个可能取值的概率为:P{X=x i,Y=y j}=P ij(i,j=1,2,…),称P{X=x i,Y=y j}=P ij(i,j=1,2,…)为(X,Y)的分布律。

(X,Y)的分布律还可以写成如下列表形式:(X,Y)的分布律具有下列性质:(1)p ij≥0(i,j=1,2,…);(2)反之,若数集{P ij}(i,j=1,2,…)具有以上两条性质,则它必可作为某二维离散型随机变量的分布律。

几种常见的概率分布率-(1)分解

几种常见的概率分布率-(1)分解
➢ 曲线与横坐标轴所夹的图形面积为1; ➢ 累积分布函数曲线从-∞到0平稳上升,围绕点(0,0.5)对称;
➢ 标准正态分布的偏斜度γ1和峭度γ2均为零。
以下一些特征值很重要:
-3 -2 -1
1 23
68.27%
95.45%
99.73%
P(-1≤u<1)=0.6826 P(-2≤u<2)=0.9545 P(-3≤u<3)=0.9973
4.822),求:
(1)X<161cm的概率; (2)X>164cm的概率; (3)152<X<162的概率。
x-
=
161 - 156.2 4.82
=
1.00
x
=
164 - 156.2 4.82
=
1.62
x
=
152 - 156.2 4.82
=
-0.87
x
=
162 - 156.2 4.82
=
1.20
四、 正态分布的单侧分位数和双侧分位数
x
[(1-
-1
p) ]p - p(n-x)
(当n→∞时,系数的极限为1,且nφ =μ)Βιβλιοθήκη x!= x e-x!
1
-1
e = lim (1 z) z,lim (1 - p) p = e
z0
p0
二、 服从泊松分布的随机变量的特征数
➢ 平均数:μ=λ ➢ 方差: σ2 = λ
➢ 偏斜度: 1=
1

峭度:
标轴从-∞到u所夹的面积,该曲线下的面积即表示随机 变量U 落入区间(-∞,u)的概率;
➢ 标准正态分布查表常用的几个关系式:
• P(0<U <u1)=F(u1)-0.5 • P(U >u1)=F(-u1)=1-F(u1) • P(∣U∣>u1)=2F(-u1) • P(∣U∣<u1)=1- 2F(-u1) • P(u1<U <u2)=F(u2)-F(u1)

田间试验与统计分析 第三章 概率和概率分布

田间试验与统计分析 第三章 概率和概率分布

第四节 抽样分布
一、随机抽样 二、样本平均数的抽样分布 三、样本平均数差数的抽样分布(自学)
统计推断是以总体分布和样本抽样分布的理论关系为基础的
(1)从总体到样本的方向: 其目的是研究从总体中抽出 所有可能样本统计量的分布 及其与原总体的关系。 (2)从样本到总体的方向: 用样本对总体作出推断。
统计概率:随机事件发生频率的稳定值,一般称为该 事件的统计概率。
二、概率的主要性质
必然事件的概率P(A)等于1; 不可能事件的概率P(A)等于0; 随机事件的统计概率P(A)都在0与1之间。
三、小概率事件原理
人们常把P ≤0.05或0.01的事件称为小概率事件。
小概率事件有一个重要的特性是:概率很小的事件, 在一次试验中是很难出现的,人们就认为它是不可 能出现的。一旦容易出现了,该事件就有可能不是 小概率事件。这就称为小概率事件实际不可能性原 理,是统计推断的理论依据。
此曲线全距为-∞到+∞ 。
5. 正态分布曲线与x轴之间的总面积等于1,因此,在曲线下轴的 任何定值,如x=x1到x=x2之间的概率等于介于两个定值间面积占 总面积的成数。
区间
μ±1σ μ±2σ μ±3σ μ±1.96σ μ±2.58σ
面积或概率 0.6827 0.9545 0.9973 0.9500 0.9900
发芽频率 0.9 0.95 0.92 0.93 0.93 0.91 0.92 0.92 0.91 0.92 0.92 0.92
概率的统计定义
在相同条件下进行n次重复试验,如果随机事件A发生 的 次 数 为 m , 那 么 m/n 称 为 随 机 事 件 A 的 频 率 (frequency);当试验重复数n逐渐增大时,随机事 件A的频率越来越稳定地接近某一数值p,那么就 把 p 称为随机事件A的概率。

第三章 概率与概率分布 华中农业大学生物统计学讲义

第三章 概率与概率分布 华中农业大学生物统计学讲义

该试验样本空间由10个等可能的基本事件构成,即n=10,而事 件A所包含的基本事件有3个,即抽得编号为1、2、3中的任何一 个,事件A便发生。
P(A)=3/10=0.3
P(B)=5/10=0.5
12 3 4 5
6
7
8 9 10
一、概率基本概念
A=“一次取一个球,取得红球的概率”
10个球中取一个球,其可能结果有10个基本事件(即每个球 被取到的可能性是相等的),即n=10 事件A:取得红球,则A事件包含3个基本事件,即m=3
P(A)=3/10=0.3
12 3 4 5
6
7
8
9 10
一、概率基本概念
B= “一次取5个球,其中有2个红球的概率” 10个球中任意取5个,其可能结果有C105个基本事件,即n= C105 事件B =5个球中有2个红球,则B包含的基本事件数m= C32 C73
P(B) = C32 C73 / C105 = 0.417
2、在一定条件下可能发生也可能不 发生。
(二)频率(frequency)
一、概率基本概念
若在相同的条件下,进行了n次试验,在这n 次试验中,事件A出现的次数m称为事件A出现的 频数,比值m/n称为事件A出现的频率(frequency), 记为W(A)=m/n。
0≤W(A) ≤1
例:
一、概率基本概念
设样本空间有n个等可能的基本事件所构成,其中事件A包 含有m个基本事件,则事件A的概率为m/n,即P(A)=m/n。
古典概率(classical probability) 先验概率(prior probability)
一、概率基本概念
1 2 3 4 5 6 7 8 9 10
随机抽取一个球,求下列事件的概率; (1)事件A=抽得一个编号< 4 (2)事件B =抽得一个编号是2的倍数

几种重要的概率分布性质

几种重要的概率分布性质

1 贝努里分布它的概率分布为:P{X=1}=p,P{X=0}=1-p它也称两点分布或(0-1)分布。

它描述一次贝努里实验中,成功或失败的概率。

2 二项分布P{X=k}=Cnkpk(1-p)n-k, k=0,1,…,n它描述n次贝努里实验中事件A出现k次概率。

3 几何分布P{X=k}=p(1-p)k-1, k=1,2, …它描述在k次贝努里实验中首次出现成功的概率。

几何分布有一个重要的性质-----后无效性:在前n次实验未出现成功的条件下,再经过m次实验(即在n+m次实验中)首次出现成功的概率,等于恰好需要进行m次实验出现首次成功的无条件概率。

用式子表达:P{X=n+m | X>n}=P{X=m} (试证明之)这种与过去历史无关的性质称为马尔可夫特性。

几何分布在我们下面讲的排队论中是非常重要。

它可以描述某一任务(或顾客)的服务持续时间。

4 泊松分布(Poisson)P{X = k} = λk e-λ/ k!k=0,1,2,…泊松分布是最重要的离散型概率分布之一,它作为表述随机现象的一种形式,在计算机性能评价中扮演了重要的角色。

5 指数分布它是一种连续型的概率分布,它的概率密度:f(x)=λe-λx x≥0f(x)=0 x<0它的分布函数:F(x)=1-e-λx x≥0指数分布的一个有用的性质是它的数学期望等于标准差:μx = σx = 1/λ在连续型随机变量中,只有指数分布具有无后效性。

即:若随机变量ζ服从指数分布,对任意的 s>0 ,t>0 ,有P{ζ>s+t|ζ>s}=P{ζ>t}在离散型随机变量中,只有几何分布具有无后效性。

这两种分布可以分别用来描绘离散等待时间和连续等待时间。

在排队理论和随机Petri网中,指数分布是很重要的。

在实际系统模型中,一般都要假定任务(或顾客)的到来是泊松分布的。

实践也证明:这种假设是有效。

6 k-爱尔朗分布f(x)=(λkx)n-1λke-λkx /(n-1)! x≥0f(x)=0 x<0k-爱尔朗分布的数学特征为:E[X]=1/λ;Var[X]=1/kλ2如果k个随机变量Xi,i=1,2,…,k,分别服从指数分布,那么随机变量X=X1+X2+ …+Xk服从爱尔朗分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同的概率密度函数),我们则称X1,X2,…,Xn构成一容量为n的随
机样本。因而称 X为独立同分布随机变量。 知道某一特定的估计量服从某一特定的概率分布将有助于建 立从样本到总体之间的联系。
例3.3:令X代表某一型号汽车每消耗一加伦汽油所行驶的 距离(英里)。已知X~N(20,4)。则对于由一个有25辆 汽车组成的随机样本,求:每消耗一加伦汽油所行驶的 平均距离大于21英里的概率。
正态分布的偏度为0,峰度为3。
例3.1
(3)正态分布的标准化
如果 ~ N ,

2

,则 ~ N 0,1
任何一个给定均值和方差的正态变量都可转化为标 准正态变量。
例3.2
3.2 样本均值的抽样分布
(1)独立随机变量
如果所有的X独立抽取于从同一概率密度分布(即每个 Xi有相
tk F1,k
2
χ2变量除以其自由度m的值接近分子自由度为m,分母
例3.5
两班做同样的经济计量学测试。其中,一个班级共有 100 名 学生,另一班级共有 150名学生,该老师从第一个班级随机 抽取25个学生,从第二个班级随机抽取31个学生,观察得到 两个班级学生考试平均分数的样本方差分别为 100 和 132 。 假设学生考试平均分数这一随机变量服从正态分布,那么两 班级分数平均值同方差的概率大概为多少?
度越小,越向右偏,但随着自由度的增大,逐渐呈对 称,接近于正态分布。
χ2分布的期望为k,方差为2k,k为χ2 分布的自由度
如果Z1,Z2分别是自由度为k1和k2的两个独立χ2变量,
则其和( Z1+Z2 )也是一个χ2变量,其自由度为
( k1+k2 )。
3.5 F分布
如果 x2 ,则 y 2 F值服从分子自由度为(m-1),分母 自由度为(n-1)的F分布。
(2)正态分布的性质
正态分布曲线以均值为中心,对称分布; 正态分布的概率密度函数呈中间高、两边低。
2 正态分布可由两个参数 和 来描述
正态分布曲线下位于一个标准差的面积约为68%;两个标准差
的面积约为95%;三个标准差的面积约为99.7%;
多个正态分布随机变量的线性组合仍为正态分布。
Sx2 F 2 Sy
2 ( X X ) m 1 i 2 ( Y Y ) n 1 i
F分布的图象
概率密度
x
F分布的性质
斜分布,向右偏,取值范围为0到无穷大;
当自由度k1,k2逐渐增大时,F分布近似正态分布;
自由度为k的t分布变量的平方服从分子自由度为1,分
母自由度为k的F分布,即: 自由度n无限大的F分布。
3.2 样本均值的抽样分布
(2)中心极限定理 如果X1, X2, …,Xn是来自均值为u方差为σ2 的任一总体的
随机样本,随着样本容量无限增大,则其样本均值趋于正态
分布,其均值为u, 方差为σ2 /n。
3.3 t分布
3.3 t分布的性质
t分布与正态分布类似具有对称性,其均值为0,
方差为k/(k-2),但t分布比正态分布略“胖”些。
若自由度充分大(至少为30),则t分布近似标
准正态分布,因此有
P(1.96 t 1.96) 95%
t分布和正态分布图像
例3.4
在15天内,出售面包的平均数量为74条,样本方差为 16条。假定真实平均销售量为70条,求某天销售面包 数量为74条的概率?
3.3 χ2分布
若Z1, Z2, …,Zk为k个独立的标准正态变量,则其平方和服
第三章 一些重要的概率分布
3.1 正态分布 3.2 样本均值的抽样分布
3.3 t分布
3.4 χ2分布 3.5 F分布
3.1 正态分布
(1)正态分布
若连续型随机变量X的概率密度为
x
1 2
e

x
2
2
2
σ , 为常数,σ 0
则X服从正态分布,记为X~N(μ ,σ2 ) 。正态分布的数 学期望和方差分别为μ 和σ2。
从自由度为k 的χ2分布,即
2 2 2 2Βιβλιοθήκη 2 Z Z Z ... Z (k ) i 1 2 k
χ2 分布的图象
概 率 N=2 N=7 N=11
x N为自由度
χ2分布的性质
χ2 分布只能取正值,(因为它是平方和的分布),取
值范围从0到正无穷大。
χ2 分布是斜分布,其偏度取决于自由度的大小,自由
相关文档
最新文档