七年级上册数学总复习doc

合集下载

七年级上册数学总复习资料

七年级上册数学总复习资料

七年级上册数学总复习资料1第一章有理数--------------1.1正数与负数①大于0的数叫正数。

②在正数前面加上“-”号的数,叫做负数。

③0既不是正数也不是负数。

0是正数和负数的分界,是的中性数。

④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。

整数和分数统称有理数。

⑥非负数就是正数和零;非负整数就是正整数和0。

⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。

-------------1.2数轴①通常用一条直线上的点表示数,这条直线叫数轴。

②数轴三要素:原点、正方向、单位长度。

③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

④只有符号不同的两个数叫做互为相反数(和为零)。

(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。

⑥数轴上两点间的距离=|M—N|⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

⑦两个负数,绝对值大的反而小。

⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5-------------1.3有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。

②负数小于零,零小于正数,负数小于正数。

③两个负数的比较大小,绝对值大的反而小。

-------------1.4有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

七年级数学上册期末复习资料(Word版)

七年级数学上册期末复习资料(Word版)

七年级数学上册期末复习资料(2021最新版)作者:______编写日期:2021年__月__日-----------3.1一元一次方程及其解法①方程是含有未知数的等式。

②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

③注意判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)3)经整理后方程中未知数的次数是1.④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

方程的解代入满足,方程成立。

⑤等式的性质:1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。

a=b得:a+(-)c=b+(-)c2)等式两边同时乘以或除以同一个不为零的数,等式不变。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

⑥解一元一次方程一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式.⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b (a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)--------3.2一次方程的应用:(一)、概念梳理⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;①解:设出未知数(注意单位),②根据相等关系列出方程,③解这个方程,④答(包括单位名称,检验)。

人教版七年级上册数学知识点总复习

人教版七年级上册数学知识点总复习

七年级数学(上册)第一章《有理数》复习知识点1:正数和负数.有理数1.下列四个数中,与其它三个数性质不同的一个数是( )2;+29.15;-3000;0.000001A.2B.+29.15C.-3000D.0.0000012.如果+3吨表示运入仓库的大米数,那么运出5吨大米表示为( )A.-5吨B.+5吨C.-3吨D.+3吨3.在一次数学测验中,七(2)班平均分为85分,把高于平均分的部分记着正,某小组美美.多多.甜甜.乐乐四位同学的成绩记为:+7,-4,-11,+3,这四位同学成绩最好的是( )A.美美B.多多C.甜甜D.乐乐知识点2:数轴.相反数1.-15的相反数是( )2.下列个组数互为相反数的是( )A.2与-3B.21与-2 C.2021与-2021 D.-0.25与-0.253.一个数的绝对值是3,则这个数是4.若一个数的绝对值的相反数是-7,则这个数是5.数轴上的原点和原点左边的点表示的数是( )A.负数B.正数C.非正数D.非负数6.图中数轴上的点M 表示()A.2.5B.-1.5C.-2.5D.1.5知识点3:绝对值1.若2m+5的绝对值与−3的绝对值相等,则m=2.若|a|=1,|b|=4,且ab<0,则a+b 的值为3.化简|π−4|+|3−π|=4.实数a ,b 在数轴上的位置如图所示,则|a+b|+|a −b|等于 .5.已知数a ,b ,c 在数轴上的位置如图所示,化简|a+b|−|c −b|的结果是 .6.如果有理数a ,b ,c 在数轴上的位置如图则∣a+b ∣+∣a −c ∣−b+c=7.已知|2−b|与|a+b −5|互为相反数,则 的值是8.|m ﹣n+2|+|m ﹣3|=0,则=m+n = .9.若a.b.c 都是有理数,且|a −1|+|b+2|+|c −4|=0,则a+|b|+c =10.已知a 与−b 互为相反数,c 与−d 互为倒数,|m|=3,则 −cd+m= . 11.若a,b 互为相反数,c,d 互为倒数,|x|=1,则 +x+cd 的值为知识点4:有理数的大小比较1.用“>”或“<”填空: (1)-99_____-100;(2)0.2_____-0.3(3)-5_____-4;(4)-π_____-3.14知识点5:有理数的加减乘除.乘方1.计算:(1)−20+(−14)−(−18)−1; (2)321+(−21)−(−21)+232;(3)(−17)÷(−85)÷(−0.25) (4)(−81)÷94×47÷(−9)2.计算:(1)−14−(1−0.5)×31×[2−(−3)2] (2)(−1)2018+16÷(−2)3×|−3|(3)4+(−2)2×2−(−36)÷4 (4)−72+2×(−3)2+(−6)÷(−31)2a b m b a -xb a +知识点6:科学计数法1.截止2021年全国疫情人数约达127000人,这个数用科学记数法表示为( )A.1.27×105B.12.7×105C.1.270×104D.0.127×1062.为了加强农村教育,某年中央下拨农村义务教育经费666亿元,666亿元用科学记数法表示正确的是( )A.6.66×109元B.66.6×1010元C.6.66×1011元D.6.66×1010元3.把199000000用科学记数法写成1.99×10n-3的形式,n 的值是 。

七年级上册数学专题复习

七年级上册数学专题复习

七年级上册数学专题复习――与线段有关的计算问题及用方程解决实际问题1、 如图,点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若AC=9cm ,CB=6cm ,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC+CB=acm ,其它条件不变,你能猜想MN 的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C 在线段AB 的延长线上,且满足AC-BC=b cm ,M 、N 分别为AC 、BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.2、已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)(1)若AB=10cm ,当点C 、D 运动了2s ,求AC+MD 的值.(2)若点C 、D 运动时,总有MD=3AC ,直接填空:AM= AB .(3)在(2)的条件下,N 是直线AB 上一点,且AN-BN=MN ,求ABMN 的值.3、画线段AB=5厘米,延长AB 至C ,使AC=2AB ,反向延长AB 至E ,使AE=41CE ,再计算: (1)线段CE 的长;4、如图,已知数轴上A 、B 两点所表示的数分别为-2和8.(1)求线段AB 的长;(2)若P 为射线BA 上的一点(点P 不与A 、B 两点重合,M 为PA 的中点,N 为PB 的中点,当点P 在射线BA 上运动时;MN 的长度是否发生改变?若不变,请你画出图形,并求出线段MN 的长;若改变,请说明理由.(3)若有理数a 、b 、c 在数轴上的位置如图所示:且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c )2+2(d+2c )-5(d+2c )2-3(d+2c )的值.5、在直线L 上有A 、B 两点,线段AB=3厘米,点C 也在直线L 上,且线段AC :BC=1:2.求线段AC 、BC 的长.(要求解题时画出图形)6、在数轴上,点A 表示2.4,点B 表示-3.6,点C 表示-0.6.(1)求线段AB 的长;(2)点C 是不是线段AB 的中点为什么?(3)取线段BC 的中点D ,那么点D 表示什么数?7、如图1,已知数轴上有三点A 、B 、C ,AB=21AC ,点C 对应的数是200. (1)若BC=300,求点A 对应的数;(2)如图2,在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足MR=4RN (不考虑点R 与点Q 相遇之后的情形);(3)如图3,在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从是点D 运动到点A 的过程中, 23QC-AM 的值是否发生变化?若不变,求其值;若不变,请说明理由.8、如图,有一数轴原点为O ,点A 所对应的数是-121,点A 沿数轴匀速平移经过原点到达点B . (1)如果OA=OB ,那么点B 所对应的数是什么?(2)从点A 到达点B 所用时间是3秒,求该点的运动速度.(3)从点A 沿数轴匀速平移经过点K 到达点C ,所用时间是9秒,且KC=KA ,分别求点K 和点C 所对应的数.9、已知A 、B 两点在数轴上表示的数为a 和b ,M 、N 均为数轴上的点,且OA <OB .(1)若A 、B 的位置如图所示,试化简:|a|-|b|+|a+b|+|a-b|.(2)如图,若|a|+|b|=8.9,MN=3,求图中以A 、N 、O 、M 、B 这5个点为端点的所有线段长度的和;(3)如图,M 为AB 中点,N 为OA 中点,且MN=2AB-15,a=-3,若点P 为数轴上一点,且PA=32AB ,试求点P 所对应的数为多少?10、已知线段AB =14cm,在线段AB 上有C 、D 、M 、N 四个点,且满足AC ;CD :DB =1:2:4,AM =21AC ,DN =41DB ,求MN 的长。

北师大七年级上册期末数学压轴题总复习(一)(word解析版)

北师大七年级上册期末数学压轴题总复习(一)(word解析版)

期末压轴题总复习(一)学校:___________姓名:___________班级:___________考号:___________一、解答题1.用长方形硬纸板做长方体盒子,底面为正方形.(1)每个长方形盒子有________个侧面,有________个底面;(2)长方形硬纸板以如图两种方法裁剪.A方法:剪3个侧面;B方法:剪2个侧面和2个底面.现有35张硬纸板,裁剪时x张用A方法,其余用B方法.①用含x的代数式分别表示裁剪出的侧面和底面的个数;②若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?2.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=12AB;(3)当点P运动到点B的右侧时,PA的中点为M,N为PB的三等分点且靠近于P点,求PM﹣34BN的值.3.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒1个单位长度,点N从点B出发速度为点M的3倍,点P从原点出发速度为每秒0.5个单位长度.(1)求A、B两点的距离为个单位长度.(2)若点M向右运动,同时点N向左运动,求经过多长时间点M与点N相距30个单位长度?(3)若点M、N同时向右运动,求经过多长时间点M、N相遇?并求出此时点N对应的数.(4)若点M、N、P同时都向右运动,当点M与点N相遇后,点M、P继续以原来的速度向右运动,点N改变运动方向,以原来的速度向左运动,求从开始运动后,经过多长时间点P到点M、N的距离相等?4.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?5.某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.52元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350﹣210)×(0.52+0.05)+(400﹣350)×(0.52+0.30)=230(元)(1)以此方案请你回答:若小华家某月用电量是300度,则这个月的电费为元?(2)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量.6.某商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共60件,恰好总进价为2800元,求购进甲种商品多少件?(3)在国庆期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按售价的九折其中600元部分八点二折优惠,超过600元超过600元的部分打三折优惠.按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?7.点A、B、C在数轴上表示的数a、b、c满足2(3)|12|0++-=,且a是绝对值最小b c的有理数.(1)a的值为,b的值为,c的值为;(2)已知点P、点Q是数轴上的两个动点,点P从点B出发,以3个单位/秒的速度向右运动,点Q从点C出发,速度为2个单位/秒.①若在点P出发的同时点Q向左运动,几秒后点P和点Q在数轴上相遇?②若点P运动到点A处,动点Q再出发也向右运动,则P运动几秒后这两点之间的距离为2个单位?8.现象感知如图1,在数轴上,线段AB的中点为E,点E表示的数与点A、点B表示的数关系存在:482+=6;线段CD的中点为F,点F表示的数与点C、点D表示的数的关系也存在:512-+=﹣2归纳性质如图2,在数轴上,线段GH的中点为P.(1)如图2,在数轴上,点G、H、P表示的数分别为a,b,c,请猜想a,b,c的等量关系,请写出一等量关系式.小宇同学为了说明a,b,c的等量关系是正确的,采用了字母表示数的方法,设PG=PH=m,从而表示出G、H两点的数(含c和m).请完成小宇的说理过程.拓展应用(2)如图,点A,B,C在数轴上对应的数分别为﹣3,1,9,它们分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左做匀速运动,设同时运动的时间为t秒.若A,B,C三点中,有一点恰为另外两点所连线段的中点,求t的值.9.为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电量(度)执行电价(元/度)第一档小于等于2000.55第二档大于200小于4000.6第三档大于等于4000.85某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?10.如图,一块长为5厘米,宽为2厘米的长方形纸板,一块长为4厘米,宽为1厘米的长方形纸板与一块边长为a厘米的正方形纸板以及另外两块长方形纸板,(1)用含a的式子表示图形左上角长方形的长AG= 厘米,宽AE= 厘米.(2)用含a的式子表示大图形边AD= 厘米,边AB= 厘米,若恰好拼成一个大正方形,问大正方形的面积是多少?参考答案1.(1)4,2;(2)①侧面(x +70)个,底面(70-2x )个②21个. 【分析】(1)根据长方体的性质求得答案; (2)①根据题意列出代数式即可;②根据题意列出一元一次方程,解方程求解即可. 【详解】(1)每个长方形盒子有4个侧面,有2个底面; 故答案为:4,2;(2)①A 方法剪3x 个侧面,B 方法剪()235x -个侧面和()235x -个底面32(35)70x x x +-=+,()235702x x -=-∴共有侧面()70x +个,底面()702x -个②根据已知条件可得7070242x x+-= 解得14x =1470=214+∴答:裁剪出的侧面和底面恰好全部用完,能做21个盒子. 【点睛】本题考查了一元一次方程的应用,正确的找出题中的等量关系是解题的关键. 2.(1(①10(3(②(2+3t(8(2t((2(t=1或3((3(5 【分析】(1((根据点A 表示的数为﹣2,点B 表示的数为8,即可得到A 、B 两点间的距离以及线段AB 的中点表示的数;(依据点P ,Q 的运动速度以及方向,即可得到结论; (2)由t 秒后,点P 表示的数﹣2+3t ,点Q 表示的数为8﹣2t ,于是得到PQ=|((2+3t(((8(2t(|=|5t(10|,列方程即可得到结论;(3)依据PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,运用线段的和差关系进行计算,即可得到PM ﹣34BN 的值.【详解】解:(1(①8(((2(=10((2+12×10=3(②由题可得,点P表示的数为﹣2+3t,点Q表示的数为8(2t((2(∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8(2t(∴PQ=|((2+3t(((8(2t(|=|5t(10|(又PQ=12AB=12×10=5(∴|5t(10|=5(解得:t=1或3(∴当t=1或3时,PQ=12AB((3(∵PA的中点为M(N为PB的三等分点且靠近于P点,∴MP=12AP=12×3t=32t(BN=23BP=23(AP(AB(=23×(3t(10(=2t(203(∴PM(34BN=32t(34(2t(203(=5(【点睛】本题考查了实数和数轴以及一元一次方程的应用应用,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程求解.3.(1)14;(2)4;(3)7秒,此时N点对应的数是13;(4)23秒或7秒或403秒【分析】(1)由题意根据两点间的距离公式即可求出A、B两点的距离;(2)根据题意设经过x秒点M与点N相距30个单位,由点M从A点出发速度为每秒1个单位,点N从点B出发速度为M点的3倍,得出x+3x+14=30求解即可;(3)由题意根据追及问题即时间等于路程除以速度差求出点M、N相遇时间,进而代入时间得出点N对应的数;(4)根据题意设从开始运动后,相遇前经过t秒点P到点M、N的距离相等,或相遇后经过t秒点P到点M、N的距离相等,根据PM=PN列出方程,进而求解即可.【详解】解:(1)∵数轴上两点A、B对应的数分别是6,-8,∴A、B两点的距离为6-(-8)=14.故答案为:14;(2)设经过x秒点M与点N相距30个单位.依题意可列方程为:x+3x+14=30,解方程,得x=4.答:经过4秒点M与点N相距30个单位;;(3)点M与点N相遇的时间为14÷(3﹣1)=7秒,此时N点对应的数是﹣8 + 7×3=13;(4)点M与点N相遇的时间为14÷(3﹣1)=7秒,设从开始运动后,相遇前经过t秒点P到点M、N的距离相等.依题意可列方程为:0.5t-(-8+3t)=6+t-0.5t,解得t=23,设从开始运动后,相遇后经过t秒点P到点M、N的距离相等.依题意可列方程为:(t+6)-0.5t=0.5t-[13-3(t-7)],解得t=403.所以23秒或7秒或403秒,点P到点M、N的距离相等.【点睛】本题主要考查数轴上的动点问题和一元一次方程的应用,利用行程问题的基本数量关系,以及数轴直观解决问题即可.4.(1)该超市第一次购进甲种商品每件15元,乙种商品每件20元;(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润;(3)a的值是5.【分析】(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元,根据题意列出方程求解即可.(2)根据利润公式求出总利润即可.(3)根据题意列出方程求解即可.【详解】(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得:x=15,x+5=15+5=20.答:该超市第一次购进甲种商品每件15元,乙种商品每件20元.(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得的利润=80×(20﹣15)+120×(30﹣20)=1600元.答:该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润.(3)由题意得80×[20(1+a%)﹣15]+120×[30(1﹣a%)﹣(20﹣3)]=1600+260,解得:a=5.答:a的值是5.【点睛】本题考查了一元一次方程的销售问题,掌握解一元一次方程的方法是解题的关键.5.(1)160.5;(2)小华家5月份的用电量为262度.【分析】(1)根据300度在第二档列式计算即可得解;(2)根据第二档的电费求法列方程计算即可得解.【详解】解:(1)小华家8月用电量为300度,需交电费210×0.52+(300-210)×(0.52+0.05)=160.5(元).故需交电费160.5元;故答案为:160.5;(2)月用电量为210度时,需交电费210×0.52=109.2(元)月用电量为350度时,需交电费210×0.52+(350-210)×(0.52+0.05)=189(元),所以小华家5月份的用电量在第二档.设小华家5月份的用电量为x度,则210×0.52+(x-210)×(0.52+0.05)=138.84,解得x=262.答:小华家5月份的用电量为262度.【点睛】本题考查了一元一次方程的应用,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.6.(1)40,60%;(2)20件;(3)7件或8件【分析】(1)设甲的进价为x元/件,根据甲的利润率为50%,求出x的值;(2)设购进甲种商品x件,则购进乙种商品(500−x)件,再由总进价是2800元,列出方程求解即可;(3)分两种情况讨论,①打折前购物金额超过450元,但不超过600元,②打折前购物金额超过600元,分别列方程求解即可.【详解】解:(1)设甲的进价为x元/件,则(60−x)=50%x,解得:x=40.故甲的进价为40元/件;乙商品的利润率为(80−50)÷50=60%.故答案是:40;60%;(2)设购进甲种商品x件,则购进乙种商品(500−x)件,由题意得,40x+50(60-x)=2800,解得:x=20.即购进甲商品20件.(3)设小华打折前应付款为y元,(若打折前购物金额超过450元,但不超过600元,由题意得0.9y=504,解得:y=560,560÷80=7(件),(若打折前购物金额超过600元,600×0.82+(y-600)×0.3=504,解得:y=640,640÷80=8(件),综上可得小华在该商场购买乙种商品件7件或8件.【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,找到等量关系,利用方程思想求解.7.(1)0,-3,12;(2)①3秒;②11或15秒【分析】(1)根据非负数的性质即可求出bc 的值,根据a 是绝对值最小的有理数即可求出a 的值; (2)①设t s 后P 和Q 相遇,根据两人相遇一共走的路程即为BC 的长,即可得到答案; ②分P 在追上Q 前和P 在超过Q 后两种情况进行求解即可.【详解】解:(1)∵a 是绝对值最小的有理数,(a =0,∵()23120b c ++-=,()230b +≥,120c -≥,∴30b +=,120c -=,∴3b =-,12c =;故答案为:0,-3,12;(2)(设t s 后P 和Q 相遇,由题意得(3+2)t =12-(-3),解得t =3,∴3秒后点P 和点Q 在数轴上相遇(设P 点运动ts ,后这两点之间的距离为2个单位,∵B 表示的数是-3,A 表示的数是0,(AB =3,∴P 运动到A 的时间为1s ,即Q 在P 出发1s 后再出发,若P 在追上Q 前:3t +2=2(t -1)+12-(-3),解得t =11,若P 在超过Q 后:3t -2=2(t -1)+12-(-3),解得t =15,∴P 运动11秒或15后这两点之间的距离为2个单位.【点睛】本题主要考查了非负数的性质,绝对值的意义,数轴上的动点问题,解题的关键在于能够根据题意求出a 、b 、c 的值.8.(1)2a b c +=,见解析;(2)1秒或4秒或16秒 【分析】(1)用c m 、表示出点G H 、,然后求解即可;(2)分三种情况讨论求解即可,当点B 是线段AC 的中点、点C 是线段AB 的中点、点A 是线段BC 的中点时,分别求解即可.【详解】(1)2a b c +=;理由:H 点:b =c +m ,G 点:a =c -m , 2222a b c m c m c c +-++===,即2a b c +=. (2)运动t 秒后A 、B 、C 三点表示的数分别为A :-3-2t ,B :1-t ,C :9-4t ①当点B 是线段AC 的中点时:32941,12t t t t --+-=-= ②当点C 是线段AB 的中点时:32194,42t t t t --+-=-= ③当点A 是线段BC 的中点时:94132,162t t t t -+-=--= 综上所述,t 的值为1秒或4秒或16秒.【点睛】此题考查了数轴的有关应用,涉及了用数轴表示数,数轴上的动点问题,中点公式,解题的关键是掌握数轴的有关性质,正确求解.9.五月份用电190度,六月份用电310度.【分析】根据两个月份用电量共是500度,可知每个月用电量不可能都在第一档,根据题意用电量又都小于400度,且六月份用电量大于五月份用电量.分两种情况来讨论.(1)五月份用电量小于200度(2)五月份用电量大于200度,分别列出方程求解即可.【详解】设五月份用电量为x ,则六月份用电量为500-x ,且500-x >x .(1)当五月份用电量x <200时,六月份用电量500-x 一定大于200.根据题意可列方程:0.55x +0.6(500-x )=290.5解得x =190,所以五月份用电量为190度.所以六月份用电量为500-190=310度.(2)当五月份用电量x >200,且六月份用电量为500-x >200.根据题意可列方程:0.6x +0.6(500-x )=290.5方程无解,不符合题意.【点睛】本题考察了利用分类讨论的方法,列出一元一次方程来解决实际问题,总价=单价×数量是解决本题的关键.10.(1)(1+a),(5-a);(2)(9-a),(3+a),36平方厘米【分析】(1)根据图形可得AE=GH=NG-NH=BQ-NH=5-a,AG=EH=EF+FH=1+a;(2)根据图形可得AD=AE+ED=5-a+4=9-a,AB=AG+2=3+a,由AD=AB求出a的值,从而可得大正方形的面积.【详解】解:如图所示,∵四边形NMFH是正方形,∴NH=FH=a,又EF=1,∴AG=EH=EF+FH=1+a,AE=GH=NG-NH=BQ-NH=5-a,故答案为:(1+a),(5-a);(2)根据图形可得AD=AE+ED=5-a+4=9-a,AB=AG+2=3+a,∵AD=AB,∴9-a=3+a,解得,a=3,∴大正方形的边长为6厘米,∴大正方形的面积是6×6=36(平方厘米),答:大正方形的面积是36平方厘米.故答案为:(9-a),(3+a).【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。

新人教版七年级数学上册期末专题总复习资料

新人教版七年级数学上册期末专题总复习资料

新人教版七年级数学上册期末专题总复习资料人教版七年级数学上册期末专题总复资料类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】515-3;1-(+6)-3+(-1.25)- 48/82.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】6.82)+3.78+(-3.18)-3.78;311/-5 + (-9)/8 - 1.25.三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A。

B。

-1 C。

2016 D。

-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥时,|a|=a;当a<0时,|a|=-a.根据以上阅读完成下列问题:1)|3.14-π|=________;1/1-1/11+1/111-1/1111+…-1/2013+1/2014-1/2015-1/2016 2)计算:2/3-3/2+4/3-9/8+10/9类型二运用分配律解题的技巧一、正用分配律5.计算.131/2-4+8×(-24);39×(-14).二、逆用分配律666/(-3)-3×(-3)-6×3.6.计算:4×7/7.三、除法变乘法,再利用分配律122/6-7+3÷(-42).参考答案与解析1.解:(1)原式=1+(-1.25)-6+4/8= -4.75.2)原式=2.3+6.2-(-1.7-2.2-1.1)= 3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)= -10.2)原式=19+8/4-9/8-1.25= 3.3.D4.解:(1)π-3.14=π-3.14.2)原式=1-1/2-1/10= 3/5.5.解:(1)原式=-12+18-3=3.2)原式=2/3-3/2+4/3-9/8+10/9= 55/72.1.下列说法正确的是()A。

七年级数学上册-总复习-北师大版

七年级数学上册-总复习-北师大版

第一章丰富的图形世界1、复习目标:2、能在具体情境中, 认识圆柱、圆锥、正方体、长方体、棱柱、球等几何体, 并能用自己的语言描述他们的特征。

3、了解棱柱、圆柱、圆锥的侧面展开图, 能根据展开图判断和制作简单的立体图形。

4、亲身经历切截正方体的过程, 体会面与体的转换, 提高动手操作的能力。

会从不同方向观察同一个物体, 能识别简单物体的三种视图。

会画正方体及简单组合的三种视图, 并在小正方体内填上表示该位置小立方块的个数。

能在具体情境中认识多边形, 拓展思维空间。

二、知识结构网络三、重点知识点点拨1.常见的几何体及其特点长方体: 有8个顶点, 12条棱, 6个面, 且各面都是长方形(正方形是特殊的长方形)正方体是特殊的长方体。

棱柱: 上下两个面称为棱柱的底面, 其它各面称为侧面, 长方体是四棱柱。

圆柱:有上下两个底面和一个侧面, 两个底面是半径相等的圆。

圆锥:有一个底面和一个顶点, 且侧面展开图是扇形。

球: 由一个面围成的几何体。

2.展开与折叠(1)棱柱:如图1所示的棱柱, 上底面是五边形A'B'C'D'E', 下底面是五边形ABCDE, 这两个五边形的大小形状都相同, 这个棱柱有5个侧面, 当它为直棱柱时, 5个侧面都是长方形, 当它为斜棱柱时, 5个侧面都是平行四边形, 在棱柱中任何相邻的两个面的交线都叫做棱桂的棱, 其中相邻的两个侧面的交线都叫做棱柱的侧棱, 图1中的棱柱有15条侧棱, 其中有5条侧棱, 这5条侧棱的长相等, 将这个棱柱展开定一个长方形(图2是图1中棱柱的侧面展开图)反过来可以将一个长方形折叠成一个棱桂的侧面。

当一个棱柱的地面是三角形时, 称为三棱柱, 当一个棱柱的底面是四边形时, 称为四棱柱, (长方体正方体都是四棱柱)当一个棱柱的底面是五边形时, 称为五棱柱(图1就是五棱柱)………当一个棱柱的底面是n边形时, 称为n棱柱它有2n个顶点, 3n条棱, n十2个面(其中2个底面, n个侧面。

七年级上册数学总复习(含答案)

七年级上册数学总复习(含答案)

a10总 复 习1、下列说法不正确的是( )(A)0既不是正数,也不是负数 (B) 1是绝对值最小的数 (C)一个有理数不是整数就是分数 (D) 0的绝对值是0 2、下列语句正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.绝对值最小的数是0D.倒数等于它本身的数只有1 3、下列说法正确的是 ( )A. 几个有理数相乘, 当负因数有奇数个时, 积为负B. 几个有理数相乘, 当负因数有偶数个时, 积为正C. 几个有理数相乘, 当积为负时, 负因数有奇数个D. 几个有理数相乘, 当因数有偶数个时, 积为正 4、下列各组量中,互为相反意义的量是( ) A 收入200元与支出20元 B 上升10米与下降7米 C 超过0.05毫米与不足0.03毫米 D 增大2升与减少2升 5、在数轴上,原点及原点右边的点表示的数是( ) A 正数 B 负数 C 非正数 D 非负数 6、如果一个有理数的绝对值是正数,那么这个数一定( ) A 是正数 B 不是0 C 是负数 D 以上都不对 7、下列关于0的结论错误的是( ) A 0不是正数也不是负数 B 0的相反数是0 C 0的绝对值是0 D 0的倒数是08、有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( ) A a>b B a<bC ab>0D 0ab> 9、下列运算正确的是( ) A. -22=4B.31128327⎛⎫-=- ⎪⎝⎭C. 81)21(3-=-D. 6)2(3-=-10、a, b 是有理数, 它们在数轴上的对应点的位置如图1所示, 把a , -a , b , -b 按照从小到大的顺序排列是 ( )A. b a a b <<-<-B. b a b a <<-<-C.b a a b <-<<-D.a a b b <-<<- 11、下面计算正确的事( )A.32x -2x =3 B.32a +23a =55a C.3+x =3xD.-0.25ab +41ba =0 12、下列说法正确的是( )A 、13 πx 2的系数是13B 、12 xy 2的系数为12xC 、-5x 2的系数为5D 、-x 2的系数为-113、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元A 、4m +7nB 、28mnC 、7m +4nD 、11mn14、计算:6a 2-5a +3与5a 2+2a -1的差,结果正确的是( )A 、a 2-3a +4B 、a 2-3a +2C 、a 2-7a +2D 、a 2-7a +415、下列说法正确的是( )A .32xyz 与32xy 是同类项 B .x 1和21x 是同类项 C .0.523y x 和732y x 是同类项D .5n m 2与-42nm 是同类项16、若A 是一个六次多项式,B 也是一个七次多项式,则B A +一定是( )A.十三次多项式B.七次多项式 C .不高于七次的整式 D.六次多项式17、下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎪⎭⎫ ⎝⎛-+-22213y xy x 2222123421y x y xy x -=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是 ( )A. xy 7-B. xy 7+C. xy -D. xy + 18、当x 分别取2和-2时,多项式x 5+2x 3-x 的值( ) A.互为相反数 B.互为倒数 C.相等D.异号不等19、已知关于x 的多项式222ax abx b bx abx a -+++与的和是一个单项式,则有( ) A. a =bB. a =0或b =0C. ab =1D. a =-b 或b =-2a20、32281x x x -+-若多项式与多项式323253x mx x +-+的和不含二次项,则m 等于( )A.2B.-2C.4D.-421、如果4x 2-2x = 7是关于x 的一元一次方程,那么m 的值是( )A 、- 12B 、12C 、0D 、122、在下列方程中,解是2的方程是( )A 、3x =x +3B 、-x +3=0C 、2x =6D 、5x -2=823、方程x9+1=0的解是( )A 、-10B 、-9C 、9D 、1924、将方程 - 34 x =12 的未知数的系数化为1,得( )A 、x = - 83B 、x = 83C 、x = 23D 、- 2325、一个长方形的周长是40㎝,若将长减少8㎝,宽增加2㎝,长方形就变成了正方形,则正方形的边长为( )A 、6㎝B 、7㎝C 、8㎝D 、9㎝ 26、如果一元一次方程a x +b =0(a≠0)的解是正数,则( ) A 、a 、b 为异号 B 、b 大于0 C 、a 、b 为同号 D 、a 小于0 27、下列说法中,正确的是( ) A 、若ac =bc ,则a =bB 、若 a c = bc,则a =bC 、若a 2=b 2,则a =bD 、若∣a ∣=∣b ∣,则a =b28、甲比乙大15岁。

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题

新人教版七年级上册数学总复习知识点和练习题新人教版数学七年级上期末总复期末复一有理数的意义一、双基回顾1、前进8米的相反意义的量是;盈利50元的相反意义的量是。

2、向东走5m记作+5m,则向西走8记作,原地不动用表示。

正数{…};负数{…};分数{…};整数{…};非负整数{…};非正数{…}。

4、与表示-1的点距离为3个单位的点所表示的数是。

5、数轴上到原点的距离为2的点所表示的数是。

6、3的相反数的倒数是。

7、最小的自然数是;最小的正整数是;绝对值最小的数是;最大的负整数是。

8、相反数等于它本身的数是,绝对值等于它本身的数是,平方等于它本身的数是,,倒数即是它自己的数是。

9、如图,如果a<,b>0,那么a、b、-a、-b的大小关系是.10、已知︱a+2︱+(3- b)2=0,则a b =。

ab二、例题导引例1(1)大于-3且小于2.1的整数有哪些?(2)绝对值大于1小于4.3的整数的和是多少?例2已知a、b互为相反数,m、n互为倒数,︱x︱=3,求(a+b)2-3mn+2x的值。

例3(1)若a<,a2=4,b3=-8,求a+b的值。

(2)已知︱a︱= 2,︱b︱=5,求a-b的值;3、操演升华1、判断下列叙述是否正确:①零上6℃的相反意义的量是零下6℃,而不是零下8℃()②如果a是负数,那末-a就是正数()③正数与负数互为相反数()④一个数的相反数长短正数,那末这个数肯定长短负数()⑤若a=b,则︱a︱=︱b︱;若︱a︱=︱b︱,则a=b()2、一种零件标明的要求是Ф10(单位:mm)表示这种零件的标准尺寸是10mm,加工零件要求最大直径不超过mm,最小直径不小于mm.。

3、某天气温上升了-2℃的意义是。

5、12的相反数与-7的绝对值的和是。

6、若a<0,b<0,则下列各式正确的是( )A、a-b<0 B、a-b>0 C、a-b=0 D、(-a)+(-b)>07、两个非零有理数的和是,它们的商是()A、0B、-1C、1D、不能确定8、若|x|=-x,则x=_____;若︱x-2︱=3,则x= .9、古希腊科学家把数1,3,6,10,15,21,……叫做三角形数它有一定的规律性,第个三角形数为_______。

七年级上册数学总复习

七年级上册数学总复习

七年级上册数学总复习一、压轴题1.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化....简.); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.2.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值. 3.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.4.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.5.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.6.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.7.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.8.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

七年级上册数学全册概念总结复习

七年级上册数学全册概念总结复习

七年级上册数学全册概念总结复习七年级上册数学全册概念总结复习第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。

棱柱:上下两个面称为棱柱的底面,各面称为侧面,长方体是四棱柱。

棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。

圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。

圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

圆锥:有一个底面和一个侧面(曲面)。

侧面展开图是扇形,底面是圆。

球:由一个面(曲面)围成的几何体4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种6、截一个正方体:(1)用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形.②、长方体、棱柱的截面与正方体的截面有相似之处.(2)用平面截圆柱体,可能出现以下的几种情况.(3)用平面去截一个圆锥,能截出圆和三角形两种截面(还有其他截面,初中不予研究)(4)用平面去截球体,只能出现一种形状的截面——圆.(5)需要记住的要点:几何体截面形状正方体三角形、正方形、长方形、梯形、五边形、六边形圆柱圆、长方形、(正方形)、……圆锥圆、三角形、……球圆7、三视图物体的三视图指主视图、俯视图、左视图。

七年级上册数学总复习

七年级上册数学总复习

七年级数学上册知识归纳第一章1.点运动成线,线运动成面,面运动成体。

2.圆柱与圆锥的相同与不同相同点:底面都是圆,侧面都是曲面不同点:(1)圆柱有两个大小相同的底面,而圆锥只有一个底面(2)圆柱没有顶点, 而圆锥有一个顶点棱柱与圆柱的相同与不同相同点:都有上、下两个底面,都有侧面不同点:(1)棱柱的底面是形状和大小完全相同的多边形, 圆柱的底面是圆(2)棱柱的侧面是长方形,圆柱的侧面是曲面(3)棱柱有顶点,圆柱没有顶点3.在立体图形中,若围成的面都是平的,这样的几何体叫做多面体4.几何体的分类(1)按面“平”或“曲”分类围成几何体所有面都是平面的为一类。

如:正方体、长方体、棱柱、棱锥。

围成几何体的面中至少有一个面不是平面的为一类。

如:圆柱、圆锥、球。

(2)按“柱锥球”分类柱体包括:棱柱、圆柱。

锥体包括:棱锥、圆锥。

球体包括:球。

5.棱柱:(1)在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的上、下底面的形状相同,侧面的形状都是长方形。

(2)人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……(3)长方体和正方体都四棱柱。

(4)棱柱有直棱柱和斜棱柱。

(5)n棱柱有2n个顶点,3n条棱,n+2个面。

6. 几何体的截面边数不能多于几何体的面数。

如:正方体的截面不可能为七边形。

7.我们从不同的方向观察同一物体时,把从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。

8.多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形。

三角形、四边形、五边形、六边形等都是多边形。

n边形是由n条不在同一条直线上的线段集资依次首尾相连组成的封闭图形。

从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成n-2个三角形。

9.圆上A,B两点之间的部分叫做弧,由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

人教版初一数学七年级数学上册经典总复习练习题打印版

人教版初一数学七年级数学上册经典总复习练习题打印版

七年级数学上册经典练习题七年级有理数一、境空题1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____.3、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是____.4、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.5、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C6、计算:.______)1()1(101100=-+-7、平方得412的数是____;立方得–64的数是____. 8、+2与2-是一对相反数,请赋予它实际的意义:___________________。

9、绝对值大于1而小于4的整数有____________,其和为_________。

10、若a 、b 互为相反数,c 、d 互为倒数,则 3 (a + b) 3-cd =__________。

11、若0|2|)1(2=++-b a ,则b a +=_________。

12、数轴上表示数5-和表示14-的两点之间的距离是__________。

13、在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。

14、若m ,n 互为相反数,则│m-1+n │=_________.二、选择题(每小题3分,共21分)15、有理数a 、b 在数轴上的对应的位置如图所示:则( )0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >016、下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a =17、如果0a b +>,且0ab <,那么( )A.0,0a b >> ;B.0,0a b << ;C.a 、b 异号;D. a 、b 异号且负数和绝对值较小18、下列代数式中,值一定是正数的是( )A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+119、算式(-343)×4可以化为() (A )-3×4-43×4 (B )-3×4+3 (C )-3×4+43×4 (D )-3×3-3 20、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………()A 、90分B 、75分C 、91分D 、81分21、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………()A 、高12.8%B 、低12.8%C 、高40%D 、高28%三、计算(每小题5分,共15分)22、)1279543(+--÷361; 23、|97|-÷2)4(31)5132(-⨯--24、322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--四、解答题(共46分)25、已知|a|=7,|b|=3,求a+b 的值。

七年级数学上册全册单元试卷复习练习(Word版 含答案)

七年级数学上册全册单元试卷复习练习(Word版 含答案)

七年级数学上册全册单元试卷复习练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.(1)请判断 AB 与 CD 的位置关系,并说明理由;(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.【答案】(1),理由如下:CE 平分,AE 平分,;(2),理由如下:如图,延长AE交CD于点F,则由三角形的外角性质得:;(3),理由如下:,即由三角形的外角性质得:又,即即.【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.4.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.【答案】(1)20(2)解:如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE-∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC-∠BOD=20°(3)解:∠COE-∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)-(∠BOD+∠COD)=∠COE+∠COD-∠BOD-∠COD=∠COE-∠BOD=90°-70°=20°,即∠COE-∠BOD=20°【解析】【解答】⑴如图①,∠COE=∠DOE-∠BOC=90°-70°=20°;【分析】(1)根据角度的换算可知∠COE和∠BOC互余,那么根据∠COB=70°可得∠COE=20°;(2)根据角平分线和∠BOC可得∠BOE=140°,∠COE=∠BOC=90°,所以它的余角∠COD=20°;(3)一个是直角∠EOD,,一个是70°∠BOC,这两个角里都包含了同一个角∠COD,那么大家都减去这个∠COD的度数,剩下的两角差与原两角差是一致的,所以可得出结论∠COE-∠BOD=20°。

(完整word版)七年级上册数学常考题型归纳(期末复习用)

(完整word版)七年级上册数学常考题型归纳(期末复习用)

ab 0七年级上册数学常考题型归纳第一章有理数一、正负数的运用 :1、某种药品的说明书上标明保存温度是(20±2)℃,则该药品在( )范围内保存才合适; A .18℃~20℃ ; B .20℃~22℃ ; C .18℃~21℃ ; D .18℃~22℃;2、我县2011年12月21日至24日每天的最高气温与最低气温如下表:日期 12月21日12月22日12月23日12月24日最高气温 8℃ 7℃ 5℃ 6℃ 最低气温-3℃-5℃-4℃-2℃其中温差最大的一天是【 】;A .12月21日;B .12月22日;C .12月23日;D .12月24日 ;二、数轴: (在数轴表示数,数轴与绝对值综合)3、如图所示,A ,B 两点在数轴上,点A 对应的数为2.若线段AB 的长为3,则点B 对应的数为【 】;A .-1;B .-2 ;C .-3 ;D .-4; (思考:如果没有图,结果又会怎样?)4、若数轴上表示2的点为M ,那么在数轴上与点M 相距4个单位的点所对应的数是______;5、如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( );;A .a +b>0 ;B .ab >0;C .110a b -<;D .110a b +>6、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( ); A .a <a -<b <b -; B .b -<a <a -<b ;C .a -<b <b -<a ;D .b -<a <b <a -;7、实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误的是( );A .0ab >B .0a b +<C .1ab <D .0a b -<8、有理数a 、b 、c 在数轴上的位置如图3所示,且 a 与b 互为相反数,则c b c a +--= ;9、如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是 .B 02A-1 a 01 b 图3ao cb 图3三、相反数 :(相反的两数相加等于0,相反数与数轴的联系)10、下列各组数中,互为相反数的是( );A .)1(--与1 ;B .(-1)2与1; C .1-与1; D .-12与1;四、倒数 :(互为倒数的两数的积为1)11、-3的倒数是________;五、绝对值 (|a |≥0,即非负数;化简|a+b |类式子时关键看a+b 的符号;如果|a |=b ,则a=±b )12、2-等于( ); A .-2 ; B .12- ; C .2 ;D .12; 13、若ab ≠0,则等式a b a b+=+成立的条件是______________;14、若有理数a, b 满足(a-1)2+|b+3|=0, 则a-b= ;15、有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果是_____________;六、乘方运算[理解乘方的意义;(-a)2与-a 2的区别; (-1)奇与(-1)偶的区别]16、下列计算中正确的是( );A .532a a a =+ ; B .22a a -=- ; C .33)(a a =- ; D .22)(a a --;七、科学计数法 (表示形式a ×10n )17、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米.八、近似数与准确数(两种表示方法)18、由四舍五入法得到的近似数3108.8×,下列说法中正确的是【 】;A .精确到十分位 ;B .精确到个位;C .精确到百位;D .精确到千位; 19、下面说法中错误的是( );A .368万精确到万位 ;B .2.58精确到百分位;C .0.0450有精确到千分位 ;D .10000精确到万位表示为“1万”或“1×104”;九、有理数的运算(运算顺序;运算法则;运算定律;简便运算)20、计算:(1)-2123+334-13-0.25 (2)22+2×[(-3)2-3÷12](3))23(24)32(412)3(22---×++÷÷ (4)24)75.337811()1()21(25.032×++×÷----(5)(-1)3-14×[2-(-3)2] . (6)计算:()2431(2)453⎡⎤-+-÷⨯--⎣⎦十、综合应用:21、已知4个数中:(―1)2005,2-,-(-1.5),―32,其中正数的个数有( );A .1 ;B .2;C .3 ;D .4;22、下列说,其中正确的个数为( );①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学总复习doc一、选择题1.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b2.下列判断正确的是()A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数.3.已知线段AB的长为4,点C为AB的中点,则线段AC的长为()A.1 B.2 C.3 D.44.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A.208B.480C.496D.5925.已知关于x的方程mx+3=2(m﹣x)的解满足(x+3)2=4,则m的值是()A.13或﹣1 B.1或﹣1 C.13或73D.5或736.将图中的叶子平移后,可以得到的图案是()A.B.C.D.7.计算:2.5°=()A.15′B.25′C.150′D.250′8.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱9.下列式子中,是一元一次方程的是()A.3x+1=4x B.x+2>1 C.x2-9=0 D.2x-3y=010.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A.(2,1) B.(3,3) C.(2,3) D.(3,2)11.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠2 12.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A.两点确定一条直线B.两点之间,线段最短C.直线可以向两边延长D.两点之间线段的长度,叫做这两点之间的距离13.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .14.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为( )A .100B .120C .135D .15015.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.17.已知单项式245225n m x y x y ++与是同类项,则m n =______.189________19.若关于x 的多项式2261x bx ax x -++-+的值与x 的取值无关,则-a b 的值是________20.单项式﹣22πa b的系数是_____,次数是_____.21.如图,若12l l //,1x ∠=︒,则2∠=______.22.52.42°=_____°___′___″.23.对于有理数a,b,规定一种运算:a⊗b =a2-ab .如1⊗2=12-1⨯2 =-1,则计算-5⊗[3⊗(-2)]=___.24.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.25.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.26.﹣225abπ是_____次单项式,系数是_____.27.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC=______cm.28.已知一个角的补角是它余角的3倍,则这个角的度数为_____.29.8点30分时刻,钟表上时针与分针所组成的角为_____度.30.设一列数中相邻的三个数依次为m,n,p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,b,128…,则b=________.三、压轴题31.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.32.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.33.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.34.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数35.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.36.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.37.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.38.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.2.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B ∵互为相反数的两个数的绝对值相等,故本选项正确.C 如果一个数是正数,那么这个数的绝对值是它本身.D ∵0的绝对值是0,故本选项错误.故选C .3.B解析:B【解析】【分析】根据线段中点的性质,可得AC 的长.【详解】解:由线段中点的性质,得AC =12AB =2. 故选B .【点睛】 本题考查了两点间的距离,利用了线段中点的性质.4.C解析:C【解析】【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.5.A解析:A【解析】【分析】先求出方程的解,把x 的值代入方程得出关于m 的方程,求出方程的解即可.【详解】解:(x+3)2=4,x ﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.6.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.7.C解析:C【解析】【分析】根据“1度=60分,即1°=60′”解答.【详解】解:2.5°=2.5×60′=150′.故选:C.【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.8.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.9.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。

相关文档
最新文档