数学建模中常见的十大模型讲课稿

合集下载

数学建模培训讲义-建模概论与初等模型

数学建模培训讲义-建模概论与初等模型

模型建立 建立t与n的函数关系有多种方法:
1. 右轮盘转过第 i 圈的半径为r+wi, m圈的总长度 等于录象带在时间t内移动的长度vt, 所以
m kn
模型建立
2. 考察右轮盘面积的 变化,等于录象带厚度 3. 考察t到t+dt录象带在 乘以转过的长度,即 右轮盘缠绕的长度,有
[(r wkn)2 r 2 ] wvt (r wkn)2kdn vdt
• 亲自动手,认真作几个实际题目
数学建模的论文结构
1、摘要——问题、模型、方法、结果
2、问题重述
3、模型假设
4、分析与建立模型
5、模型求解
6、模型检验
7、模型推广
8、参考文献
9、附录
谢 谢!
二、初等模型
例1 哥尼斯堡七桥问题
符号表示“一笔画问题”(抽象分析法) 游戏问题图论(创始人欧拉) 完美的回答连通图中至多两结点的度数为奇
3. 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,
使椅子的任何位置至少有三只脚同时着地。
A
y A
椅脚连线为正方形ABCD(如右图).
模 型
t ——椅子绕中心点O旋转角度
构 f(t)——A,C两脚与地面距离之和 D
B
t
x
成 g(t)——B,D两脚与地面距离之和
O
B
f(t), g(t) 0
D
C
模型构成 由假设1,f和g都是连续函数 A
实际上, 由于测试有误差, 最好用足够多的数据作拟合。
若现有一批测试数据:
t 0 20 40 60 n 0000 1153 2045 2800 t 100 120 140 160 n 4068 4621 5135 5619

数学建模模型和技巧

数学建模模型和技巧

数学建模模型和技巧数学建模是指将实际问题转化为数学问题,并利用数学方法进行分析和求解的过程。

数学建模模型是对问题进行抽象和形式化的表示,而数学建模技巧则是在建立数学模型和解决问题时的常用方法和技术。

以下是一些常用的数学建模模型和技巧。

一、常用数学建模模型1.优化模型:优化模型利用数学方法求解最优解,包括线性规划、整数规划、非线性规划等。

这种模型通常用于求解资源分配、生产调度、物流优化等问题。

2.统计模型:统计模型通过概率统计方法对问题进行分析和预测,包括回归分析、时间序列分析、假设检验等。

这种模型通常用于市场调研、风险评估、金融预测等问题。

3.动力学模型:动力学模型描述系统随时间变化的规律,包括微分方程模型、差分方程模型等。

这种模型通常用于研究物理过程、生态系统、经济波动等问题。

4.图论模型:图论模型利用图的概念和算法解决问题,包括最短路径、流网络、最小生成树等。

这种模型通常用于网络优化、交通规划、电路设计等问题。

5.随机模型:随机模型描述随机变量的分布和统计性质,包括随机过程、蒙特卡洛模拟等。

这种模型通常用于风险评估、信号处理、金融衍生品定价等问题。

二、常用数学建模技巧1.合理假设:在建立数学模型时,需要根据实际情况进行适当的简化和假设。

通过合理的假设,可以使模型更易求解,同时保持对原问题的关键特征进行准确描述。

2.变量选择:选择合适的变量是建立数学模型的重要一步。

需要根据问题的特点和求解的目标选择与问题相关的变量,并对它们进行合理的定义和界定。

3.数据处理:在数学建模中,经常需要处理大量的数据。

这包括数据的清洗、转换、归一化等操作,以便更好地与模型对接和求解。

4.模型求解:根据模型的数学特征,选择适当的方法和算法进行求解。

这包括常见的数值求解方法、优化算法、统计推断等技术。

5.模型评价:在得到数学模型的解后,需要对解的可行性和有效性进行评价。

通常可以利用灵敏度分析、稳定性分析等方法对模型进行评价和优化。

数学建模中的常见模型

数学建模中的常见模型

数学建模中的常见模型数学建模综合评价模型是一种通过对各个评价指标进行量化,并将它们按照权重进行加权,最终得到一个综合评价值的方法。

这个模型可以应用于多指标决策问题,用于对被评价对象进行排名或分类。

常见的数学建模综合评价模型包括模糊综合评价模型、灰色关联分析模型、Topsis(理想解法)、线性加权综合评价模型、熵值法和秩和比法等。

模糊综合评价模型是一种基于模糊数学理论的方法,它将评价指标的模糊程度考虑在内,得到一个模糊评价结果。

该模型的步骤包括确定评价指标及其权重、构建模糊评价矩阵、进行模糊运算、得到模糊评价结果。

灰色关联分析模型是一种用于分析指标间关联性的方法,它可以帮助我们确定各个指标对被评价对象的影响程度。

该模型的步骤包括确定关联度计算方法、计算各个指标的关联度、得到综合关联度。

Topsis(理想解法)是一种基于距离的方法,它通过计算每个评价对象与理想解的距离,得到一个综合评价值。

该模型的步骤包括确定正负理想解、计算距离、得到综合评价值。

线性加权综合评价模型是一种常用的多指标决策方法,它将各个评价指标的权重与指标值线性组合起来,得到一个综合评价值。

该模型的优点是简单易操作,计算方便,可以对各个指标的重要性进行量化,并将其考虑在评价中。

但是,该模型的权重确定较为主观,且假设指标之间相互独立,不考虑相关性。

熵值法是一种基于信息熵理论的方法,它通过计算每个指标的熵值,得到一个综合评价值。

该模型的步骤包括计算指标的熵值、计算权重、得到综合评价值。

秩和比法是一种用于处理多指标决策问题的方法,它通过计算指标的秩和比,得到一个综合评价值。

该模型的步骤包括编秩、计算秩和比、得到综合评价值。

根据具体的评价需求和问题特点,我们可以选择合适的数学建模综合评价模型来进行评价。

每个模型都有其优点和缺点,需要根据具体情况进行选择和应用。

<span class="em">1</span><spanclass="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [数学建模——评价模型]()[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_sourc e":"vip_chatgpt_mon_search_pc_result","utm_medium":"di stribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_itemstyle="max-width: 100%"] [ .reference_list ]。

数学建模的常用模型和方法

数学建模的常用模型和方法

数学建模的常用模型和方法嘿,朋友们!今天咱来聊聊超厉害的数学建模哦!那数学建模里常用的模型和方法可多啦,就像一个百宝箱,每个都有独特的魅力和用处呢!先来说说线性规划模型吧。

步骤呢,就是先明确目标函数和约束条件。

你得清楚自己想要最大化或最小化什么,然后把各种限制因素用数学式子表达出来。

就好比你要规划一次旅行,预算就是约束条件,你想在有限的预算内让旅行体验最好,这就是目标函数啦!注意事项嘛,要仔细检查约束条件有没有遗漏,数据是不是准确。

在这个过程中,安全性就体现在它的逻辑严谨性上,只要你按照正确的步骤来,一般不会出大错,稳定性也不错,因为它的算法和理论都比较成熟。

它的应用场景可广啦,比如生产安排、资源分配等。

优势就是能帮你在复杂的条件下找到最优解,让资源得到最合理的利用。

比如说一个工厂要安排生产不同产品的数量,用线性规划就能算出怎样安排能让利润最大。

实际应用中,效果那是杠杠的,能大大提高生产效率和经济效益呢!再讲讲层次分析法。

它的步骤是先构建层次结构,把问题分成不同层次,像搭积木一样一层一层的。

然后通过专家打分或者数据统计确定各因素的权重。

这就好像给一个球队的球员打分,不同位置的球员重要性不一样嘛。

要注意的是,专家的选择要合理,打分要尽量客观。

它的安全性在于整个过程有一套系统的方法,不容易跑偏。

稳定性也还可以,只要层次结构合理,结果一般比较可靠。

应用场景呢,比如选方案、做决策的时候就很管用。

它的优势是能综合考虑多个因素,把复杂的问题简单化。

比如说要选一个投资项目,用层次分析法就能综合考虑风险、收益等各种因素,选出最合适的。

实际案例中,很多企业在做战略决策时都用到它,效果很不错,能让决策更科学合理。

还有个很有趣的模型叫聚类分析。

步骤是先确定聚类的指标,然后选择合适的聚类算法,把数据分成不同的类。

就好像把一堆水果按照种类分堆一样。

注意要选对指标和算法哦,不然分出来的类可能就不靠谱啦。

它的安全性体现在能对数据进行合理分类,帮助我们更好地理解数据的结构。

数学建模中常见的十大模型

数学建模中常见的十大模型

数学建模中常见的十大模型集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#数学建模常用的十大算法==转(2011-07-24 16:13:14)1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

数学建模课件讲课资料

数学建模课件讲课资料
• 数学建模将各种知识综合应用于解决实际问 题中,是培养和提高同学们应用所学知识分析问 题、解决问题的能力的必备手段之一。
• 从一组数据中可以看出它的蓬勃发展之势:从 1994年196个学校的867支参赛队,到2000年 517个学校的3210支参赛队,再到2005年795个 学校的8492支参赛队,参赛队壮大了近10倍, 2005年竞赛的选手达到25000多名。 2006年竞 赛的选手达到25000多名。
• (2)模型假设:根据实际对象的特征和建 模的目的,对问题进行必要的简化,并用 精确的语言提出一些恰当的假设。
• (3)模型建立:在假设的基础上,利用适 当的数学工具来刻划各变量之间的数学关 系,建立相应的数学结构。(尽量用简单的 数学工具)
• (4)模型求解:利用获取的数据资料,对模 型的所有参数做出计算(估计)。
y
y0 y=f(x)
0
x0
P(xm ,ym )
P(xm,ym) x=g(y)
x
甲方的被动防御也会使双方军备竞赛升级。
模型解释
• 甲方将固定核导弹基地改进为可移动发射架
乙安全线y=f(x)不变 y 甲方残存率变大
威慑值x 0和交换比不变
x减小,甲安全线
y0
x=g(y)向y轴靠近
0
P(xm,ym)
x=2y
乙方残存率 s ~甲方一枚导弹攻击乙方一个 基地,基地未被摧毁的概率。
甲方以 x攻击乙方 y个基地中的 x个,
sx个基地未摧毁,y–x个基地未攻击。
y0=sx+y–x
y= y0+(1-s)x
y0=sy
y=y0/s
乙的x–y个被攻击2次,s2(x–y)个未摧毁;
y –(x–y)=2y– x个被攻击1次,s(2y– x )个未摧毁

十大经典数学模型

十大经典数学模型

十大经典数学模型十大经典数学模型是指在数学领域中具有重要意义和广泛应用的数学模型。

这些模型涵盖了不同的数学分支和应用领域,包括统计学、微积分、线性代数等。

下面将介绍十大经典数学模型。

1. 线性回归模型线性回归模型用于描述两个变量之间的线性关系。

它通过最小化观测值与模型预测值之间的差异来拟合一条直线,并用该直线来预测未知的观测值。

线性回归模型在统计学和经济学等领域有广泛应用。

2. 概率模型概率模型用于描述随机事件发生的可能性。

它通过定义事件的概率分布来描述事件之间的关系,包括离散型和连续型概率分布。

概率模型在统计学、金融学、生物学等领域中被广泛应用。

3. 微分方程模型微分方程模型用于描述物理系统、生物系统和工程系统中的变化过程。

它通过描述系统中各个变量之间的关系来解释系统的动态行为。

微分方程模型在物理学、生物学、经济学等领域中具有重要应用。

4. 矩阵模型矩阵模型用于表示线性关系和变换。

它通过矩阵和向量的乘法来描述线性变换,并用于解决线性方程组和特征值问题。

矩阵模型在线性代数、网络分析、图像处理等领域中广泛应用。

5. 图论模型图论模型用于描述物体之间的关系和连接方式。

它通过节点和边的组合来表示图形,并用于解决最短路径、网络流和图着色等问题。

图论模型在计算机科学、电信网络等领域中有广泛应用。

6. 最优化模型最优化模型用于寻找最佳解决方案。

它通过定义目标函数和约束条件来描述问题,并通过优化算法来找到使目标函数最优的变量取值。

最优化模型在运筹学、经济学、工程优化等领域中被广泛应用。

7. 离散事件模型离散事件模型用于描述在离散时间点上发生的事件和状态变化。

它通过定义事件的发生规则和状态转移规则来模拟系统的动态行为。

离散事件模型在排队论、供应链管理等领域中有重要应用。

8. 数理统计模型数理统计模型用于从样本数据中推断总体特征和进行决策。

它通过概率分布和统计推断方法来描述数据的分布和抽样误差,包括参数估计和假设检验等方法。

数学建模常见评价模型简介

数学建模常见评价模型简介

数学建模常见评价模型简介Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。

主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。

层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。

其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。

运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。

步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。

例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。

步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素,各层元素间的关系用相连的直线表示。

图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A显然,A 是正互反阵。

数学建模系列-常用模型

数学建模系列-常用模型

性能,并根据评估结果进行模型优化或调整。
03
CATALOGUE
支持向量机模型
模型定义
线性分类器
支持向量机是一种线性分类器,通过找到一个超平面来分隔两个类 别的数据点。
核函数
支持向量机使用核函数将输入空间映射到一个高维特征空间,使得 线性分类器在高维空间中更容易找到分隔超平面。
间隔最大化
支持向量机旨在最大化间隔,即最小化分类错误的距离,以提高分类 器的泛化能力。
模型建立
数据预处理
对数据进行标准化或归一化处理,以确保不同特征的尺度不会影 响模型的性能。
核函数选择
选择合适的核函数,如线性核、多项式核、径向基函数等,以适 应不同的数据分布和问题类型。
参数调整
调整模型参数,如惩罚系数和核函数的参数,以获得最佳的分类 效果。
模型应用
二分类问题
支持向量机适用于解决二分类问题,如垃圾邮件分类、人脸识别 等。
05
CATALOGUE
主成分分析模型
模型定义
主成分分析(PCA)是一种常用的多 元统计分析方法,它通过线性变换将 多个相关变量转化为少数几个不相关 的变量,这些不相关的变量称为主成 分。
主成分分析旨在减少数据集的维度同 时保留数据集中的主要变化模式,以 便更好地理解数据的结构和关系。
模型建立
确定数据集
模型应用
总结词
K-均值聚类模型广泛应用于数据挖掘、模式识别、图 像处理等领域,可以用于市场细分、异常检测、分类 问题等。
详细描述
K-均值聚类模型的应用非常广泛,例如在市场细分中 ,可以将消费者按照购买行为、偏好等特征进行分类 ,帮助企业更好地理解客户需求和市场趋势。在异常 检测中,可以通过观察聚类结果中的离群点,发现数 据中的异常值。在图像处理中,可以将图像分割成不 同的区域,对每个区域进行特征提取和分析。此外, K-均值聚类模型还可以用于分类问题中,将数据点划 分为不同的类别。

数学建模常用的模型

数学建模常用的模型
经济学、社会学、生态学等领域中的动态过程
10
图论模型
解决最短路径、最小生成树、最小费用最大流等问题的模型
城市规划、电路设计、通信网络优化等领域
11
现代智能算法
包括神经网络、遗传算法、蚁群算法等,用于解决复杂优化问题
机器学习、数据挖掘、自动化设计等
金融、保险、风险管理等领域
4
优化模型
求解在满足一定约束条件下的最优解,包括线性规划、非线性规划等
经济计划、工程设计、生产管理等领域
5
统计模型
对数据进行统计分析,包括分布检验、均值T检验、方差分析等
数据分析、市场研究、来自动调整模型参数,以实现对新数据的预测和分类
数学建模常用的模型
序号
模型类型
描述
应用场景
1
代数模型
使用代数方程来描述系统的行为,通常用于连续变化过程的研究
物理学、工程学、生物学等领域,如流体动力学、电磁场理论等
2
微分方程模型
描述连续变化过程的模型,常用于物理、化学等领域
物理学中的运动规律、化学中的反应速率等
3
概率模型
使用概率论和统计方法来描述系统中的随机现象和不确定性
图像处理、语音识别、自然语言处理等人工智能领域
7
网络和图论模型
使用节点和边来描述系统的结构,常用于研究系统的连接关系和流动问题
社交网络分析、物流优化、交通网络设计等
8
离散事件仿真模型
通过模拟离散事件来模拟系统的行为,常用于研究系统的动态性能和效率
供应链管理、排队系统、生产调度等领域
9
动态模型
描述系统随时间变化的行为,包括微分方程模型、差分方程模型等

2020年数学建模中常见的十大模型

2020年数学建模中常见的十大模型

作者:败转头作品编号44122544:GL568877444633106633215458时间:2020.12.13数学建模常用的十大算法==转(2011-07-24 16:13:14)转载▼1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。

数学建模常用模型及其作用

数学建模常用模型及其作用

数学建模常用模型及其作用1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)作用:应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模中常见的十
大模型
数学建模常用的十大算法==转
(2011-07-24 16:13:14)
转载▼
1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

以下将结合历年的竞赛题,对这十类算法进行详细地说明。

以下将结合历年的竞赛题,对这十类算法进行详细地说明。

2 十类算法的详细说明
2.1 蒙特卡罗算法
大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。

举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。

另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

2.2 数据拟合、参数估计、插值等算法
数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的
插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处理。

此类问题在MA TLAB中有很多现成的函数可以调用,熟悉MATLAB,这些方法都能游刃有余的用好。

2.3 规划类问题算法
竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B 题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo 等软件来进行解决比较方便,所以还需要熟悉这两个软件。

2.4 图论问题
98 年B 题、00 年B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。

每一个算法都应该实现一遍,否则到比赛时再写就晚了。

2.5 计算机算法设计中的问题
计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。

比如92 年B 题用分枝定界法,97 年B 题是典型的动态规划问题,此外98 年B 题体现了分治算法。

这方面问题和ACM 程序设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关的书。

2.6 最优化理论的三大非经典算法
这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。

近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97 年A 题的模拟退火算法,00 年B 题的神经网络分类算法,象01 年B 题这种难题也可以使用神经网络,还有美国竞赛89 年A 题也和BP 算法有关系,当时是86 年刚提出BP 算法,89 年就考了,说明赛题可能是当今前沿科技的抽象体现。

03 年B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。

2.7 网格算法和穷举算法
网格算法和穷举法一样,只是网格法是连续问题的穷举。

比如要求在N 个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在[a; b] 区间内取M +1 个点,就是a; a+(b-a)/M; a+2 (b-a)/M; …… ; b 那么这样循环就需要进行(M + 1)N 次运算,所以计算量很大。

比如97 年A 题、99 年B 题都可以用网格法搜索,这种方法最好在运算速度较快
的计算机中进行,还有要用高级语言来做,最好不要用MA TLAB 做网格,否则会算很久的。

穷举法大家都熟悉,就不说了。

2.8 一些连续数据离散化的方法
大部分物理问题的编程解决,都和这种方法有一定的联系。

物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。

这种方法应用很广,而且和上面的很多算法有关。

事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。

2.9 数值分析算法
这类算法是针对高级语言而专门设的,如果你用的是MA TLAB、Mathematica,大可不必准备,因为象数值分析中有很多函数一般的数学软件是具备的。

2.10 图象处理算法
01 年A 题中需要你会读BMP 图象、美国赛98 年A 题需要你知道三维插值计算,03 年B 题要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。

做好这类问题,重要的是把MATLAB 学好,特别是图象处理的部分。

相关文档
最新文档