全国名校高中数学题库--圆锥曲线2
高二级数学圆锥曲线测试及答案.doc
(12)圆锥曲线一、选择题(本大题共10小题,每小题5分,共50分) 1.231y x -=所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分2.椭圆短轴长是2,长轴是短轴的2倍,则椭圆中心到准线距离是( )A .558 B .545C .338 D .334 3.已知椭圆1162522=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离为( )A .2B .3C .5D .74.连接双曲线12222=-b y a x 与12222=-ax b y 的四个顶点构成的四边形的面积为S 1,连接它们的的四个焦点构成的四边形的面积为S 2,则S 1:S 2的最大值是 ( )A .2B . 1C .21D .41 5.与椭圆1251622=+y x 共焦点,且两准线间的距离为310的双曲线方程为 ( )A .14522=-x yB .14522=-y xC .13522=-x yD .13522=-y x 6.设k>1,则关于x ,y 的方程(1-k) x 2+ y 2=k 2-1所表示的曲线是( )A .长轴在y 轴上的椭圆B .长轴在x 轴上的椭圆C .实轴在y 轴上的双曲线D .实轴在x 轴上的双曲线7.双曲线12222=-ay b x 的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2B .3C .2D .238.动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则点P 的轨迹是( )A .直线B .椭圆C .双曲线D .抛物线OA BC xy 9.抛物线y =-x 2 的焦点坐标为 ( )A .(0,41) B . (0, -41) C .(41, 0) D . (-41, 0) 10.过抛物线x y 42=的焦点F 作倾斜角为3π的弦AB ,则|AB|的值为 ( )A .738 B .316 C .38 D .7316二、填空题(本大题共4小题,每小题6分,共24分)11.椭圆1422=+y m x 的一个焦点坐标是(0,1),则m= . 12.双曲线x 2-42y =1截直线y =x +1所得弦长是 . 13.已知抛物线y 2=2x ,则抛物线上的点P 到直线l :x-y +4=0的最小距离是 . 14.已知直线x - y =2与抛物线交于A 、B 两点,那么线段AB 的中点坐标是 . 三、解答题(本大题共6小题,共76分)15.求两焦点的坐标分别为(-2,0),(2,0),且经过点P (2,35)的椭圆方程.(12分)16.已知抛物线C 的准线为x =4p-(p>0),顶点在原点,抛物线C 与直线l :y =x -1相交所得弦的长为32,求p 的值和抛物线方程.(12分)17.已知椭圆:13422=+y x 上的两点A (0,3)和点B ,若以AB 为边作正△ABC ,当B 变动时,计算△ABC 的最大面积及其条件.(12分)18.已知双曲线经过点M (6,6),且以直线x = 1为右准线. (1)如果F (3,0)为此双曲线的右焦点,求双曲线方程; (2)如果离心率e=2,求双曲线方程.(12分)19.设F 1,F 2为椭圆14922=+y x 的两个焦点,P 为椭圆上的一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且|||||,|||2121PF PF PF PF 求>的值.(14分)20.已知动圆过定点P (1,0),且与定直线1:-=x l 相切,点C 在l 上. (Ⅰ)求动圆圆心的轨迹M 的方程;(Ⅱ)设过点P ,且斜率为-3的直线与曲线M 相交于A 、B 两点.(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由;(ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围. (14分)参考答案(12)一.选择题(本大题共10小题,每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10 答案DDDCACCDBB二.填空题(本大题共4小题,每小题6分,共24分) 11.3 12.23813.427 14.(4,2)三、解答题(本大题共6题,共76分)15.(12分)[解析]:由题意可知,c=2,设椭圆方程为12222=+by a x ,则2222=-b a ①又点P (2,35)在椭圆上,所以13522222=⎪⎭⎫ ⎝⎛+ba ②,联立①②解得,52=b 或9202-=b (舍去),92=a 故所求椭圆方程是15922=+y x 16.(12分)[解析]:由题意,可设C 的方程为)0(2>=p px y ,C 与直线l :y =x -1相交于A 、B 两点,由此可得01)2()1-x (1-x y 222=++-⇒=⇒⎩⎨⎧==x p x px pxy)2(21p x x +=+,121=x x所以,2212212)()(y y x x AB -+-== 221221)]1()1[()(---+-x x x x=221)(2x x - ]4)[(221221x x x x -+= 8)2(22-+=p p p 822+== 2)23(因为p>0,所以解得132+-=p , 故抛物线方程为x y )132(2+-=.17.(12分)[解析]:由题意可设B (2cos θ, 3sin θ),则7sin 6sin )sin 1(3cos 42222+--=-+=θθθθAB因为S △ABC=212AB ·60sin =3·42AB =3·416)3(sin 2++-θ所以当θsin =-1时,即B 点移动到(0,-3)时,△ABC 的面积最大,且最大值为33.18.(12分)[解析]:(1)设P (x ,y )为所求曲线上任意一点,由双曲线定义得16)06()36(161)0()3(12222--+-=-=--+-=-=MF x y x x PFe =3化简整理得16322=-y x (2)a b b a c a c ace 3,,22222=∴+==⇒==又 因此,不妨设双曲线方程为132222=-ay a x , 因为点M (6,6)在双曲线上,所以136622=-aa ,得42=a ,122=b 故所求双曲线方程为112422=-y x 19.(14分)[解析]:由已知得52||,6||||2121==+F F PF PF . 根据直角的不同位置,分两种情况若20|)|6(||,||||||,902121221222112+-=+==∠PF PF F F PF PF F PF 即则解得27||||34||,314||2121=∴==PF PF PF PF 若2121222122121|)|6(||20.||||||,90PF PF PF PF F F PF F -+=+==∠即则解得2||||2||4||2121=∴==PF PF PF PF . 20.(14分)[解析]:(Ⅰ)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为x y 42=.OA BC xy(Ⅱ)(i )由题意得,直线AB 的方程为⎪⎩⎪⎨⎧=--=--=xy x y x y 4)1(3)1(32由消y 得.3,31,03103212===+-x x x x 解得所以A 点坐标为)332,31(,B 点坐标为(3,32-),.3162||21=++=x x AB假设存在点C (-1,y ),使△ABC 为正三角形, 则|BC|=|AB|且|AC|=|AB|,即⎪⎪⎩⎪⎪⎨⎧=-++=+++222222)316()32()131(,)316()32()13(y y 由①-②得,)332()34()32(42222-+=++y y.9314-=y 解得 但9314-=y 不符合①,所以由①,②组成的方程组无解.因此,直线l 上不存在点C ,使得△ABC 是正三角形. (ii )解法一:设C (-1,y )使△ABC 成钝角三角形,由321)1(3=⎩⎨⎧-=--=y x x y 得,即当点C 的坐标为(-1,32)时,A ,B ,C 三点共线,故32≠y .又2222334928)332()311(||y yy AC +-=-+--=,22223428)32()13(||y y y BC ++=+++=, 9256)316(||22==AB . 当222||||||AB AC BC +>,即9256334928342822++->++y y y y , 即CAB y∠>,392时为钝角. 当222||||||AB BC AC +>,即9256342833492822+++>+-y y y y , 即CBA y ∠-<时3310为钝角.又222||||||BC AC AB +>,即2234283349289256y y y y ++++->, 即0)32(,03433422<+<++y y y . 该不等式无解,所以∠ACB 不可能为钝角. 因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是)32(9323310≠>-<y y y 或. 解法二:以AB 为直径的圆的方程为222)38()332()35(=++-y x .① ②圆心)332,35(-到直线1:-=x l 的距离为38,所以,以AB 为直径的圆与直线l 相切于点G )332,1(--. 当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G点不重合,且A ,B ,C 三点不共线时, ∠ACB 为锐角,即△ABC 中∠ACB 不可能是钝角. 因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 过点A 且与AB 垂直的直线方程为9321).31(33332=-=-=-y x x y 得令. 过点B 且与AB 垂直的直线方程为)3(3332-=+x y . 令33101-=-=y x 得. 又由321)1(3=⎩⎨⎧-=--=y x x y 解得,所以,当点C 的坐标为(-1,32)时,A ,B ,C 三点共 线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵y 的取值范围是).32(9323310≠>-<y y y 或。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.已知动圆过定点F(0,2),且与定直线L:y=-2相切.求动圆圆心的轨迹C的方程。
【答案】【解析】动圆圆心到定点的距离与到定直线(切线)的距离相等(等于半径),由抛物线的定义可知动点的轨迹是抛物线,易得方程为.试题解析:依题意,圆心的轨迹是以F(0,2)为焦点,L:y=-2为准线的抛物线上因为抛物线焦点到准线距离等于4, 所以圆心的轨迹方程是x2=8y.【考点】抛物线的定义与方程2.已知椭圆上的点到左右两焦点的距离之和为,离心率为. (1)求椭圆的方程;(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.【答案】(1);(2).【解析】(1)根据与离心率可求得a,b,c的值,从而就得到椭圆的方程;(2)设出直线的方程,并与椭圆方程联立消去y可得到关于x的一元二次方程,然后利用中点坐标公式与分类讨论的思想进行解决.试题解析:(1),∴,,∴,∴,椭圆的标准方程为.(2)已知,设直线的方程为,-,联立直线与椭圆的方程,化简得:,∴,,∴的中点坐标为.①当时,的中垂线方程为,∵,∴点在的中垂线上,将点的坐标代入直线方程得:,即,解得或.②当时,的中垂线方程为,满足题意,∴斜率的取值为.【考点】1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.3.已知曲线,求曲线过点的切线方程。
【答案】【解析】因为点不在曲线上,故先设所求切线的切点为,再求的导数则,由点斜式写出所求切线方程,再将切线上的已知点代入切线方程可求出,从而所求出切线方程.试题解析:,点不在曲线上,设所求切线的切点为,则切线的斜率,故所求的切线方程为.将及代入上式得解得:所以切点为或.从而所求切线方程为【考点】1、过曲线外一点求曲线的切线方程;2、导数的几何意义.4.已知点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点,且点在抛物线上,则该双曲线的离心率是()A.B.C.D.【答案】D【解析】根据题意,由于点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点(x,y),直线方程为,与联立方程组,并且有,,解得双曲线的离心率是,故选D.【考点】双曲线的性质点评:主要是考查了双曲线与抛物线的几何性质的运用,属于基础题。
{高中试卷}圆锥曲线综合(二)[仅供参考]
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:圆锥曲线综合(二) 班级学号姓名一、目标要点:掌握求曲线方程的常用方法:直接法、定义法、转移法、参数法等。
二、目标训练:1.在直角坐标系中,和两坐标轴都相切的圆的圆心轨迹方程是( )(A)y=x (B)y=|x|(x≠0) (C)x 2-y 2=0 (D)x 2-y 2=0(x≠0)2.如果点(a,b)在曲线y=x 2+3x+1上,那么点(a+1,b+2)所在的曲线方程是( )(A)y=x 2+5x+3 (B)y=x 2+x-3 (C)y=x 2+x+1 (D)y=x 2-x+1 3.过椭圆22194x y +=内一点P (1, 0)作动弦AB ,则AB 的中点M 的轨迹方程是 ( )(A )4x 2+9y 2-4x =0(B )4x 2+9y 2+4x =0 (C )4x 2+9y 2-4y =0 (D )4x 2+9y 2+4y =04.过点A (2, 1)的直线与双曲线2x 2-y 2=2交于P , Q 两点,则线段PQ 中点M 的轨迹方程是( )(A )2x 2-y 2-4x +y =0(B )2x 2-y 2+4x +y =0(C )2x 2-y 2+4x -y =0(D )2x 2-y 2-4x -y =05.过抛物线y 2=4x 的顶点O 的两弦OA , OB 互相垂直,则AB 中点M 的轨迹方程是( )(A )y 2=2x (B )y 2=2x +4(C )y 2=2x -4(D )y 2=2(x -4)6.已知点F (41, 0),直线l : x =-41,点B 是l 上的动点,若过B 垂直于y 轴的直线与线段BF 的垂直平分线相交于点M ,则点M 的轨迹是 ( )(A )双曲线 (B )椭圆 (C )圆 (D )抛物线7.若将曲线y=f (x )向左平移,使原曲线上的点P (2,3)变为P ′(1,3),则这时曲线的方程变为( )(A) y=f(x)+1 (B) y=f(x)-1 (C) y=f(x+1) (D)y=f(x-1)8.已知双曲线过坐标原点O ,它的一个焦点是F (4, 0),实轴长为2,则它的中心的轨迹方程是 ()(A )(x -2)2+y 2=9 (x ≠5)(B )(x -2)2+y 2=1 (x ≠3)(C )(x -2)2+y 2=9或(x -2)2+y 2=1(D )(x -2)2+y 2=9(x ≠5)或(x -2)2+y 2=1(x ≠3)9.过原点的椭圆的一个焦点为F (1, 0),其长轴长为4,则另一个焦点的轨迹方程是( )(A )x 2+y 2=9 (B )x 2+y 2=9(x ≠-3)(C )x 2+y 2=9(x ≠3)(D )x 2+y 2=9(x ≠±3)10.已知△ABC 两顶点坐标分别为A(-2,0)、B(0,-2),第三个顶点C 在曲线y=3x 2-1上移动, 则△ABC 重心的轨迹方程为________。
高中数学圆锥曲线练习题及参考答案2023
高中数学圆锥曲线练习题及参考答案2023一、选择题1. 下列不是圆锥曲线的是:A. 椭圆B. 抛物线C. 双曲线D. 直线2. 椭圆的离心率范围是:A. 0 < e < 1B. e = 1C. e > 1D. e = 03. 若双曲线的离心率为1.5,焦点到准线的距离为6,则双曲线的方程为:A. $\frac{x^2}{4} - \frac{y^2}{16} = 1$B. $\frac{x^2}{25} - \frac{y^2}{9} = 1$C. $\frac{x^2}{9} - \frac{y^2}{25} = 1$D. $\frac{x^2}{16} - \frac{y^2}{4} = 1$4. 抛物线的焦点位于:A. 抛物线的顶点处B. 抛物线的准线上C. 抛物线的对称轴上D. 抛物线的焦点处5. 设双曲线的离心率为2,焦点到准线的距离为10,则双曲线的方程为:A. $\frac{x^2}{36} - \frac{y^2}{64} = 1$B. $\frac{x^2}{64} - \frac{y^2}{36} = 1$C. $\frac{x^2}{16} - \frac{y^2}{9} = 1$D. $\frac{x^2}{9} - \frac{y^2}{16} = 1$二、填空题1. 椭圆的离心率等于:答案:$\sqrt{1 - \frac{b^2}{a^2}}$2. 双曲线的焦点间距离等于:答案:$2ae$3. 抛物线的焦距等于:答案:$p = \frac{1}{4a}$4. 椭圆的离心率范围是:答案:$0 < e < 1$5. 双曲线的准线称为:答案:对称轴三、计算题1. 求椭圆 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ 的焦点坐标。
解答:椭圆的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中 $a = 4$,$b = 3$。
高考数学总复习:圆锥曲线2(含答案)
高考数学总复习:圆锥曲线2(含答案)1.(14分)已知椭圆2222:1(0)x y C a b a b+=>>,右焦点F 也是抛物线24y x=的焦点. (1)求椭圆方程;(2)若直线l 与C 相交于A 、B 两点. ①若2AF FB =u u u r u u u r,求直线l 的方程;②若动点P 满足OP OA OB =+u u u r u u u r u u u r,问动点P 的轨迹能否与椭圆C 存在公共点?若存在,求出点P 的坐标;若不存在,说明理由.2.(12分)设椭圆22221(0)x y a b a b +=>>的焦点分别为1(1,0)F -、2(1,0)F ,右准线l 交x 轴于点A ,且122AF AF =u u u r u u u u r.(Ⅰ)试求椭圆的方程;(Ⅱ)过1F 、2F 分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值.3.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率e ,左、右焦点分别为1F 、2F ,点P ,点2F 在线段1PF 的中垂线上. (1)求椭圆C 的方程;(2)设直线:l y kx m =+与椭圆C 交于M 、N 两点,直线2F M 与2F N 的倾斜角分别为α,β,且αβπ+=,求证:直线l 过定点,并求该定点的坐标.4.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率e ,点F 为椭圆的右焦点,点A 、B 分别为椭圆的左、右顶点,点M 为椭圆的上顶点,且满足1MF FB =u u u u r u u u rg .(1)求椭圆C 的方程;(2)是否存在直线l ,当直线l 交椭圆于P 、Q 两点时,使点F 恰为PQM ∆的垂心.若存在,求出直线l 的方程;若不存在,请说明理由.5.(12分)已知椭圆22221(0)x y a b a b+=>>,且短轴长为2.(1)求椭圆的方程;(2)若与两坐标轴都不垂直的直线l 与椭圆交于A ,B 两点,O 为坐标原点,且23OA OB =u u u r u u u r g ,23AOB S ∆=,求直线l 的方程.参考答案1.解:(1)根据(1,0)F ,即1c =,据c a=得a =b =, 所以所求的椭圆方程是22132x y +=.(2)①当直线l 的斜率为0时,检验知2AF FB ≠u u u r u u u r.设1(A x ,1)y ,2(B x ,2)y ., 根据2AF FB =u u u r u u u r得1(1x -,12)2(1y x -=-,2)y 得122y y =-.设直线:1l x my =+,代入椭圆方程得22(23)440m y my ++-=, 故12122244,2323m y y y y m m +=-=-++,得1222842323m my y m m =-=++, 代入122423y y m =-+得222844()()232323m m m m m -=-+++,即228123m m =+,解得m =l 的方程是1x y =+. ②问题等价于是不是在椭圆上存在点P 使得OP OA OB =+u u u r u u u r u u u r成立.当直线l 是斜率为0时,可以验证不存在这样的点, 故设直线方程为:1l x my =+.用①的设法,点P 点的坐标为12(x x +,12)y y +, 若点P 在椭圆C 上,则221212()()132x x y y +++=,即22221122112222132x x x x y y y y +++++=,又点A ,B 在椭圆上,故222211221,13232x y x y +=+=,上式即12122103x xy y ++=,即12122330x x y y ++=,由①知222212121212222448(1)(1)()111232323m m m x x my my m y y m y y m m m =++=+++=--+=-++++, 代入12122330x x y y ++=得22216122302323m m m -+-+=++,解得212m =,即m =当m =122423m y y m +=-=+121213()2222x x m y y +=++=-+=;当m =122423m y y m +=-+,121213()2222x x m y y +=++=-+=. 故C上存在点3(,2P 使OP OA OB =+成立,即动点P 的轨迹与椭圆C 存在公共点,公共点的坐标是3(,2.2.解:(Ⅰ)由题意,12||22F F c ==u u u u r,2(A a ∴,0), Q 1222AF AF F =∴u u u r u u u u r为1AF 的中点23a ∴=,22b =即椭圆方程为22132x y +=.(Ⅱ)当直线DE 与x轴垂直时,2||2b DE a ==,此时||2MN a ==,四边形DMEN 的面积为||||42DE MN =g . 同理当MN 与x 轴垂直时,也有四边形DMEN 的面积为||||42DE MN =g . 当直线DE ,MN 均与x 轴不垂直时,设:(1)DE y k x =+,代入椭圆方程,消去y 得:2222(23)6(36)0k x k x k +++-=.设1(D x ,1)y ,2(E x ,2)y ,则212221226233623k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩所以,12||x x -所以,12|||DE x x =-=,同理,222211)1)1)||1323()2k k MN k k-++==+-+. 所以,四边形的面积222222113(1)24(2)||||1312226()13k DE MN k k S k k k+++===+++g g ,令221u k k =+,得24(2)44136136u S u u +==-++ 因为2212u k k =+…, 当1k =±时,962,25u S ==,且S 是以u 为自变量的增函数, 所以96425S <„. 综上可知,96425S 剟.即四边形DMEN 面积的最大值为4,最小值为9625.3.解:(1)由椭圆C的离心率e得c a =c , 椭圆C 的左、右焦点分别为1(,0)F c -,2(,0)F c 又点2F 在线段1PF 的中垂线上 122||||F F PF ∴=,∴222(2)(2)c c =+-解得1c =,22a =,21b =,∴2212x y +=椭圆的方程为.(2)由题意,知直线MN 存在斜率,设其方程为y kx m =+.由2212x y y kx m ⎧+=⎪⎨⎪=+⎩消去y ,得222(21)4220k x kmx m +++-=.设1(M x ,1)y ,2(N x ,2)y ,则△222(4)4(21)(22)0km k m =-+-… 即22210k m -+…则2121222422,2121km m x x x x k k -+=-=++,且221212,11F M F N kx m kx m k k x x ++==-- 由已知αβπ+=,得2212120,011F M F N kx m kx m k k x x +++=+=--即. 化简,得12122()()20kx x m k x x m +-+-=∴222224()2202121m km m k k m k k ----=++g 整理得2m k =-. ∴直线MN 的方程为(2)y k x =-,因此直线MN 过定点,该定点的坐标为(2,0)4.解:(1)根据题意得,(,0)F c ,(,0)A a -,(,0)B a ,(0,)M b∴(,),(,0)MF c b FB a c =-=-u u u u r u u u r∴21MF FB ac c =-=-u u u u r u u u rg (2分)又c e a ==∴a∴221c -=21c ∴=,22a =,21b =∴椭圆C 的方程为2212x y +=.(4分) (2)假设存在直线l 满足条件,使F 是三角形MPQ 的垂心. 因为1MF K =-,且FM l ⊥, 所以11k =,所以设PQ 直线y x m =+, 且设1(P x ,1)y ,2()Q x ,2y 由2212y x m x y =+⎧⎪⎨+=⎪⎩ 消y ,得2234220x mx m ++-=△221612(22)0m m =-->,2212124223,33m m m x x x x -<+=-=. 22222121212122242()()()333m m m y y x m x m x x m x x m m --=++=+++=-+=.(8分) 又F 为MPQ ∆的垂心, PF MQ ∴⊥,∴0PF MQ =u u u r u u u u rg又1122(1,),(,1)PF x y MQ x y --=-u u u r u u u u r∴2221121221121242220333m m PF MQ x y x x y y x x m x x y y m m --=+--=++--=-+--=u u u r u u u u r g ∴24033m m --+=, ∴24340,,13m m m m +-==-=(10分)经检验满足23m <(11分)∴存在满足条件直线l 方程为:10x y -+=,3340x y --=(12分)10x y -+=Q 过M 点 即MP 重合 不构成三角形,3340x y ∴--=满足题意.5.解:(1)短轴长22b =,1b =,ce a ==又222a b c =+,所以1a c ==,所以椭圆的方程为2212x y +=(2)设直线l 的方程为(0)y kx m k =+≠,1(A x ,1)y ,2(B x ,222)22y kx my x y =+⎧⎨+=⎩, 消去y 得,1222222122412(12)42202212mk x x k k x mkx m m x x k -⎧+=⎪⎪++++-=⎨-⎪=⎪+⎩g ,121223OA OB x x y y =+=u u u r u u u r g 即2223222123m k k --=+即2212129108||||23AOBm k S m x x ∆=+=-== 即222229(12)(12)m k m k +-=+ 22222229(12)(12)9108m k m k m k ⎧+-=+⎨=+⎩, 解得21k =,22m =,所以y x =±±。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.设函数分别在、处取得极小值、极大值.平面上点、的坐标分别为、,该平面上动点满足,点是点关于直线的对称点.(Ⅰ)求点、的坐标;(Ⅱ)求动点的轨迹方程.【答案】(1);(2).【解析】(1)解决类似的问题时,要先求函数在区间内使的点,再判断导函数在各区间上的正负,由此得出函数的极大值和极小值.(2)第二问关键是理清思路,要求谁的方程,那就在这个曲线上任意选取一个点设为,然后根据条件寻找X与Y间的关系式即可. 试题解析:(Ⅰ)令解得当x<﹣1时,,当﹣1<x<1时,,当x>1时,所以,函数在处取得极小值,在取得极大值,故所以,点A、B的坐标为.(Ⅱ)设Q(x,y),①又点Q是点P关于直线y=x的对称点代入①得:,即为Q的轨迹方程【考点】(1)函数导数以及极值问题;(2)求点的轨迹方程问题.2.若抛物线的焦点与椭圆的右焦点重合,则的值为()A.B.C.D.【答案】D【解析】抛物线的焦点坐标为,而椭圆的右焦点坐标为即,依题意可得,故选D.【考点】1.椭圆的几何性质;2.抛物线的几何性质.3.已知离心率的椭圆一个焦点为.(1)求椭圆的方程;(2) 若斜率为1的直线交椭圆于两点,且,求直线方程.【答案】(1);【解析】(2) 或.(1)由焦点坐标、离心率及解方程即可;(2)可以联立直线L与椭圆方程消去y,得到关于x的一元二次方程,然后利用弦长公式建立方程求出斜率截距m即可.试题解析:解:(1)由题知,,∴,3分∴椭圆.4分(2) 设直线方程为,点,由方程组6分化简得:,.8分∴,9分,解得.11分∴直线方程或.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交;3.弦长公式.4.(1)已知点和,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹;(2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.【答案】(1)的轨迹是以为顶点,焦点在轴的椭圆(除长轴端点);(2)证明详见解析.【解析】(1)本题属直接法求轨迹方程,即根据题意设动点的坐标,求出,列出方程,化简整理即可;(2)设,在中,由正弦定理得,同时在在中,由正弦定理得,然后根据,进而得到,最后将得到的两等式相除即可证明.试题解析:(1)设点坐标为,则 2分整理得 4分所以点的轨迹是以为顶点,焦点在轴的椭圆(除长轴端点) 6分(2)证明:设在中,由正弦定理得① 8分在中,由正弦定理得,而所以② 10分①②两式相比得 12分.【考点】1.轨迹方程的求法;2.正弦定理的应用.5.如图,已知椭圆:的离心率为,点为其下焦点,点为坐标原点,过的直线:(其中)与椭圆相交于两点,且满足:.(1)试用表示;(2)求的最大值;(3)若,求的取值范围.【答案】(1);(2)离心率的最大值为;(3)的取值范围是.【解析】(1)设,联立椭圆与直线的方程,消去得到,应用二次方程根与系数的关系得到,,然后计算得,将其代入化简即可得到;(2)利用(1)中得到的,即(注意),结合,化简求解即可得出的最大值;(3)利用与先求出的取值范围,最后根据(1)中,求出的取值范围即可.试题解析:(1)联立方程消去,化简得 1分设,则有, 3分∵∴ 5分∴即 6分(2)由(1)知∴,∴ 8分∴∴离心率的最大值为 10分(3)∵∴∴ 12分解得∴即∴的取值范围是 14分【考点】1.椭圆的标准方程及其性质;2.二次方程根与系数的关系.6.已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为;为椭圆上的四个点。
高二数学圆锥曲线测试题以及详细答案(完整资料).doc
即A、B的坐标分别为(-1,0)和(3,4)
由CD垂直平分AB,得直线CD的方程为y=-(x-1)+2,即 y=3-x ,代入双曲线方程,整理,
得 x2+6x-11=0②
记C(x3,y3),D(x4,y4),以及CD中点为M(x0,y0),则x3、x4是方程②的两个的实数根,所以
A. B. C. D.
6.双曲线 离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为()
A. B. C. D.
7.若双曲线 的左焦点在抛物线y2=2px的准线上,则p的值为 ()
(A)2(B)3(C)4(D)4
8.如果椭圆 的弦被点(4,2)平分,则这条弦所在的直线方程是( )
A B C D
9、无论 为何值,方程 所表示的曲线必不是( )
20在平面直角坐标系 中,点P到两点 , 的距离之和等于4,设点P的轨迹为 .(Ⅰ)写出C的方程;
(Ⅱ)设直线 与C交于A,B两点.k为何值时 ?此时 的值是多少?
21.A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(Ⅱ)设 ,其坐标满足
消去y并整理得 , 故 .
,即 . 而 ,
于是 .
所以 时, ,故 .
当 时, , .
,
而 ,
所以 .
21A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
圆锥曲线高考题全国卷真题汇总
2 0 1 8 ( 新 课 标 全 国 卷 2 理 科 )5.双曲线 x 2 y 2= 1 (a > 0, b > 0) 的离心率为 3 ,则其渐近线方程为a 2b 22 3A . y = 士 2xB . y = 士 3xC . y = 士 xD . y = 士 x2 212.已知 F 1, F 2 是椭圆 C :a x 22 +b y 22=1 (a > b > 0) 的左,右焦点, A 是 C 的左顶点,点 P 在过 A 且斜率为 63的直线上, △PF 1F 2 为等腰三角形, 三 1F F 2 P = 120O ,则 C 的离心率为2A .3 1 B .21 C .31 D .419.(12 分)设抛物线 C : y 2 = 4x 的焦点为 F ,过 F 且斜率为 k(k > 0) 的直线 l 与 C 交于 A , B 两点, | AB| = 8. (1)求 l 的方程;(2)求过点 A , B 且与 C 的准线相切的圆的方程.2018 (新课标全国卷 2 文科)6.双曲线x 2 y 2= 1 (a > 0, b > 0) 的离心率为 3 ,则其渐近线方程为 a 2 b 2A . y = 士 2xB . y = 士 3x2C . y = 士 x23D . y = 士 x211.已知 F , F 是椭圆 C 的两个焦点, P 是 C 上的一点,若 PF 」PF , 且 三PF F = 60O , 则 C 的离心率为3A . 12B . 2 3C . 3 12D . 3 120. ( 12 分) 设抛物线 C : y 2 = 4x 的焦点为 F , 过 F 且斜率为 k(k > 0) 的直线 l 与 C 交于 A , B 两点,| AB | = 8.(1)求 l 的方程;(2)求过点 A , B 且与 C 的准线相切的圆的方程.2018 (新课标全国卷 1 理科)28.设抛物线 C : y 2=4x 的焦点为 F ,过点( –2, 0)且斜率为 的直线与 C 交于 M , N 两点,则FM . FN =3A . 5B . 6C . 7D . 823为 M 、N.若△OMN 为直角三角形,则|MN|=3A .B . 3C . 2 3D . 4219. (12 分) 设椭圆 C : x 2+ y 2 = 1 的右焦点为 F ,过 F 的直线 l 与 C 交于 A, B 两点,点 M 的坐标为 (2,0) .2x 11.已知双曲线 C : y 2 = 1, O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交点分别 1 2 1 2 2 1(1)当 l 与 x 轴垂直时,求直线 AM 的方程;(2)设 O 为坐标原点,证明: 三OMA = 三OMB .2018 (新课标全国卷 1 文科)4.已知椭圆 C : x 2 + y 2= 1的一个焦点为(2,0) ,则 C 的离心率为a 2 41 A .31 B .2C .2 22 2 D .315.直线 y = x +1 与圆 x 2 + y 2 + 2y - 3 = 0 交于 A , B 两点,则 AB = ________. 20.(12 分)设抛物线 C : y 2 = 2x ,点 A (2, 0), B (-2, 0) ,过点 A 的直线 l 与 C 交于 M , N 两点. (1)当 l 与x 轴垂直时,求直线 BM 的方程;(2)证明: ∠ABM = ∠ABN .2018 (新课标全国卷 3 理科)6.直线 x + y + 2 = 0 分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆 (x - 2)2 + y 2 = 2 上,则 △ABP 面积的取值范围是A . [2, 6]B . [4, 8]C . 2,3 2D . 2 2,3 2 11. 设 1F , F 2 是双曲线 C : a x 22 - b y 22= 1 ( a > 0,b > 0 ) 的左 、右焦点, O 是坐标原点. 过 F 2 作 C 的一条渐近线的垂线,垂足为 P .若 PF = 6 OP ,则 C 的离心率为1A . 5B . 2C . 3D . 2 20.(12 分)已知斜率为 k 的直线 l 与椭圆C :x 2+ y 2= 1交于 A , B 两点,线段 AB 的中点为 M (1, m)(m > 0). 4 3(1)证明: k < - 1;2(2) 设 F 为 C 的右焦点, P 为 C 上一点,且 FP+ FA+ FB = 0 .证明: FA , FP , FB 成等差数列,并 求该数列的公差.2018 (新课标全国卷 3 文科)8. 直线 x + y +2 = 0 分别与 x 轴, y 轴交于 A , B 两点, 点 P 在圆 (x - 2)2 + y 2 = 2 上, 则 △ABP 面积的取值范围是A . [2,6]B . [4,8]C . [ 2, 3 2]D . [2 2 ,3 2 ]10.已知双曲线 C : x 2 一 y 2= 1(a > 0,b > 0) 的离心率为 2 ,则点 (4,0) 到C 的渐近线的距离为a 2b 23 2A . 2B . 2C .D . 2 2220.(12 分)已知斜率为 k 的直线 l 与椭圆C : x 2 + y 2= 1 交于 A , B 两点.线段 AB 的中点 为 M (1, m)(m > 0).4 3 1(1)证明: k 想 一 ;2(2)设 F 为C 的右焦点, P 为C 上一点,且 FP + FA + FB = 0.证明: 2 | FP |=| FA |+ | FB |.2017 (新课标全国卷 2 理科)9.若双曲线 C : x 22一 1(a > 0,b > 0) 的一条渐近线被圆 (x 一 2)2 + y 2 = 4所截得的弦长为 2, 则 C 的离心率为( ) .2 3A . 2B . 3C . 2D .316.已知 F 是抛物线 C : y 2 = 8x 的焦点, M 是C 上一点, FM 的延长线交 y 轴于点 N .若 M 为 FN 的中点,则 FN = .20. 设 O 为 坐 标 原 点, 动 点 M 在 椭 圆 C : x 2 + y 2= 1 上, 过 M 做 x 轴 的 垂 线, 垂 足 为 N , 点 P 满 足2NP = 2NM .(1)求点 P 的轨迹方程;(2)设点 Q 在直线 x = 一3 上,且OP . PQ = 1 .证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .2017 (新课标全国卷 2 文科)x 2 2A. ( 2,+w)B. ( 2,2)C. (1, 2)D. (1,2)12.过抛物线 C : y 2 = 4x 的焦点 F ,且斜率为 3 的直线交 C 于点 M ( M 在 x 轴上方), l 为 C 的准线,点N 在 l 上且 MN 」l ,则 M 到直线 NF 的距离为( ) .A. 5B. 2 2C. 2 3D. 3 320.设 O 为坐标原点,动点 M 在椭圆 C :x 2+ y 2 = 1 上,过 M 作 x 轴的垂线,垂足为 N , 25.若 a >1 ,则双曲线 a2 一 y = 1 的离心率的取值范围是( ) .a b点 P 满足 NP = 2NM . (1)求点 P 的轨迹方程;(2)设点 Q 在直线 x = 一3 上,且 OP . PQ = 1 .证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .2017 (新课标全国卷 1 理科)10.已知 F 为抛物线C : y 2 = 4x 的焦点, 过 F 作两条互相垂直的直线l 1, l 2, 直线l 1 与 C 交于 A , B 两点, 直线 l 2 与 C 交于 D , E 两点,则 AB + DE 的最小值为( ) .A . 16B . 14C . 12D . 10 15.已知双曲线 C :x 2 一 y 2= 1(a > 0,b > 0) 的右顶点为 A , 以 A 为圆心, b 为半径做圆 A , 圆 A 与双曲线 C a 2 b 2的一条渐近线交于 M , N 两点.若 三MAN = 60 ,则 C 的离心率为________.20.已知椭圆 C : a x 22 + b y 22=1(a > b > 0), 四点 1P (1,1), 2P (0,1), 3P (||( – 1, 23 ))||, 4P (||(1, 23 ))|| 中恰有三点在椭圆 C 上. (1)求 C 的方程;(2) 设直线 l 不经过 P 2 点且与 C 相交于 A , B 两点.若直线 P 2 A 与直线 P 2 B 的斜率的和为 – 1, 证明: l 过定.2017 (新课标全国卷 1 文科)5.已知 F 是双曲线 C : x 2一 y 2= 1 的右焦点, P 是 C 上一点, 且 PE 与 x 轴垂直, 点 A 的坐标是(1, 3), 则3△APF 的面积为( ) .1 12 3A .B .C .D .3 2 3 2x 2 y 2围是( ) .A 20.设 A ,B 为曲线C : y = x 2上两点, A 与 B 的横坐标之和为 4.4(1)求直线 AB 的斜率;(2)设 M 为曲线 C 上一点, C 在 M 处的切线与直线 AB 平行,且 AM 」BM ,求直线 AB 的方程. . (0,1] [9, +w ) B. (0, 3 [9, +w ) C. (0,1] [4, +w) D. (0, 3 [4, +w )点 12.设 A , B 是椭圆C : + = 1 长轴的两个端点, 若C 上存在点 M 满足三AMB = 120 , 则 m 的取值范3 m2017 (新课标全国卷 3 理科)5.已知双曲线 C : C :x 2 y 2 = 1(a > 0, b > 0) 的一条渐近线方程为 y = 5x ,且与椭圆 a 2 b 2 2x 2 y 2+ = 1 有公共焦点,则 C 的方程为( 12 3) .x 2 y 2A . = 18 10x 2 y 2B . = 14 5x 2 y 2C . = 15 4x 2 y 2D . = 14 310. 已知椭圆 C : a x 22 + b y 22= 1(a > b > 0) 的左 、 右顶点分别为 A 1, A 2, 且以线段 A 1A 2 为直径的圆与直线bx ay + 2ab = 0 相切,则 C 的离心率为( ) .A .6 3 B .3 3 C .2 31 D .320.已知抛物线 C : y 2 = 2x ,过点(2,0) 的直线 l 交 C 与A , B 两点,圆 M 是以线段 AB 为直径的圆. (1)证明:坐标原点 O 在圆 M 上; (2)设圆 M 过点 P(4,2) ,求直线 l 与圆 M 的方程.2017 (新课标全国卷 3 文科)11.已知椭圆 C : a x 22 + b y 22= 1(a > b > 0) 的左 、 右顶点分别为 A 1, A 2, 且以线段 A 1A 2 为直径的圆与直线bx ay + 2ab = 0 相切,则 C 的离心率为( ) .2 313x 2 y 2 3a 2 9 520. 在直角坐标系 xOy 中, 曲线 y = x 2 + mx – 2 与 x 轴交于 A , B 两点, 点 C 的坐标为(0,1) . 当 m 变化 时,解答下列问题:(1)能否出现 AC 」BC 的情况?说明理由;(2)证明过 A , B , C 三点的圆在 y 轴上截得的弦长为定值 .2016 (新课标全国卷 2 理科)(4)圆 x 2 + y 2 2x 8y +13 = 0 的圆心到直线 ax + y 1 = 0 的距离为 1,则 a= ( )3 36 314.双曲线 = 1(a > 0) 的一条渐近线方程为 y = x ,则 a = .D . C .B . A .|DE|= 2 5 ,则 C 的焦点到准线的距离为(C ) 3 (D ) 24x 2 y 2a bsin 三MF 2 F 1 = 3, 则 E 的离心率为( )3220. (本小题满分 12 分)已知椭圆 E: x 2 + y 2= 1 的焦点在 x 轴上, A 是 E 的左顶点, 斜率为 k (k > 0) 的直线交 E 于 A , M 两点, 点t 3N 在 E 上, MA 」NA .(Ⅰ)当 t = 4,| AM |=| AN | 时,求 编AMN 的面积; (Ⅱ)当 2 AM = AN 时,求 k 的取值范围.2016 (新课标全国卷 2 文科)(5) 设 F 为抛物线 C : y 2=4x 的焦点,曲线 y= (k> 0)与 C 交于点 P , PF ⊥x 轴,则 k= ( )x1 3(A) (B) 1 (C) (D) 22 2(6) 圆 x 2+y 2?2x?8y+13=0 的圆心到直线 ax+y?1=0 的距离为 1,则 a= ( )4(A) ?3 3(B) ?4(C)3(D) 2(21)(本小题满分 12 分)已知 A 是椭圆 E : + = 1 的左顶点,斜率为 k (k >0) 的直线交 E 与 A , M 两点,点 N 在 E 上,4 3MA 」NA .(Ⅰ)当 AM = AN 时,求 编AMN 的面积; (Ⅱ)当 AM = AN 时,证明: 3 < k < 2 .2016 (新课标全国卷 1 理科)(5)已知方程–3m yn =1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是(A) ( – 1,3) (B) ( – 1, 3) (C) (0,3) (D) (0, 3)(10)以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点, 交 C 的标准线于 D 、E 两点 . 已知|AB|= 4 2 , (11) 已知 F 1 , F 2 是双曲线 E : 2 _ 2= 1 的左, 右焦点, 点 M 在 E 上, MF 1 与 x 轴垂直,(A ) 2 (B ) (C ) 3 (D ) 2 (A ) _(B ) _x 2 y 2 k 4331(A)2 (B)4 (C)6 (D)820. (本小题满分 12 分)理科设圆x2 + y2 + 2x 15 = 0 的圆心为 A,直线 l 过点 B (1,0) 且与 x 轴不重合, l 交圆 A 于 C, D 两点,过 B 作AC 的平行线交 AD 于点 E.(I)证明EA + EB 为定值,并写出点 E 的轨迹方程;(II)设点 E 的轨迹为曲线 C1 ,直线 l 交 C1 于 M,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ 面积的取值范围 .2016 (新课标全国卷 1 文科)1(5)直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到 l 的距离为其短轴长的4,则该椭圆的离心率为1 12 3(A) (B) (C) (D)(15)设直线 y=x+2a 与圆 C: x2+y2-2ay-2=0 相交于 A, B 两点,若,则圆 C 的面积为 . (20)(本小题满分 12 分)在直角坐标系xOy 中,直线l:y=t(t≠0)交 y 轴于点 M,交抛物线 C:y2 = 2px(p > 0) 于点 P, M 关于点 P 的对称点为 N,连结 ON 并延长交 C 于点 H.OH(I)求;ON(II)除 H 以外,直线 MH 与 C 是否有其它公共点?说明理由 .2016 (新课标全国卷 3 理科)(11)已知 O 为坐标原点, F 是椭圆 C:x2a2+y2b2= 1(a > b > 0) 的左焦点, A, B 分别为 C 的左,右顶点 .P 为 C上一点,且PF 」x 轴.过点 A 的直线 l 与线段PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C 的离心率为1 (A)31(B)22(C)33(D)4(16)已知直线l:mx + y + 3m 3 = 0 与圆x2 + y2 = 12 交于A, B 两点,过A, B 分别做l 的垂线与x 轴交于C, D 两点,若AB = 2 3 ,则| CD |= __________________.(20)(本小题满分 12 分)已知抛物线C:y2 = 2x 的焦点为F,平行于x 轴的两条直线l1 , l2 分别交C 于A, B 两点,交C 的准线于P, Q 两点.(I)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ;(II)若PQF 的面积是ABF 的面积的两倍,求AB 中点的轨迹方程 .2016 (新课标全国卷 3 文科)3 2 3 4(12)已知 O 为坐标原点, F 是椭圆 C : x 2 + y 2= 1(a > b > 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为a 2b 2C 上一点,且 PF 」x 轴.过点 A 的直线 l 与线段 PF 交于点 M , 与 y 轴交于点 E.若直线 BM 经过 OE 的中 点,则 C 的离心率为1 (A)31 (B)22 (C)33 (D)4( 15) 已知直线 l : x 3y + 6 = 0 与圆x 2 + y 2 = 12 交于 A, B 两点, 过 A, B 分别作l 的垂线与x 轴交于C, D 两点,则 | CD |= _____________ .(20)(本小题满分 12 分)已知抛物线 C : y 2 = 2x 的焦点为 F , 平行于 x 轴的两条直线 l 1 , l 2 分别交 C 于 A , B 两点, 交 C 的准线 于 P , Q 两点.(I)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR FQ ; (II)若PQF 的面积是 ABF 的面积的两倍,求 AB 中点的轨迹方程 .2015 (新课标全国卷 2)(11) 已知 A , B 为双曲线 E 的左,右顶点,点 M 在 E 上, ?ABM 为等腰三角形,且顶角为 120°,则 E 的离心 率为(A ) √ 5 (B) 2 (C ) √3 (D ) √2(15)已知双曲线过点(4, ,3),且渐近线方程为 y = 士 x ,则该双曲线的标准方程为 2。
圆锥曲线全国卷高考真题综合2(解析版)-2021年高考数学圆锥曲线中必考知识专练
A.16
B.14
C.12
D.10
【答案】A
【解析】
设 A(x1, y1), B(x2, y2 ), D(x3, y3), E(x4, y4 ) ,直线 l1 的方程为 y k1(x 1) ,联立方程
y y
2 4x k1(x
1)
,得
k12
x
2
2k12 x 4x k12
0 ,∴ x1
x2
2k12 4 k12
2k12 k12
4
,同理
直线 l2 与抛物线的交点满足
x3
x4
2k22 4 k22
,由抛物线定义可知
AB DE x1 x2 x3 x4 2 p
2k12 4 k12
2k22 4 k22
4
4 k12
4 k22
8
2
16 k12k22
8 16 ,当且仅当 k1
4.2017 年全国普通高等学校招生统一考试理科数学(全国卷 3 正式版)
x2
已知椭圆 C:
a2
y2 b2
1,(a>b>0)的左、右顶点分别为 A1,A2,且以线段 A1A2 为直径的圆
与直线 bx ay 2ab 0 相切,则 C 的离心率为
A. 6 3
B. 3 3
【答案】A
C. 2 3
D. 1 3
专题 20:圆锥曲线全国卷高考真题综合 2(解析版)
一,选择题
1,2017 年全国普通高等学校招生统一考试理科数学(新课标 1 卷)
已知 F 为抛物线 C:y2=4x 的焦点,过 F 作两条互相垂直的直线 l1,l2,直线 l1 与 C 交于 A、
B 两点,直线 l2 与 C 交于 D、E 两点,则|AB|+|DE|的最小值为
圆锥曲线练习题含答案(很基础,很好的题)
圆锥曲线练习题21.抛物线x y 102=的焦点到准线的距离是( ) A .25 B .5 C .215 D .10 2.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。
A .(7,B .(14,C .(7,±D .(7,-±3.以椭圆1162522=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 4.21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积( ) A .7 B .47 C .27 D .257 5.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -=B .23x y =C .x y 92-=或23x y =D .23x y -=或x y 92=6.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A .1(,44± B .1(,)84± C .1(44 D .1(,84 7.椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则△21F PF 的面积为( ) A .20 B .22 C .28 D .248.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫ ⎝⎛1,21C .()2,1 D .()2,2 9.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( )A .1222=-y xB .1422=-y xC .13322=-y xD .1222=-y x10.若椭圆221x my +=_______________. 11.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为______________。
全国名校2024届高三年级专项(圆锥曲线小题)练习卷(附答案)
全国名校2024届高三年级专项(圆锥曲线小题)练习卷 一、单选题4条二、多选题PF上的切点为的内切圆在边1)的左右焦点,O为坐标原点,以FO 在第二象限),射线1F A与双曲线的另一条渐近,则双曲线的离心率为.参考答案离心率为5的双曲线2C以A,∵,C D 分别是线段AB 的两个三等分点,∴()1,0C x -,10,2y D ⎛⎫⎪⎝⎭y易知△PEH ≅△2PEF ,即112OE F H a ==, 故可得cos cos F OE FOE ∠=-∠【名师点评】关键点名师点评:解决本题关键是利用双曲线的定义以及三角形内切圆的相关性质,结合图形详细分析得出相应关系,运算整理17.BCD【详细分析】由C在准线上,OC=点纵坐标,由此得直线AB方程,从而求得由双曲线方程和圆D 方程可知,3,4,5a b c ===, 所以左焦点为0()5,D -,右焦点2(5,0)F ;对于A ,由于P 在双曲线左支上,根据焦半径公式可知对于B ,由过点M 的直线与双曲线有一个公共点可知,直线的斜率一定存在,设直线斜率为k ,则直线l 的方程为2(1)y k x -=-,所以||3PF PF PF ''+==由余弦定理可得2(2)|c PF =11.23.AC【详细分析】对于A ,利用椭圆与=y kx 得到8AF BF +=;对于B ,利用A 中的结论及基本不等式.对于B ,()1418AF BF AF BF ⎛+=+ ⎝419BF AF ⎛⎫25.32【详细分析】由抛物线与圆的对称性可得由抛物线的定义求得2 d=26.4【详细分析】先由AB AD ⊥,CB CD ⊥判断出表示出圆的方程,将()0,b 代入椭圆及圆的方程,可求出【答案详解】由题意得()0,A b ,(0,C -【名师点评】关键点名师点评:由此得到A,B,C,27.328.2【详细分析】由题干条件得到1F 1OB OF c ==,由焦点到渐近线距离及勾股定理得到故答案为:2。
(完整版)全国卷高考数学圆锥曲线大题集大全,推荐文档
高考二轮复习专项:圆锥曲线大题集1.如图,直线 l1与l2是同一平面内两条互相垂直的直线,交点是 A,点 B、D 在直线 l1上(B、D 位于点 A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是 N,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点 M 的轨迹 C 的方程.(Ⅱ)过点 D 且不与 l1、l2垂直的直线 l 交(Ⅰ)中的轨迹 C 于E、F 两点;另外平面上的点G、H 满足:①AG =AD(∈ R); ②GE +GF ③求点 G 的横坐标的取值范围.e =2.设椭圆的中心是坐标原点,焦点在x 轴上,离心率上的点的最远距离是 4,求这个椭圆的方程. ,已知点P(0,3) 到这个椭圆x 2 y 2 253.已知椭圆C1 :2+2= 1(a >b > 0) x =的一条准线方程是,4 其左、右顶点分别3l2MA D NB l1a b是A、B;双曲线x 2 y 2C2 :a 2-b 2= 1的一条渐近线方程为 3x-5y=0.(Ⅰ)求椭圆 C1的方程及双曲线 C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP 交椭圆C1于点M,连结PB 并延长交椭圆C1于点 N,若 AM =MP . 求证: MN •AB = 0.4.椭圆的中心在坐标原点 O,右焦点 F(c,0)到相应准线的距离为 1,倾斜角为45°的直线交椭圆于 A,B 两点.设 AB 中点为 M,直线 AB 与OM 的夹角为 a.(1)用半焦距 c 表示椭圆的方程及 tan;(2)若2<tan<3,求椭圆率心率 e 的取值范围.x2 +y2 e =65.已知椭圆a2b2 (a>b>0)的离心率 3 ,过点 A(0,-b)和 B(a,0)的直3线与原点的距离为2(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D 两点问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由6. 在直角坐标平面中, ∆ABC 的两个顶点 A , B 的坐标分别为 A (-1,0) , B (1,0) ,平面内两点G , M 同时满足下列条件:① GA + GB + GC = 0 ;② == ;③ GM ∥ AB (1) 求∆ABC 的顶点C 的轨迹方程; (2) 过点P (3,0) 的直线l 与(1)中轨迹交于 E , F 两点,求 PE ⋅ PF 的取值范围x , y ∈ Ri , j7.设,为直角坐标平面内 x 轴.y 轴正方向上的单位向量,若= a = xi + ( y + 2) j , bxi + ( y - 2) j | a ,且 | +| b |= 8 (Ⅰ)求动点 M(x,y)的轨迹 C 的方程;(Ⅱ)设曲线 C 上两点 A .B ,满足(1)直线 AB 过点(0,3),(2)若OP = OA + OB ,则 OAPB为矩形,试求 AB 方程.yD CEAO A 1 xD 1C 1y 2= m (x + n ),(m ≠ 0, n > 0) 8. 已知抛物线 C :的焦点为原点,C 的准线与直线l : kx - y + 2k = 0(k ≠ 0) 的交点 M 在x 轴上, l 与 C 交于不同的两点 A 、B ,线段 AB 的垂直平分线交 x 轴于点 N (p ,0).(Ⅰ)求抛物线 C 的方程; (Ⅱ)求实数 p 的取值范围;(Ⅲ)若 C 的焦点和准线为椭圆 Q 的一个焦点和一条准线,试求 Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴 AA 1 在x 轴上.以 A 、A 1 为焦点的双曲线交椭圆于1 AE =C 、D 、D 1、C 1 四点,且|CD|= 2 |AA 1|.椭圆的一条弦 AC 交双曲线于E ,设 EC ,当 2 ≤ ≤ 334 时,求双曲线的离心率 e 的取值范围.4x 2+ 5 y =2 80 10. 已知三角形 ABC 的三个顶点均在椭圆点(点 A 在 y 轴正半轴上).上,且点 A 是椭圆短轴的一个端 若三角形 ABC 的重心是椭圆的右焦点,试求直线 BC 的方程; 若角 A 为900,AD 垂直 BC 于 D ,试求点 D 的轨迹方程.x 2 = 4 yP (0, m ) (m > 0)11.如图,过抛物线的对称轴上任一点作直线与抛物线交于A ,B 两点,点Q 是点 P 关于原点的对称点.(1) 设点 P 分有向线段 AB 所成的比为,证明:QP ⊥ (QA -QB ) ;(2) 设直线 AB 的方程是 x - 2 y +12 = 0 ,过 A , B 两点的圆C 与抛物线在点 A 处有共同的切线,求圆C 的方程.1 +p 2 p12. 已知动点 P (p ,-1),Q (p , 2 ),过 Q 作斜率为 2 的直线 l ,P Q 中点 M 的轨迹为曲线 C.(1) 证明:l 经过一个定点而且与曲线 C 一定有两个公共点; (2) 若(1)中的其中一个公共点为 A ,证明:AP 是曲线 C 的切线; (3) 设直线 AP 的倾斜角为,AP 与l 的夹角为,证明:+ 或- 是定值.7 3 113.在平面直角坐标系内有两个定点F 1、F 2 和动点 P , F 1、F 2 坐标分别为 F 1 (-1,0) 、| PF 1 | =F 2 (1,0) ,动点 P 满足| PF 2 | 2 ,动点 P 的轨迹为曲线C ,曲线C 关于直线 y = x 的对称曲线为曲线C ' ,直线 y = x + m - 3 与曲线C' 交于 A 、B 两点,O 是坐标原点,△ABO 的 面积为 ,(1)求曲线 C 的方程;(2)求m 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
→ → ∵ OP · OQ = 0 ∴ x1 x 2 + y1 y 2 = 0 ∴ x1 x 2 + k 2 ( x1 − 1)( x 2 − 1) = 0 ∴ x1 x 2 + k 2 [ x1 x 2 − ( x1 + x 2 ) + 1] = 0 (i )
4k (k + 1) − k i4k + k = 0 ,解得 k = −4 或 k = 0 (舍去) , 又 k = −4 < −1 , ∴ 直线 l 存在,其方程为 x + 4 y − 4 = 0
10 3 的椭圆. (9 分) 3
⎩ y = 4x △ = 16k 2 − 16 > 0 , k < −1或k > 1 设 P ( x1 , y1 ) , Q( x 2 , y 2 ) ,则 y1 + y 2 = 4k , y1 y2 = 4k ��� � ���� ��� � ���� 由 OP ⋅ OQ = 0 ,即 OP = ( x1 , y1 ) , OQ = ( x2 , y2 ) ,于是 x1 x2 + y1 y2 = 0 ,
圆锥曲线综合训练题 一、求轨迹方程:
x2 y2 1、 (1)已知双曲线 C1 与椭圆 C2 : + = 1 有公共的焦点,并且双曲线的离心率 e1 与椭圆的 36 49 7 离心率 e2 之比为 ,求双曲线 C1 的方程. 3 2 (2)以抛物线 y = 8 x 上的点 M 与定点 A(6, 0) 为端点的线段 MA 的中点为 P,求 P 点的轨迹方 程.
即 k 2 ( y1 − 1)( y2 − 1) + y1 y2 = 0 , ( k 2 + 1) y1 y2 − k 2 ( y1 + y2 ) + k 2 = 0 ,
由⎨
⎧ x = k ( y − 1)
2
得 y 2 − 4ky + 4k = 0
设 l:y = k ( x − 1) ,l与双曲线交于 P ( x1 ,y1 ) 、Q ( x 2 ,y 2 )
意知: MF = MN , 即动点 M 到定点 F 与定直线 x = −1 的距离相等,由抛物线的定义 知,点 M 的轨迹为抛物线,其中 F (1, 0 ) 为焦点, x = −1 为准线, ∴ 动点 R 的轨迹方程 为 y = 4x (2)由题可设直线 l 的方程为 x = k ( y − 1)( k ≠ 0) ,
x2 y2 1 反射光线恰好通过椭圆 C : 2 + 2 = 1 (a>b>0)的两焦点,已知椭圆的离心率为 ,且 2 a b 6 x2-x1= ,求椭圆 C 的方程. 5 x2 y2 解 : 设 a =2 k , c = k , k ≠ 0 , 则 b = 3 k , 其 椭 圆 的 方 程 为 − =1. 4k 2 3k 2 0+2 1 − (−2) 由题设条件得: = , ① − k − x1 − 4 − x1 0+2 1 − (−2) = , ② − k − x2 − 4 − x2 6 x2-x1= , ③ 5 11 x2 y2 由①、②、③解得:k=1,x1= − ,x2=-1,所求椭圆 C 的方程为 + = 1. 5 4 3 1 4、在面积为 1 的 ∆PMN 中, tan M = , tan N = −2 ,建立适当的坐标系,求出以 M 、 N 为 2 焦点且过 P 点的椭圆方程. 解:以 MN 的中点为原点, MN 所在直线为 x 轴建立直角坐标 系,设 P ( x , y ) . 5 ⎧ ⎧ y x= ⎪ x − c = −2, ⎪ 5 2 ⎪ 3c 则 ⎪ ∴ ⎨ 即 P( , ) ∴ 1 ⎪ y = , 2 3 3 ⎨ ⎪y = 4 c且c = 3 2 ⎪x+c ⎪ 2 ⎩ 3 ⎪ cy = 1 .
7、 设双曲线
∵ c 2 = a 2 + 3, ∴ a = 1,c = 2
1 ⎧ m+ ×4 ⎪ 2m + 4 2 3x − 4 ⎧ = ⎪x = m= 1 3 ⎪ ⎪ 1 ⎪ 1+ 2 ,∴点 P 的坐标为 为 ,由定比分点坐标公式可得 ⎪ ,即 ⎨ 2 ⎨ 2 ⎪n = 3 y 1 ⎪ n + ×0 ⎪ ⎩ 2 2n ⎪y = 2 = ⎪ 1 3 1+ ⎪ ⎩ 2
x +6 ⎧ x= 0 ⎪ ⎪ 2 ,∴ ⎧ x0 = 2 x − 6 . (2)解:设点 M ( x0 , y0 ), P ( x, y ) ,则 ⎨ ⎨ ⎩ y0 = 2 y ⎪ y = y0 ⎪ ⎩ 2 2 2 代入 y0 = 8 x0 得: y = 4 x − 12 .此即为点 P 的轨迹方程. 2、 (1) ∆ABC 的底边 BC = 16 , AC 和 AB 两边上中线长之和为 30,建立适当的坐标系求此三 3 角形重心 G 的轨迹和顶点 A 的轨迹. (2)△ABC 中,B(-5,0),C(5,0),且 sinC-sinB= sinA,求点 A 5
∴ 双曲线方程为y y = ± x 3 3
4分
(II)设 A ( x1 , y1 ) , B ( x 2 , y 2 ) ,AB 的中点 M x,y
(
)
∵ 2| AB| = 5| F1 F2 | ∴| AB| = 5 5 | F1 F2 | = × 2c = 10 2 2
点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点 M(-4,1)分别射向直线 y= -2 上两点 P(x1,y1)和 Q(x2,y2)后,
⎧ a 2 + b 2 = 13 y2 x2 y2 x2 ⎪ 2 2 2 2 − = 1( a , b > 0) 则 解得 a = 9, b = 4 双曲线的方程为 − =1 ⎨ a + b 13 a2 b2 9 4 = ⎪ 2 ⎩ a 9
2
2
2
∴ ( x1 − x 2 ) 2 + ( y1 − y2 ) 2 = 10 3 3 x1 ,y 2 = − x 2 , 2 x = x1 + x 2 , 2 y = y1 + y 2 3 3 3 3 ∴ y1 + y 2 = ( x 1 − x 2 ) ,y 1 − y 2 = ( x1 + x 2 ) 3 3 又y1 = ∴
∴ 所 求 椭 圆 方 程 为
3 sinA 5
2RsinC-2RsinB=
3 ·2RsinA 5
4x y + =1 15 3
2
2
⎪ ⎩
∴ AB − AC =
3 BC 5
4 ⎧ 25 + 2 = 1, ⎧ 2 15 2 ⎪ ⎪12a 3b ⎪a = , 得⎨ 4 ⎨ 3 2 2 2 ⎪a − b = , ⎪b = 3. ⎩ ⎪ 4 ⎩
2 2 2
⎧ y = k ( x − 1) ⎪ 由⎨ 2 x 2 得 (3k − 1) x 2 − 6k 2 x + 3k 2 − 3 = 0 y − =1 ⎪ 由(i) (ii)得 k 2 + 3 = 0 3 ⎩ 6k 2 3k 2 − 3 则x1 + x 2 = 2 ,x1 x 2 = 2 (ii ) 3k − 1 3k − 1
∴k 不存在,即不存在满足条件的直线 l .
x2 y2 + = 1(a > b > 0) 的左、右焦点分别是 F1(-c,0) 、F2(c,0) ,Q 是椭圆 a2 b2 外的动点,满足 | F1Q |= 2a. 点 P 是线段 F1Q 与该椭圆的交点,点 T 在线段 F2Q 上,并且满足 c (Ⅱ)求点 T 的轨 PT ⋅ TF2 = 0, | TF2 |≠ 0. (Ⅰ)设 x 为点 P 的横坐标,证明 | F1 P |= a + x ; a 迹 C 的方程; (Ⅲ)试问: 在点 T 的轨迹 C 上,是否存在点 M, 使△F1MF2 的面积 S= b 2 . 若存在,
| OP | 1 = ,由角平分线性质可 | OQ | 2
| OP | | PR | 1 1 = ,又∵点 R 在线段 PQ 上,∴|PR|= |RQ|,∴点 R 分有向线段 PQ 的比 = | OQ | | RQ | 2 2
y2 x2 − = 1 的两个焦点分别为 F1 、 F2 , 离心率为 2. (I) 求此双曲线的渐近线 l1 、l2 a2 3 的方程; (II)若 A、B 分别为 l1 、l2 上的点,且 2| AB| = 5| F1 F2 | ,求线段 AB 的中点 M 的轨迹方 程,并说明轨迹是什么曲线; (III)过点 N (1, 0) 能否作出直线 l ,使 l 与双曲线交于 P、Q 两 → → 点,且 OP · OQ = 0 .若存在,求出直线 l 的方程;若不存在,说明理由. 解: (I)∵ e = 2 , ∴ c 2 = 4a 2
⎧ ′ x x = , 2 ⎪ y2 ⎪ 3 代入①,得 的轨迹方程为 x ①由题意有 ⎨ A + = 1( y ≠ 0) ,其轨迹是椭圆(除去 x y 900 324 ⎪ y′ = ⎪ 3 ⎩
轴上两点) . (2)分析:由于 sinA、sinB、sinC 的关系为一次齐次式,两边乘以 2R(R 为外接圆半径) ,可 转化为边长的关系. 解:sinC-sinB=
⎛ 3x − 4 3 y ⎞ ⎛ 3x − 4 ⎞ ⎛ 3 y ⎞ , ⎟ ,代入圆的方程 x2+y2=4 可得 ⎜ ⎜ ⎟ +⎜ ⎟ = 4, 2 ⎠ ⎝ 2 ⎝ 2 ⎠ ⎝ 2 ⎠ 4⎞ 4⎞ 16 16 ⎛ ⎛ 即 ⎜ x − ⎟ +y2= (y≠0). ∴点 R 的轨迹方程为 ⎜ x − ⎟ +y2= (y≠0). 3⎠ 9 3⎠ 9 ⎝ ⎝ 6、已知动圆过定点 (1, 0 ) ,且与直线 x = −1 相切.(1) 求动圆的圆心轨迹 C 的方程;(2) 是否存 uu u v uuu v 在直线 l ,使 l 过点(0,1) ,并与轨迹 C 交于 P, Q 两点,且满足 OP ⋅ OQ = 0 ?若存在,求出直 线 l 的方程;若不存在,说明理由. 解: (1)如图,设 M 为动圆圆心, F (1, 0 ) ,过点 M 作直线 x = −1 的垂线,垂足为 N ,由题