提高交流输电系统稳定性的措施(一)

提高交流输电系统稳定性的措施(一)
提高交流输电系统稳定性的措施(一)

提高交流输电系统稳定性的措施(一)

摘要:本文从输电系统安全可靠运行的重要因数出发,阐述了输电系统稳定运行的重要性,从而得出了提高交流输电系统稳定性的具体措施。

关键词:输电系统稳定性静态暂态措施

1输电系统稳定性的重要性

输电系统运行的稳定性,是输电系统安全可靠运行的重要因数。随着输电系统规模的扩大,输电距离和输送容量大大增大,系统的稳定问题就显得比较突出。可以说,输电系统稳定性是限制交流电流远距离输电送电距离和输送能力的决定因素。所以,必须采取各种措施来提高输电系统的稳定性,从而提高输送能力。从静态稳定分析可知,如果正确选择调节器的参数,使输电系统不发生自发振荡时,那么输电系统具有较高的功率极限,一般也就具有较高的运行稳定度。从暂态稳定分析可知,输电系统受大扰动后,发电机轴上出现的不平衡转矩将使发电机产生剧烈的相对运动;当发电机的相对角的振荡超过一定限度时,发电机便会失去同步,从而破坏了稳定性。从这些概念出发可以得出提高输电系统稳定性和输送能力的一般原则是:一是尽可能地提高输电系统的功率极限;即应从提高发电机的电势E、减小系统电抗x、提高和稳定系统电压U等方面着手。二是尽可能减小发电机相对运行的振荡幅度;即应从提高提高暂态稳定,减小发电机转子轴上的不平衡功率、减小转子相对加速度以及减少转子相对动能变化量等方面着手。

2提高交流输电系统稳定性的措施

采用自动调节励磁装置:当发电机装设自动励磁调节器时,发电机可看做具有E’q为常数的功率特性,这也就相当于将发电机的电抗从同步电抗xd减小为暂态电抗x’d了。发电机的电抗在输电系统总电抗中所占的比重很大,因此,减小发电机的电抗可以提高系统的功率极限和输送能力。如果采用按运行参数的变化率调节励磁则甚至可以维持发电机端电压为常数,这就相当于将发电机的电抗减小为零。因此,发电机装设先进的调节器就相当于缩短了发电机与系统间的电气距离,从而提高了静态稳定性。自动励磁调节对改善暂态稳定也有明显作用,良好的自动励磁在暂态摇摆过程中能增大系统的阻尼,从而能使系统振荡迅速平息下来,缩短摇摆过程,这是十分有利的。此外,为改善暂态稳定性,现在的励磁系统都配备有某种强行励磁装置,其作用是在系统故障时,迅速增加发电机的励磁电压,减小了E’q的衰减程度,如果强行励磁倍数很高,甚至可以使暂态电势增大。

改善电网结构及减小线路电抗:电网结构是输电系统安全稳定运行的基础,改善电网结构的方法较多,例如增加输电线路的回路数,减小线路电抗加强系统的联系;另外,当输电线路通过的地区原来就有输电系统时,将这些中间系统与输电线路连接成为较大的联合输电系统,这样可以使长距离的输电线路中间点的电压得到维持,相当于将输电线路分成两段,缩小了电气距离。而且,中间系统还可与输电线交换有功功率,起到互为备用的作用。在输电系统中间接入中间调相机,这些调相机配有先进的自动励磁调节器,则可以维持调相机端点电压甚至变压器高压母线电压恒定。这样,输电系统就等值地被分割为两段,每一段的电气距离将远小于整个输电系统的电气距离,输电系统的稳定性得到提高。由于调相机维护工作困难,已逐步被静止补偿器所替代。另外减小线路电抗主要是通过采用分裂导线、提高线路额定电压等级以及采用串联电容器补偿等方法来提高输电系统的稳定性。

快速切除短路和自动重合闸:快速切除故障是提高暂态稳定最根本、最有效的措施,同时又是简单易行的措施。快速切除故障的作用是减小加速面积,增大减速面积,提高了发电机之间并列运行的稳定性。另一方面,快速切除故障也可使负荷中的电动机端电压迅速回升,减少了电动机失速和停顿的危险,提高了负荷的稳定性。切除故障时间是继电保护装置动作时间和断路器动作时间的总和。目前可达到短路后0.06s切除故障线路,其中0.02s为保护装置动作时间,0.04s为断路器动作时间。高压输电线路的短路故障,绝大多数是瞬时性的,

故障线路切除后通过自动重合闸装置立即重新投入,大多数情况下可以恢复正常运行,成功率可达90%以上。超高压输电线路的故障大多数是单相接地,这类故障可以采用按相动作的单相重合闸装置。这种装置自动选出故障相切除,经过一小段时间后又重新合闸。由于只切除一相,送电端的发电厂和受端系统没有完全失去联系,故提高了系统的暂态稳定性。

浅谈台风对输电线路影响及防范措施

浅谈台风对输电线路影响及防范措施 摘要:近年来自然灾害频发,犹其是我国沿海地区受台风的肆意破坏给许多基础建设造成重创。由于输电线路遭受各种自然灾害的侵袭,如何应对复杂的气候条件,以保证输电线路长期的安全和稳定。基于此我们有必要谈一下台风对输电线路影响及防范措施,以供同仁参考。 关键词:输电线;灾害;防范;台风 由于近年来,极端的自然灾害频繁发生,而且随着社会和经济的发展,越来越多的高电压等级的输电线逐步在勘察、设计、建造中。而输电线路等级越高,其对风的敏感度就越来越强,风致输电线路故障的问题也会越来越突出。因此,为保证输电线路的安全稳定运行,针对各种风致输电线路故障,要从根本抓起。近年我国输电线路风灾调查结果表明,提高输电线路抗风能力,问题急迫、刻不容缓。针对输电线路系统在防御风灾方面严峻的现实,应积极开展防御工作。 1 案例概述 某地区骤起暴雨台风,建筑物相继受损。在恶劣气候的影响下,电网220kV 线跳闸。光差保护动作,B相重合闸不成功。经巡线检查发现,直线塔B相(中线)垂直排列导线的下线对铁塔脚钉放电造成掉闸,导线、横担、脚钉均有放电痕迹。 2设备状况 该线路长度为6.101km,最大设计风速为30m/s。ZM2-30型直线塔,铁塔呼称高30m,根开为4630mm×3500mm,导线型号为2×LGJ-300/25钢芯铝绞线,子导线排列方式为垂直排列,设计线间距离为400mm。绝缘子串为FXBW-220/100型复合绝缘子,绝缘子串结构长度为3048mm,结构如图1所示。 1-挂板;2-球头挂环;3-合成绝缘子;4-碗头挂板;5-悬垂线夹;6-铝包带 图1 绝缘子串结构 3原因分析 根据气象部门资料:当日该地区10min平均风速达到8.0m/s。根据现场情况分析,瞬时风速达到35m/s,高于气象站现场风速。根据当地气象条件,220kV

电力系统三个实验

实验一:一机—无穷大系统稳态运行方式实验 一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。 图2 一次系统接线图 本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验项目和方法 1.单回路稳态对称运行实验 在本章实验中,原动机采用手动模拟方式开机,励磁采用手动励磁方式,然后启机、建压、并网后调整发电机电压和原动机功率,使输电系统处于不同的运行状态(输送功率的大小,线路首、末端电压的差别等),观察记录线路首、末端的测量表计值及线路开关站的电压值,计算、分析、比较运行状态不同时,运行参数变化的特点及数值范围,为电压损耗、电压降落、沿线电压变化、两端无功功率的方向(根据沿线电压大小比较判断)等。 2.双回路对称运行与单回路对称运行比较实验 按实验1的方法进行实验2的操作,只是将原来的单回线路改成双回路运行。将实验1的结果与实验2进行比较和分析。 表3-1 注:U Z —中间开关站电压; ?U —输电线路的电压损耗; △U —输电线路的电压降落

国家电网公司加强配电网规划建设 全面提高供电可靠性

国家电网公司加强配电网规划建设全面提高供电可靠性 北极星输配电网讯:1 月28 日,记者从国家电网公司2016 年发展工作会议了解到,2016 年国家电网公司将进一步加强配电网规划建设,全面提高供电可靠性。2016 年,国家电网公司经营范围内城网、农网客户平均停电时间将不超过3.1 小时、12.7 小时,同比缩短0.1 小时、0.4 小时。 十三五期间,我国经济年均增长底线是6.5%以上,预计2020 全国社会用电量将达到8.0 万亿度,人均用电量5691 度。此外,国家大力推进分布式能源和电动汽车等多元化负荷发展,2020 年,预计分布式光伏装机达7000 万千瓦,电动汽车保有量达500 万辆,微电网和储能装置快速发展,这对配电网的安全性、经济性、互动性提出了更高要求,需要进一步提高配电网建设改造标准,促进源网荷协调互动,实现传统配电网向智能配电网的转型升级。 2016 年,国家电网公司将按照统一规划、统一标准、安全可靠、坚固耐用的原则,深入贯彻资产全寿命周期管理理念,优化完善电网规划,并认真执行配电网建设改造行动计划,加快实施农网改造升级工程,有效解决农网低电压、卡脖子、动力电不足等问题,上半年完成2015 年国家新增中西部农网项目,年内完成新增东部七省(市)农网和城镇配电网工程。国家电网公司还将全面开展配电网标准化建设,依据规划设计导则,按照典型目标网架要求,优化完善配电网结构,提高线路互倒互带和环网供电能力。 此外,国家电网公司将加快推进国网阳光扶贫行动,结合农网改造升级,年内完成1.3 万个自然村通动力电、2.7 万个自然村动力电改造工程;落实国家光伏扶贫工作要求,建设光伏扶贫项目接网工程,帮扶公司定点扶贫五县(区)建设集中式光伏电站。

提升供电可靠性典型经验

提升供电可靠性典型经验 发表时间:2018-04-12T10:32:36.857Z 来源:《电力设备》2017年第32期作者:何德茹张卫国 [导读] 参观学习其他公司的先进做法,逐渐摸索出一套适合本公司的管理方法,通过规范梳理基础台账,及时更新异动线路,源头管控停电计划,推行综合检修,合理分配计划任务,显著减少用户停电时间,全面提升公司供电可靠性指标至全省A段,本文首先对供电可靠性的基本定义进行阐述, (国网安徽省电力公司霍邱县供电公司安徽六安 237400) 摘要:霍邱公司供电可靠性指标管理落后,当时公司供电可靠率排名在全省倒数,提升公司供电可靠率指标成为公司一项非常重要工作。通过对指标的深入分析解读,参观学习其他公司的先进做法,逐渐摸索出一套适合本公司的管理方法,通过规范梳理基础台账,及时更新异动线路,源头管控停电计划,推行综合检修,合理分配计划任务,显著减少用户停电时间,全面提升公司供电可靠性指标至全省A 段,本文首先对供电可靠性的基本定义进行阐述,然后结合生产实践,提炼出典型工作经验。 关键词:供电可靠性;设备异动;计划管控;重复停电 一、供电可靠性基本定义 所谓供电可靠性,主要指配电网供电系统实现持续稳定供电的能力。其可靠性集中反映了电力企业对需求的供给程度,作为电力管理的一个基础指标,研究其有着十分重要的意义。因此,与用户体验最为关联紧密的配电系统的可靠稳定也十分重要,只有配电系统的稳定可靠才能保证用户使用电力的稳定,但是在电力运行过程中一些固有的特点制约了配电系统的稳定性,实践中,只要该系统发生故障包括进行一些正常的检修,往往会导致供电的中断。所以配电系统的作用至关重要。 二、加强基础台帐管理,夯实供电可靠性基础 电能质量在线监测系统维护指标的好坏直接影响到供电可靠率指标,在维护好电能质量在线监测系统台账的基础上,利用系统推送的数据,汇总分析停电事件,从中找出管理薄弱点进行重点管控。 1、梳理线路用户关系,提高停电完整率。 公司前期对系统中台账管理不够重视,系统中用户和所在的分段线路不能正确一一对应,公司停电完整率一直在60%附近,严重影响供电可靠率指标。 电能质量在线监测系统中包含了所有公司10kV在运的PMS系统中的公变以及SG186营销系统中的专变,难题是如何将所有公专变正确的挂接到相对应的分支开关下。如果按照配网线路条图去逐个查找,工作量将会非常大,条图的更新准确率也不高。为了使工作效率又快又好,我们采用三轮梳理的办法,逐步完善,层层递进。 第一轮梳理:制作一张线台关系表,联系配电队协助填报所辖范围的最新的线路与用户关系表,线台关系表将每条线路的分支开关和所辖的台区进行一一对应。按照配电队提供的最新线台关系表,在系统中进行核对,对系统中的公专变进行重新正确分段。 第二轮梳理:经过第一轮的线台关系表的梳理,已经解决了绝大部分的公专变的挂接不正确的问题。第二遍梳理采用PMS系统和 SG186系统查询线台关系中遗漏的用户,将线台关系表中缺失的公变通过PMS系统查找出正确位置,将线台关系表中缺失的专变通过 SG186系统查找出正确位置。 第三轮梳理:经过两轮的梳理基本解决了停电完整率低的问题,停电完整率由梳理前的60%左右提高到梳理后的90%左右。第三轮梳理利用供电可靠性智能分析系统,对每天推送的停电线段停电时间是否一致进行分析,查找出挂接错误以及对应错误的台区,挂接错误用户通过查找PMS或者反馈配电队现场再次核对,对应错误用户在PI3000系统中重新核实对应,逐步提高停电完整率指标。 2、加强设备异动管理,多部门联动确保基础数据实时更新。 电能质量在线监测系统基础数据涉及到运检部管理的PMS系统和营销部的SG186系统,新增和退役的公专变,需要由运检部和营销部上报设备停运退役工作联系单,从而在可靠性系统中及时更新。对于线路异动调整,建立调控中心设备异动管理微信群,人员涉及调度运检以及各配电队相关负责人,方便在群内及时上报线路设备异动情况,线路的割接、负荷的转移以及新加的开关,及时上报反馈,及时在可靠性系统中更新,保证系统中数据和现场实际一致。加强与运检部、营销部的沟通,形成部门间的数据联动。 三、强化停电计划管理,提升供电可靠性。 2016年,公司供电可靠性管理一直排名靠后,从指标分类上看,因农网升级工程施工造成停电计划多是导致2016年供电可靠率低的主要因素。停电计划的管控是提升供电可靠性的关键,只有加强停电计划管控,才能从源头提升供电可靠性。 1、下达指标,先算后干,提前把控停电时户数 以网改办、运检部及发建部提供的年度停电计划为参考,综合线路所带台区数量,计算各线路的计划停电时户数;以去年各线路故障停电时户数为参考,综合线路所带配变台区数,计算各线路的故障停电时户数。综合平衡后,下达各配电队停电时户数指标,按指标进行考核,从而实现年度供电可靠率的可控、能控、再控。 2、加强月、周停电计划审核,减少重复停电 停电计划编制按照“年统筹,月计划,周安排,日管控”。月度停电计划实现二级平衡管控,配电队首先召开辖区施工单位停电计划平衡会,审核后汇总上报调控中心。调控中心牵头召开公司层面月度停电计划平衡后,公司分管领导参加,对停电计划进行综合平衡后,挂网公示。日常实施以周停电计划管控为重点,按每月供电可靠性指标,总体平衡每周停电时户数,强化对较大停电范围的施工方案的审查,优化方案,减少停电时间,遏制不合理停电。同时进一步加强计划性重复停电管控,原则上10千伏主干线路半年停电不超过两次,分支线路停电半年不超过三次,超限将暂停批复停电计划。同时加强线路重复跳闸、接地的故障统计,半年故障达到三次,将及时统计并上报公司领导,进行重点整治,并暂停批复停电计划。 3、推行组织综合检修和规模作业,提高检修效益 积极组织开展综合检修,将全部检修维护工作统筹进行安排,将相同线路多次停电作业集中实施,特别是在春检和秋检期间,对线路缺陷进行集中检修,做到一停多用,多个施工队集中规模作业,缩短线路停电时间,减少停电时户数。 4、发挥电网规划的引领作用,优化电网结构 前期的线路改造方案存在不够合理,部分10千伏线路没有联络线,造成电网运行方式调整困难,电网运行的整体结构变弱。在后期的

提高交流输电系统稳定性的措施(一)

提高交流输电系统稳定性的措施(一) 摘要:本文从输电系统安全可靠运行的重要因数出发,阐述了输电系统稳定运行的重要性,从而得出了提高交流输电系统稳定性的具体措施。 关键词:输电系统稳定性静态暂态措施 1输电系统稳定性的重要性 输电系统运行的稳定性,是输电系统安全可靠运行的重要因数。随着输电系统规模的扩大,输电距离和输送容量大大增大,系统的稳定问题就显得比较突出。可以说,输电系统稳定性是限制交流电流远距离输电送电距离和输送能力的决定因素。所以,必须采取各种措施来提高输电系统的稳定性,从而提高输送能力。从静态稳定分析可知,如果正确选择调节器的参数,使输电系统不发生自发振荡时,那么输电系统具有较高的功率极限,一般也就具有较高的运行稳定度。从暂态稳定分析可知,输电系统受大扰动后,发电机轴上出现的不平衡转矩将使发电机产生剧烈的相对运动;当发电机的相对角的振荡超过一定限度时,发电机便会失去同步,从而破坏了稳定性。从这些概念出发可以得出提高输电系统稳定性和输送能力的一般原则是:一是尽可能地提高输电系统的功率极限;即应从提高发电机的电势E、减小系统电抗x、提高和稳定系统电压U等方面着手。二是尽可能减小发电机相对运行的振荡幅度;即应从提高提高暂态稳定,减小发电机转子轴上的不平衡功率、减小转子相对加速度以及减少转子相对动能变化量等方面着手。 2提高交流输电系统稳定性的措施 采用自动调节励磁装置:当发电机装设自动励磁调节器时,发电机可看做具有E’q为常数的功率特性,这也就相当于将发电机的电抗从同步电抗xd减小为暂态电抗x’d了。发电机的电抗在输电系统总电抗中所占的比重很大,因此,减小发电机的电抗可以提高系统的功率极限和输送能力。如果采用按运行参数的变化率调节励磁则甚至可以维持发电机端电压为常数,这就相当于将发电机的电抗减小为零。因此,发电机装设先进的调节器就相当于缩短了发电机与系统间的电气距离,从而提高了静态稳定性。自动励磁调节对改善暂态稳定也有明显作用,良好的自动励磁在暂态摇摆过程中能增大系统的阻尼,从而能使系统振荡迅速平息下来,缩短摇摆过程,这是十分有利的。此外,为改善暂态稳定性,现在的励磁系统都配备有某种强行励磁装置,其作用是在系统故障时,迅速增加发电机的励磁电压,减小了E’q的衰减程度,如果强行励磁倍数很高,甚至可以使暂态电势增大。 改善电网结构及减小线路电抗:电网结构是输电系统安全稳定运行的基础,改善电网结构的方法较多,例如增加输电线路的回路数,减小线路电抗加强系统的联系;另外,当输电线路通过的地区原来就有输电系统时,将这些中间系统与输电线路连接成为较大的联合输电系统,这样可以使长距离的输电线路中间点的电压得到维持,相当于将输电线路分成两段,缩小了电气距离。而且,中间系统还可与输电线交换有功功率,起到互为备用的作用。在输电系统中间接入中间调相机,这些调相机配有先进的自动励磁调节器,则可以维持调相机端点电压甚至变压器高压母线电压恒定。这样,输电系统就等值地被分割为两段,每一段的电气距离将远小于整个输电系统的电气距离,输电系统的稳定性得到提高。由于调相机维护工作困难,已逐步被静止补偿器所替代。另外减小线路电抗主要是通过采用分裂导线、提高线路额定电压等级以及采用串联电容器补偿等方法来提高输电系统的稳定性。 快速切除短路和自动重合闸:快速切除故障是提高暂态稳定最根本、最有效的措施,同时又是简单易行的措施。快速切除故障的作用是减小加速面积,增大减速面积,提高了发电机之间并列运行的稳定性。另一方面,快速切除故障也可使负荷中的电动机端电压迅速回升,减少了电动机失速和停顿的危险,提高了负荷的稳定性。切除故障时间是继电保护装置动作时间和断路器动作时间的总和。目前可达到短路后0.06s切除故障线路,其中0.02s为保护装置动作时间,0.04s为断路器动作时间。高压输电线路的短路故障,绝大多数是瞬时性的,

大跨越输电塔风振系数研究

第40卷增刊2007年10月 武汉大学学报(工学版) Engineering Journal of Wuhan University Vol.40Sup.Oct.2007 作者简介:陶青松,从事输变电结构设计工作. 文章编号:167128844(2007)S120192204 大跨越输电塔风振系数研究 陶青松,林致添 (江苏省电力设计院,江苏南京 210024) 摘要:针对三江口长江大跨越输电塔工程实例,用SAP2000建立该塔的三维有限元模型,对模型进行有限元动 力分析,计算结构适用于工程设计的输电塔第一自振周期及第一振型系数,确定大跨越塔的风振系数,以指导大跨越塔的抗风设计. 关键词:大跨越输电塔;自振特性;风振系数中图分类号:TU 279 文献标志码:A Study on wind 2induced vibration coeff icient of large span transmission tow ers TAO Qingsong ,L IN Zhitian (Jiangsu Provincial Electric Power Design Institute ,Nanjing 210024,China ) Abstract :Based on t he Sanjiangkou Yangtze River 500kV large span t ransmission tower ,it s t hree 2di 2mensional finite element model is built in SA P2000.And t he dynamic analysis is carried out ;and t he first f ree vibration period and mode coefficient are https://www.360docs.net/doc/171864098.html,stly ,t he wind 2induced vibration coeffi 2cient of t he tower is confirmed ;and it is used in t he wind 2resistant design of t he large span t ransmission tower. K ey w ords :large span t ransmission towers ;nat ural 2vibration behavior ;wind 2induced vibration coeffi 2cient 大跨越输电塔(以下简称大跨越塔)是集高耸结构和空间杆系结构两种特征于一体的风敏感结构体系,在风荷载作用下,风振效应显著.风荷载是大跨越塔设计过程中的控制性荷载,在大跨越塔设计中起着决定性作用,当风以一定的速度向前运动遇到阻碍时,结构承受了风压.在随机脉动风压作用下,结构会产生随机振动,在顺风向,风压常分为平均风压和脉动风压,前者作用相当于静力,后者则引起结构振动.对于大跨越塔这样的高耸结构,塔身风荷载响应约占外荷载响应的70%以上,由于它们的自振周期都比较大,必须要考虑由脉动风所引起的风振影响,在计算输电塔塔身风荷载时采用风振系数的概念来考虑结构风振效应,风振系数的取值对于大跨越塔的合理设计有着重要意义. 1 研究现状 风振系数反映脉动风对结构动力的作用大小,与结构的自振特性有关.《架空送电线路设计技术 规程》 (DL/T515422002)给出了杆塔全高不超过60m 的输电塔的风振系数值,同时规定当杆塔全高超过60m 时,按《建筑结构荷载规范》 (G B500922001)取值,而确定风振系数就需要估算结构的第 一自振周期及其振型,《建筑结构荷载规范》(G B500922001)提供了塔式结构第一自振周期的估算公式: T 1=(0.007~0.013)H 该公式的范围太宽,而且它适用于具有连续变化外形和质量的塔式结构,而输电塔结构并不符合

提高配电供电可靠性的管理措施(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 提高配电供电可靠性的管理措 施(标准版) Safety management is an important part of production management. Safety and production are in the implementation process

提高配电供电可靠性的管理措施(标准版) 1.加强检修计划管理,推行一条龙检修。 在检修管理工作中,将可靠性管理与生产计划管理紧密结合,安排每项检修时,各单位配合工作,合理高效利用停电时间,杜绝重复停电。 2.推广新产品,提高配网装备水平。大力推广采用免维修,免维护设备,如SF6开关,真空开关等。 3.提高业务人员技术水平,杜绝各种可能的人为误操作。 4.利用配网自动化手段进行故障管理。 故障处理的快慢,直接影响供电可靠性的高低。配电网综合自动化处理采取一系列措施包括故障检测、定位、故障点隔离、网络重构以及恢复供电。首先利用故障信息的采集处理功能,对不同故障点进行故障检测和定位,并结合一次性系统进行故障隔离,通过遥控完成恢复供电。

5.加强配电设备,输配电线路运行管理 严格按照规定对电气设备,电力线路进行巡视、维护。实行24小时值班制,对发现的问题及时处理。开展特巡、夜巡,减少事故隐患,消除事故萌芽,确保配电设备、输电线路的正常运行。 6.加快农电管理步伐,制定与当前形式相匹配的农电企业现代化管理模式。 7.从管理、技术、科技思维以及电力营销上,都要加强配电人员的自身素质建设,为供电可靠性创建一个良好的氛围。 电力企业的不断发展和管理程度的逐步规范与标准,农村配电网的可靠性指标,由目前单纯的数字统计,会逐步提高到应用于电网规划,技术设计以及日常生产的领域中去,供电可靠性指标会逐年提高。 云博创意设计 MzYunBo Creative Design Co., Ltd.

输电塔抗风稳定性分析

输电塔抗风稳定性分析 【摘要】输电塔是现代化建设中一个非常重要的技术设计,同时也是一种工程量巨大的高耸建筑,技术要求非常的严格,因为输电塔的设计是运输电系统的一个重要组成部分,俗话说牵一发而动全身,输电塔的作用就是运输电系统中的纽带环节,它的破坏就会导致整个系统的瘫痪而无法运行,所以输电塔的建设必须以安全合理坚固为第一目标。输电塔的特点就是对风的敏感性特别的强,所以本文就主要介绍了输电塔的抗风稳定性分析。 【关键词】输电塔体系;风载荷;动力性分析;失效形式;抗风稳定性 输电塔是电力运输中的一个重要部分,占有极其重要的作用,其安全性也理所当然的受到了很大的重视。所以输电塔的设计需要很严格的技术要求,其中抗风稳定性是一个非常重要的方面,因为输电塔经常受到风的影响,有时候会发生动态侧倾失稳破坏,所以输电塔的抗风稳定性分析就变的非常的重要。 1 风的影响 我国建筑的结构载荷规范中对于地面的粗糙系数进行了比较严格的规定,分为了A、B、C、D四类,比较平坦的地区是A类例如海面还有沙漠,丘陵、乡村等为B类,在拥有很多建筑物的城市为C类,建筑非常密集而且有大量高层建筑的为D类。地面上对于空气的运动阻力,使风速减慢,但是这种作用会受到高度的影响,随着高度的上升,阻力作用会越来越小,直至可以忽略,这个高度称为大气边界层高度。在此高度内的平均风速受高度影响变化为v(z)=v(10)[z/10]式中的v(z)为z高度的平均风速,v(10)为10米处的风速x为地面粗糙系数。脉动风速是具有零均值的随机变量,用湍流强度、脉动风功率谱等进行描述。 1)对建筑物起作用的风,一般有顺风向的风力作用,这一般是在建筑方面需要考虑的最主要的一种,有结构背后的横风向振动,一般在比较高的建筑是不可忽视的,还有其他建筑尾流引起的振动,负气阻尼引起的失稳振动。这些对于建筑物的影响一般为,强风会对建筑的部分强度不够的材料造成破坏,还可能会对建筑物造成一些比较大的影响,有的还会对对一些结构造成疲劳破坏,使其强度受到影响。 输电塔是一种高耸建筑,顺相逢,横向风都可能会对它造成一部分的影响,产生扭转或者其他的响应,由于输电塔一般都是受到顺风向,所以输电塔的顺风向响应一般是工程上最为关心的问题,对其进行静力分析,分析其的线性的变化。 2)失效形式。输电塔在风的破坏下有很多的失效情况,强风作用下最可能出现的就是强度破坏或失稳破坏,在输电塔结构设置不合理的情况下,在薄弱的环节很可能就会出现这种情况,严重的情况下甚至出现输电塔倒塌的现象,除此之外变形过大,疲劳破坏(主要受到脉动风的影响),气动弹性不稳定性等也是

不断提升供电可靠性营造良好营商环境

不断提升供电可靠性营造良好营商环境 发表时间:2019-12-27T16:45:32.487Z 来源:《中国电业》2019年18期作者:汤文娟[导读] 随着电力行业的不断发展和进步,针对不断提升供电可靠性营造良好营商环境的管理也进行了更新摘要:随着电力行业的不断发展和进步,针对不断提升供电可靠性营造良好营商环境的管理也进行了更新,让电力公司企业家、营销商也认识到,营商环境得跟上时代发展的步伐,没有最好只有更好,提高自己的认知度,准确把握好电力营商环境的优化力度,以及这份工作的长期性、紧迫性、复杂性等,坚持以国际化的眼光去看待前景并根据实际情况去不断创新,推动全国供电模式的新发展,以打造更 好的营商环境,提高更好的供电服务为目标,让用户亲身体验到电力服务的优化改革。鉴于此,文章结合笔者多年工作经验,对不断提升供电可靠性营造良好营商环境提出了一些建议,仅供参考。 关键词:供电可靠性;影响因素;营造良好营商环境策略 引言 营商环境的优化是一项系统性工作,政府和电力企业要共同努力,密切合作促进营商环境改善。通过本文的研究得知,持续优化电力营商环境的有效措施可以从政府部门持续加强政策落实、持续优化电力营商的法治环境、持续优化供电服务水平三个方面入手。因而我们要加强系统性研究,始终与以用户的利益为先,促进电力营商环境的不断改善。 1、优化电力营商环境的重要性 电力是现代社会生产生活必不可少的一种基础性资源,尤其是在目前智慧城市以及智能电网发展的过程当中,电力资源不可或缺。只有提高电力行业发展水平,改善营商环境,构建公平良好公开透明的市场,充分竞争焕发电力企业的竞争活力,才能够促进我国电力企业的可持续发展,为社会和公民提供更加充足优质的电力服务。具体来看,优化电力营商环境主要有以下几方面的作用:(1)提高电力企业的国际竞争力,尤其是通过这种政府间的合作,充分利用我国目前在国际市场当中的影响力,更加广泛的招商引资,开展更加深入的国际合作,并且促使我国电力企业走出国门参与到市场竞争当中,从而增强电力企业的营收路径以及盈利能力。(2)在新时代背景下,促进我国电力企业的转型发展,实现跨越式进步,并且完善市场投资环境,提高企业的根本竞争力,尤其是一些区域性的电力企业持续性发展,对于经济创收,财政收入增加以及社会效益提升具有非常深刻全面的影响。(3)强化市场监督理念在电力企业发展过程当中的作用,完善我国的市场监督职能,提高政府的管理与服务水平,不断推广新的监管方法,协调各部门的职能,进行监管方式的创新。进行多层次多角度的市场监管改革,形成一个国际化专业化,法制化便利化的新型电力发展模式。 2、良好营商环境的主要影响因素 (1)高压新装:用户建设进度较慢;用户设备容量反复修改;图审效率低;用户要求竣工检验合格后暂停接电等。(2)新建小区配套工程:客户土建建筑主体建设进度,设计、施工、监理公司的招标过程较长,电源进线施工过程变更、受阻等。(3)一户一表改造:位置限制,施工过程受阻等。(4)移杆改线:现场青赔进度,地理环境等。(4)物资采购方面。一是物资招标程序不规范,招标文件编制不合理,限制或排斥潜在投标人,招标过程流于形式。二是在设备的采购上,公开招标以及非标采购等都存在暗箱操作的可能。(5)停电接火安排方面。一是停送电计划部门不执行业扩计划停电“随报随批”要求,利用安排停电计划的权利以各种理由往后安排停电接火计划,谋取私利。二是带电作业部门以作业人员承载力、作业现场实施条件不具备等为由,设置障碍,谋取私利。 3、不断提升供电可靠性营造良好营商环境的有效策略 在新时代,只有解决电力营商环境存在的问题,走针对性发展路径,从政策落实提高可操作性,完善立法,以人为本,建设程序性环境,提高电力市场服务水平等几个方面综合入手,持续推进电力营商环境的优化工作。 3.1优化服务方式,精简报装环节 将办电材料清单在营业厅、互联网统一服务平台等渠道向社会公布。除明确要求客户办理用电业务必须提供的资料、证照外,不需客户额外提供其他材料,不得收集同一类别多份资料或代行使行政审批职能,收集其他不在办理要求范围收集内的其他资料。同时公布业务办理时限、配电工程设计和典型造价、竣工检验规范、“三不指定”等相关信息,提升办理透明度,接受公开监督。重点推行远程报装“零上门”服务,通过互联网统一服务平台报装的业务,由客户经理和片区经理上门收取相关资料,签订供用电合同,在公司完善移动作业平台功能后,客户经理及片区经理实时推进业务流程。加大统一服务平台的宣传力度,开展多形式的宣传活动,让更多客户了解、使用远程渠道进行业务办理,大幅提升远程渠道办理比例,2019年全年达到80%。严格落实精简环节后的业扩报装流程和审批制度,低压业扩流程为“用电申请”“现场勘查和装表接电”2个环节;高压业扩流程为“用电申请”“供电方案答复”“竣工检验和装表接电”3个环节。不再开展中间检查等原精简前的工作环节。原中间检查环节变为客户工程建设期间主动上门服务客户,原则上每项目不得少于1次。执行“零审批”制度,推行10kV及以下业扩供电方案免审批,缩短业扩报装周期。 3.2优化业扩配套项目物资供应,满足物资供应时效 一是低压业扩配套项目物资按公司物资管控要求进行物资供应,实物出库后由地市局供电服务中心统筹管控,集中存储、统一配送。二是中高压业扩配套项目采取定额储备方式进行物资供应,纳入储备统筹管理,动态补仓;根据储备库存申领物资,实施自主配送(第三方配送)为主,自提为辅的配送策略。 3.3加大力度对配电网进行建设和改造 从实际问题出发,解决局部地区电网薄弱以及接入难度大等问题。对于一些地区在用电负荷高峰期时段出现供电能力不强、电能质量差等情况,应当科学合理的对电网投资资金比重进行适当合理的调整,实现电网投资增长速度与社会经济的发展以及大众对用电需求相匹配,并肩而行。充分利用政府的投资建设,进一步优化电网项目管理、规划管理,提高对负荷的预测水平,保证投资过程中的预见性、合理性、科学性。充分合理安排电力负荷以及运行方式,提高对电网的运营管理水平并对管理信息进行分析探讨。提高电网投资的社会效益以及经济发展效益,保证电网改造以及电网建设工作的顺利完成,对于各个地区以实际存在的情况进行合理比重的投资建设。 3.4积极主动,融入地方优化营商环境工作 优化营商环境,光靠电力企业的努力是远远不够的。电力企业还应当积极主动地同地方政府联络,针对当地的实际情况,及时接受政府招商引资的信息,联合政府出台相关政策。并针对用户在办电接电过程中的各项环节,积极同政府协商,尽量简化环节,优化流程。这样既省去了审批环节,工作效率提高了两到三倍,又缩短了电网工程建设周期。

提高交流输电系统稳定性的措施

提高交流输电系统稳定性的措施 摘要:本文从输电系统安全可靠运行的重要因数出发,阐述了输电系统稳定运 行的重要性,从而得出了提高交流输电系统稳定性的具体措施。 关键词:输电系统稳定性静态暂态措施 1 输电系统稳定性的重要性 输电系统运行的稳定性,是输电系统安全可靠运行的重要因数。随着输电系 统规模的扩大,输电距离和输送容量大大增大,系统的稳定问题就显得比较突出。可以说,输电系统稳定性是限制交流电流远距离输电送电距离和输送能力的决定 因素。所以,必须采取各种措施来提高输电系统的稳定性,从而提高输送能力。 从静态稳定分析可知,如果正确选择调节器的参数,使输电系统不发生自发振荡时,那么输电系统具有较高的功率极限,一般也就具有较高的运行稳定度。从暂 态稳定分析可知,输电系统受大扰动后,发电机轴上出现的不平衡转矩将使发电 机产生剧烈的相对运动;当发电机的相对角的振荡超过一定限度时,发电机便会 失去同步,从而破坏了稳定性。从这些概念出发可以得出提高输电系统稳定性和 输送能力的一般原则是:一是尽可能地提高输电系统的功率极限;即应从提高发 电机的电势E、减小系统电抗x、提高和稳定系统电压U等方面着手。二是尽可 能减小发电机相对运行的振荡幅度;即应从提高提高暂态稳定,减小发电机转子 轴上的不平衡功率、减小转子相对加速度以及减少转子相对动能变化量等方面着手。 2 提高交流输电系统稳定性的措施 采用自动调节励磁装置:当发电机装设自动励磁调节器时,发电机可看做具 有E'q为常数的功率特性,这也就相当于将发电机的电抗从同步电抗xd减小为暂 态电抗x'd了。发电机的电抗在输电系统总电抗中所占的比重很大,因此,减小 发电机的电抗可以提高系统的功率极限和输送能力。如果采用按运行参数的变化 率调节励磁则甚至可以维持发电机端电压为常数,这就相当于将发电机的电抗减 小为零。因此,发电机装设先进的调节器就相当于缩短了发电机与系统间的电气 距离,从而提高了静态稳定性。自动励磁调节对改善暂态稳定也有明显作用,良 好的自动励磁在暂态摇摆过程中能增大系统的阻尼,从而能使系统振荡迅速平息 下来,缩短摇摆过程,这是十分有利的。此外,为改善暂态稳定性,现在的励磁 系统都配备有某种强行励磁装置,其作用是在系统故障时,迅速增加发电机的励 磁电压,减小了E'q的衰减程度,如果强行励磁倍数很高,甚至可以使暂态电势 增大。 改善电网结构及减小线路电抗:电网结构是输电系统安全稳定运行的基础, 改善电网结构的方法较多,例如增加输电线路的回路数,减小线路电抗加强系统 的联系;另外,当输电线路通过的地区原来就有输电系统时,将这些中间系统与 输电线路连接成为较大的联合输电系统,这样可以使长距离的输电线路中间点的 电压得到维持,相当于将输电线路分成两段,缩小了电气距离。而且,中间系统 还可与输电线交换有功功率,起到互为备用的作用。在输电系统中间接入中间调 相机,这些调相机配有先进的自动励磁调节器,则可以维持调相机端点电压甚至 变压器高压母线电压恒定。这样,输电系统就等值地被分割为两段,每一段的电 气距离将远小于整个输电系统的电气距离,输电系统的稳定性得到提高。由于调 相机维护工作困难,已逐步被静止补偿器所替代。另外减小线路电抗主要是通过 采用分裂导线、提高线路额定电压等级以及采用串联电容器补偿等方法来提高输

输电塔回填土基础计算露头调整方法

12输电塔回填土基础计算露头调整方法Vol.22No」 输电塔回填土基础计算露头调整方法 孙启刚I,赵勇2,刘利鹏3,宋卓彦I,何春晖I,伊敏I (1.国网山东省电力公司经济技术研究院,山东济南250000;2.国网山东省电力公司,山东济南250000; 3.国网山东省电力公司建设公司,山东济南250000) 摘要:此文介绍了输电塔回填土基础在上拔计算时对表层较差土壤的考虑方法。通过计算表明,输电塔回填土基础在上 拔计算时,上覆较差土壤的性质对其计算露头的考虑方法影响较大。对典型的下层为粉质粘土的地质条件,上覆土壤为粉 土和素填土时,可分别将粉土和素填土厚度的20%和50%作为计算露头的增加值,然后按照粉质粘土计算基础的上拔。 在斜坡地形情况下,若因地形而增加的计算露头高度大于上覆较差土层的厚度时,可不再考虑上覆较差土层的影响;在梯 田坎子地形情况下,可以偏于安全的在因地形增加计算露头的同时,再考虑上覆较差土层的折算厚度作为计算露头。 关键词:回填土基础;计算露头;调整方法 中图分类号:TU470.3文献标志码:B文章编号:2095-6614(2019)01-0012-04 Calculation Method of Outcrop Adjustment for Backfilling Foundation of Transmission Tower SUN Qigang1,ZHAO Yong2,LIU Lipeng3,SONG Zhuoyan1,HE Chunhui1,YI Min1 (1.State Grid Shandong Electric Power Company,Institution of Economy and Technology,Jinan250000,China; 2.State Grid Shandong Electric Power Company,Jinan250000,China; 3.State Grid Shandong Electric Power Company,Construction Company,Jinan250000,China) Abstract:This paper has introduced methods for worse soil of the surface layer when up-pull was calculated based on backfilling foundation of transmission tower.If the up-pull calculation was based on backfilling foundation of transmission tower,the nature of the overlying worse soil imposes quite large influence on considerations for outcrop calculation.For typical geological conditions when the lower layer is silty clay,when overlying soil is silt and plain fill,20%and50%of the thickness of silt and plain fill can be used as value added to calculate outcrop respectively,and then up-pull as the calculation foundation of silty clay.In the case of slope topography,when the increased height of the outcrop is larger than the thickness of the worse overlaying soil layer,the influence of the overlaying worse layer could be no longer considered.In the case of terraced fields and ridge terrain,the converted thickness of the overlaying worse soil layer can be considered while calculating outcrop for increased terrain safety. Key words:backfilling foundation;calculation of outcrop;adjustment method 0引言 回填土基础是输电塔最常见的基础形式,其主要通过一定上拔角范围内的土体重量抵抗其所受到的上拔力。因此土体的上拔角对于回填土基础的设计和经济技术指标影响很大。 收稿日期:2018-09-12 作者简介:孙启刚(1988),男.硕士。研究方向:高压输电线路设计工作及杆塔结构抗风、抗冰。 表1示出了典型220kV转角塔基础按照粉土和粉质粘土计算所得基础的材料量。 由表1可以看出,相同的计算露头和地下水情况下,按照粉土计算基础材料量较按照粉质粘土计算材料量增加20%~80%不等。事实上,按照大量工程的工程经验,粉土地质条件基础综合材料量较粉质粘土情况增加30%左右。 但是输电线路中常见地层结构为表层覆盖较薄的素填土或者粉土等上拔角较小的土壤,下层为

提高配电网供电可靠性技术措施方案

整体解决方案系列 提高配电网供电可靠性技 术措施 (标准、完整、实用、可修改)

编号:FS-QG-75904提高配电网供电可靠性技术措施 Technical measures to improve the reliability of power distributen n etwork power supply 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 1. 提高发、供电设备的可靠性:采用高度可靠的发、供电设备,做好发、供电设备的维护运行工作。 2. 提高供电线路的可靠性,对系统中重要线路采用双回线,目前农电配网中,架设双回线的还比较少,双回线路供电,输送能力大,稳定储备高,输电线路的可靠性很稳定。 3. 选择合理的电力系统结构和接线。 4. 选择合理的运行方式。 5. 建立配电网络自动化:选择合理的与本地相适应的综合自动化系统方案,配网自动化在实施一整套监控措施的同 时,加强对电网是实时状态、设备、开关动作次数、负荷情况,潮流动向等数据进行采集,实施网络管理,拟定优化方案,提高供电可靠性。 6. 主干线增设线路开关,架设分支,把分支线路故障停电范围限制

在支线范围内,减少停电范围。 7. 在人口较集中、树线矛盾突出的地方采用架空绝缘线或地下电缆 敷设。 8. 中性点接地和配套技术的应用。 随着电缆广泛采用,对地容性电流越来越高,中性点运行方式的改变和配套技术的应用,是改善系统过电压对设备的危害、减少绝缘设备破坏造成的事故,增强溃线自动化对单项接地故障的判别能力的重要手段。 9. 增大导线截面,提线路输送客量。 10. 增设10千伏开闭所,增加10千伏出线回路数,缩短10千伏线路供电半径。 11. 增设变电站之间的联络线,提高各站负荷的转供能力。 12. 开展带电作业,减少停电时间,在严格执行有关规定和保证安全的前提下,推行带电作业,在10千伏线路上使用安装方便,运行可靠的AMF线夹,与配套的AMP带电作业工具配合进行带电作业,可 减少检修停电时间。 请输入您公司的名字 Foon shi on Desig n Co., Ltd

浅谈如何提升配电网供电可靠性

浅谈如何提升配电网供电可靠性 摘要:配电网的工作关系着供电系统的稳定,保证配电网供电的可靠性对国民 经济安全和发展具有重要的意义。配电网作为电力系统正常运行的重要组成,其 设备组成、维护管理等都关系着最终工作的稳定性,尤其近年来智能化配电技术 不断发展与人们用电需求的不断增加,种种因素的发展都给配电网带来新的机遇 和挑战。提升配电网供电可靠性不仅有利于保证国民用电的要求,对经济发展和 社会稳定等也有重要的意义。本文将简要探讨如何提升配电网供电的可靠性。 关键词:配电网;供电;可靠性 配电网是关系着电力系统稳定情况的重要部分,为了保证配电网供电的稳定 性需要从诸多角度以及因素进行探讨,对容易出现问题的部分进行分析和处理, 从而提高配电网的安全性和稳定性,进而对供电系统的可靠性加以保障。现阶段 我国配电网正处于不断发展过程中,在配电网供电中其稳定性不仅与配电网自身 硬件系统相关,也与配电网的管理控制等密切相关[1]。因此提高配电网供电的可 靠性需要对配电网的影响因素进行分析,从主观、客观角度为配电网建设与管理 工作进行改进,才能够确保配电网供电的稳定性和可靠性。 一、影响配电网可靠性的因素 1、配电网设备因素 影响配电网可靠性的因素当中,配电网自身的设备因素是比较常见的不稳定 因素之一。配电网设备老化是影响配电网供电可靠性的原因之一,很多配电网使 用过程中会自然老化,并且由于自然条件或者人为因素的影响配电网相关设备的 耗损可能会加剧,对供电安全造成威胁。配电网内部构件损坏,配电网内部构件 种类较多,通常情况下配电网设备出现问题多为构件问题,比如电缆、电容电线、变压器、开关等发生断裂破损等,这些发生在设备上的损坏会对供电的安全和平 稳产生不良影响[2]。配电网结构不符合安全标准,配电网的结构是否科学是影响 着配电网质量的重要因素,同样也是关系着供电稳定的主要因素,现阶段我国对 配电网结构有着一系列要求,但有部分老旧配电网较为陈旧不符合当前的安全标准,容易对供电稳定性造成危害。配电网自动化水平低,随着自动化技术和科技 的不断发展,利用自动化技术对配电网进行科学合理配电日益成为配电网供电的 主流,而目前仍有相当一部分配电网在运行管理方面的自动化水平较低,容易增 加人为操作在部分配电网管理方面的不稳定性[3]。 2、配电网管理因素 配电网的管理因素是影响配电网供电稳定的重要因素之一,现阶段我国配电 网供电管理中仍然存在很多可以改进的内容。配电网维护工作开展情况,配电网 运行的稳定性与其日常维护工作密不可分,在配电网管理中若没有开展定时、专 业的维护检查,很容易影响到配电网供电的稳定性。配电网周围环境管理因素, 近年来城市建设不断推进,每隔一段时间配电网周围的环境可能都会发生变化, 树木砍伐、电线杆倾倒等情况也都威胁着配电网的安全性。自然灾害防护是配电 网管理中最容易导致配电网出现异常的情况,尤其在气候环境变化多端的当今, 雨雪灾害很容易导致配电网供电出现问题[4]。 二、改善配电网基础条件 1、配电网内部结构优化 保证配电网供电的稳定性首先应当保证配电网的科学性,对配电网内部结构 进行更新与优化,确保配电网的整体状态能满足供电需求。配电网在建设过程中

相关文档
最新文档