仪器分析-红外吸收

合集下载

仪器分析3—红外吸收光谱法

仪器分析3—红外吸收光谱法

傅立叶变换红外光谱仪
样品池
红外光源
摆动的 凹面镜
迈克尔逊 干扰仪
参比池
摆动的 凹面镜
检测器 干涉图谱 计算机 解析 还原
M1 II
同步摆动
I M2
红外谱图
BS
D
仪器组成
第五节 红外光谱法应用
红外光谱法由于操作简单,分析速度 快,样品用量少,不破坏样品,特征性 强等优点,在有机定性分析中应用广泛。 利用红外光谱可对化合物进行鉴定或结 构测定。 但由于吸收较复杂,在定量分析方面 应用受到一定限制。
第四章 红外吸收光谱分析法(IR)
Infrared Absorption Spectrometry
第一节
红外光谱基本知识
1、红外线波长范围: 光学光谱区域:10nm ~1000μm; 其中:10nm ~400nm为紫外光区 400nm ~760nm为可见光区, 760nm ~ 1000μm为红外光区。 为表示方便,红外光不用nm(纳米) 而用微米( μm)表示其波长。
由原理图可见,红外分光光度计也主要 由光源、样品吸收池、单色器、检测器、 记录仪等部件构成。 1、光源:能斯特灯或硅碳棒
红外光谱仪中所用的光源通常是一种惰性固体,用 电加热使之发射高强度的连续红外辐射。 常用的是Nernst灯或硅碳棒。 Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的 中空棒和实心棒。工作温度约为1700℃,在此高温下导 电并发射红外线。但在室温下是非导体,因此,在工作 之前要预热。它的特点是发射强度高,使用寿命长,稳 定性较好。 硅碳棒是由碳化硅烧结而成,工作温度在1200-1500℃ 左右。
ε>100 非常强峰(vs) 20<ε<100 强 峰(s) 10<ε<20 中强峰(m) 1<ε<10 弱 峰(w)

仪器分析-红外吸收光谱法

仪器分析-红外吸收光谱法

第 6 章红外吸收光谱法6.1 内容提要6.1.1 基本概念红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。

红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。

振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。

不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。

分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。

转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。

分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。

伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。

弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。

红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。

诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。

共轭效应——分子中形成大键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。

氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。

溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。

基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。

振动偶合一一两个相邻基团的振动之间的相互作用称为振动偶合。

基团频率区一一红外吸收光谱中能反映和表征官能团(基团)存在的区域。

《仪器分析》--红外吸收光谱法习题集及答案

《仪器分析》--红外吸收光谱法习题集及答案

六、红外吸收光谱法(193题)一、选择题( 共61题)1. 2 分(1009)在红外光谱分析中,用 KBr制作为试样池,这是因为: ( )(1) KBr 晶体在 4000~400cm-1范围内不会散射红外光(2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性(3) KBr 在 4000~400 cm-1范围内无红外光吸收(4) 在 4000~400 cm-1范围内,KBr 对红外无反射2. 2 分(1022)下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构与光谱是一致的?为什么? ( )3. 2 分(1023)下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构与光谱是一致的,为什么?4. 2 分(1068)一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与光谱最近于一致?5. 2 分(1072)1072羰基化合物中,C = O 伸缩振动频率出现最低者为 ( )(1) I (2) II (3) III (4) IV6. 2 分(1075)一种能作为色散型红外光谱仪色散元件的材料为 ( )(1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃7. 2 分(1088)并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( )(1) 分子既有振动运动,又有转动运动,太复杂(2) 分子中有些振动能量是简并的(3) 因为分子中有 C、H、O 以外的原子存在(4) 分子某些振动能量相互抵消了8. 2 分(1097)下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( )9. 2 分(1104)请回答下列化合物中哪个吸收峰的频率最高? ( )10. 2 分(1114)在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( )(1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇11. 2 分(1179)水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( )(1) 2 个,不对称伸缩 (2) 4 个,弯曲(3) 3 个,不对称伸缩 (4) 2 个,对称伸缩12. 2 分(1180)CO2的如下振动中,何种属于非红外活性振动 ? ( )(1) ←→ (2) →←→ (3)↑↑ (4 )O=C=O O = C =O O = C =O O = C = O↓13. 2 分(1181)苯分子的振动自由度为 ( )(1) 18 (2) 12 (3) 30 (4) 3114. 2 分(1182)双原子分子在如下转动情况下 (如图),转动不形成转动自由度的是 ( )15. 2 分(1183)任何两个振动能级间的能量差为 ( )(1) 1/2 h (2) 3/2 h (3) h (4) 2/3 h16. 2 分(1184)在以下三种分子式中 C=C 双键的红外吸收哪一种最强? ( )(a) CH3- CH = CH2(b) CH3- CH = CH - CH3(顺式)(c) CH3- CH = CH - CH3(反式)(1) a 最强 (2) b 最强 (3) c 最强 (4) 强度相同17. 2 分(1206)在含羰基的分子中,增加羰基的极性会使分子中该键的红外吸收带 ( )(1) 向高波数方向移动 (2) 向低波数方向移动(3) 不移动 (4) 稍有振动18. 2 分(1234)以下四种气体不吸收红外光的是 ( )(1)H2O (2)CO2 (3)HCl (4)N219. 2 分(1678)某化合物的相对分子质量M r=72,红外光谱指出,该化合物含羰基,则该化合物可能的分子式为 ( )(1) C4H8O (2) C3H4O2 (3) C3H6NO (4) (1)或(2)20. 2 分(1679)红外吸收光谱的产生是由于 ( )(1) 分子外层电子、振动、转动能级的跃迁(2) 原子外层电子、振动、转动能级的跃迁(3) 分子振动-转动能级的跃迁(4) 分子外层电子的能级跃迁21. 1 分(1680)乙炔分子振动自由度是 ( )(1) 5 (2) 6 (3) 7 (4) 822. 1 分(1681)甲烷分子振动自由度是 ( )(1) 5 (2) 6 (3) 9 (4) 1023. 1 分(1682)Cl2分子基本振动数目为 ( )(1) 0 (2) 1 (3) 2 (4) 324. 2 分(1683)Cl2分子在红外光谱图上基频吸收峰的数目为 ( )(1) 0 (2) 1 (3) 2 (4) 325. 2 分(1684)红外光谱法试样可以是 ( )(1) 水溶液 (2) 含游离水 (3) 含结晶水 (4) 不含水26. 2 分(1685)能与气相色谱仪联用的红外光谱仪为 ( )(1) 色散型红外分光光度计 (2) 双光束红外分光光度计(3) 傅里叶变换红外分光光度计 (4) 快扫描红外分光光度计27. 2 分(1686)下列化合物在红外光谱图上1675~1500cm-1处有吸收峰的是 ( )28. 2 分(1687)某化合物的红外光谱在3500~3100cm-1处有吸收谱带, 该化合物可能是 ( ) (1) CH3CH2CN(4) CH3CO-N(CH3)229. 2 分(1688)试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰, 频率最小的是 ( )(1) C-H (2) N-H (3) O-H (4) F-H30. 2 分(1689)已知下列单键伸缩振动中C-C C-N C-O键力常数k/(N·cm-1) 4.5 5.8 5.0吸收峰波长λ/μm 6 6.46 6.85问C-C, C-N, C-O键振动能级之差⊿E顺序为 ( )(1) C-C > C-N > C-O (2) C-N > C-O > C-C(3) C-C > C-O > C-N (4) C-O > C-N > C-C31. 2 分(1690)下列化合物中, C=O伸缩振动频率最高者为 ( )32. 2 分(1691)下列化合物中, 在稀溶液里, C=O伸缩振动频率最低者为 ( )33. 2 分(1692)羰基化合物中, C=O伸缩振动频率最高者为 ( )34. 2 分(1693)1693下列的几种醛中, C=O伸缩振动频率哪一个最低? ( )(1) RCHO(2) R-CH=CH-CHO(3) R-CH=CH-CH=CH-CHO35. 2 分(1694)丁二烯分子中C=C键伸缩振动如下:A. ←→←→CH2=CH-CH=CH2B. ←→→←CH2=CH-CH=CH2有红外活性的振动为 ( )(1) A (2) B (3) A, B都有 (4) A, B都没有36. 2 分(1695)下列有环外双键的烯烃中, C=C伸缩振动频率最高的是哪个? ( )37. 2 分(1696)一个含氧化合物的红外光谱图在3600~3200cm-1有吸收峰, 下列化合物最可能的是 ( )(1) CH3-CHO (2) CH3-CO-CH3(3) CH3-CHOH-CH3 (4) CH3-O-CH2-CH338. 2 分(1697)某化合物的红外光谱在3040-3010cm-1和1670-1620cm-1处有吸收带, 该化合物可能是 ( )39. 2 分(1698)红外光谱法, 试样状态可以是 ( )(1) 气体状态 (2) 固体状态(3) 固体, 液体状态 (4) 气体, 液体, 固体状态都可以40. 2 分(1699)用红外吸收光谱法测定有机物结构时, 试样应该是 ( )(1) 单质 (2) 纯物质(3) 混合物 (4) 任何试样41. 2 分(1700)试比较同一周期内下列情况的伸缩振动(不考虑费米共振与生成氢键)产生的红外吸收峰强度最大的是 ( )(1) C-H (2) N-H (3) O-H (4) F-H42. 2 分(1701)一个有机化合物的红外光谱图上在3000cm-1附近只有2930cm-1和2702cm-1处各有一个吸收峰, 可能的有机化合物是 ( )(2) CH3─CHO(4) CH2= CH-CHO43. 2 分(1702)羰基化合物中, C=O伸缩振动频率最低者是 ( )(1) CH3COCH344. 2 分(1703)色散型红外分光光度计检测器多用 ( )(1) 电子倍增器 (2) 光电倍增管(3) 高真空热电偶 (4) 无线电线圈45. 2 分(1704)红外光谱仪光源使用 ( )(1) 空心阴级灯 (2) 能斯特灯(3) 氘灯 (4) 碘钨灯46. 2 分(1705)某物质能吸收红外光波, 产生红外吸收谱图, 其分子结构必然是 ( )(1) 具有不饱和键 (2) 具有共轭体系(3) 发生偶极矩的净变化 (4) 具有对称性47. 3 分(1714)下列化合物的红外谱中σ(C=O)从低波数到高波数的顺序应为 ( )(1) a b c d (2) d a b c (3) a d b c (4) c b a d48. 1 分(1715)对于含n个原子的非线性分子, 其红外谱 ( )(1) 有3n-6个基频峰 (2) 有3n-6个吸收峰(3) 有少于或等于3n-6个基频峰 (4) 有少于或等于3n-6个吸收峰49. 2 分(1725)下列关于分子振动的红外活性的叙述中正确的是 ( )(1)凡极性分子的各种振动都是红外活性的, 非极性分子的各种振动都不是红外活性的(2) 极性键的伸缩和变形振动都是红外活性的(3) 分子的偶极矩在振动时周期地变化, 即为红外活性振动(4) 分子的偶极矩的大小在振动时周期地变化, 必为红外活性振动, 反之则不是50. 2 分(1790)某一化合物以水或乙醇作溶剂, 在UV光区204nm处有一弱吸收带, 在红外光谱的官能团区有如下吸收峰:3300~2500cm-1(宽而强); 1710cm-1, 则该化合物可能是 ( )(1) 醛 (2) 酮 (3) 羧酸 (4) 酯51. 3 分(1791)某一化合物以水作溶剂, 在UV光区214nm处有一弱吸收带, 在红外光谱的官能团区有如下吸收峰:3540~3480cm-1和3420~3380cm-1双峰;1690cm-1强吸收。

仪器分析课件-第10章-红外光谱分析法

仪器分析课件-第10章-红外光谱分析法
化学键键强越强(即键的力常数 K 越大)原子折合质量越小,化学键的振动频率 越大,吸收峰将出现在高波数区。如:
13:15:17
红外光谱分析基本原理
三、 分子的振动形式
两类基本振动形式:变形振动和伸缩振动。以甲烷为例:变形振动
13:15:17
红外光谱分析基本原理
五. 红外光谱峰的吸收强度 P297
这种方法适用于组分简单,样品厚度一定(一般在液体样品 池中进行),特征吸收谱带重叠较少,而浓度与吸光度不成线性 关系的样品。
13:15:17
红外光谱的应用
3 .吸收度比法 该发适用于厚度难以控制或不能准确测定其厚度的样品,例如厚度不均匀 的高分子膜,糊状法的样品等。这一方法要求各组分的特征吸收谱带相互 不重叠,且服从于郎伯 — 比尔定律。 如有二元组分 X 和 Y ,根据 朗伯 -比尔定律 ,应存在以下关系;
1.位置:由振动频率决定,化学键的力常数 K 越大,原子折合质量 m 越小, 键的振动频率越大,吸收峰将出现在高波数区(短波长区);反之,出现在低 波数区(高波长区); 2.峰数:分子的基本振动理论峰数,可由振动自由度来计算,对于由 n 个原子 组成的分子,其自由度为3 n
3n= 平动自由度+振动自由度+转动自由度 分子的平动自由度为3,转动自由度为:非线性分子3,线性分子2
13:15:17
红外光谱的应用
二、定性分析
定性分析大致可分为官能团定性和结构定性两个方面。 定性分析的一般过程: 1. 试样的分离和精制 2.了解与试样性质有关的其它方面的材料 3. 谱图的解析 4. 和标准谱图进行对照 5. 计算机红外光谱谱库及其检索系统 6. 确定分子的结构
13:15:17
红外光谱的应用

环境仪器分析:第6章 红外吸收光谱法

环境仪器分析:第6章 红外吸收光谱法

子折合质量(g)
m1m2 m1 m2
如将原子的实际折合质量(通过Avogaro常数计算) 代入,则有
1
k 1307 k (cm1)
2c M / N A
M
1303
某些键的伸缩力常数(N/cm)
键类型: 力常数: 峰位:
—CC — > —C =C — > —C — C —
15 17 9.5 9.9
双键伸缩振动区19001200cm1苯衍生物的红外光谱图二指纹区可分为两个区单双键伸缩振动不含氢1800900co13001000cnfpposio面内外弯曲振动900650用于顺反式结构取代类型的确定在红外分析中通常一个基团有多个振动形式同时产生多个谱峰基团特征峰及指纹峰各类峰之间相互依存相互佐证
4.5 5.6
4.5 m
6.0 m
7.0 m
化学键越强,振动频率越大
例题: 由表中查知C=C键的k=9.5 9.9 ,令其 为9.6, 计算波数值
v 1 1 k 1307 k
2C
M
1307
9.6
1650cm1
12*12 /(12 12)
测正己烯中C=C键伸缩振动频率实测值为1652 cm-1
图 苯衍生物的红外光谱图
(二)指纹区(可分为两个区)
单、双键伸缩振动 (不含氢)
1800-900
C-O(1300-1000) C-(N、F、P),P-O,Si-O
面内外弯曲振动
900-650
用于顺反式结构、 取代类型的确定
在红外分析中,通常一个基团有多个振动形式,同时 产生多个谱峰(基团特征峰及指纹峰),各类峰之间 相互依存、相互佐证。通过一系列的峰才能准确确定 一个基团的存在。

仪器分析第十五章红外吸收光谱法

仪器分析第十五章红外吸收光谱法
单 核 芳 烃 的 C = C 伸 缩 振 动 出 现 在 1600 - 1500cm-1附近,有2-4个峰,这是芳环的骨架振动, 用于确定有无芳核的存在。
苯的衍生物在2000-1650cm-1区域出现C-H面外弯曲变 形振动的倍频或者组合频吸收,但因为强度较弱,只有在加 大样品浓度时才呈现出来。可以根据该区的吸收情况,判断 苯环的取代情况。
影响基团频率位移的因素-外部因素和内部因素
(1)电子效应-包括诱导效应、共轭效应和中介 效应,是由于化学键的电子分布不均匀引起的。
诱导效应(I效应)-由于取代基的不同的电负性, 通过静电诱导作用,引起分子中的电子分布的变化, 改变了键的力常数,使特征频率发生位移。例如有 电负性较强的元素如Cl与羰基相连时,由于诱导效 应,发生氧上电子转移,使C=O的力常数变大,吸 收向高波数移动。元素电负性越强,移动越厉害。
组频——如果分子吸收一个红外光子,同时激 发了基频分别为v1和v2的两种跃迁,此时所产 生的吸收频率应该等于上述两种跃迁的吸收频 率之和,故称组频。
对谐振子,倍频、组频均为禁阻跃迁。
但由于真实分子的非谐性,倍频、组频跃迁几 率并不为零。但强度都很弱。
分子的振动自由度
每个原子在空间的位置必须有三个坐标来确定, 则由N个原子组成的分子就有了3N个坐标,或称为 有3N个运动自由度。分子本身作为一个整体,有三 个平动自由度和三个转动自由度。
线性分子只有两个转动自由度,因为总有一个 轴心于双原子分子的键轴重合,原子在空间的 坐标并不改变。线性分子的振动自由度为3N-5, 非线性为3N-6。
例如苯分子的振动自由度为3×12-6=30,即30 种简正振动。任何一个分子的振动,都可看成 3N-6或者3N-5个简正振动的叠加而成。

仪器分析 第四章--红外吸收光谱法

仪器分析  第四章--红外吸收光谱法

章节重点:
分子振动基本形式及自由度计算;
红外吸收的产生2个条件;
各类基团特征红外振动频率;
影响红外吸收峰位变化的因素。
第八章 红外吸收光谱分 析法
第三节 红外分光光度计
1. 仪器类型与结构
2. 制样方法
3. 联用技术
1. 仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
弯曲振动:
1.4 振动自由度
多原子分子振动形式的多少用振动自由度标示。

三维空间中,每个原子都能沿x、y、z三个坐标方向独 立运动,n个原子组成的分子则有3n个独立运动,再除 掉三个坐标轴方向的分子平移及整体分子转动。

非线性分子振动自由度为3n-6,如H2O有3个自由度。 线性分子振动自由度为3n-5,如CO2有4个自由度。
某些键的伸缩力常数:
键类型: 力常数: 峰位:源自-CC15 2062 cm-1
-C=C10 1683 cm-1
-C-C5 1190 cm-1
-C-H5.1 2920 cm-1
化学键键强越强(即键的力常数K越大),原子折合 质量越小,化学键振动频率越大,吸收峰在高波数区。
1.2 非谐振子
实际上双原子分子并非理想的谐振子!随着振动量子 数的增加,上下振动能级间的间隔逐渐减小!
(1)-O-H,37003100 cm-1,确定醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐 ,强吸收;当浓度较大时,发生缔合作用,峰形较宽。
注意区分: -NH伸缩振动:3500 3300 cm-1 峰型尖锐
(2)饱和碳原子上的-C-H -CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动

仪器分析红外吸收光谱法习题和答案解析

仪器分析红外吸收光谱法习题和答案解析

红外吸收光谱法一.填空题1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) . 2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区,其中中红外区的应用最广.3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收.4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性,相反则称为红外非活性的 .一般来说,前者在红外光谱图上出现吸收峰。

5.红外分光光度计的光源主要有能斯特灯和硅碳棒 .6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm—1, 3300—3000 cm-1, 3000—2700 cm-1.7.基团一C≡C、一C≡N ;-C==O;一C=N,一C=C-的伸缩振动频率范围分别出现在 2400-2100 cm-1, 1900—1650 cm—1, 1650—1500 cm-1。

8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm—1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。

二、选择题1.二氧化碳分子的平动、转动和振动自由度的数目分别(A)A。

3,2,4 B。

2,3,4 C。

3,4,2 D。

4,2,32.乙炔分子的平动、转动和振动自由度的数目分别为(C)A. 2,3,3B. 3,2,8 C。

3,2,7 D. 2,3,74.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH3CH2COH的吸收带?(D)A. 3000-2700cm-1,1675—1500cm—1,1475—1300cm一1。

仪器分析 第4章 红外吸收光谱法

仪器分析 第4章  红外吸收光谱法

4.2 基本原理
4.2.3 多原子分子的振动类型(P56)
伸缩振动 (υ):键长发生变化 1.简正振动基本形式 变形振动 (δ):键角发生变化
伸缩振动(υ)
对称伸缩振动(υs)
不对称伸缩振动(υas)
变形振动(δ)
面内变形振动(β)
面外变形振动(γ)
亚甲基的各种振动形式
2. 基本振动的理论数(分子振动自由度)
4.4 试样的处理和制备
4.4 试样的处理和制备
4.4.1 红外光谱法对试样的要求 (1)单一组分纯物质,纯度 > 98%; (2)样品中不含游离水; (3)要选择合适的浓度和测试厚度, 使大多数吸收峰透射比处于10%~80%。
4.4 试样的处理和制备
4.4.2 制样方法 1.气体样品的制备 2.液体和溶液样品的制备 3.固体样品的制备
分子振动自由度:多原子分子的基本振动
数目,也就是基频吸收峰的数目。
基频吸收峰:分子吸收一定频率的红外光后,
其振动能级由基态跃迁到第一
激发态时所产生的吸收峰。
2. 基本振动的理论数
线型分子振动自由度 = 3N – 5(如CO2)
非线型分子振动自由度 = 3N – 6(如H2O)
图5.12 CO2分子的简正振 动形式
来指导谱图解析。
基本概念
基团频率区: 在4000~1300cm-1 范围内的吸收峰,有一 共同特点:既每一吸收峰都和一定的官能 团相对应,因此称为基团频率区。
在基团频率区,原则上每个吸收峰都可以找到归属。
基本概念
指纹区: 在1300~400cm-1范围内,虽然有些吸收也对应 着某些官能团,但大量吸收峰仅显示了化合物 的红外特征,犹如人的指纹,故称为指纹区。

仪器分析_红外光谱法

仪器分析_红外光谱法

C
C
C
C
C
C
2220 cm-1
1667 cm-1
1430 cm-1
2 原子的折合质量 反映了基团质量特性,折合
质量越小,则基频峰波数越大。
39
C
C
C
N
C
O
1430 cm-1
1330 cm-1
1280 cm-1
利用实验得到的化学键力常数和计算式,可以 估算各种类型基团的基频吸收峰的波数。
由于各种有机化合物的结构不同。它 们的原子质量和化学健力常数各不相同, 红外吸收频率也不相同,因此,不同有 机化合物的红外光谱具有高度特征性。
(转动自由度)
29
2、振动自由度
设分子原子数目为 N 个,在空间确定一个原子的 位置,需要3个坐标( x, y, z ),所以,N 个原子需要 3N个坐标或自由度,分子中N 个原子自由度总数:
3 N = 平动自由度 + 振动自由度 + 转动自由度
振动自由度数目: 振动自由度 = 3 N — 平动自由度— 转动自由度 显然,分子整体可以分别沿 x, y, z 三个方向移动, 所以,分子平动自由度为 3;
27
二、分子的振动自由度与红外吸收的理论峰数
理论上讲,分子的每一种振动形式都会产生一 个基频吸收峰,即对于一个多原子分子:
基频吸收峰的数目 = 分子所有的振动形式的数目
(振动自由度)
28
1、分子的运动形式
A 分子中各原子在其平衡位置附近的振动(振动自由度)
B 分子作整体的平动 (平动自由度)
C 分子围绕 x, y, z 轴的转动
第十章 红外吸收光谱分析 (红外吸收光谱法)
Infrared Spectrometry (IR)

仪器分析实验报告红外(3篇)

仪器分析实验报告红外(3篇)

第1篇一、实验目的1. 掌握红外光谱仪的使用方法。

2. 学会利用红外光谱分析物质的结构和组成。

3. 熟悉红外光谱图的基本分析方法。

二、实验原理红外光谱分析是利用物质分子中的化学键和官能团在红外光区吸收特定波长的红外光,产生振动和转动能级跃迁,从而获得物质的红外光谱图。

红外光谱图中的吸收峰可以提供有关物质结构的信息,如官能团、化学键、分子构型等。

三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、电子天平、移液器、烘箱等。

2. 试剂:待测样品、溶剂、干燥剂等。

四、实验步骤1. 样品制备:将待测样品用电子天平称量,移入样品池中,并加入适量溶剂,使样品充分溶解。

将样品池放入烘箱中,在规定温度下烘干,直至样品池中的溶剂完全挥发。

2. 样品池清洗:将烘干的样品池用去离子水冲洗,并用干燥剂干燥。

3. 红外光谱扫描:将干燥后的样品池放入红外光谱仪中,进行红外光谱扫描。

设置合适的扫描范围、分辨率和扫描次数。

4. 数据处理:将扫描得到的红外光谱图导入数据处理软件,进行基线校正、平滑处理、峰位和峰强分析等。

五、实验结果与分析1. 红外光谱图:在红外光谱图中,可以看到多个吸收峰。

根据峰位和峰强,可以初步判断待测样品的官能团和化学键。

2. 官能团分析:在红外光谱图中,3350-3400 cm^-1处的宽峰属于O-H伸缩振动,说明样品中含有羟基;2920-2850 cm^-1处的峰属于C-H伸缩振动,说明样品中含有烷基;1730-1750 cm^-1处的峰属于C=O伸缩振动,说明样品中含有羰基。

3. 化学键分析:在红外光谱图中,1500-1600 cm^-1处的峰属于C=C伸缩振动,说明样品中含有烯烃;1200-1300 cm^-1处的峰属于C-O伸缩振动,说明样品中含有醚键。

4. 分子构型分析:根据红外光谱图中的峰位和峰强,可以初步判断待测样品的分子构型。

六、实验讨论1. 实验过程中,应注意样品池的清洗和烘干,以保证实验结果的准确性。

仪器分析第十三章红外吸收光谱法

仪器分析第十三章红外吸收光谱法

振动形式:伸缩( ):对称 对称( 振动形式:伸缩( ν ):对称(νs) 不对称( 不对称( νas ) 弯曲:面内弯曲( 简动( 弯曲:面内弯曲(β):简动(δ) 摇摆(ρ) 摇摆( 面外弯曲( 面外弯曲(γ):摇摆(ω) 摇摆( 扭曲( 扭曲( τ) 变形:对称( 变形:对称( δs ) 不对称( 不对称( δas )
Hale Waihona Puke 基频峰和泛频峰基频峰 振动能级由基态( 振动能级由基态(V=0)跃迁至第一激发 所产生的吸收峰。 态(V=1)所产生的吸收峰。νL=ν,强 度一般比较大,容易识别。 度一般比较大,容易识别。 泛频峰 倍频峰、合频峰、差频峰等。强度较弱, 倍频峰、合频峰、差频峰等。强度较弱, 可能观察不到。 可能观察不到。
O R-C-R' O R-C-OR' O R-C-Cl O R-C-F
1715cm-1 1735cm-1
1800cm-1 1870cm-1
影响峰位的因素
1.分子内部结构因素 (1)电子效应 共轭效应(conjugative effect, +C, +M): 使吸收峰向低频方向移动
O R-C-R'
O R-C
红外光谱区划
区域 近红外区 中红外区 远红外区 波长 波数 -1) 能级跃迁类型 λ( m ) σ(cm 0.76~2.5 2.5~50 50~500 13158~4000 倍频吸收区 4000~200 振动 伴转动 振动,伴转动 200~20 转动
苯酰胺的红外光谱
红外光谱与紫外光谱的区别
红外光谱 起源 应用 范围 特征性 紫外光谱
教学目标
熟悉红外光谱的基本原理与应用。
了解红外分光光度计的主要部件和制 样方法。 了解几类化合物红外光谱的主要特征 及光谱解析的一般步骤。

第三章 红外吸收光谱法

第三章 红外吸收光谱法

因此,并非所有的振动都会产 生红外吸收,只有发生偶极矩变化 (△≠0)的振动才能引起可观测 的红外吸收光谱,该分子称之为红 外活性的; △=0的分子振动不能 产生红外振动吸收,称为非红外活 性的。
当一定频率的红外光照射分 子时,如果分子中某个基团的振 动频率和它一致,二者就会产生 共振,此时光的能量通过分子偶 极矩的变化而传递给分子,这个 基团就吸收一定频率的红外光, 产生振动跃迁。
2 辐射与物质间有相互偶合作用,为了满足这个 条件,分子振动时其偶极炬必须发生变化(保证 红外光的能量能传递给分子)。
分子由于构成它的各原子的电负性的不同, 也显示不同的极性,称为偶极子。通常用分子的 偶极矩()来描述分子极性的大小。
分子的偶极距是分子中正、负电荷中心的距离 (r)与正、负电荷中心所带电荷(δ)的乘积, 它是分子极性大小的一种表示方法。
第一节 红外光谱法基本原理
一、概述
1. 红外光谱
红外光谱是是一种分子 光谱,是分子中基团的 振动和转动能级跃迁产 生的吸收光谱。也称分 子的振动光谱或振转光 谱。
E1 υ
υ υ
2
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0
J J J
1
0
J
E0
分子振动吸收光谱
分子转动吸收光谱
但由于在分子的振动跃迁过程中也常常伴随转动跃迁, 使振动光谱呈带状。所以分子的红外光谱属带状光谱。
种。
但对于直线型分子,若贯
穿所有原子的轴是在x方向,
则整个分子只能绕y、z轴转
动,因此,直线性分子的振
动形式为(3n-5)种。
例如:三个原子的非线性分子H2O,有3个振动自由度。
红外光谱图中对应出现三个吸收峰, 3650cm-1,1595cm-1,3750cm-1。

仪器分析:红外光谱的吸收强度

仪器分析:红外光谱的吸收强度

红外光谱的吸收强度
对于C=C—,结构⑴的对称性最差,因此吸收较强;而结构⑶的对称性相对来 说最高,所以吸收最弱。
另外,对于同一试样,在不同的试剂中或是同一试剂的不同浓度的试样中, 由于氢键的影响以及氢键强弱的不同,使原子间的距离增大,偶极矩变化增大, 吸收增大。例如:醇类的OH基在四氯化碳溶剂中伸缩振动的强度比在乙醚溶剂中 弱得多。而不同浓度的四氯化碳溶液中,由于地和状态的不同,强度也有很大的 差别。
仪器分析
红外光谱的吸收强度
谱带的强度何雨振动形式有关。 应当注意:即使是强极性基团的红外震动惜售待,其强度也要比紫外即可见光区 最强的电子跃迁小2-3个数量级。另一方面,由于红外分光光度计中能量较低,测 定时必须用较宽的狭缝,使单色器的光谱通带同吸收峰的宽度相近。
因此,测得的红外吸收带的峰值及宽度,受所用狭缝宽度的强烈影响。同一 物质的摩尔吸收系数随不同仪器而改变,这就使得定性鉴定中用处不大。所以, 红外光谱的俄吸收强度常定性地用s(强),m(中等),w(弱),vw(极红外光谱图中,C=O—基的吸收非常强,常常是红外光谱图中最强的吸收带;
而C=C—基的吸收则有时出现,有时不出现,即使出现,相对地说强度也很弱。两
者都是不饱和键,但吸收强度差异如此大,是因为C=O—基在伸缩振动时偶极矩变
化很大,因而C=O—基的跃迁概率大,而C=C—双键则在伸缩振动时偶极矩变化很
感谢观看
仪器分析
红外光谱的吸收强度


Contents
1 2 3 4
偶极矩对光谱强度的影响 对称性对光谱强度的影响 红外光谱强度的表示 注意事项
仪器分析
红外光谱的吸收强度
我们知道,分子整体呈电中性。由于构成分子的各原子电负性不相同,因此 分子呈现不同的极性,用偶极矩表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外光区的划分
常用波段:
波长 2.5-25 μm 波数 4000-400 cm-1
红外图谱的表示方法
T 和 A 的关系
紫外光谱与红外光谱的比较
共同点:都属于 分子吸收光谱 不同点 1、起源不同
紫外光谱与红外光谱的比较
紫外光谱与红外光谱的比较
紫外光谱与红外光谱的比较
红外光谱: 当样品受到频率连续变化的红外辐射后,分子吸 收某些频率的辐射, 并引起偶极矩的净变化, 产生分子的 振动能级和转动能级从基态到激发态的跃迁所产生的光谱,
线性分子
非线性分子
沿X轴旋转时,空间位置无变化,只有2个转动自由度
H2、O2、N2 电荷分布均匀,振动不能引起红外吸收。 H―C≡C―H、R―C≡C―R,其C≡C(三键)振动 也不能引起红外吸收(或者IR很弱)。
弱吸收峰位于强峰或宽峰附近时被交盖.
泛频峰会使峰数增多,但一般很弱或超出红外范围.
本章要点:
1、掌握IR与UV的区别。 2、掌握几个概念: 振动自由度、基频峰、 特征峰、相关峰 3、了解振动形式、振动自由度的计算(线性,非线性) 4、基本振动频率与K和μ的关系。 5、掌握红外光谱产生的必要条件。(2 个) 6、诱导和共轭效应波数改变的方向。 7、了解FT-IR的原理。 8、掌握U的计算和简单红外光谱的解析。
又称振-转光谱。
2、基本原理
分子振动的频率
k 化学键的力常数
基态 第一激发态 第二激发态 …
产生红外吸收的必要条件
出现较多的是伸缩振动, 剪式振动和面外弯曲振动. 按照振动形式的能量排列为 反对称伸缩>对称伸缩>剪式>面外弯曲
面内摇摆
面内剪式
分子在红外区产生吸收峰的数目取决于振动自由度.
归属特征峰 验证相关峰
UV-Vis、MS、NMR、Raman等。
例 1 未知化合物的分子式为C12H24O2, 试从其红外谱图推测它的结构。
计算不饱和度 U= 1+12-12 =1, 可能含一个双键或一个脂环。 1700 cm-1 表明分子中含有一个C=O 2500-3300 cm-1的强而宽的吸收表明分子中含有羟基,且形成氢键。可能是羧酸。 2920、2850 cm-1为烷基C-H的吸收峰,720 cm-1为C-H弯曲振动。 综上,可推测该分子可能为长链羧酸,分子式为CH3(CH2)10COOH。
O
C=O=1686 cm-1
CH
3 3
C
CH
3
C CH
C=O=1663 cm-1
O
3.3 影响峰位置的因素
此外,通常物质由固态向气态变化,其波数将增加。如 丙酮在液态时, C=O=1718cm-1; 气态时 C=O=1742cm-1 ,
因此在查阅标准红外图谱时,应注意试样状态和制样方
注 意 事 项 易潮解、湿度低于 40% 易潮解、湿度低于 35% 不溶于水,用于水溶液 易潮解 微溶于水(有毒)
第3章 分子光谱
第2节 红外吸收光谱法(IR) Infrared Absorption Spectrum
概述 基本原理 红外吸收光谱 红外吸收光谱仪 应用与示例

(掌握简单化合物的红外光谱解析)
常见有机化合物基团的特征频率
常见有机化合物基团的特征频率
常见有机化合物基团的特征频率
CH2=CH-R
双峰
常见有机化合物基团的特征频率
双峰
3.2 吸收峰位置
基本振动频率
1609
振动频率 υ
伸缩>面内 >面外
3.3 影响峰位置的因素
& 诱导效应
3.3 影响峰位置的因素
3.3 影响峰位置的因素
3.3 影响峰位置的因素
诱导效应
共轭效应,氢键
3.3 影响峰位置的因素
(4) 空间效应 由于空间阻隔,分子平面与双键不在同一平面,此时 共轭效应下降,红外峰移向高波数。
9月 10月 11月 12月
IR
IR
第3章 分子光谱
第2节 红外吸收光谱法(IR) Infrared Absorption Spectrum 概述 基本原理 红外吸收光谱 红外吸收光谱仪 应用与示例

第2节 IR
1、概述
红外光区的划分 红外图谱的表示方法 紫外光谱与红外光谱的比较
红外光谱中最重要的吸收峰.
第2节 IR
3、红外吸收光谱
特征峰与相关峰 吸收峰的位置 影响吸收峰位置的因素 特征区和指纹区 吸收峰强度

3.1 特征峰与相关峰
υC=C
3.1 特征峰与相关峰
1609
一些常见官能团的特征峰(cm-1)背下来
• • • • • • O-H,N-H =C-H, 饱和C-H C≡N C=O C-O 苯环C=C 3300-3500 3000-3100, 2850-3000 2240-2260 1650-1800 1000-1250 1450-1600
3.4 特征区和指纹区
背下来
苯环的取代方式(700-900 cm-1)
3.4 特征区和指纹区
背下来 烯烃双键的取代方式(800-1000 cm-1 )
CH2=CH-R
双峰
3.5 吸收峰强度
一般,C=O 吸收峰最大
3.5 吸收峰强度
3.5 吸收峰强度
第3章 分子光谱
第2节 红外吸收光谱法(IR) Infrared Absorption Spectrum
法。
1250 cm-1
3.4 特征区和指纹区
3.4 特征区和指纹区
背下来
பைடு நூலகம்
一些常见官能团的特征峰(cm-1)
• • • • • • O-H,N-H =C-H, 饱和C-H C≡N C=O C-O 苯环C=C 3300-3500 3000-3100, 2850-3000 2240-2260 1650-1800 1000-1250 1450-1600
动画
FT-IR 与 GC 或 HPLC 联用,可进行准确的分离、定性和定量。
视频
/programs/view/O S9u0rlXF2E/
材 料 NaCl KBr CaF2 CsBr TlBr + TlI
透光范围/m 0.2-25 0.25-40 0.13-12 0.2-55 0.55-40
概述 基本原理 红外吸收光谱 红外吸收光谱仪 应用与示例

cm-1
4、 红外光谱仪
目前有两类红外光谱仪:色散型和干涉型(傅立叶变换红
外光谱仪)(Fourier Transfer, FT-IR)
一、色散型与双光束UV-Vis仪器类似,但部件材料和顺序不同。
二、傅里叶变换红外光谱仪
它是利用光的相干性原理而设计的干涉型红外分光光度仪。
相关文档
最新文档