固体物理思考题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论
1.二十世纪物理学的三大前沿领域是什么?
[解答]微观领域(把包括分子、原子和各种基本粒子(一般线度小于亿分之一米)的粒子称为微观粒子,而微观粒子和它们现象的总称就是微观世界或微观领域。)、宇宙起源(许多科学家认为,宇宙是由大约137亿年前发生的一次大爆炸形成的)和演化复杂性问题(研究重点是探索宏观领域的复杂性及其演化问题)。
2.还原论的思维特点是什么?他对人们思想有何影响?
[解答] 将复杂还原为简单,然后从简单再建复杂。它对人们认识客观世界有重要的积极的意义,并取得许多重要的成果,但这种思维特点不能强调过分,因为层展论也是认识客观世界的一种重要思维方法。
3.固体物理学的范式是什么?结合所学内容谈谈你是怎样理解这种范式的。
[解答]是周期性结构中波的传播。不同类型的波,不管是德布罗意波还是经典波,
弹性波还是电磁波,横波还是纵波,在波的传播问题上具有共性。固体物理学主要是探讨具有周期结构特征的晶态物质的结构与性能的关系。弹性波或晶格波在周期结构中的传播导致了点阵动力学,它主要由Born 及其合作者建立起来的;短波
长电磁波在周期结构中的传播导致了晶体中X 射线衍射问题,其动力学理论系由Ewald 与Laue 所表述的;德布罗意波(电子) 在周期结构中的传播导致了固体电子结构的能带理论,它是由Bloch 、A. C. Wilson ,Brillouin 等所表述的。这些理论有其共同的特征:为了借助于平移对称(周期性) 引入的简化,都采用Bloch 的
表示方式,也都强调了波矢(或倒) 空间(即实空间的富利叶变换) 的重要性。随后对这些领域进行加固并开发应用成为固体物理学家的主要任务。值得注意,即使
时至今日,这一范式还存在生机,到80 年代末及以后关于光子能带与声子能带的
研究又为它注入新的活力。
4.层展论的思维方法是什么?怎样理解实验发现、理论洞见和实际应用三者之
间的关系。
层展论的思维特点是从简单到复杂,每个层次都有自己独特的研究对象、研究内容、研究方法和客观规律;实验发现、理论洞见和实际应用三者间关系非常复杂,在固体物理研究中,有时是实验发现在前,有时是实际应用在前,也有时是理论洞见在先,尽管这种情况较少。
第一章
1.解理面是面指数低的晶面还是指数高的晶面?为什么?
[解答]
晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大.因为面间距大的晶面族的指数低,所以解理面是面指
数低的晶面.
2.与晶列垂直的倒格面的面指数是什么?
[答]正格子与倒格子互为倒格子。正格子晶面与倒格式
垂直,则倒格晶面与正格
矢
正交。即晶列与倒格面垂直。
3.以刚性原子球堆积模型,计算以下各结构的致密度分别为:
(1)简立方,π/6 ;(2)体心立方,;(3)面心立方,;(4)六角密积,;(5)金刚石结构,。
[答]设想晶体是由刚性原子球堆积而成。一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度。
设n为一个晶胞中刚性原子球数,r表示刚性原子球半径,表示晶胞体积,则致密度
(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚球堆积,如图1·2所示,中心在1,2,3,4处的原子球将依次相切。因为a=2r,V=a3,晶胞内包含1个原子,所以
(2)对体心立方晶体,任一个原子有8个最近邻,若原子以刚性球堆积,如图1·2所示,体心位置O的原子与处在8个角顶位置的原子球相切。因为晶胞空间
对角线的长为,晶胞内包含2个原子,所以
(3)对面立方晶体,任一个原子有12个最近邻,若以刚性球堆积,如图1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切。因
为1个晶胞内包含4个原子,所以
(4)对六角密积结构,任一个原子有12个最近邻,若以刚性球堆积,如图1.5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,晶胞内的原子O与中心在1,3,4,5,7,8处的原子相切,即O点与中心在5,7,8处的原子分布在正四面体的顶上。因为四面体的高:
晶胞体积:
一个晶胞内包含两个原子,所以:
(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O原子与中心在1,2,3,4处的面心原子相切。因为
晶胞体积
一个晶胞内包含8个原子,所以
4.试证面心立方晶格子是体心立方;体心立方的倒格子是面心立方.
[答]设与晶轴平行的单位矢量分别为面心立方正格子的原胞基矢可取为
由倒格矢公式
可得其倒格矢为
设与晶轴平行的单位矢量分别为,体心立方正格子的原胞基矢可取为
以上三式与面心立方的倒格基矢相比较,两者只相差一常数公因子,这说明面心立方的倒格子是体心立方。
将体心立方正格子原胞基矢代入倒格矢公式
则得其倒格子基矢为
可见体心立方的倒格子是面心立方。
5.求晶格长数为a的面心立方和体心立方晶体晶面族的面间距. [答]面心立方正格子的原胞基矢为
由
可得其倒格基矢为
倒格矢
根据《固体物理教程》(1.16)式
得面心立方晶体晶面族的面间距
体心立方正格子原胞基矢可取为
其倒格子基矢为:
则晶面族的面间距为
第2章晶体的结合
1.是否有与库仑力无关的晶体结合类型?
[答]共价结合中, 电子虽然不能脱离电负性大的原子, 但靠近的两个电负性大的原子可以各出一个电子, 形成电子共享的形式, 即这一对电子的主要活动范围处于两个原子之间, 通过库仑力, 把两个原子连接起来. 离子晶体中, 正离子与负离子的吸引力就是库仑力. 金属结合中, 原子实依靠原子实与电子云间的库仑力紧紧地吸引着. 分子结合中, 是电偶极矩把原本分离的原子结合成了晶体. 电偶极矩的作用力实际就是库仑力. 氢键结合中, 氢先与电负性大的原子形成共价结合后, 氢核与负电中心不在重合, 迫使它通过库仑力再与另一个电负性大的原子结合. 可见, 所有晶体结合类型都与库仑力有关.
2.如何理解库仑力是原子结合的动力?
[答]晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力.
3.晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别?
[答]自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能.