数值分析思考题9
数值分析习题第九章答案
数值分析习题第九章答案数值分析习题第九章答案第一节:引言数值分析是一门研究数值计算方法和算法的学科,广泛应用于科学、工程和金融等领域。
在数值分析的学习过程中,习题是非常重要的一部分,通过解答习题可以加深对理论知识的理解,并提高解决实际问题的能力。
本文将重点讨论数值分析习题第九章的答案,希望能为读者解决一些困惑。
第二节:习题一习题一要求计算给定函数的导数。
根据数值分析中的导数近似计算方法,我们可以使用中心差分公式来估计导数的值。
中心差分公式的表达式为:f'(x) ≈ (f(x+h) - f(x-h)) / (2h)其中,h为步长,通常取一个较小的值。
根据这个公式,我们可以计算出给定函数在特定点的导数值。
第三节:习题二习题二要求求解给定的非线性方程。
非线性方程的求解是数值分析中的重要问题之一。
常用的求解方法包括二分法、牛顿法、割线法等。
这些方法都是通过迭代来逼近方程的解。
例如,牛顿法是通过迭代的方式逼近方程的根。
具体步骤如下:1. 选择初始近似解x0;2. 根据方程的导数计算出切线的斜率;3. 计算切线与x轴的交点,得到新的近似解x1;4. 重复步骤2和步骤3,直到满足收敛条件为止。
通过牛顿法或其他求解方法,我们可以得到给定非线性方程的近似解。
第四节:习题三习题三要求求解给定的线性方程组。
线性方程组的求解是数值分析中的基本问题之一。
常用的求解方法包括高斯消元法、LU分解法、迭代法等。
例如,高斯消元法是通过逐步消元的方式将线性方程组转化为上三角形式,然后通过回代求解出未知数的值。
LU分解法是将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过前代和回代求解出未知数的值。
通过这些求解方法,我们可以得到给定线性方程组的解。
第五节:习题四习题四要求求解给定的插值问题。
插值是数值分析中的重要问题之一,常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
例如,拉格朗日插值法是通过构造一个满足给定条件的多项式来逼近原函数。
数值分析思考题9
数值分析思考题91、 一个算法局部误差和整体误差的区别是什么?如何定义常微分方程数值方法的阶?称 ()n n n e y x y =-为某方法在点n x 的整体截断误差,设n y 是准确的,用某种方法计算n y 时产生的截断误差,称为该方法的局部截断误差。
可以知道,整体误差来自于前面误差积累,而局部误差只来自于n y 的误差。
如果给定方法的局部截断误差为11()p n T O h ++=,其中p 为自然数,则称该方法是p 阶的或具有p 阶精度。
2、 显式方法和隐式方法的优缺点分别是什么?多步法中为什么还要使用单步法? 显式方法优点:方法简单快速。
缺点:精度低。
隐式方法优点:稳定性好。
缺点:精度低,计算量大。
多步法需要多个初值来启动迭代,而初值的计算需要用到单步法。
3、 刚性问题的求解困难主要体现在哪儿?计算刚性问题的最简单的稳定方法是什么?了保证数值稳定性,步长h 需要足够小,但是为了反映解的完整性,x 区间又需要足够长,计算速度变慢。
最简单的稳定方法就是扩大绝对稳定域。
4、分别用欧拉向前法、欧拉向后法、改进的欧拉法、经典的四阶Runge-Kutta 法、四阶Adams 方法计算下列微分方程初值问题的解。
(1)3,12(1)0.4dy y x x dx xy ⎧=-≤≤⎪⎨⎪=⎩; (2)'109,'1011,y y z z y z =-+⎧⎨=-⎩满足(1)1,(1)1,y z =⎧⎨=⎩,12x ≤≤。
解:(1)取步长为0.1,向前Euler 公式:3101=0.11.(,)()n n n n n nn y y hf x y x y x +=++-向后Euler 公式:41111110101.(,).n n n n n n n n x y x y y hf x y x +++++++=+=+改进的Euler 公式:()11333113211(,),(,)20.10.12n n n n n n n n n n nn n n n n n hy y f x y f x y h f x y y x y y x x x x x ++++++=+++⎡⎤⎣⎦⎡⎤+=+-+-⎢⎥+⎣⎦经典的四阶Runge-Kutta 法:11234226()n n hy y k k k k +=++++ 1(,)n n k f x y = 2122(,)n n h h k f x y k =++ 3222(,)n n h h k f x y k =++ 43(,)n n k f x h y hk =++四阶显示Adams 方法:01112233555937924()[(,)(,)(,)(,)]n n n n n n n n n n hy y f x y f x y f x y f x y +------=+-+- 01111122919524()[(,)(,)(,)(,)]n n n n n n n n n n h y y f x y f x y f x y f x y +++----=++-+(2)二元微分方程组,经典的四阶Runge-Kutta 法公式为:11234226()n n hy y k k k k +=++++ 11234226()n n hz z L L L L +=++++ 1(,,)n n n k f x y z =211222(,,)n n n h h h k f x y k z L =+++322222(,,)n n n h h h k f x y k z L =+++ 433(,,)n n n k f x h y hk z hL =+++1(,,)n n n L g x y z =211222(,,)n n n h h h L g x y k z L =+++ 322222(,,)n n n h h hL g x y k z L =+++ 433(,,)n n n L g x h y hk z hL =+++改进的欧拉即为特殊的二阶龙格-库塔,公式在此不累述,注意系数。
数值分析思考题
数值分析思考题1、 一个算法局部误差和整体误差的区别是什么?如何定义常微分方程数值方法的阶?称 ()n n n e y x y =-为某方法在点n x 的整体截断误差,设n y 是准确的,用某种方法计算n y 时产生的截断误差,称为该方法的局部截断误差。
可以知道,整体误差来自于前面误差积累,而局部误差只来自于n y 的误差。
如果给定方法的局部截断误差为11()p n T O h ++=,其中p 为自然数,则称该方法是p 阶的或具有p 阶精度。
2、 显式方法和隐式方法的优缺点分别是什么?多步法中为什么还要使用单步法?显式方法优点:方法简单快速。
缺点:精度低。
隐式方法优点:稳定性好。
缺点:精度低,计算量大。
多步法需要多个初值来启动迭代,而初值的计算需要用到单步法。
3、 刚性问题的求解困难主要体现在哪儿?计算刚性问题的最简单的稳定方法是什么?了保证数值稳定性,步长h 需要足够小,但是为了反映解的完整性,x 区间又需要足够长,计算速度变慢。
最简单的稳定方法就是扩大绝对稳定域。
4、分别用欧拉向前法、欧拉向后法、改进的欧拉法、经典的四阶Runge-Kutta 法、四阶Adams 方法计算下列微分方程初值问题的解。
(1)3,12(1)0.4dy y x x dxx y ⎧=-≤≤⎪⎨⎪=⎩;(2)'109,'1011,y y z z y z =-+⎧⎨=-⎩ 满足(1)1,(1)1,y z =⎧⎨=⎩,12x ≤≤。
解:(1)取步长为0.1,向前Euler 公式:3101=0.11.(,)()n n n n n n ny y hf x y x y x +=++-向后Euler 公式:41111110101.(,).n n n n n n n n x y x y y hf x y x +++++++=+=+改进的Euler 公式:()11333113211(,),(,)20.10.12n n n n n n n n n n nn n n n n n hy y f x y f x y h f x y y x y y x x x x x ++++++=+++⎡⎤⎣⎦⎡⎤+=+-+-⎢⎥+⎣⎦经典的四阶Runge-Kutta 法:11234226()n n hy y k k k k +=++++1(,)n n k f x y =2122(,)n n h hk f x y k =++ 3222(,)n n h hk f x y k =++43(,)n n k f x h y hk =++四阶显示Adams 方法:01112233555937924()[(,)(,)(,)(,)]n n n n n n n n n n hy y f x y f x y f x y f x y +------=+-+- 01111122919524()[(,)(,)(,)(,)]n n n n n n n n n n h y y f x y f x y f x y f x y +++----=++-+(2)二元微分方程组,经典的四阶Runge-Kutta 法公式为:11234226()n n hy y k k k k +=++++ 11234226()n n hz z L L L L +=++++1(,,)n n n k f x y z =211222(,,)n n n h h h k f x y k z L =+++ 322222(,,)n n n h h hk f x y k z L =+++433(,,)n n n k f x h y hk z hL =+++1(,,)n n n L g x y z =211222(,,)n n n h h h L g x y k z L =+++ 322222(,,)n n n h h hL g x y k z L =+++433(,,)n n n L g x h y hk z hL =+++改进的欧拉即为特殊的二阶龙格-库塔,公式在此不累述,注意系数。
数值分析课后习题答案
7、计算的近似值,取。
利用以下四种计算格式,试问哪一种算法误差最小。
〔1〕〔2〕〔3〕〔4〕解:计算各项的条件数由计算知,第一种算法误差最小。
解:在计算机上计算该级数的是一个收敛的级数。
因为随着的增大,会出现大数吃小数的现象。
9、通过分析浮点数集合F=〔10,3,-2,2〕在数轴上的分布讨论一般浮点数集的分布情况。
10、试导出计算积分的递推计算公式,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。
解:此算法是数值稳定的。
第二章习题解答1.〔1〕 R n×n中的子集“上三角阵〞和“正交矩阵〞对矩阵乘法是封闭的。
〔2〕R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。
设A是n×n的正交矩阵。
证明A-1也是n×n的正交矩阵。
证明:〔2〕A是n×n的正交矩阵∴A A-1 =A-1A=E 故〔A-1〕-1=A∴A-1〔A-1〕-1=〔A-1〕-1A-1 =E 故A-1也是n×n的正交矩阵。
设A是非奇异的对称阵,证A-1也是非奇异的对称阵。
A非奇异∴A可逆且A-1非奇异又A T=A ∴〔A-1〕T=〔A T〕-1=A-1故A-1也是非奇异的对称阵设A是单位上〔下〕三角阵。
证A-1也是单位上〔下〕三角阵。
证明:A是单位上三角阵,故|A|=1,∴A可逆,即A-1存在,记为〔b ij〕n×n由A A-1 =E,那么〔其中 j>i时,〕故b nn=1, b ni=0 (n≠j)类似可得,b ii=1 (j=1…n) b jk=0 (k>j)即A-1是单位上三角阵综上所述可得。
R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。
2、试求齐次线行方程组Ax=0的根底解系。
A=解:A=~~~故齐次线行方程组Ax=0的根底解系为,3.求以下矩阵的特征值和特征向量。
数值分析第九章习题
答案解析
难度:简单。
解析:利用已知的函数性质,我们可以直接求得$x = frac{1}{2}$。
答案解析
难度:中等。 解析:通过观察函数的图像,我们可以得出$x = -1$。
难度:简单。
05
总结与展望
本章总结
01
02
03
内容回顾
详细总结了第九章的主要 知识点,包括数值逼近、 插值方法、样条函数、数 值积分和微分等。
重点难点解析
对第九章中的重点和难点 进行了深入的解析,帮助 学生更好地理解和掌握相 关内容。
例题解析
选取了具有代表性的例题, 进行了详细的解答和解析, 帮助学生掌握解题方法和 技巧。
迭代法的关键在于选择合适的迭代公式和迭代初值,以保证迭代过程的收敛性和稳 定性。
常见的迭代法包括雅可比迭代法、高斯-赛德尔迭代法和松弛迭代法等。
解题技巧二:矩阵分解
矩阵分解是将一个复杂矩阵分解 为几个简单的、易于处理的矩阵,
从而简化数值计算过程。
常见的矩阵分解方法包括LU分解、 QR分解和SVD分解等。
习题四解析
总结词
矩阵的特征值和特征向量
详细描述
该习题主要介绍了矩阵的特征值和特征向量的基本概念和计算方法,包括特征多项式、特征值和特征 向量的计算以及特征值的性质。通过该习题的解析,可以更好地理解矩阵的特征值和特征向量的基本 原理和应用。
03
解题技巧总结
解题技巧一:迭代法
迭代法是一种通过不断逼近解的方法,适用于求解线性方程组、非线性方程组以及 优化问题。
习题二解析
总结词
数值积分方法
详细描述
该习题主要介绍了数值积分的基本概念和方法,包括复化梯形公式、复化 Simpson公式和复化Cotes公式。通过比较不同方法的精度和稳定性,可以更好 地理解数值积分的基本原理和应用。
数值分析思考题
数值分析思考题61、数值计算中迭代法与直接法的区别是什么(D直接法是指在没有舍入误差的情况下经过有限次运算求得方程组的精确解的方法。
直接法又称为精确法。
(2)迭代法是采取逐次逼近的方法,即从一个初始向量出发,按照一定的计算格式,构造一个向量的无穷序列,其极限才是方程组的精确解,只经过有限次运算得不得精确解。
迭代法是一种逐次逼近的方法,与直接法比较,具有程序简单,存储量小的优点。
2、详述你所知道的线性方程组的迭代法的收敛性定理。
迭代公式X(_I)二Bx(k)+ g(k二0,1,2, ?)收敛的充分必要条件是M k->0.假设矩阵M的谱半径p(B),可知MkTO的充分必要条件是p (B) < 1 o 迭代公式x(k I)二Bx(k)+ g(k 二0,1,2, ?) 和x(k + 1)二Bix(k + 1) + B2x(k) + g(k 二0,1,2,?),收敛。
严格对角占优线性方程组Ax二b(其中A e R m x n,b e L)的Jacobi 迭代公式x(k + 1) = Bx(k)+ g(k = 0,1,2,?),收敛。
Gauss-Seidel 迭代公式x(k + 1)二Bix(k + 1) + B2x(k) + g(k = 0,1,2,?),收敛。
3、详述你所知道的非线性方程(组)的迭代法以及收敛性结果。
(1)不动点迭代法:不一定收敛,若存在常数L<1 ,使得I 4> (x) - 0 (y) I W L|x 一y|,?x, y G [a, b],则收敛于x*。
(2)斯蒂芬森迭代法:若不动点迭代公式的迭代函数e(x)在不动点X*的某邻域内具有二阶连续导数,e'(x*)二A工1且A工0,则二阶收敛,极限是X*。
(3)牛顿迭代法:收敛4、举例说明解线性方程组的S0R方法的最佳松弛因子与何种因素有解线性方程组的S0R方法的最佳松弛因子与迭代矩阵的谱半径有关,是单峰关系。
数值计算方法思考题
数值计算方法思考题数值计算方法思考题第一章预篇1.什么是数值分析?它与数学科学和计算机的关系如何? 2.何谓算法?如何判断数值算法的优劣?3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。
4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系?5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用? 6.判断如下命题是否正确:一个问题的病态性如何,与求解它的算法有关系。
无论问题是否病态,好的算法都会得到好的近似解。
解对数据的微小变化高度敏感是病态的。
高精度运算可以改善问题的病态性。
用一个稳定的算法计算良态问题一定会得到好的近似值。
用一个收敛的迭代法计算良态问题一定会得到好的近似值。
两个相近数相减必然会使有效数字损失。
计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。
7.考虑二次代数方程的求解问题ax2 + bx + c = 0.下面的公式是熟知的bb24acx.2a与之等价地有x?对于2c?b?b?4ac2.a = 1,b = -100 000 000 ,c = 1应当如何选择算法?8.指数函数有著名的级数展开x2x3e?1?x2!3!x 如果对x 9.考虑数列xi, i = 1,…, n, 它的统计平均值定义为x?1n?xi xi?1 它的标准差2?1n2(xi?x)? n?1i?1??1 数学上它等价于1n222xinx n1i11 作为标准差的两种算法,你如何评价它们的得与失?第二章非线性方程求根1.判断如下命题是否正确:(a) 非线性方程的解通常不是唯一的;(b) Newton法的收敛阶高于割线法;(c) 任何方法的收敛阶都不可能高于Newton法; (d)Newton法总是比割线法更节省计算时间;(e) 如果函数的导数难于计算,则应当考虑选择割线法;(f) Newton法是有可能不收敛;(g) 考虑简单迭代法xk+1 = g(xk),其中x* = g(x*)。
数值分析思考题
数值分析复习思考题(2006-12-28)这几天的答疑时间中,解答了部分同学的问题,更多是作为教师的深入思考。
而共同探讨问题是非常重要的。
由于时间有限,这个文档中提出问题的深度可能不够,有些问题还没给出解答,希望研究生同学一起来思考,提出更多的问题。
我会在以后的时间中形成新的文档。
第一章 思考题1.在科学计算中,一般认为误差的来源有几种?列举在数值分析课中主要讨论误差。
数值计算中一个基本的手段是近似,所以就有了各种误差。
误差来源有四种:模型误差,观测误差,截断误差,舍入误差。
一般分为两类,第一类是固有误差(包括模型误差和观测误差),第二类是计算误差(包括截断误差和舍入误差)。
计算方法课中主要讨论计算误差。
这是因为在用计算机解决数学问题时,常常用“有限代替无穷,用近似代替准确”。
例如,解决连续性问题时通常要将其转化为离散问题求解,这将引起截断(方法)误差;由于机器数的位数有限,计算机表示数据时一般带有舍入误差。
下面不全面列举出本课程内容涉及的误差线性方程组直接求解方法——舍入误差多项式插值方法——插值误差数据拟合方法——残差数值积分方法——求积误差微分方程数值解方法——局部截断误差………………………………………………2.有效数字的概念是如何抽象而来的,请简单给予叙述。
有效数字位数与计算近似值x的误差这两个概念是通过末位数半个单位相联系的。
由于计算机的机器数只能表示有限位浮点数,对于很多数据只能近似表示,近似采用“四舍五入”的原则进行。
有效数字概念正是根据日常生活中的“四舍五入”原则抽象而来的。
若近似值x的绝对误差限是某一位上半个单位,该位到x的第一位非零数字一共有n位,则称这一近似数具有n位有效数字。
而相对误差则与有效数位数基本一致。
3.什么样的算法被称为是不稳定的算法?试举一个例子说明在算法执行过程中,舍入误差对计算结果影响大的一类算法被称为数值不稳定的算法。
例如初始数有一点微小的误差,就会对一个算法的数据结果产生较大的影响,造成误差扩散,用计算公式I n = 1 – n I n-1构造出的递推算法是一个数值不稳定的算法;而另一个公式I n-1= ( 1 – I n )/n则可以构造出一个数值稳定的算法。
数值分析思考题答案
数值分析思考题答案数值分析课程思考题1.叙述拉格朗⽇插值法的设计思想。
Lagrange插值是把函数y=f(x)⽤代数多项式pn(x)代替,构造出⼀组n次差值基函数;将待求得n次多项式插值函数pn(x)改写成另⼀种表⽰⽅式,再利⽤插值条件确定其中的待定函数,从⽽求出插值多项式。
2.函数插值问题的提出以及插值法发展的脉络。
问题的提出:实际问题中常遇到这样的函数y=f(x),其在某个区间[a,b]上是存在的。
但是,通过观察或测量或试验只能得到在[a,b]区间上有限个离散点x0,x1,…,xn上的函数值y=f(xi),(i=0,…,n)或者f(x)函数表达式是已知的,但却很复杂⽽不便于计算希望⽤⼀个简单的函数描述它。
发展脉络:在⼯程中⽤的多的是多项式插值和分段多项式插值。
在多项式插值中,⾸先谈到的是Lagrange插值,其成功地⽤构造插值基函数的⽅法解决了求n次多项式插值函数的问题,但是其⾼次插值基函数计算复杂,且次数增加后,插值多项式需要重新计算,所以在此基础上提出Newton插值,它是另⼀种构造插值多项式的⽅法,与Lagrange插值相⽐,具有承袭性和易于变动节点的特点。
如果对插值函数,不仅要求他在节点处与函数同值,还要求它与函数有相同的⼀阶,⼆阶甚⾄更⾼阶的导数值,这就提出了Hermite插值,它是利⽤未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的。
为了提⾼精度,加密节点时把节点分成若⼲段,分段⽤低次多项式近似函数,由此提出了分段多项式插值。
最后,由于许多⼯程中对插值函数的光滑性有较⾼的要求,就产⽣了样条插值。
3.描述数值积分算法发展和完善的脉络。
数值积分主要采⽤插值多项式来代替函数构造插值型求积公式。
通常采⽤Lagrange插值。
如果取等距节点,则得到Newton-Cotes公式,其中,当n=1时,得到梯形公式;当n=2时,得到Simpson公式;当n=4时,得到Cotes公式。
数值分析复习与思考题
第二章复习与思考题1•什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质?答:若n次多项式l j x (j =0,1,…,n)在n 1个节点x。
:::为:::…:::冷上满足条件j,k =0,1, ,n,则称这n • 1个n次多项式I。
X丄x ,…,I n x为节点X o,X1,…,X n上的n次拉格朗日插值以l k x为例,由l k x所满足的条件以及l k x为n次多项式,可设I k x = A X - X。
.1 IX - X k」X - X k 1 X - X n ,其中A为常数,利用I k x k=1得1=AX k-X o X k-X k」X k-X k1 X k-X n,1X k -X。
X k - X k」X k -X k1 X k - X nL(x)二X _X。
X _x k j X - x k 1 X - 焉(兀—X。
)八(兀—X k4 I x k —Xk* r(x k —Xn j=。
j-*X _ X j X k _X jn对于l j x (i 二。
,1,…,n),有v X j k l j x 二x k k 二。
,1,…,n,特别当k 二。
时,有i=。
n■- l i X = 1・i £2•什么是牛顿基函数?它与单项式基0X,…,X n f有何不同?答:称"-1,x -X。
,X -X。
X -X1,…,X -X。
!〔X -X nd〕;为节点X。
,为,…,X n 上的牛顿基函数,利用牛顿基函数,节点x。
,/,…,x n上的n次牛顿插值多项式巳x可以表示为P n X =a。
a1 x — x。
a n x — x。
x其中a k = f k°,x1,…,x k !k =。
,1,…,n•与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如P k 1 X = P k X a k 1 x-x。
X - X k ,其中a k i 是节点X o ,X !,…,X ki 上的k 1阶差商,这一点要比使用单项式基 1,x,…,x n :■方便 得多•3•什么是函数的n 阶均差?它有何重要性质?f X o , X 1, X kX k — XiX o",…X nf 〔X 。
数值分析课后习题部分参考答案.
数值分析课后习题部分参考答案Chapter 1(P10)5. 求2的近似值*x ,使其相对误差不超过%1.0。
解: 4.12=。
设*x 有n 位有效数字,则n x e -⨯⨯≤10105.0|)(|*。
从而,1105.0|)(|1*nr x e -⨯≤。
故,若%1.0105.01≤⨯-n,则满足要求。
解之得,4≥n 。
414.1*=x 。
(P10)7. 正方形的边长约cm 100,问测量边长时误差应多大,才能保证面积的误差不超过12cm 。
解:设边长为a ,则cm a 100≈。
设测量边长时的绝对误差为e ,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:e ⨯⨯≈1002。
按测量要求,1|1002|≤⨯⨯e 解得,2105.0||-⨯≤e 。
Chapter 2(P47)5. 用三角分解法求下列矩阵的逆矩阵:⎪⎪⎪⎭⎫ ⎝⎛--=011012111A 。
解:设()γβα=-1A。
分别求如下线性方程组:⎪⎪⎪⎭⎫ ⎝⎛=001αA ,⎪⎪⎪⎭⎫ ⎝⎛=010βA ,⎪⎪⎪⎭⎫ ⎝⎛=100γA 。
先求A 的LU 分解(利用分解的紧凑格式),⎪⎪⎪⎭⎫ ⎝⎛-----3)0(2)1(1)1(2)0(1)1(2)2(1)1(1)1(1)1(。
即,⎪⎪⎪⎭⎫ ⎝⎛=121012001L ,⎪⎪⎪⎭⎫⎝⎛---=300210111U 。
经直接三角分解法的回代程,分别求解方程组,⎪⎪⎪⎭⎫ ⎝⎛=001Ly 和y U =α,得,⎪⎪⎪⎭⎫ ⎝⎛-=100α;⎪⎪⎪⎭⎫ ⎝⎛=010Ly 和y U =β,得,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=323131β;⎪⎪⎪⎭⎫ ⎝⎛=100Ly 和y U =γ,得,;⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=313231γ。
所以,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=-3132132310313101A。
(P47)6. 分别用平方根法和改进平方根法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----816211515311401505231214321x x x x 解:平方根法:先求系数矩阵A 的Cholesky 分解(利用分解的紧凑格式),⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----1)15(2)1(1)5(3)3(3)14(2)0(1)1(1)5(2)2(1)1(,即,⎪⎪⎪⎪⎪⎭⎫⎝⎛--=121332100120001L ,其中,TL L A ⨯=。
数值分析简明教程课后习题答案
比较详细的数值分析课后习题答案0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值分析课程设计思考题
数值分析课程设计思考题一、教学目标本节课的教学目标是让学生掌握数值分析的基本概念和方法,培养学生运用数值分析解决实际问题的能力。
具体来说,知识目标包括:了解数值分析的基本概念、原理和方法;掌握常用的数值计算算法及其优缺点。
技能目标包括:能够运用数值分析方法解决实际问题;能够使用相关软件进行数值计算和数据分析。
情感态度价值观目标包括:培养学生对数值分析的兴趣和好奇心,提高学生学习的积极性;培养学生的团队合作意识和科学精神。
二、教学内容本节课的教学内容主要包括数值分析的基本概念、原理和方法。
具体来说,教学大纲如下:1.数值分析的基本概念:数值分析的定义、特点和意义。
2.数值计算算法:插值法、最小二乘法、数值积分和数值微分。
3.误差分析:误差的定义和来源、误差的估计和减少方法。
4.稳定性分析:稳定性的定义和判定方法。
5.实际应用案例:利用数值分析方法解决实际问题。
三、教学方法为了达到本节课的教学目标,我们将采用多种教学方法进行教学。
具体来说,包括以下几种:1.讲授法:通过讲解数值分析的基本概念、原理和方法,使学生掌握相关知识。
2.案例分析法:通过分析实际应用案例,使学生了解数值分析在解决实际问题中的应用。
3.讨论法:学生进行小组讨论,培养学生的团队合作意识和科学精神。
4.实验法:让学生利用相关软件进行数值计算和数据分析,提高学生的实践能力。
四、教学资源为了支持本节课的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:数值分析教材,用于引导学生学习基本概念和原理。
2.参考书:提供额外的学习资料,帮助学生深入理解数值分析方法。
3.多媒体资料:制作PPT、视频等多媒体资料,生动展示数值分析的原理和应用。
4.实验设备:计算机和相关软件,供学生进行数值计算和数据分析实践。
五、教学评估为了全面、客观地评估学生的学习成果,本节课的评估方式包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和理解程度。
数值分析部分思考题答案
数值分析部分思考题答案有错很正常,不要吐槽就好!!!!!!!5、解:(1)局部收敛性:设[]2(),f x Ca b ∈,若x*为()f x 在[],a b 上的根,且()0f x *'≠,则存在x *的某邻域()U x δ*使得任取初始值0()x U x δ*∈,Newton 法产生的序列{}k x 收敛到x *。
(2)证明:令()()()f xg x x f x =-',则 2()()()01()f x f xg x f x ****'''==<'显然()g x '在[],a b 上连续,故存在x *的某邻域()U x δ*,使()x U x δ*∀∈,有()1g x '<由微分中值定理,()()()g x x g x x x x x x ξξδ****'-=-<-≤其中介于与之间()(,)()g x x x U x δδδ***∴∈-+=令()max (())x U x M g x δ*∈'=,则01M ≤<,且()()()g x x g x x x x M x xξξ****'-=-≤-其中介于与之间110()()0k k k k x x g x g x M x x M x x k ***--*∴-=-≤-≤≤-→→+∞,, 于是序列{}k x 收敛到x *由Taylor 展开:()2212()0()()()()()2!()()()()2!()()(),2()2()k k k k k k k k k k k k k k kf f x f x f x x x x x x x f f x x x x x f x f x x x f x f k f x f x x x ξξξξ********+**'''==+-+-''⇒=---''''-''⇒=→→+∞''-其中介于与之间证毕6、解:(1)迭代函数2()20/(210)g x x x =++,则22401()1, 1.5(210)x g x x x x +'=<→++ 故迭代格式2120/(210)k k k x x x +=++收敛 (2)迭代函数23()(202)/10g x x x =--,则(34)()1, 1.510k k x x g x x +'=>→故迭代格式231(202)/10k k k x x x +=--发散(3)对于Newton 迭代,令32()21020f x x x x =++-,则2()34100, 1.5f x x x x '=++≠→故Newton 迭代格式1()()k k f x x x f x +=-'收敛7、解:(1)牛顿迭代法:迭代格式31241121k k k k k x x x x x ++-=-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
百度文库-让每个人平等地提升自我
数值分析思考题9
1、一个算法局部误差和整体误差的区别是什么?如何定义常微分
方程数值方法的阶?
称e n y(X n) y为某方法在点的整体截断误差,设y是准确的,用某种方法计算y n时产生的截断误差,称为该方法的局部截断误差。
可以知道,整体误差来自于前面误差积累,而局部误差只来自于
p 1
y n的误差。
如果给定方法的局部截断误差为Tn1 O(h ),其中
P为自然数,
则称该方法是P阶的或具有P阶精度。
2、显式方法和隐式方法的优缺点分别是什么?多步法中为什么还
要使用单步法?
显式方法优点:方法简单快速。
缺点:精度低。
隐式方法优点:稳定性好。
\ 缺点:精度低,计算量大。
多步法需要多个初值来启动迭代,而初值的计算需要用到单步法。
3、冈『性问题的求解困难主要体现在哪儿?计算刚性问题的最简单的稳
定方法是什么?
了保证数值稳定性,步长h需要足够小,但是为了反映解的完整
性,x区间又需要足够长,计算速度变慢。
最简单的稳定方法就是扩大绝对稳定域。
4、分别用欧拉向前法、欧拉向后法、改进的欧拉法、经典的四阶
百度文库-让每个人平等地提升自我
Run ge-
Kutta
法、四阶Adams方法计算下列微分方程初值问题的解。
(1) dy
dx
x
3
^,1
x
y(1) 0.4
x 2
;
(2)y'
z
10y 9z,
10y 11z,
满足
解:
(1)
取步长为,
向前Euler公式:y n y n 3
hf (X n, y n) = °.1X n
向后Euler公式: Y
n
Y n hf (X n 1, y 1)
0.1x
:
(
1
x n
)y
1 y n X n
X n 1 0.1 y n 1 y n
改进的Euler公式:
y n h
-f (X n, y n)
2
0.1
2
3 y n
X
n
X n
3
X n
x n 1, y n hf(X n,y n)
0.1x;1 y n
-2~
X n 1
3
X n 1
经典的四阶Runge-Kutta法:
y n
h
6
(k1 2k22k3 k1 f (X n, y n )
k 2 f (X n
h
-,y n
号kJ
k3 f (X n h
2,yn
h
k2)
2
k4 f (X n h, y n hk3)k4)
y n 1 四阶显示Adams方法:
y n 0) 1 y n
h
2;[55f(X n,
y
n)
59f(X
n
1
,
y
n
1)37 f (X n 2, y n 2) 9f (X n 3, y n 3)]
h
y
m
y
n
243X 1,鹉)仞血人)
5f(X
n1
,
y
n1
)
f(X
n2
,
y n2
)]
(2)二元微分方程组,经典的四阶
Runge-Kutta 法公式为:
\
h /
y n 1 y n
(k i 2k 2 2k 3 kJ
6 h z n 1
z
n ~ (
L 1
2L
2
2 L 3
L
4
)
6
k i f(X n ,y n ,Z n )
改进的欧拉即为特殊的二阶龙格-库塔,公式在此不累述,注意系数。
思路同上,四点Adams公式在此也不累述,注意前四项须由四阶龙格-库塔求得以启动迭代。
编程求解得
X\
改进的Euler
经典的四阶
Run ge-Kutta
四点阶Adams
\ y
z y z y Z /
f (X n ,y
n
k
1
, Z
n
L
1)
2 2 2
h h h
f (X n ,y n k2, Z n L2)
2 2 2
f
(X n h, y n
hk
3
,Z
n hL s)
L i g(X n, y n,Z n)
g
(X
n
h
2
,yn
h .
2
k
1
,Z
n
g(X n
h
2,y n 2
k
2,
Z
n 2L2)
g
(X
n h, y n hk3,Z n hL3)
k4
k
3
L
3
L2
L4
取步长h=,则向前Euler 公式:
编程求解得
X
向前Euler
向后Euler
y
z
y
z
Y n 1 Y n hf (X n , Y n ,Z n )=0.9Z n Z n 1 Y n
hg(X n , y n ,Z n ) = y n -O.IZ n
向后Euler 公式:
Y n
0.9 Y n 21Z n
2.1
Z
n 1
1
2.1
Y n
0.9
27Z n
百度文库-
让每个人平等地提升自我
\z。