反证法例题与练习

合集下载

反证法练习题

反证法练习题

反证法练习题反证法是一种常用的数学证明方法,它通过假设命题不成立,然后推导出矛盾的结论,从而证明原命题的正确性。

在数学领域,反证法被广泛应用于各种定理的证明过程中。

下面我们来看一些反证法的练习题,以加深对这一证明方法的理解。

练习题1:证明根号2是一个无理数。

假设根号2是一个有理数,即可以表示为两个整数的比值,即根号2=a/b,其中a和b互质。

我们可以将这个假设转化为等式2=a^2/b^2,进而得到2b^2=a^2。

根据整数的奇偶性质,我们可以知道a必须为偶数。

那么我们可以将a表示为a=2k,其中k为整数。

将这个结果代入等式2b^2=a^2中,得到2b^2=(2k)^2,即2b^2=4k^2。

进一步简化等式,得到b^2=2k^2。

同样地,根据整数的奇偶性质,我们可以知道b也必须为偶数。

然而,根据我们一开始的假设,a和b应该是互质的,不可能同时为偶数。

这与我们得到的结论相矛盾。

因此,我们可以得出结论,假设根号2是一个有理数是错误的,即根号2是一个无理数。

练习题2:证明任意两个正整数的最大公约数存在。

假设不存在任意两个正整数的最大公约数。

即对于任意两个正整数a和b,它们的最大公约数不存在。

根据这个假设,我们可以得出结论,a和b的最大公约数是1。

因为如果存在一个大于1的公约数,那么它就是最大公约数,与我们的假设相矛盾。

根据最大公约数的定义,最大公约数是能够同时整除a和b的最大正整数。

既然最大公约数是1,那么1能够同时整除a和b,即a和b互质。

然而,我们知道存在无数个互质的正整数对,例如3和5,7和11等等。

这与我们的假设相矛盾,因为我们假设不存在任意两个正整数的最大公约数。

因此,我们可以得出结论,任意两个正整数的最大公约数是存在的。

通过以上两个练习题的分析,我们可以看到反证法在数学证明中的重要性。

通过假设命题不成立,然后推导出矛盾的结论,我们可以证明原命题的正确性。

反证法不仅仅在数学领域有应用,它也被广泛应用于其他领域的推理和证明过程中。

反证法解答题专项练习30题(有答案)ok

反证法解答题专项练习30题(有答案)ok

反证法解答题专项练习30题(有答案)ok反证法解答题专项练习30题(有答案)1.求证:在△ABC中至多有两个角大于或等于60°.2.设a、b、c都是实数,考虑如下3个命题:①若a2+ab+c>0,且c>1,则0<b<2;②若c>1且0<b<2,则a2+ab+c>0;③若0<b<2,且a2+ab+c>0,则c>1.试判断哪些命题是正确的,哪些是不正确的,对你认为正确的命题给出证明;你认为不正确的命题,用反例予以否定.3.用反证法证明“三角形的三个内角中,至少有一个内角小于或等于60°”证明:假设所求证的结论不成立,即∠A _________ 60°,∠B _________ 60°,∠C _________ 60°,则∠A+∠B+∠C>_________ .这与_________ 相矛盾.∴_________ 不成立.∴_________ .4.用反证法证明(填空):两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.求证:l1_________ l2证明:假设l1_________ l2,即l1与l2交与相交于一点P.则∠1+∠2+∠P _________ 180°_________所以∠1+∠2 _________ 180°,这与_________ 矛盾,故_________ 不成立.所以_________ .5.完形填空:已知:如图,直线a、b被c所截;∠1、∠2是同位角,且∠1≠∠2,求证:a不平行b.证明:假设_________ ,则_________ ,(两直线平行,同位角相等)这与_________ 相矛盾,所以_________ 不成立,故a不平行b.6.求证:在△ABC中,∠B≠∠C,则AB≠AC(提示:反证法)7.用反证法证明一个三角形中不能有两个角是直角.8.反证法证明:如果实数a、b满足a2+b2=0,那么a=0且b=0.9.如图,在△ABC中,AB=AC,P是△ABC内的一点,且∠APB>∠APC,求证:PB<PC(反证法)10.证明已知△ABC中不能有两个钝角.11.举反例说明下列命题是假命题.(1)一个角的补角大于这个角;(2)已知直线a,b,c,若a⊥b,b⊥c,则a⊥c.12.证明题:如图所示,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC.13.用反例证明命题“一个锐角与一个钝角的和等于一个平角”是假命题.14.用反证法证明:在同一平面内,a,b,c互不重合,若a∥b,b∥c,则a∥c.15.已知直线a,b,c,且a∥b,c与a相交,求证:c与b也相交.16.用反证法证明:(1)已知:a<|a|,求证:a必为负数.(2)求证:形如4n+3的整数k(n为整数)不能化为两个整数的平方和.17.用反证法证明:等腰三角形两底角必为锐角.18.求证:两个三角形有两条边对应相等,如果所夹的角不相等,那么夹角所对的边也不相等.19.用反证法证明下列问题:如图,在△ABC中,点D、E分别在AC、AB上,BD、CE相交于点O.求证:BD和CE不可能互相平分.20.在线段AB上依次取C、D、E三点,将AB分为四段,试说明至少有一段不小于AB,同时,至少有一段不大于AB.21.如图所示,在△ABC中,AB>AC,AD是内角平分线,AM是BC边上的中线,求证:点M不在线段CD上.22.已知a,b,c,d四个数满足a+b=1,c+d=1,ac+bd>1.求证:这四个数中至少有一个是负数.23.设a,b,c是不全相等的任意整数,若x=a2﹣bc,y=b2﹣ac,z=c2﹣ab.求证:x,y,z中至少有一个大于零.24.用反证法证明:一条线段只有一个中点.25.如图,在△ABC中,D、E两点分别在AB和AC上,求证:CD、BE不可能互相平分.26.能否找到7个整数,使得这7个整数沿圆周排成一圈后,任3个相邻数的和都等于29?如果能,请举一例.如果不能,请简述理由.27.将自然数1,2,3,…,21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.28.已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.29.已知:△ABC的三个外角为∠1,∠2,∠3.求证:∠1,∠2,∠3中至多有一个锐角.30.已知一平面内的任意四点,其中任何三点都不在一条直线上,试问:是否一定能从这样的四点中选出三点构成一个三角形,使得这个三角形至少有一内角不大于45°?请证明你的结论.参考答案:1.证明:假设一个三角形中有3个内角大于60°,则∠A>60°,∠B>60°,∠C>60°;∴∠A+∠B+∠C>180°,这与三角形内角和等于180°相矛盾,故在△ABC中至多有两个角大于或等于60°2.解:令b=4,c=5可以证明命题①不正确.若b=1,c=,可以证明命题③不正确.命题②正确,证明如下由c>1,且0<b<2,得0<<1<c.则c >>,c >>0故a2+ab+c=+(c ﹣)>03.解:证明:假设所求证的结论不成立,即∠A>60°,∠B>60°,∠C>60°,则∠A+∠B+∠C>180°.这与内角和为180°相矛盾.则假设不成立.则求证的命题正确.故答案为:>,>,>,180°,内角和180°,假设,求证的命题正确4.证明:假设l1不平行l2,即l1与l2交与相交于一点P.则∠1+∠2+∠P=180°(三角形内角和定理),所以∠1+∠2<180°,这与∠1+∠2=180°矛盾,故假设不成立.所以结论成立,l1∥l25.证明:假设a∥b,∴∠1=∠2,(两直线平行,同位角相等.),与已知∠1≠∠2相矛盾,∴假设不成立,∴a不平行b6.证明:假设AB=AC,则,∠B=∠C,与已知矛盾,所以AB≠AC 假设三角形的三个内角A、B、C中有两个直角,不妨设∠A=∠B=90°,则A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,∴∠A=∠B=90°不成立;所以一个三角形中不能有两个直角8.证明:假设如果实数a、b满足a2+b2=0,那么a≠0且b≠0,∵a≠0,b≠0,∴a2>0,b2>0,∴a2+b2>0,∴与a2+b2=0出现矛盾,故假设不成立,原命题正确9.证明:①假设PB=PC.∵AB=AC,∴∠ABC=∠ACB.∵PB=PC,∴∠PBC=∠PCB.∴∠ABC﹣∠PBC=∠ACB﹣∠PCB,∴∠ABP=∠ACP,在△ABP和△ACP中∴△ABP≌△ACP,∴∠APB=∠APC.这与题目中给定的∠APB>∠APC矛盾,∴PB=PC是不可能的.②假设PB>PC,∵AB=AC,∴∠ABC=∠ACB.∵PB>PC,∴∠PCB>∠PBC.∴∠ABC﹣∠PBC>∠ACB﹣∠PCB,∴∠ABP>∠ACP,又∠APB>∠APC,∴∠ABP+∠APB>∠ACP+∠APC,∴180°﹣∠ABP﹣∠APB<180°﹣∠ACP﹣∠APC,∴∠BAP<∠CAP,结合AB=AC、AP=AP,得:PB<PC.这与假设的PB>PC矛盾,∴PB>PC是不可能的.综上所述,得:PB<PC10.证明:假设△ABC中能有两个钝角,即∠A<90°,∠B>90°,∠C>90°;所以∠A+∠B+∠C>180°,与三角形的内角和为180°矛盾;所以假设不成立,因此原命题正确,即△ABC中不能有两个钝角11.解:(1)如果设∠A=100°,那么∠A的补角=80°<100°,所以命题:“一个角的补角大于这个角”是假∵a⊥b,∴∠1=90°,∵b⊥c,∴∠2=90°,∴∠1=∠2,∴a∥c.故命题:“已知直线a,b,c,若a⊥b,b⊥c,则a⊥c”是假命题12.证明:假设PB≠PC不成立,则PB=PC,∠PBC=∠PCB;又∵AB=AC,∴∠ABC=∠ACB;∴∠ABP=∠ACP;∴△ABP≌△ACP,∴∠APB=∠APC;与∠APB≠∠APC相矛盾.因而PB=PC不成立,则PB≠PC13.解:设一个锐角为30°,一个钝角为200°;则它们的度数和为230°≠180°,因此不是平角;故原命题是假命题14.解:假设a∥c不成立,则a,c一定相交,假设交点是P;则过点P,与已知直线b平行的直线有两条:a、c;与经过一点有且只有一条直线与已知直线平行相矛盾;因而假设错误.故a∥c15.证明:假设c∥b;∵a∥b,∴c∥a,这与c和a相交相矛盾,假设不成立;所以c与b也相交16.证明:(1)假设a≥0,则|a|=a,这与已知|a|>a 相矛盾,因此假设不成立,所以a必为负数;(2)假设4n+3的整数部分k能化成两个整数的平方和,不妨设这两个整数为α,β,则4n+3=α2+β2,因为(n+2)2+(﹣n2﹣1)≠α2+β2,所以假设不成立,故4n+3的整数k不能化为两个整数的平方和17.证明:①设等腰三角形底角∠B,∠C都是直角,则∠B+∠C=180°,而∠A+∠B+∠C=180°+∠A>180°,这与三角形内角和等于180°矛盾.而∠A+∠B+∠C>180°,这与三角形内角和等于180°矛盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐角.故等腰三角形两底角必为锐角18.已知:AB=A′B′,BC=B′C′,∠B≠∠B′,求证:AC≠A′C′.证明:假设AC=A′C′,在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(SSS),∴∠B=∠B′,∴与已知,∠B≠∠B′矛盾,则假设不成立,∴AC≠A′C′.19.证明:连接DE,假设BD和CE互相平分,∴四边形EBCD是平行四边形,∴BE∥CD,∵在△ABC中,点D、E分别在AC、AB上,∴AC不可能平行于AC,与已知出现矛盾,故假设不成立原命题正确,即BD和CE不可能互相平分20.解:假设每一段都小于AB,则四段之和小于AB,这与已知四段之和等于AB相矛盾,假设错误,所以至少有一段不小于AB ,同时,至少有一段不大于AB21.解:假设点M不在线段CD上不成立,则点M在线段CD上.延长AM到N,使AM=MN,连接BN;在△AMC和△NMB中,BM=CM,∠AMC=∠BMN,AM=MN,∴△AMC≌△NMB(SAS);∴∠MAC=∠MNB,BN=AC;∴BN>AB,即AC>AB;与AB>AC相矛盾.因而M在线段CD上是错误的.所以点M不在线段CD上22.证明:假设a、b、c、d都是非负数,∵a+b=c+d=1,∴(a+b)(c+d)=1.∴ac+bd+bc+ad=1≥ac+bd.这与ac+bd>1矛盾.所以假设不成立,即a、b、c、d中至少有一个负数23.证明:假设x,y,z都小于0,∵x=a2﹣bc,y=b2﹣ca,z=c2﹣ab,∴2(x+y+z)=2a2﹣2bc+2b2﹣2ca+2c2﹣2ab=(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ca+c2)=(a﹣b)2+(b﹣c)2+(c﹣a)2<0,∴这与(a﹣b)2+(b﹣c)2+(c﹣a)2≥0矛盾,故假设不成立,∴x,y,z中至少有一个大于零24.已知:一条线段AB,M为AB的中点.求证:线段AB只有一个中点M.证明:假设线段AB有两个中点M、N,不妨设M在N的左边,则AM<AN,又因为AM=AB=AN=AB,这与AM<AN矛盾,所以线段AB只有一个中点M25.证明:假设CD、BE可以互相平分.则连接DE.则四边形BCED是平行四边形.∴BD∥CE与△ABC相矛盾所以:CD、BE不可能互相平分26.解:不能.理由:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排则a1+a2+a3=29,a2+a3+a4=29,a3+a4+a5=29,a4+a5+a6=29,a5+a6+a7=29,a6+a7+a1=29,a7+a1+a2=29.将上述7式相加,得3×(a1+a2+a3+a4+a5+a6+a7)=29×7.所以,与a1+a2+a3+a4+a5+a6+a7为整数矛盾!所以不存在满足题设要求的7个整数27.解:假设所有相邻的三个数,它们的和都小于33,则它们的和小于等于32.∴这21个数的和的最大值小于等于:32×21÷3=224,但是实际上,1+2+3+…+21=(1+21)×21÷2=231>224,所以假设不成立,则命题得证,∴将自然数1,2,3…21这21个数,任意地放在一个圆周上,其中一定有相邻的三个数,它们的和大于等于3328.证明:用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3不整除b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍数,矛盾;(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则a2+b2=(3m±1)2+(3n±1)2,=9m2±6m+1+9n2±6n+1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾;同理分别设a=3m±2,b=3n±1或a=3m,b=3n±2,或a=3m±2,b=3n±2,代入a2+b2会得到相同的结论.由此可知,a,b都是3的倍数29.证明:因为三角形的每一个外角都与相邻的内角互补,因为当相邻的内角是钝角时,这个外角才是锐角,又因为三角形中最多只有一个内角是钝角,所以三角形的三个外角中最多只有一个锐角30.证明:能.(1)如图a,若四点A,B,C,D构成凸四边形.则必有一个内角≤90°.不妨设为∠A.这是因为,假设四个内角都大于90°,则360°=∠A+∠B+∠C+∠D>4×90°=360°.矛盾.则∠BAC+∠CAD≤90°.则∠BAC与∠CAD 中必有一个≤×90°=45°.故结论成立.(2)如图b.若四点A,B,C,D构成四边形.则△ABC 中必有一个内角≤×180°=60°.不防设∠A≤60°.又∠A=∠BAD+∠CAD≤60°.则∠BAD与∠CAD值中必有一个≤×60°<45°.故结论成立。

反证法证明题(简单)(可编辑修改word版)

反证法证明题(简单)(可编辑修改word版)

反证法证明题例1. 已知∠A ,∠B ,∠C 为∆ABC 内角.求证:∠A ,∠B ,∠C 中至少有一个不小于60o.证明:假设∆ABC 的三个内角∠A ,∠B ,∠C 都小于60o,即∠A <60o,∠B <60o,∠C <60o,所以∠A +∠B +∠C < 180O,与三角形内角和等于180o矛盾,所以假设不成立,所求证结论成立.例2. 已知a ≠ 0 ,证明x 的方程ax =b 有且只有一个根.证明:由于a ≠ 0 ,因此方程ax =b 至少有一个根x =b .a 假设方程ax =b 至少存在两个根,不妨设两根分别为x1 , x2 且x1 ≠x2 ,则ax1=b, ax2=b ,所以ax1=ax2,所以a(x1-x2 ) = 0 .因为x1 ≠x2 ,所以x1 -x2 ≠ 0 ,所以a = 0 ,与已知a ≠ 0 矛盾,所以假设不成立,所求证结论成立.例3. 已知a3+b3= 2, 求证a +b ≤ 2 .证明:假设a +b > 2 ,则有a > 2 -b ,所以a3> (2 -b)3即a3> 8 -12b + 6b2-b3,所以a3> 8 -12b + 6b2-b3= 6(b -1)2+ 2 .因为6(b -1)2+ 2 ≥ 2所以a3+b3> 2 ,与已知a3+b3= 2 矛盾.所以假设不成立,所求证结论成立.例4. 设{a n}是公比为的等比数列,S n为它的前n 项和.求证:{S n}不是等比数列.证明:假设是{S }等比数列,则S 2=S ⋅S ,n 2 1 32 2 2 2 1 1 1 即 a 2 (1+ q )2 = a ⋅ a (1+ q + q 2 ) .因为等比数列 a 1 ≠ 0 ,所以(1+ q )2 = 1+ q + q 2 即 q = 0 ,与等比数列 q ≠ 0 矛盾, 所以假设不成立,所求证结论成立.例 5. 证明 是无理数.m 证明:假设 是有理数,则存在互为质数的整数 m ,n 使得 =.n所以 m = 2n 即 m 2 = 2n 2 ,所以 m 2 为偶数,所以m 为偶数.所以设 m = 2k (k ∈ N *) ,从而有4k 2 = 2n 2 即 n 2 = 2k 2 .所以n 2 也为偶数,所以 n 为偶数. 与 m ,n 互为质数矛盾.所以假设不成立,所求证 是无理数成立.例 6. 已知直线 a , b 和平面,如果 a ⊄, b ⊂,且 a / /b ,求证a / /。

不等式反证法经典例题

不等式反证法经典例题

不等式反证法经典例题
一、知识要点:
(一)不等式的定义:用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。

(二)不等式的解:使不等式成立的未知数的值,叫做不等式的解。

(三)不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

(四)不等式的性质:
1、不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变
2、不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

二、题型分析:
题型一:不等式的概念和表达。

反证法练习题

反证法练习题

反证法练习题反证法(reductio ad absurdum),又称间接证明法,是一种常用于数学和逻辑学中的推理方法。

它通过假设待证明的命题为假,推导出一个与已知事实或公理相矛盾的结论,从而证明假设的命题必然为真。

以下是一些反证法的练习题,帮助读者更好地理解和应用反证法。

<段落1>假设存在一个无理数 a 和一个有理数 b,满足 a^b 为有理数,为了证明这个命题是错误的,我们可以采用反证法。

首先,我们假设 a^b为有理数,那么它可以被表示为 p/q 的形式,其中 p 和 q 是整数,且 q 不等于 0。

因此,我们可以得到 a^b = p/q。

<段落2>现在,我们将无理数 a 表示为 a = c^d 的形式,其中 c 和 d 是整数。

代入到 a^b = p/q 中,得到 (c^d)^b = p/q。

根据指数运算的法则,我们可以进一步推导出 c^(d*b) = p/q。

<段落3>根据我们的假设,c、d 和 b 都是整数,因此 d*b 也是整数。

这说明c 的幂次方 c^(d*b) 为有理数。

然而,这与无理数 a 的定义相矛盾。

因此,我们的假设是错误的,即不存在这样的无理数 a 和有理数 b,使得a^b 为有理数。

<段落4>通过反证法,我们证明了 a^b 为有理数这个命题是错误的。

这个例子展示了反证法在数学推理中的应用。

通过假设命题的反面,我们可以推导出与已知事实相矛盾的结论,从而证明假设的命题是错误的。

<段落5>在实际应用中,反证法也被广泛运用在逻辑推理和证明中。

例如,在证明某个命题的充分条件时,可以采用反证法。

假设符合充分条件的命题为假,通过推导出与已知条件相矛盾的结论,我们可以证明这个命题的充分条件必然为真。

<段落6>总结起来,反证法是一种重要的推理方法,它通过推导出与已知事实或公理相矛盾的结论,来证明假设的命题是错误的。

通过练习反证法,我们可以提高逻辑思维能力和证明技巧,使我们在数学和逻辑推理中更加娴熟地运用这一方法。

初三反证法练习题

初三反证法练习题

初三反证法练习题反证法是数学中常用的一种证明方法,通过假设反面来推导出矛盾,从而证明命题的正确性。

下面是一些初三反证法练习题,通过解答这些题目,可以帮助同学们更好地理解和掌握反证法。

1. 证明:不存在最大的有理数。

假设存在一个最大的有理数,记为M。

根据有理数的性质,我们可以找到一个比M大的有理数N,即N=M+1。

显然,N>M,这与M是最大的有理数相矛盾。

因此,不存在最大的有理数。

2. 证明:根号2是无理数。

假设根号2是有理数,即可以表示为两个互质的整数p和q的比值,即根号2=p/q。

我们可以进一步假设p和q没有公因数,否则可以约分。

将等式两边平方得到2=p^2/q^2,整理得到p^2=2q^2。

这说明p^2是2的倍数,根据整数分解定理,p也是2的倍数。

设p=2k,代入等式得到(2k)^2=2q^2,整理得到2k^2=q^2。

这说明q^2是2的倍数,因此q也是2的倍数。

这与p和q没有公因数相矛盾,因此假设不成立,根号2是无理数。

3. 证明:不存在无限递增的整数序列。

假设存在一个无限递增的整数序列a1, a2, a3, ...。

我们可以取相邻的两个数ai和ai+1,如果ai>=ai+1,那么这个序列不是无限递增的;如果ai<ai+1,那么我们可以找到一个大于ai+1的整数,记为N,这与序列无限递增相矛盾。

因此,不存在无限递增的整数序列。

4. 证明:存在无限个素数。

假设只有有限个素数,记为p1, p2, p3, ..., pn。

我们考虑数N=p1*p2*p3*...*pn+1,显然N大于任意一个素数pi。

根据素数的定义,N只能是合数,即可被p1, p2, p3, ..., pn中的至少一个素数整除。

但是,N除以任意一个素数pi的余数都不为0,这与N是合数相矛盾。

因此,假设不成立,存在无限个素数。

通过这些反证法练习题的解答,我们可以看到反证法在数学证明中的重要作用。

通过假设反面来推导出矛盾,从而证明命题的正确性。

《反证法》练习题

《反证法》练习题

A 9.用反证法证明:“一个三角形中至多有一个钝角”时,应假设( ) A.一个三角形中至少有两个钝角 B.一个三角形中至多有两个钝角 C.一个三角形中至少有一个钝角 D.一个三角形中没有钝角
10.试证明命题“两直线相交有且只有一个交点”.并将下列过程补充完 整:
已知直线a,b,求证:直线a,b相交时只有一个交点P. 证明:假设a,b相交时___不__止__一__个__交__点__P___, 不妨设其他交点中有一个为P′,则点P和点P′既在直线a上又在直线b上,那 么经过P和P′的直线__________,这与___________________相矛盾,因此假 设不成立,所以两条直线相就交有只两有条一个交点.两点确定一条直线
7.用反证法证明:两条直线被第三条直线所截,如果同旁内角互补,那 么这两条直线平行.
已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.
求证:假设l1__不__平__行___l2,即l1与l2相交于一点P,
则∠1+∠2+∠P=____,所以∠1+∠2____180°, 这与______________1_8_0_°____矛盾,故假设<不成立,所以____.
11.试用举反例的方法说明下列命题是假命题. 举例:如果ab<0,那么a+b<0. 反例:设a=4,b=-3,ab=4×(-3)=-12<0,而a+b=4+(-3)=1>0. 所以,这个命题是假命题. (1)如果a+b>0,那么ab>0; (2)如果a是无理数,b是无理数,那么a+b是无理数; (3)两个三角形中,两边及其中一边的对角对应相等,则这两个三角形全等.
第四章 平行四边形
4.6 反证法希伯索斯 发现了无理数 2,导致了第一次数学危机, 2是无理数的证明如下:
假设 2是有理数,那么它可以表示成qp(p 与 q 是互质的两个正整数).

小学数学反证法经典例题

小学数学反证法经典例题

小学数学反证法经典例题
张明和李强是同一个班上的同学,放学后两人走在大街上路过一家餐馆,发现这家餐馆没有几个客人,张明说:“这家餐馆做的饭不好吃”,李强问:“为什么?”,张明回答:“假设这家餐馆做的饭好吃,那么生意一定很好。

也就是客人很多,但现在这家餐馆的客人稀少,所以假设不成立,也即这家餐馆做的饭不好吃是正确的”。

从数学上看,上面就是应用了反证法。

用反证法证明命题实际上是这样的一个思维过程:假定“结论不成立”,结论一不成立就会出毛病,这个毛病是与已知条件相矛盾,与定理或公理相矛盾的方式暴露出来的。

这个毛病是怎样造成的呢?推理没有错误,已知条件没有错误,定理或公理没有错误,唯一有错误的就是假设“结论不成立”错误。

“结论成立”与“结论不成立”必然有一个正确。

既然“结论不成立”错误,那么结论成立一定是正确的。

反证法练习题

反证法练习题

反证法练习题证明题1.求证:两组对边的和相等的四边形外切于一圆.2.已知△ABC与△A′BC有公共边BC,且A′B+A′C>AB+AC.求证点A′在△ABC 的外部.3.求证:相交两圆的两个交点不能同在连心线的同侧.4.用反证法证明:直角三角形斜边上的中点到三顶点的距离相等.5.已知△ABC中,AB>AC,∠ABC和∠ACB的平分线相交于O点.求证:AO与BC不垂直.6.在同圆中,如果两条弦的弦心距不等,那么这两条弦也不等.7.求证:两条直线相交,只有一个交点.8.求证:一直线的垂线和非垂线一定相交.9.在四边形ABCD中,已知AB≠CD,求证AC,BD必不能互相平分.10.已知直线l1∥直线l2,直线m1∥直线 m2,且l1,m1相交于点P.求证l2与m2必相交.11.求证:若四边形的一组对边的中点连线等于另一组对边的和的一半,则另一组对边必互相平行.12.已知△ABC中,∠ACB=90°,以AB为直径作⊙O.求证C点必在⊙O上.13.已知△ABC与△A′BC有公共边BC,且∠BA′C<∠BAC.求证点A′在△ABC的外部.14.求证:梯形必不是中心对称图形.15.已知如图7-399,在△ABC中,AB=AC,P是△ABC内部的一点,且∠APB≠∠APC.求证PB≠PC.练习题提示证明题1.提示:设四边形ABCD中AB+CD=BC+DA.假设它不外切于圆,可作⊙O与AB,BC,CD 相切,则⊙O必不与DA相切.作D′A与⊙O相切并与射线CD相交于D′,则AB+CD′=BC+D′A.与已知条件左右各相减,得DD′=|DA-D′A|,但在△ADD′中这不可能;所以四边形ABCD外切于圆.2.提示:假设A′在△ABC内部,由练习题(已知:P为△ABC内任意一点,连接PB,PC.求证:BC<PB+PC<AB+AC)可知A′B+A′C<AB+AC,这与已知矛盾;所以A′不在△ABC 内部.设A′在边AB或AC上,显然有A′B+A′C<AB+AC,这也与已知矛盾.所以点A′在△ABC的外部.3.提示:设⊙O与⊙O′相交于点A,B.假设A,B在连心线OO′同侧.由于∠OO′B=∠OO′A,∠O′OB=∠O′OA,显然B与A重合,即⊙O与⊙O′相交于一点,这与已知矛盾;所以A,B不能同在连心线的同侧.4.提示:设直角△ABC的斜边AB的中点为D.假设AD=BD<CD,设法证出∠C为锐角,这与已知矛盾.假设AD=BD>CD,设法证出∠C为钝角,这也与已知矛盾.所以只有AD=BD=CD.5.提示:假设AO⊥BC.由于O是∠B、∠C的平分线的交点,所以AO是∠A的平分线.这样就有AB=AC,这与已知矛盾;所以AO与BC不垂直.6.提示:设AB,CD是⊙O的两条弦,OE⊥AB于E,OF⊥CD于F,且OE≠OF.假设AB=CD,则OE=OF,这与已知OE≠OF矛盾.所以假设不成立.所以AB≠CD.7.提示:设直线AB,CD相交于M.假设直线AB,CD另有一个交点N,这说明经过M,N两点有两条直线AB和CD,这与公理经过两点有且只有一条直线矛盾.故假设不成立.所以AB,CD只有一个交点.8.提示:设直线a⊥直线l,直线b不垂直于l.假设a和b不相交,则a∥b,从而b⊥l,但这与已知矛盾;所以a和b相交.9.提示:假设AC和BD互相平分,则可推出AB=CD,但这与已知矛盾;所以AC和BD 不能互相平分.10.提示:假设l2与m2不相交,则l2∥m2.因为l1∥l2.所以l1∥m2.因为m1∥m2,所以l1∥m1.这与已知l1与m1相交于点P矛盾.所以假设不成立.所以l2与m2必相交.11.提示:设M和N分别是四边形ABCD的边AB和CD的中点,并而MP+PN=MN.但假定AD不平行于BC,P不会在MN上,所以上面这个等式不成立;从而AD∥BC.12.提示:假设点C不在⊙O的圆周上,则点C在⊙O的内部或外部.(1)若C在⊙O内部,延长AC交⊙O于D,连接BD,则∠D=90°.因为∠ACB是△CDB 的外角,所以∠ACB>∠D.所以∠ACB>90°.这与已知∠ACB=90°矛盾.(2)若C在⊙O外部,设AC交⊙O于E,连接BE,则∠AEB=90°.因为∠AEB是△CEB 的外角,所以∠AEB>∠ACB,就有∠ACB<90°.这与已知∠ACB=90°矛盾.综合(1),(2)可知假设不成立.所以C点必在⊙O上.13.提示:假设A′在△ABC内部,由几何一第三章§8第5题可知∠BA′C>∠BAC,这与已知矛盾;所以A′不在△ABC内部.设A′在边AB或AC上,显然有∠BA′C>∠BAC,这也与已知矛盾.所以点A′在△ABC的外部.14.提示:设在梯形ABCD中,AD∥BC,AB不平行于CD.假设它是中心对称图形,O为对称中心.作A和B关于O的对称点A′和B′.则线段A′B′是边AB的对称图形.A′B′或位于BC上,或CD上,或AD上.但A′B′平行于AB,所以或BC或CD或AD平行于AB,这与已知矛盾;所以梯形ABCD不是中心对称图形.15.提示:假设PB=PC,则∠PBC=∠PCB.因为AB=AC,所以∠ABC=∠ACB,所以∠ABP=∠ACP.因为AB=AC,PB=PC,AP=AP,所以△ABP≌△ACP.所以∠APB=∠APC.这与已知∠APB≠APC矛盾.所以假设不成立,就有PB≠PC.。

反证法练习题

反证法练习题

反证法精选题26道一.选择题(共18小题)1.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°2.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°3.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°4.已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾.②因此假设不成立.∴∠B<90°.③假设在△ABC中,∠B≥90°.④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②5.要证明命题“若a>b,则a2>b2”是假命题,下列a,b的值不能作为反例的是()A.a=1,b=﹣2B.a=0,b=﹣1C.a=﹣1,b=﹣2D.a=2,b=﹣1 6.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=27.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°8.用反证法证明“三角形中至少有一个内角大于或等于60°”时,应先假设()A.有一个内角小于60°B.每一个内角都小于60°C.有一个内角大于60°D.每一个内角都大于60°9.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A.5B.2C.4D.810.用反证法证明命题“一个三角形中至多有一个角是直角”,应先假设这个三角形中()A.至少有两个角是直角B.没有直角C.至少有一个角是直角D.有一个角是钝角,一个角是直角11.用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b.”第一步应假设()A.a<b B.a=b C.a≤b D.a≥b12.用反证法证明:“一个三角形中,至少有一个内角大于或等于60°”.应假设()A.一个三角形中没有一个角大于或等于60°B.一个三角形中至少有一个角小于60°C.一个三角形中三个角都大于等于60°D.一个三角形中有一个角大于等于60°13.用反证法证明:“一个三角形中至多有一个角不小于90°”时,应假设()A.一个三角形中至少有两个角不小于90°B.一个三角形中至多有一个角不小于90°C.一个三角形中至少有一个角不小于90°D.一个三角形中没有一个角不小于90°14.用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°15.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角( )A .小于60°B .等于60°C .大于60°D .大于或等于60°16.已知五个正数的和等于1,用反证法证明:这五个正数中至少有一个大于或等于15,先要假设这五个正数( )A .都大于15B .都小于15C .没有一个小于15D .没有一个大于1517.下列说法正确的个数( )①近似数32.6×102精确到十分位: ②在√2,−(−2)2,√83,﹣|−√2|中,最小的数是√83③如图所示,在数轴上点P 所表示的数为﹣1+√5④反证法证明命题“一个三角形中最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”⑤如图②,在△ABC 内一点P 到这三条边的距离相等,则点P 是三个角平分线的交点A .1B .2C .3D .418.用反证法证明“a >0”时,应先假设结论的反面,下列假设正确的是( )A .a <0B .a =0C .a ≠0D .a ≤0二.填空题(共8小题)19.用反证法证明命题“三角形中至少有一个内角大于或等于60°“,应假设 .20.用反证法证明“一个三角形中最多有一个内角是钝角”的第一步是 .21.用反证法证明“如果|a |>a ,那么a <0.”是真命题时,第一步应先假设 .22.用反证法证明“在三角形中,至少有一个内角大于或等于60°”时,应先假设 .23.用反证方法证明“在△ABC 中,AB =AC ,则∠B 必为锐角”的第一步是假设 .24.用反证法证明“内错角相等,两直线平行”时,首先要假设 .25.如图,直线AB 、CD 被直线EF 所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB 与CD不平行.用反证法证明这个命题时,应先假设:.26.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下:小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.如图1,我们想要证明“如果直线AB,CD被直线所截EF,AB∥CD,那么∠EOB=∠EO'D.”如图2,假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.请补充上述证明过程中的基本事实:.。

反证法经典专题(带解析)

反证法经典专题(带解析)

反证法专题50道18.用反证法证明命题“设a,b为实数,则方程30至少有两个实根”时,要x ax b做的假设是()A.方程30恰好有两个实根x ax bx ax b没有实根B.方程30C.方程30至多有一个实根x ax b至多有两个实根D.方程30x ax ba b ,则,a b至少有一个小于0”时,假设应为()19.利用反证法证明“若0A.,a b都小于0B.,a b都不小于0C.,a b至少有一个不小于0D.,a b至多有一个小于020.用反证法证明命题时,对结论:“自然数a,b,c中至少有一个是奇数”正确的假设为()A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个奇数D.a,b,c中至少有两个偶数或都是奇数第1页,共17页参考答案:1.A【分析】根据命题的结论的否定进行判断即可.【详解】因为a ,b 中至少有一个能被5整除的否定是a ,b 都不能被5整除,所以假设的内容应该是a ,b 都不能被5整除,故选:A 2.B【分析】“至少有一个”的否定是“一个也没有”,进而可得答案.【详解】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.“至少有一个”的否定是“一个也没有”,故命题“a ,b ∈N+,如果ab 可被5整除,那么a ,b 至少有1个能被5整除”的否定是“a ,b 都不能被5整除”.故选:B .3.C【分析】根据反证法的定义即可直接得出结果.【详解】由反证法的定义,知在推导过程中,不能把原结论作为条件使用,其他都可以当作条件来使用,所以可以使用结论的否定、已知条件、公理、定理、定义等.故选:C.4.C【分析】根据反证法基本原理,对结论进行否定即可得到结果.【详解】“a 与b 都不能被7整除”的否定为:,a b 至少有一个能被7整除.故选:C.5.D【分析】根据给定条件,利用反证法的意义写出结论的否定作答.【详解】命题“如果0a b ”,“那么22a b ”的结论是22a b ,而反证法证明命题时,是假设结论不成立,即结论的反面成立,所以所求假设是22a b .故选:D 6.C答案第2页,共17页【分析】取命题的反面即可.【详解】用反证法证明命题,应先假设它的反面成立,即1x 且1y ,故选:C .7.D【分析】利用反证法证明规则即可得到应假设0x 或0y .【详解】利用反证法证明,应先假设结论不成立,本题应假设0x 或0y 故选:D 8.C【分析】根据反证法证明命题的方法,应先假设命题的反面成立,故求出命题的反面即可.【详解】“x ,y 至多有一个大于0”包括“x ,y 都不大于0和有且仅有一个大于0”,故其对立面为“x ,y 都大于0”.故选:C.9.C【分析】反证法中“a ,b ,c 至少有一个是无理数”的假设为“假设a ,b ,c 都不是无理数”,对照选项即可得到答案.【详解】依题意,反证法中“a ,b ,c 至少有一个是无理数”的假设为“假设a ,b ,c 都不是无理数”,即“假设a ,b ,c 都是有理数”.故选:C.10.A【分析】根据“至少有一个大于”的反设是“三个都不大于”可直接得到结果.【详解】“至少有一个大于”的反设是“三个都不大于”,反设正确的是“三个内角都不大于60 ”.故选:A.11.B【分析】根据“至少有一个是偶数”的否定形式可直接判断出结果.【详解】∵“至少有一个是偶数”的否定形式为“都不是偶数”,假设正确的是:假设,,a b c 都不是偶数.故选:B.12.B【分析】“反证法”就是从命题的反面即否定形式入手考虑题设.故答案为:若“6x y ,则3x 且4y ”成立.45.0x 且0y 【分析】根据反证法思想,写出原命题证明中的假设条件即可.【详解】由反证法思想:否定原结论,推出矛盾,所以题设命题的证明,应假设0x 且0y .故答案为:0x 且0y 46.02a 【分析】根据反证法的结构特点可得正确的假设.【详解】对于命题:“已知a R ,若|1|1a ,则a<0或2a ”,用反证法证明时应假设:若02a .故答案为:02a .47.a b 且b c 成立【分析】假设结论的反面成立,即可求解.【详解】解:假设结论的反面成立,即a b 且b c 成立.故答案为:a b 且b c 成立.48.在一个三角形中至少有两个内角是钝角【分析】依据命题的否定即可求得结论的否定为“在一个三角形中至少有两个内角是钝角”【详解】命题“一个三角形中最多只有一个内角是钝角”的否定为“在一个三角形中至少有两个内角是钝角”故答案为:在一个三角形中至少有两个内角是钝角49.1x 且1y 【分析】根据给定条件,写出已知命题结论的否定作答.【详解】命题若2x y ,则1x 或1y 的结论是“1x 或1y ”,其否定为“1x 且1y ”,所以假设的内容应该是:1x 且1y .故答案为:1x 且1y 50.1x 且1y 【分析】根据反证法的原理可知.【详解】根据反证法的原理可知,求证1x 或1y 时,应首先假设1x 且1y .故答案为:1x 且1y 51.a ,b ,c 中至少有两个偶数【分析】用反证法证明某命题时,应先假设命题的否定成立,所以找出命题的否定是解题的关键.【详解】用反证法证明某命题时,应先假设命题的否定成立.因为“自然数a,b,c中至多有一个偶数”的否定是:“a,b,c中至少有两个偶数”,所以用反证法证明“自然数a,b,c中至多有一个偶数”时,假设应为“a,b,c中至少有两个偶数”,故答案为:a,b,c中至少有两个偶数.。

高中数学反证法例题

高中数学反证法例题

高中数学反证法例题高中数学反证法例题一选择题1.否定结论“至多有两个解”的说法中,正确的是()A.有一个解B.有两个解C.至少有三个解D.至少有两个解[答案] C[解析]在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为()A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数[答案] B[解析]a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是()A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°[答案] B[解析]“至少有一个不大于”的否定是“都大于60°”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是()A.假设a,b,c都是偶数B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数[答案] B[解析]“至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.5.命题“△ABC中,若&ang;A>&ang;B,则a>b”的结论的否定应该是()A.aB.a&le;bC.a=bD.a&ge;b[答案] B[解析]“a>b”的否定应为“a=b或a6.已知a,b是异面直线,直线c平行于直线a,那么c 与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线[答案] C[解析]假设c∥b,而由c∥a,可得a∥b,这与a,b 异面矛盾,故c与b不可能是平行直线.故应选C.7.设a,b,c&isin;(-&infin;,0),则三数a+1b,c+1a,b+1c中()A.都不大于-2B.都不小于-2C.至少有一个不大于-2D.至少有一个不小于-2[答案] C[解析]a+1b+c+1a+b+1c=a+1a+b+1b+c+1c∵a,b,c&isin;(-&infin;,0),∴a+1a=--a+-1a&le;-2b+1b=--b+-1b&le;-2c+1c=--c+-1c&le;-2∴a+1b+c+1a+b+1c&le;-6∴三数a+1b、c+1a、b+1c中至少有一个不大于-2,故应选C.8.若P是两条异面直线l、m外的任意一点,则()A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面[答案] B[解析]对于A,若存在直线n,使n∥l且n∥m则有l∥m,与l、m异面矛盾;对于C,过点P与l、m 都相交的直线不一定存在,反例如图(l∥α);对于D,过点P 与l、m都异面的直线不唯一.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是()A.甲B.乙C.丙D.丁[答案] C[解析]因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.10.已知x1>0,x1≠1且xn+1=xn(x2n+3)3x2n+1(n=1,2…),试证“数列{xn}或者对任意正整数n都满足xnxn+1”,当此题用反证法否定结论时,应为()A.对任意的正整数n,都有xn=xn+1B.存在正整数n,使xn=xn+1C.存在正整数n,使xn&ge;xn+1且xn&le;xn-1D.存在正整数n,使(xn-xn-1)(xn-xn+1)&ge;0[答案] D[解析]命题的结论是“对任意正整数n,数列{xn}是递增数列或是递减数列”,其反设是“存在正整数n,使数列既不是递增数列,也不是递减数列”.故应选D.高中数学反证法例题二填空题11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案]没有一个是三角形或四边形或五边形[解析]“至少有一个”的否定是“没有一个”.12.用反证法证明命题“a,b&isin;N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.[答案]a,b都不能被5整除[解析]“至少有一个”的否定是“都不能”.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①&ang;A+&ang;B+&ang;C=90°+90°+&ang;C>180°,这与三角形内角和为180°相矛盾,则&ang;A=&ang;B=90°不成立;②所以一个三角形中不能有两个直角;③假设&ang;A,&ang;B,&ang;C中有两个角是直角,不妨设&ang;A=&ang;B=90°.正确顺序的序号排列为____________.[答案]③①②[解析]由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.14.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p1、p2、…、pn,令p=p1p2…pn+1.显然,p不含因数p1、p2、…、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个.[答案]质数只有有限多个除p1、p2、…、pn之外[解析]由反证法的步骤可得.高中数学反证法例题三解答题15.已知:a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.[证明]用反证法:假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,不妨设a<0,b<0,c>0,则由a+b+c>0,可得c>-(a+b),又a+b<0,∴c(a+b)<-(a+b)(a+b)ab+c(a+b)<-(a+b)(a+b)+ab即ab+bc+ca<-a2-ab-b2∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,这与已知ab+bc+ca>0矛盾,所以假设不成立.因此a>0,b>0,c>0成立.16.已知a,b,c&isin;(0,1).求证:(1-a)b,(1-b)c,(1-c)a 不能同时大于14.[证明]证法1:假设(1-a)b、(1-b)c、(1-c)a都大于14.∵a、b、c都是小于1的正数,∴1-a、1-b、1-c都是正数.(1-a)+b2&ge;(1-a)b>14=12,同理(1-b)+c2>12,(1-c)+a2>12.三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32>32,矛盾.所以(1-a)b、(1-b)c、(1-c)a不能都大于14.证法2:假设三个式子同时大于14,即(1-a)b>14,(1-b)c>14,(1-c)a>14,三式相乘得(1-a)b(1-b)c(1-c)a>143①因为0同理,0所以(1-a)a(1-b)b(1-c)c&le;143.②因为①与②矛盾,所以假设不成立,故原命题成立.17.已知函数f(x)是(-&infin;,+&infin;)上的增函数,a,b&isin;R.(1)若a+b&ge;0,求证:f(a)+f(b)&ge;f(-a)+f(-b);(2)判断(1)中命题的逆命题是否成立,并证明你的结论.[解析](1)证明:∵a+b&ge;0,∴a&ge;-b.由已知f(x)的单调性得f(a)&ge;f(-b).又a+b&ge;0?b&ge;-a?f(b)&ge;f(-a).两式相加即得:f(a)+f(b)&ge;f(-a)+f(-b).(2)逆命题:f(a)+f(b)&ge;f(-a)+f(-b)?a+b&ge;0.下面用反证法证之.假设a+b<0,那么:a+b<0?a<-b?f(a)?f(a)+f(b)这与已知矛盾,故只有a+b&ge;0.逆命题得证.18.(2019?湖北理,20改编)已知数列{bn}的通项公式为bn=1423n-1.求证:数列{bn}中的任意三项不可能成等差数列.[解析]假设数列{bn}存在三项br、bs、bt(rbs>br,则只可能有2bs=br+bt成立.∴2?1423s-1=1423r-1+1423t-1.两边同乘3t-121-r,化简得3t-r+2t-r=2?2s-r3t-s,由于r故数列{bn}中任意三项不可能成等差数列.。

初二数学反证法练习题

初二数学反证法练习题

初二数学反证法练习题反证法是一种常用的数学证明方法,它通过推导出与已知条件相矛盾的结论来证明一个命题的真假。

在初二数学学习中,反证法常常被用于解决一些复杂的问题。

本文将介绍一些初二数学中常见的反证法练习题,帮助同学们熟悉并掌握反证法的应用。

题目一:证明“根号2是无理数”。

解析:要证明根号2是无理数,首先我们假设根号2是有理数,并将其表示为p/q,其中p和q是互质的整数(即最大公约数为1)。

那么我们可以得到等式2 = (p/q)^2,即2q^2 = p^2。

由此可知,p^2一定是2的倍数,因此p也一定是2的倍数。

令p = 2k(k为整数),则原等式可以写成2q^2 = (2k)^2,简化得q^2 = 2k^2。

同样地,我们可以得出q也是2的倍数。

但这与我们最初假设的“p 和q是互质的整数”相矛盾。

因此,假设错误,根号2不可能表示为有理数,即根号2是无理数。

题目二:证明“开方后是无理数的数的平方是无理数”。

解析:我们假设存在一个数x,它的开方后是无理数,即√x是无理数。

那么我们可以假设√x是有理数,即√x = p/q,其中p和q为整数,且p/q为最简分数。

根据已知条件,我们有x = (√x)^2 = (p/q)^2 = p^2/q^2。

将x的表达式代入上式中,得到x = p^2/q^2。

由此可知,p^2和q^2均为x的因数。

根据因数的性质,我们可以得知p也是x的因数,且q也是x的因数。

这与我们最初的假设“p和q为最简分数”相矛盾,因此假设错误,开方后是无理数的数的平方一定是无理数。

题目三:证明“3不能表示成形如4k+1的整数的平方”。

解析:我们假设存在一个整数m,使得m^2 = 4k + 1,其中k为整数。

那么我们可以得到等式m^2 ≡ 1 (mod 4),即m^2除以4的余数为1。

考虑整数的平方的情况,我们可以得知一个整数的平方只可能是0或1(对4取余)。

根据这个性质,我们可以考虑m的两种情况:情况一:m为偶数假设m = 2n,其中n为整数。

高中数学反证法测试题(含答案)

高中数学反证法测试题(含答案)

高中数学反证法测试题(含答案)一、选择题1.否定结论“至多有两个解”的说法中,正确的是()A .有一个解B.有两个解C.至少有三个解D.至少有两个解[答案] C[解析]在逻辑中“至多有n 个”的否定是“至少有n+1 个”,所以“至多有两个解”的否定为“至少有三个解”,故应选 C.2.否定“自然数a、b、c 中恰有一个偶数”时的正确反设为() A .a、b、 c 都是奇数B.a、b、c 或都是奇数或至少有两个偶数C.a、b、c 都是偶数D.a、b、c 中至少有两个偶数[答案] B[解析] a,b,c 三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选 B.3.用反证法证明命题“三角形的内角中至少有一个不大于60”时,反设正确的是()A .假设三内角都不大于60B .假设三内角都大于60C.假设三内角至多有一个大于60D .假设三内角至多有两个大于60[答案] B[解析] “至少有一个不大于”的否定是“都大于60”.故应选 B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c =0(a0)有有理根,那么a,b,c 中至少有一个是偶数”时,下列假设正确的是()A.假设a,b,c 都是偶数B.假设a、b,c 都不是偶数C.假设a,b,c 至多有一个偶数D.假设a,b,c 至多有两个偶数[答案] B[解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c 都不是偶数.5.命题“△ ABC 中,若B,则ab”的结论的否定应该是() A .abB.abC.a=bD.ab[答案] B[解析]“ ab的”否定应为“=a b或ab”,即ab.故应选B.6.已知a,b是异面直线,直线c平行于直线a,那么c与b 的位置关系为()A .一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线[答案] C[解析]假设c∥ b,而由c∥ a,可得a∥ b,这与a,b 异面矛盾,故 c 与 b 不可能是平行直线.故应选 C.7.设a,b,c(-,0),则三数a+1b,c+1a,b+1c 中()A .都不大于-2B.都不小于-2C.至少有一个不大于-2D .至少有一个不小于-2[答案] C[解析] a+1b+c+1a+b+1c=a+1a+b+1b+c+1c∵a,b,c(-,0),a+1a=--a+-1a-2 b+1b=--b+-1b-2 c+1c =--c+-1c-2 a+1b+c+1a+b+1c-6三数a+1b、c+1a、b+1c 中至少有一个不大于-2,故应选 C.8.若P 是两条异面直线l、m 外的任意一点,则()A.过点P有且仅有一条直线与l、m 都平行B.过点P 有且仅有一条直线与l、m 都垂直C.过点P 有且仅有一条直线与l、m 都相交D.过点P有且仅有一条直线与l、m 都异面[答案] B[解析] 对于 A ,若存在直线n,使n∥l 且n∥m则有l∥m,与l、m 异面矛盾;对于C,过点P与l、m 都相交的直线不一定存在,反例如图(l∥);对于D,过点P与l、m 都异面的直线不唯一.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是() A.甲B.乙C.丙D.丁[答案] C[解析]因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选 C. 10.已知x10,x11 且xn+1=xn(x2n+3)3x2n+1(n=1,2 ⋯),试证“数列{xn} 或者对任意正整数n 都满足xnxn+1,或者对任意正整数n 都满足xnxn +1”,当此题用反证法否定结论时,应为()A .对任意的正整数n,都有xn=xn+1B.存在正整数n,使xn=xn+1C.存在正整数n,使xnxn +1 且xnxn-1D .存在正整数n,使(xn-xn-1)(xn -xn +1)0[答案] D[解析]命题的结论是“对任意正整数n,数列{xn} 是递增数列或是递减数列”,其反设是“存在正整数n,使数列既不是递增数列,也不是递减数列”.故应选 D.二、填空题11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是__ .[答案]没有一个是三角形或四边形或五边形[解析]“至少有一个”的否定是“没有一个”.12.用反证法证明命题“a,bN,ab可被 5 整除,那么a,b 中至少有一个能被 5 整除”,那么反设的内容是[答案] a,b 都不能被5整除[解析]“至少有一个”的否定是“都不能”.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90+90+180,这与三角形内角和为180 相矛盾,则A=B=90 不成立;②所以一个三角形中不能有两个直角;③ ___________________________ 假设 A ,B,C 中有两个角是直角,不妨设A=B=90. 正确顺序的序号排列为.[答案]③①②[解析]由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①② . 14.用反证法证明质数有无限多个的过程如下:假设_____________ .设全体质数为p1、p2、⋯、pn,令p =p1p2⋯pn+ 1.显然,p 不含因数p1、p2、⋯、pn.故p 要么是质数,要么含有______________ 的质因数.这表明,除质数p1、p2、⋯、pn 之外,还有质数,因此原假设不成立.于是,质数有无限多个.[答案]质数只有有限多个除p1、p2、⋯、pn 之外[解析]由反证法的步骤可得.三、解答题15.已知:a+b+c0,ab+bc+ca0,abc0. 求证:a0,b0,c0.[证明]用反证法:假设a,b,c 不都是正数,由abc0 可知,这三个数中必有两个为负数,一个为正数,不妨设a0,b0,c0,则由a+b+c0,可得c-(a+b),又a+b0,c(a+b)-(a+b)(a+b)ab+c(a+b)-(a+b)(a+b)+ab即ab+bc+ca-a2-ab-b2∵a20,ab0,b20,-a2-ab-b2=-(a2+ab+b2)0 ,即ab +bc+ca0,这与已知ab+bc+ca0 矛盾,所以假设不成立.因此a0,b0,c0 成立.16.已知a,b,c(0,1).求证:(1-a)b,(1-b)c,(1 -c)a 不能同时大于14.[证明]证法1:假设(1-a)b、(1-b)c、(1-c)a都大于14.∵ a、b、c 都是小于 1 的正数,1-a、1-b、1-c 都是正数.(1-a)+b2(1-a)b>14=12,同理(1-b)+c2>12,(1-c)+a2>12. 三式相加,得(1-a)+b2+(1-b)+c2+(1-c)+a2>32,即32> 32,矛盾.所以(1-a)b、(1-b)c、(1 -c)a 不能都大于14. 证法2:假设三个式子同时大于14,即(1-a)b14,(1-b)c14,(1-c)a14,三式相乘得(1-a)b(1-b)c(1-c)a143①因为01,所以0a(1-a)1-a+a22=14.同理,0b(1-b)14 ,0c(1-c)14.所以(1-a)a(1-b)b(1-c)c143.② 因为①与②矛盾,所以假设不成立,故原命题成立.17.已知函数f(x)是(-,+)上的增函数,a,bR.(1)若a+b0,求证:f(a)+f(b)f(-a)+f(-b);(2)判断(1)中命题的逆命题是否成立,并证明你的结论.[解析] (1)证明:∵ a+b0,a-b.由已知f(x)的单调性得f(a)f(-b).又a+bb-af(b)f(-a).两式相加即得:f(a)+f(b)f(-a)+f(-b).(2)逆命题:f(a)+f(b)f(-a)+f(-b)a+b0. 下面用反证法证之.假设a+b0,那么:a+ba-bf(a)f( -b)a+bb-af(b)f( -a)f(a)+f(b)f( -a)+f( -b).这与已知矛盾,故只有a+b0.逆命题得证.18.(2019 湖北理,20 改编)已知数列{bn} 的通项公式为bn =1423n- 1.求证:数列{bn} 中的任意三项不可能成等差数列.[解析]假设数列{bn} 存在三项br、bs、bt(rt)按某种顺序成等差数列,由于数列{bn} 是首项为14,公比为23 的等比数列,于是有btbr,则只可能有2bs=br+bt 成立.21423s-1=1423r-1+1423t-1.两边同乘3t-121-r,化简得3t-r+2t-r=22s-r3t-s,由于rt ,所以上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾.课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

两个奇数相加一定是偶数反证法例题

两个奇数相加一定是偶数反证法例题

两个奇数相加一定是偶数反证法例题咱们今天来聊聊一个挺有意思的数学问题——“两个奇数相加一定是偶数”。

听起来是不是有点匪夷所思?别急,咱们一起来用反证法搞定它,看看这个看似简单的问题,背后究竟有啥玄机。

首先呢,咱们得知道“奇数”和“偶数”是啥。

奇数嘛,就是那些加起来能整除2后剩下1的数字,比如1、3、5、7……你懂的。

偶数呢,就是那些能被2整除的数字,比如2、4、6、8。

这俩家伙,平时在数学的世界里可是大名鼎鼎,各有各的特点。

你看,偶数就像是那种和气生财的人,平凡又靠谱。

而奇数呢,则更像那些个性张扬的家伙,充满了不羁与奇特。

好啦,话说回来,为什么说“两个奇数相加一定是偶数”呢?表面上看,这个说法好像有点难以理解。

毕竟,两个“叛逆”个性强的奇数加在一起,咋就能变得那么“规规矩矩”的偶数呢?听着是不是有点像魔术一样?不过,咱们要做的就是用反证法,一步步揭开这层神秘的面纱。

咱们先假设一下:如果两个奇数相加不等于偶数呢?那它就只能是个奇数。

咱们设两个奇数分别为“2k+1”和“2m+1”。

别被这俩公式吓着,这其实就是用数学语言把奇数表达出来的方式,k和m代表的是某个整数。

比如,k可以是1,m可以是2,这样“2k+1”和“2m+1”分别就是3和5,都是奇数。

好了,咱们把这俩奇数加起来,咱们得看看会发生什么。

你瞧,(2k+1) + (2m+1) = 2k + 2m + 2。

你看,这个结果,能不能看成偶数呢?那肯定是!它是2的倍数呀!再怎么说,2k+2m+2都是2的倍数,所以它一定是偶数。

想明白了吧?咱们刚才假设的“两个奇数相加得奇数”就被打脸了!反证法就是这么有意思,一开始咱们瞎猜的结果,最终被数学的力量无情地否定了。

大家可能会觉得,这样一来,事情好像就搞清楚了,两个奇数相加果真是偶数。

咱们是不是也可以顺着这条路,推测出更多类似的结论呢?当然可以!数学的世界充满了规律,你看,两个偶数相加一定是偶数,两个奇数相加也是偶数,甚至你要想两个偶数相减也是偶数,两个奇数相减也是偶数!看,数学多么妙趣横生,简单的规律里蕴含着无限的奥秘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 6.命题“任意多面体的面至少有一个是 三角形或四边形或五边形”的结论的否 定是________.
[答案] 没有一个是三角形或四边形 或五边形
• 7.用反证法证明命题“a,b∈N,ab可 被5整除,那么a,b中至少有一个能被5 整除”,那么反设的内容是 ________________.
[答案] a,b都不能被5整除
例2
证明:假设a与b不平行,则 可设它们相交于点A。 那么过点A 就有两条直 线a、b与直线c平行,这与 “过直线外一点有且只有一 条直线与已知直线平行矛盾, 假设不成立。 ∴a//b.
a b c A
小结:根据假设推出结论除了可以与已知 条件矛盾以外,还可以与我们学过的定理、 公理矛盾
例3
求证:在一个三角形中,至少有一个内角小于 或等于60°。 已知:△ABC 求证:△ABC中至少有一个内角小于或等于60°. 证明:假设 △ABC中没有一个内角小于或等于60°, ∠A>60°,∠B>60°,∠C>60° 则 。 ∴ ∠A+∠B+∠C>60°+60°+60°=180° , 即 ∠A+∠B+∠C>180° 。 这与 三角形的内角和为180度 矛盾.假设不成立. ∴ △ABC中至少有一个内角小于或等于60°. .
一、复习引入
如图,在△ABC中,AB=c,BC=a, AC=b,如果∠C=90°,a、b、c三边有 何关系?为解析: 由∠C=90°可知是直角 三角形,根据勾股定理可知 a2 +b2 =c2 .
二、探究
若将上面的条件改为“在 △ABC中,AB=c,BC=a, AC=b,∠C≠90°”,请问结论a2 +b2 ≠ c2 成立吗?请说明理由。
[解析] a,b,c三个数的奇、偶性有 以下几种情况:①全是奇数;②有两个 奇数,一个偶数;③有一个奇数,两个 偶数;④三个偶数.因为要否定②,所 以假设应为“全是奇数或至少有两个偶数” 故应选B.
• 3.用反证法证明命题:“若整系数一元二次 方程ax2+bx+c=0(a≠0)有有理根,那么a, b,c中至少有一个是偶数”时,下列假设正确 的是( ) • A.假设a,b,c都是偶数 • B.假设a、b,c都不是偶数 • C.假设a,b,c至多有一个偶数 • D.假设a,b,c至多有两个偶数
D
C
五、拓展应用
1、已知:如图,在△ABC中,AB=AC,∠APB≠∠APC。 求证:PB≠PC 证明:假设PB=PC。 在△ABP与△ACP中 AB=AC(已知) AP=AP(公共边) PB=PC(已知) ∴△ABP≌△ACP(S.S.S) ∴∠APB=∠APC(全等三角形对应 B 边相等) 这与已知条件∠APB≠∠APC矛盾, 假设不成立. ∴PB≠PC
问题:
A
b
C
c
a
B
探究:假设a2 +b2 =c2,由勾股定理
可知三角形ABC是直角三角形,且 ∠C=90°,这与已知条件∠C≠90° 矛盾。假设不成立,从而说明原结论 a2 +b2 ≠ c2 成立。
发现知识:
这种证明方法与前面的证明方法不同,它是首先假设结 论的反面成立,然后经过正确的;逻辑推理得出与已知、定 理、公理矛盾的结论,从而得到原结论的正确。象这样的证 明方法叫做反证法。
[解析] “至少有一个”反设词应为 “没有一个”,也就是说本题应假设 为a,b,c都不是偶数
• 4.命题“△ABC中,若∠A>∠B,则 a>b”的结论的否定应该是( ) • A.a<b • B.a≤b • C.a=b • D .a ≥ b [解析] “a>b”的否定应为“a=b或 a<b”,即a≤b.故应选B.
点拨:至少的反面是没有!
四、巩固新知
1、试说出下列命题的反面: (1)a是实数。 a不是实数 (2)a大于2。a小于或等于2 没有两个 a大于或等于2 (3)a小于2。 (4)至少有 2个 (5)最多有一个 一个也没有 (6)两条直线平行。 两直线相交 2、用反证法证明“若a2≠ b2,则a ≠ b”的第一步是 假设a=b。 3、用反证法证明“如果一个三角形没有两个相等的角,那么 这个三角形不是等腰三角形”的第一步 假设这个三角形是等腰三角形 。
• 8.用反证法证明命题:“一个三角形中不能 有两个直角”的过程归纳为以下三个步骤: • ①∠A+∠B+∠C=90°+90°+∠C>180°, 这与三角形内角和为180°相矛盾,则∠A= ∠B=90°不成立; • ②所以一个三角形中不能有两个直角; • ③假设∠A,∠B,∠C中有两个角是直角,不 妨设∠A=∠B=90°. [答案] ③①② • 正确顺序的序号排列为____________ .
A
P
C
• 1.否定结论“至多有两个解”的说法中, 正确的是( ) • A.有一个解 • B.有两个解 • C.至少有三个解 • D.至少有两个解 [解析] 在逻辑中“至多有n个”的否定 是“至少有n+1个”,所以“至多有两个 解”的否定为“至少有三个解”,故应选C.
• 2.否定“自然数a、b、c中恰有一个偶数” 时的正确反设为( ) • A.a、b、c都是奇数 • B.a、b、c或都是奇数或至少有两个偶数 • C.a、b、c都是偶数 • D.a、b、c中至少有两个偶数
4、求证:如果一个梯形同一底上的两个内角不 相等,那么这个梯形不是等腰梯形。
A B
已知:在梯形ABCD中,AB//CD, ∠C≠∠D 求证:梯形ABCD不是等腰梯形. 证明:假设梯形ABCD是等腰梯形。 ∴∠C=∠D(等腰梯形同一底 上的两内角相等) 这与已知条件∠C≠∠D矛盾, 假设不成立。 ∴梯形ABCD不是等腰梯形.
[解析] 由反证法证明的步骤知,先 反证即③,再推出矛盾即①,最后作 出判断,肯定结论即②,即顺序应为 ③①②.
三、应用新知
例1在△ABC中,AB≠AC,求证:∠B
证明:假设 ∠B = ∠ C, 则 这与 AB=AC ( 等角对等边 已知AB≠AC 矛盾. )
B C
≠∠
C
A
假设不成立. ∴ ∠B ≠ ∠ C .
小结:
反证法的步骤:假设结论的反面不成立→逻辑推理 得出矛盾→肯定原结论正确
已知:如图有a、b、c三条直线, 且a//c,b//c. 求证:a//b
• 5.有甲、乙、丙、丁四位歌手参加比赛,其中只有一 位获奖,有人走访了四位歌手,甲说:“是乙或丙获 奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖 了”,丁说:“是乙获奖了”,四位歌手的话只有两 句是对的,则获奖的歌手是( ) • A.甲 • B.乙 • C.丙 • D.丁
[解析] 因为只有一人获奖,所以丙、丁只有一个 说对了,同时甲、乙中只有一人说对了,假设乙 说的对,这样丙就错了,丁就对了,也就是甲也 对了,与甲错矛盾,所以乙说错了,从而知甲、 丙对,所以丙为获奖歌手.故应选C.
相关文档
最新文档